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Abstract

In this paper, we consider the initial-boundary value problem to the nonhomogeneous incompressible 
Navier–Stokes equations. Local strong solutions are established, for any initial data (ρ0, u0) ∈ (W1,γ ∩
L∞) × H 1

0,σ
, with γ > 1, and if γ ≥ 2, then the strong solution is unique. The initial density is allowed 

to be nonnegative, and in particular, the initial vacuum is allowed. The assumption on the initial data is 
weaker than the previous widely used one that (ρ0, u0) ∈ (H 1 ∩L∞) × (H 1

0,σ
∩H 2), and no compatibility 

condition is required.
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1. Introduction

The motion of the incompressible fluid in a domain � is governed by the following nonho-
mogeneous incompressible Navier–Stokes equations

∂tρ + u · ∇ρ = 0, (1.1)

ρ(∂tu + (u · ∇)u) − �u + ∇p = 0, (1.2)
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divu = 0, (1.3)

in � × (0, ∞), where the nonnegative function ρ is the density of the fluid, the vector field u
denotes the velocity of the flow, and the scaler function p presents the pressure.

Since Leray’s pioneer work [20] in 1934, in which he established the global existence of weak 
solutions to the homogeneous incompressible Navier–Stokes equations, i.e. system (1.1)–(1.3)
with positive constant density, there has been a considerable number of papers devoted to the 
mathematical analysis on the incompressible Navier–Stokes equations. A generalization of Ler-
ay’s result to the corresponding nonhomogeneous system, i.e. system (1.1)–(1.3) with variable 
density, was first made by Antontsev–Kazhikov in [3], for the case that the initial density is away 
from vacuum, see also the book Antontsev–Kazhikov–Monakhov [4]. For the case that the initial 
density is allowed to have vacuum, the global existence of weak solutions to system (1.1)–(1.3)
was proved by Simon [29,30] and Lions [24]. However, the uniqueness and smoothness of weak 
solutions to the nonhomogeneous Navier–Stokes equation, even for the two dimensional case, 
is still an open problem; note that it is well known that weak solutions to the two dimensional 
homogeneous incompressible Navier–Stokes equations are unique, and are smooth immediately 
after the initial time, see, e.g., Ladyzhenskaya [18] and Temam [31].

Local existence (but without uniqueness) of strong solutions to the nonhomogeneous incom-
pressible Navier–Stokes equations was first established by Antontsev–Kazhikov [3], under the 
assumption that the initial density is bounded and away from zero and the initial velocity has 
H 1 regularity. Local in time strong solutions, which enjoy the uniqueness, were later obtained 
by Ladyzhenskaya–Solonnikov [19], Padula [25,26] and Itoh–Tani [17]. Some more advances 
concerning the existence and uniqueness of strong solutions, in the framework of the so-called 
critical spaces, to the nonhomogeneous incompressible Navier–Stokes equations have been made 
recently, see, e.g., [1,2,9–12,15,27,28]. It should be mentioned that in all the works [1–3,9–12,
15,17,19,25–28], the initial density is assumed to have positive lower bound, and thus no vacuum 
is allowed.

For the general case that the initial density is allowed to have vacuum, Choe–Kim [7] first 
proved the local existence and uniqueness of strong solutions to the initial-boundary value prob-
lem of system (1.1)–(1.3), with initial data (ρ0, u0) satisfying

0 ≤ ρ0 ∈ H 1 ∩ L∞, u0 ∈ H 2 ∩ H 1
0,σ , (1.4)

and the compatibility condition

�u0 − ∇p0 = √
ρ0g, (1.5)

for some (p0, g) ∈ H 1 ×L2. Since the work [7], conditions (1.4)–(1.5) and their necessary mod-
ifications are widely used, as the standard assumptions, in many papers concerning the studies of 
the existence and uniqueness of strong solutions, with initial vacuum allowed, to the nonhomo-
geneous Navier–Stokes equations and some related systems, such as the magnetohydrodynamics 
(MHD) and liquid crystals, see, e.g., [6,8,13,14,16,21,32,33].

Noticing that, when the initial vacuum is taken into consideration, conditions (1.4)–(1.5) are 
so widely used in the literatures to study the existence and uniqueness of strong solutions to 
the nonhomogeneous Navier–Stokes equations and some related models, we may ask if one can 
reduce the regularities on the initial data stated in (1.4) and drop the compatibility condition (1.5), 
so that the result of existence and uniqueness of strong solutions to the corresponding systems 
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still holds. As will be indicated in this paper, we can indeed reduce the regularities of the initial 
velocity and drop the compatibility condition, without destroying the existence and uniqueness, 
but the prices that we need to pay are the following: (i) the corresponding strong solutions do 
not have as high regularities as those in [7]; (ii) one can only ask for the continuity, at the initial 
time, of the momentum ρu, instead of the velocity u itself.

In this paper, we consider the initial-boundary value problem to system (1.1)–(1.3), defined 
on a smooth bounded domain � of R3, and the initial and boundary conditions are as follows

u(x, t) = 0, x ∈ ∂�, (1.6)

(ρ,ρu)|t=0 = (ρ0, ρ0u0). (1.7)

Note that, instead of imposing the initial condition on the velocity u, we impose the initial con-
dition on the momentum ρu. As will be explained in (iii) of Remark 1.2, below, generally one 
can not expect the continuity of the velocity u, up to the initial time, when the vacuum appears 
and the initial data is not sufficiently smooth.

Throughout this paper, for positive integer k and positive number q ∈ [1, ∞], we use Lq

and Wk,q to denote the standard Lebesgue and Sobolev spaces, respectively, on the domain �. 
When q = 2, we use Hk , instead of Wk,2. Spaces L2

σ and H 1
0,σ are the closures in L2 and H 1, 

respectively, of the space C∞
0,σ := {ϕ ∈ C∞

0 (�) | divϕ = 0}. For simplicity, we usually use ‖f ‖q

to denote ‖f ‖Lq .
Strong solutions to system (1.1)–(1.3), subject to (1.6)–(1.7), are defined as follows.

Definition 1.1. Given a positive time T ∈ (0, ∞), and the initial data (ρ0, u0), with ρ0 ∈ W 1,γ ∩
L∞, γ ∈ (1, ∞), and u0 ∈ H 1

0,σ . A pair (ρ, u) is called a strong solution to system (1.1)–(1.3), 
subject to (1.6)–(1.7), on � × (0, T ), if it has the regularities

ρ ∈ L∞(0, T ;W 1,γ ∩ L∞) ∩ C([0, T ];Lγ ),

u ∈ L∞(0, T ;H 1
0,σ ) ∩ L2(0, T ;H 2), ρu ∈ C([0, T ];L2),

√
tu ∈ L∞(0, T ;H 2) ∩ L2(0, T ;W 2,6),

√
t∂tu ∈ L2(0, T ;H 1),

satisfies system (1.1)–(1.3) pointwisely, a.e. in � × (0, T ), for some associated pressure function 
p ∈ L2(0, T ; H 1), and fulfills the initial condition (1.7).

Remark 1.1. Thanks to the regularities of the strong solutions stated in Definition 1.1, by 
equations (1.1) and (1.2), one can show that the strong solutions have the following additional 
regularities

∂tρ ∈ L4(0, T ;Lγ ),
√

ρ∂tu ∈ L2(0, T ;L2),
√

t
√

ρ∂tu ∈ L∞(0, T ;L2).

The main result of this paper is the following theorem on the local existence and uniqueness 
of strong solutions to system (1.1)–(1.3), subject to (1.6)–(1.7).

Theorem 1.1. Let � be a bounded domain in R3 with smooth boundary. Suppose that the initial 
data (ρ0, u0) satisfies
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0 ≤ ρ0 ≤ ρ̄, ρ0 ∈ W 1,γ , u0 ∈ H 1
0,σ ,

for some γ ∈ (1, ∞) and ρ̄ ∈ (0, ∞).
Then, there is a positive time T0, depending only on ρ̄, � and ‖∇u0‖2, such that system 

(1.1)–(1.3), subject to (1.6)–(1.7), admits a strong solution (ρ, u), on � × (0, T0). Moreover, if 
γ ∈ [2, ∞), then the strong solution just established is unique.

Remark 1.2. (i) Through we ask for the W 1,γ regularity on the initial density, the only factor of 
the initial density that influences the existence time T0 in Theorem 1.1 is the upper bound. As 
will be seen in the proof of Theorem 1.1, such higher regularity assumption on the initial density, 
i.e. ρ0 ∈ W 1,γ , is used only to guarantee the continuity of the momentum at the initial time and 
the uniqueness of the solution.

(ii) The regularity assumptions on the initial data in Theorem 1.1 are weaker than those in 
[7], where the initial data was assumed to have the regularities stated in (1.4). Note that, the 
compatibility condition (1.5) plays an essential role in [7], while in Theorem 1.1, no compatibility 
condition on the initial data is required, for the local existence and unique of strong solutions.

(iii) Due to the insufficient smoothness and the absence of the compatibility conditions on 
the initial data, and the presence of vacuum, for the strong solutions (ρ, u) established in The-
orem 1.1, the quantity ∂tu, viewed as a vector valued function on the time interval (0, T0), is 
not generally integrable on (0, T0). As a result, one can not expect the continuity of u, up to the 
initial time. It is because of this that we impose the initial condition on ρu, in stead of u, in (1.7), 
and correspondingly ask for the continuity in time of ρu in Definition 1.1.

The key observation leading us to reduce the assumptions on the initial data, from those im-
posed in [7] and widely used in many other papers to the current version, stated in Theorem 1.1, is 
that the boundedness of the initial density and the H 1 regularity of the initial velocity is sufficient 
to guarantee the L1(0, T0; W 1,∞) estimate on the velocity of the solutions to system (1.1)–(1.3). 
In order to achieve the L1(0, T ; W 1,∞) estimate of the velocity, the main tool is to perform the 
t -weighted H 2 estimate to system (1.1)–(1.2) or its approximated system, see Proposition 3.3, 
below, obtaining

sup
0≤t≤T0

t (‖∇2u‖2
2 + ‖√ρ∂tu‖2

2) +
T0∫

0

t‖∇∂tu‖2
2dt ≤ C.

Note that, thanks to the weighted factor t , the constant C in the above estimate is independent of 
the H 2 norm of the initial velocity. With the above estimate in hand, one can then successfully 
obtain the desired L1(0, T0; W 1,∞) estimate on the velocity, and further the regularity estimates 
on the density, see Proposition 4.1, below, for the details. In proving the uniqueness of strong 
solutions, the idea of the t -weighted estimates is also used, but in a different manner from above, 
see the Gronwall type inequality in Lemma 2.5, below.

Remark 1.3. (i) The same argument can be adopted to other similar systems, including the 
nonhomogeneous incompressible magnetohydrodynamics (MHD) and the liquid crystals, in the 
presence of initial vacuum. Specifically, one can weaken the regularity assumptions and drop the 
compatibility conditions on the initial data stated in [6,8,13,14,16,21,32,33], without destroying 
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the existence and uniqueness of strong solutions; however, the definitions of the strong solutions 
in those papers should be modified accordingly.

(ii) The idea of making use of the t -weighted estimate has been used in the study of several 
incompressible models, to weaken the regularity assumptions on the initial data, see, e.g., Paicu–
Zhang–Zhang [28] for the inhomogeneous incompressible Navier–Stokes equations, i.e. system 
(1.1)–(1.3), in the absence of vacuum, Li–Titi [22] for the Boussinesq equations, Li–Titi [23]
for a tropical atmosphere model, and Cao–Li–Titi [5] for the primitive equations. This idea can 
be also adopted to the compressible Navier–Stokes equations, but the argument will be different 
from and more complicated than the incompressible case. We will present the details of such 
kind result for the compressible Navier–Stokes equations in another paper.

The rest of this paper is arranged as follows: in Section 2, we collect some preliminary lem-
mas; in Section 3, we carry out the Galerkin approximation to system (1.1)–(1.3), and perform 
some uniform a priori estimates on the solutions to the approximated system; the proof of Theo-
rem 1.1 is given in the last section.

2. Preliminaries

In this section, we state several preliminary lemmas which will be used in the rest of this 
paper. We start with the following compactness lemma due to DiPerna–Lions.

Lemma 2.1 (cf. [24]). Let T be a positive time, and assume that {(ρN, uN)}∞N=1 satisfies

ρN ∈ C([0, T ];L1), 0 ≤ ρN ≤ C, a.e. on � × (0, T ),

divuN = 0, a.e. on � × (0, T ), ‖uN‖L2(0,T ;H 1
0,σ ) ≤ C,

∂tρN + div (ρNuN) = 0, in D′(� × (0, T )),

ρN(0) → ρ0, in L1, uN ⇀ u, in L2(0, T ;H 1),

where C is a positive constant independent of N .
Then, ρN converges in C([0, T ]; Lp), for 1 ≤ p < ∞, to the unique solution ρ, bounded on 

� × (0, T ), of

∂tρ + div (ρu) = 0, in D′(� × (0, T )),

ρ ∈ C([0, T ];L1), ρ(0) = ρ0, a.e. in �.

The next lemma about the existence, uniqueness and a priori estimates to the transport equa-
tions is standard, see, e.g., [19].

Lemma 2.2. Let v ∈ L1(0, T ; Lip) a vector field, such that divv = 0, and v ·n = 0 on ∂�, where 
n denotes the outward normal vector on ∂�. Let ρ0 ∈ W 1,q , with q ∈ [1, ∞].

Then, the following system

{
ρt + div(ρv) = 0, in � × (0, T ),

ρ|t=0 = ρ0, in �,

has a unique solution in L∞(0, T ; W 1,∞) ∩ C([0, T ]; ∩1≤r<∞W 1,r ), if q = ∞, and in 
C([0, T ]; W 1,q), if 1 ≤ q < ∞.
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Besides, the following estimate holds

‖ρ(t)‖W 1,q ≤ e
∫ t

0 ‖∇v(τ)‖∞dτ‖ρ0‖W 1,q ,

for any t ∈ [0, T ].

To determine the pressure associated with the strong solutions, we will use the following two 
lemmas.

Lemma 2.3 (cf. [31]). Let � be an open set in Rd , d ≥ 2, and f = {f1, · · · , fd}, with fi being 
distribution, i = 1, 2, · · · , d . A necessary and sufficient condition for f = ∇p, for some distri-
bution p, is that 〈f, φ〉 = 0, for any φ ∈ C∞

0,σ (�).

Lemma 2.4 (cf. [31]). Let � be a bounded Lipschitz open set in Rd , d ≥ 2.
(i) If a distribution p has all its first-order derivatives ∂ip, 1 ≤ i ≤ d , in L2(�), then p ∈

L2(�) and

‖p − p�‖L2(�) ≤ c(�)‖∇p‖L2(�),

where p� = 1
|�|

∫
�

pdx.

(ii) If a distribution p has all its derivatives ∂ip, 1 ≤ i ≤ d , in H−1(�), then p ∈ L2(�) and

‖p − p�‖L2(�) ≤ c(�)‖∇p‖H−1(�).

In both cases, if � is any open set in Rd , then p ∈ L2
loc(�).

Finally, we state and prove a Gronwall type inequality which will be used to guarantee the 
uniqueness of strong solutions.

Lemma 2.5. Given a positive time T and nonnegative functions f, g, G on [0, T ], with f and g
being absolutely continuous on [0, T ]. Suppose that

⎧⎪⎨
⎪⎩

d
dt

f (t) ≤ A
√

G(t),

d
dt

g(t) + G(t) ≤ α(t)g(t) + β(t)f 2(t),

f (0) = 0,

a.e. on (0, T ), where A is a positive constant, α and β are two nonnegative functions, satisfying

α ∈ L1((0, T )) and tβ(t) ∈ L1((0, T )).

Then, the following estimates hold

f (t) ≤ A
√

g(0)
√

te
1
2

∫ t
0 (α(s)+A2sβ(s))ds,

and
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g(t) +
t∫

0

G(s)ds ≤ g(0)e
∫ t

0 (α(s)+A2sβ(s))ds,

for t ∈ [0, T ], which, in particular, imply f ≡ 0, g ≡ 0 and G ≡ 0, provided g(0) = 0.

Proof. It follows from the assumption and the Hölder inequality that

f (t) ≤ A

t∫
0

√
G(s)ds ≤ A

√
t

⎛
⎝ t∫

0

G(s)ds

⎞
⎠

1
2

, (2.1)

which, along with the assumption, gives

dt

dt
g(t) + G(t) ≤ α(t)g(t) + A2tβ(t)

t∫
0

G(s)ds.

Setting η(t) = g(t) + ∫ t

0 G(s)ds, then it follows from the above inequality that

η′(t) ≤ (α(t) + A2tβ(t))η(t),

which, by the Gronwall inequality, implies

η(t) = g(t) +
t∫

0

G(s)ds ≤ g(0)e
∫ t

0 (α(s)+A2sβ(s))ds .

Thanks to the above estimate, and recalling (2.1), we have

f (t) ≤ A
√

g(0)
√

te
1
2

∫ t
0 (α(s)+A2sβ(s))ds .

This completes the proof. �
3. Galerkin approximation

In this section, we preform the Galerkin approximation to system (1.1)–(1.3). We first present 
the approximation scheme, then prove the solvability of the approximated system, and finally 
carry out the uniform estimates to the approximated solutions.

3.1. The scheme

Let {wi}∞i=1 be a sequence of eigenfunctions to the following eigenvalue problem of the 
Dirichlet problem to the Stokes equations in �:
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⎧⎪⎨
⎪⎩

−�wi + ∇pi = λiwi,

divwi = 0,

wi |∂� = 0,

(3.1)

where 0 < λ1 ≤ λ2 ≤ · · · , with λi → ∞, as i → ∞, are the eigenvalues. The sequence {wi}∞i=1
can be renormalized in such a way that it is an orthonormal basis in L2

σ (�). One can further show 
that it is an orthogonal basis in H 1

0,σ (�), and a basis (but not necessary orthogonal) in H 1
0,σ (�) ∩

H 2(�), see, e.g., Ladyzhenskaya [18]. By the regularity theory of the Stokes equations, wi is 
smooth on �̄.

For any positive integer N , we set XN = span{w1, w2, · · · , wN } as the linear space expanded 
by wi , i = 1, · · · , N . Denote by ‖ · ‖XN

the norm on XN , given by

‖f ‖XN
=

(
N∑

i=1

a2
i

) 1
2

, for f =
N∑

i=1

aiwi.

Recalling that {wi}∞i=1 is an orthonormal basis in L2
σ (�), one can verify that ‖f ‖XN

is exactly 
the L2(�) norm of f , for any f ∈ XN . Note that XN is a finite dimension space, all other norms 
on XN are equivalent to the norm ‖ · ‖XN

defined above.
We are going to solve the following system:

⎧⎪⎨
⎪⎩

∂tρN + uN · ∇ρN = 0,

(ρN(∂tuN + (uN · ∇)uN),w) + (∇uN,∇w) = 0, ∀w ∈ XN,

ρN |t=0 = ρ0N, uN |t=0 = u0N,

(3.2)

where {ρ0N }∞N=1 is a sequence of functions from C2(�̄), satisfying

0 < ρ ≤ ρ0N ≤ ρ̄, ρ0N ∈ C2(�̄), ρ0N → ρ0, in W 1,r (�), (3.3)

for some r ∈ (3, ∞), and u0N is given as

u0N =
N∑

i=1

(u0,wi)wi. (3.4)

For any vN ∈ C([0, T ]; XN), define �(τ ; x, t) as the particle path which goes along with the 
velocity field vN and passes through point x at time t :

d

dτ
�(τ ;x, t) = vN(�(τ ;x, t), τ ), �(t;x, t) = x.

Note that vN ∈ C([0, T ]; C3(�̄)), by the standard theory of the ordinary differential equations, 
the particle pass �(τ ; x, t) is at least C3 continuous in (x, t) and C1 continuous in τ , on the 
domain {(τ, x, t)|τ, t ∈ [0, T ], x ∈ �̄}, in other words we have ∂3

x,t�, ∂τ� ∈ C([0, T ] × �̄ ×
[0, T ]). Moreover, � depends continuously on the velocity vN , and actually by considering the 
difference system of two particle paths �̄ and �̂, which pass through the same point x at the 
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same time t , but go along two different velocity fields v̄N and v̂N , respectively, by using the 
mean value theorem of differentials and the Gronwall inequality, one can explicitly deduce that

‖�̄ − �̂‖C([0,T ]×�̄×[0,T ]) ≤ T ‖v̄N − v̂N‖C(�̄×[0,T ])e
C‖v̄‖

L1(0,T ;Lip(�)) ,

for a constant depending only on the domain �.
Denote ρN = ρ0N(�(0; x, t)). Using the fact that �(0; x, t) = �−1(t; x, 0), where the inverse 

is with respect to the spatial variable x, one can easily check that ρN is the unique solution to

{
∂tρN + vN · ∇ρN = 0,

ρ|t=0 = ρ0N.
(3.5)

Recalling the regularities of �, it is straightforward that ρN ∈ C2(�̄ × [0, T ]). We define the 
map SN : C([0, T ]; XN) → C2(�̄ × [0, T ]) as

vN �→ ρN = SN [vN ], ρN is the unique solution to (3.5).

Recalling the continuous dependence on vN of the particle pass �, the above solution mapping 
ρN = SN [vN ] is continuous, with respect to vN ∈ C([0, T ]; XN).

In order to prove the solvability of system (3.2), it suffices to find a solution uN ∈
C([0, T ]; XN) to the following system

{
(SN [uN ](∂tuN + (uN · ∇)uN),w) + (∇uN,∇w) = 0, ∀w ∈ XN,

uN |t=0 = u0N,
(3.6)

where SN [uN ], as defined before, is the unique solution to system (3.5), with vN replaced by uN . 
To this end, we consider the following linearized system

{
(SN [vN ](∂tuN + (vN · ∇)uN),w) + (∇uN,∇w) = 0, ∀w ∈ XN,

uN |t=0 = u0N,
(3.7)

where vN ∈ C([0, T ]; XN) is given. We define a solution mapping QN : C([0, T ]; XN) →
C([0, T ]; XN) as

vN �→ uN = QN [vN ], uN is the unique solution to (3.7).

As it will be shown later, the mapping QN is well-defined. Therefore, to prove the solvability of 
system (3.7), and consequently system (3.2), it suffices to look for a fixed point of the mapping 
QN in C([0, T ]; XN).

Given vN ∈ C([0, T ]; XN), and denote by ρN = SN [vN ], as before, the unique solution to 
system (3.5). Then ρN ∈ C2(�̄ × [0, T ]) and ρ ≤ ρ ≤ ρ̄. Suppose that uN has the form

uN(x, t) =
N∑

fNi(t)wi,
i=1
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for some unknowns fNi ∈ C([0, T ]), i = 1, 2, · · · , N . Then (3.7) is equivalent to

{ ∑N
j=1 aN

ij (t)f ′
Nj (t) + ∑N

j=1 bN
ij (t)fNj (t) + λifNi = 0,

fNi(0) = (u0,wi), i = 1,2, · · · ,N,
(3.8)

where the coefficients aN
ij and bN

ij are given by

aN
ij (t) = (ρNwj ,wi), bN

ij (t) = (ρN(vN · ∇)wj ,wi).

Rewrite the above system of ordinary differential equations in matrix form as

AN(t)f ′
N(t) + (BN(t) + �N)fN(t) = 0, fN(t) = (fN1(t), · · · , fNN(t))T , (3.9)

where AN(t) = (aN
ij (t))N×N , BN(t) = (bN

ij (t))N×N and �N = diag (λ1, · · · , λN).

Since ρN ∈ C2(�̄ × [0, T ]) and vN ∈ C([0, T ]; XN) ⊆ C(�̄ × [0, T ]), it is clear that 
AN, BN ∈ C([0, T ]). Besides, AN is nonsingular. Otherwise, there are constants α1, · · · , αN , 
not all zero, such that

AN(t)α = 0, α = (α1, · · · , αN)T ,

that is

N∑
j=1

aN
ij (t)αj =

N∑
j=1

(ρNwj ,wi)αj =
⎛
⎝ρN

N∑
j=1

αjwj ,wi

⎞
⎠ = 0, i = 1, · · · ,N.

Multiplying by αi the i-th equality of the above system, and summing up the resultants with 
respect to i yield

⎛
⎝ρN

N∑
j=1

αjwj ,

N∑
i=1

αiwi

⎞
⎠ = 0,

wherefrom, recalling that ρN ≥ ρ > 0, we get 
∑N

i=1 αiwi = 0, which contradicts to the linearly 
independency of the basis {wi}∞i=1.

Thanks to the nondegeneracy of AN , (3.9) can be reformed as

f ′
N(t) + A−1

N (t)(BN(t) + �N)fN(t) = 0. (3.10)

Since AN and BN are continuous on [0, T ], so is A−1
N , the solvability of the initial value prob-

lem to the above system follows from the classical theory of the ordinary differential equations. 
Therefore, for any given vN ∈ C([0, T ]; XN), there is a unique solution uN ∈ C([0, T ]; XN)

to (3.7), in other words, the solution mapping QN is well-defined. Moreover, noticing that 
the solution mapping ρN = SN [vN ] to system (3.5) is continuous in vN ∈ C([0, T ]; XN), it is 
straightforward that the matrices AN and BN , viewed as the functionals of vN , are both contin-
uous in vN , so is A−1

N . Therefore, in view of (3.10), fN is continuous in vN , and as a result the 
mapping uN = QN [vN ] is continuous with respect to vN ∈ C([0, T ]; XN).
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3.2. Solvability of (3.2)

As mentioned before, in order to prove the solvability of (3.2), it suffices to find a fixed point 
to the solution mapping QN , with uN = QN [vN ] being the unique solution to the linearized 
system (3.7). Recall that in the previous subsection, we have shown that QN is a continuous 
mapping from C([0, T ]; XN) to itself. We will apply the Brower fixed point theorem for compact 
continuous mappings to prove the existence of a fixed point to the mapping QN . To this end, 
recalling that the continuity of QN has been proven in the previous subsection, one still need to 
verify compactness of QN , which, noticing that XN is a finite dimensional space, is guaranteed 
by the following proposition:

Proposition 3.1. Let SN and QN be the mappings defined as before. Then, for any vN ∈
C([0, T ]; XN), the following hold

sup
0≤t≤T

‖√SN [vN ]QN [vN ]‖2
2 + 2

T∫
0

‖∇QN [vN ]‖2
2dt ≤ ‖√ρ0Nu0N‖2

2,

sup
0≤t≤T

‖∇QN [vN ]‖2
2 +

T∫
0

‖√SN [vN ]∂tQN [vN ]‖2
2dt ≤ ‖∇u0N‖2

2e
CNT ‖vN‖2

C([0,T ];XN ),

where CN is a positive constant depending only on N, ρ̄ and �.

Proof. Denote ρN = SN [vN ] and uN = QN [vN ]. Taking w = uN in (3.7), then it follows from 
integration by parts and using equation (3.5) that

1

2

d

dt
‖√ρNuN‖2

2 + ‖∇uN‖2
2 = 0,

from which, integrating in t yields the first conclusion.
Next, we prove the second conclusion. Choosing w = ∂tuN in (3.7), and integration by parts, 

one obtains

1

2

d

dt
‖∇uN‖2

2 + ‖√ρN∂tuN‖2
2 = −

∫
�

ρN(vN · ∇)uN · ∂tuNdx

≤√
ρ̄‖√ρN∂tuN‖2‖vN‖∞‖∇uN‖2 ≤ CN‖vN‖XN

‖√ρN∂tuN‖2‖∇uN‖2

≤1

2
‖√ρN∂tuN‖2

2 + CN‖vN‖2
XN

‖∇uN‖2
2,

wherefrom, by the Gronwall inequality, the second conclusion follows. In the above, we have 
used the fact that the L∞ norm and the norm ‖ · ‖XN

are equivalent, as XN is a finite dimensional 
Banach space. �

Thanks to the above proposition, we can prove the global solvability of system (3.2), and we 
have the following:
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Corollary 3.1 (Solvability of (3.2)). For any positive time T , there is a unique solution (ρN, uN)

to system (3.2), satisfying

ρN ∈ C2(�̄ × [0, T ]), uN ∈ C2([0, T ];XN), ρ ≤ ρ ≤ ρ̄.

Proof. As mentioned before, it suffices to find a fixed point to the mapping QN in C([0, T ]; XN). 
The regularity of ρN has been mentioned several times in last subsection, while the regularity 
of uN can be easily seen from the ordinary differential equations (3.10), in view of the fact 
that A−1

N , BN ∈ C2([0, T ]), which are guaranteed by the regularity of ρN . Thanks to the first 
conclusion in Proposition 3.1, we have the estimate

‖QN [vN ]‖C([0,T ];XN) ≤ K, ∀vN ∈ C([0, T ];XN),

where K = K(N, ρ̄, ‖u0‖2
2) is a positive constant. By the second conclusion of Proposition 3.1, 

the following estimate holds

‖∂tQN [vN ]‖L2(0,T ;XN) ≤ C(N,T ,K,‖u0‖2
H 1),

for any vN ∈ C([0, T ]; XN) subject to ‖vN‖C([0,T ];XN) ≤ K . Recalling that XN is a finite di-
mensional Banach space, by the Arzelá–Ascoli theorem, the above two estimates imply that QN

is a compact mapping from BK to itself, where BK is the closed ball in C([0, T ]; XN). Thanks 
to this fact, and recalling that QN is a continuous mapping from C([0, T ]; XN) to itself, by the 
Brower fixed point theorem, there is a fixed point in BK to the mapping QN . This completes the 
proof. �
3.3. Uniform in N estimates

In this subsection, we will establish some a priori estimates, which are uniform in N , in a 
short time, to the solution (ρN, uN) established in Corollary 3.1.

Recall the expression of uN = ∑N
j=1 fNj (t)wj . On the one hand, choosing w = wi in (3.2), 

one obtains by integration by parts that

(−�uN,wi) = (∇uN,∇wi) = (−ρN(∂tuN + (uN · ∇)uN,wi),

for i = 1, 2, · · · , N . On the other hand, recalling (3.1), it follows from integration by parts that

(−�uN,wi) =
N∑

j=1

fNj (t)(−�wj ,wi) =
N∑

j=1

fNj (t)(λjwj − ∇pj ,wi)

=
N∑

j=1

fNj (t)λj δij = λifNi(t).

Thus, we have

fNi(t) = − 1
(ρN(∂tuN + (uN · ∇)uN,wi).
λi
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Thanks to this, and using (3.1) again, one deduces

−�uN = −
N∑

j=1

fNj�wj =
N∑

j=1

(λjwj − ∇pj )(− 1

λj

)(ρN u̇N ,wj )

= ∇
⎛
⎝ N∑

j=1

1

λj

(ρN u̇N ,wj )pj

⎞
⎠ −

N∑
j=1

(ρN u̇N ,wj )wj ,

with u̇N = ∂tuN + (uN · ∇)uN , or equivalently

�uN + ∇PN =
N∑

j=1

(ρN(∂tuN + (uN · ∇)uN),wj )wj , (3.11)

where the pressure PN is given as PN = ∑N
j=1

1
λj

(ρN u̇N , wj)pj .

We first consider the H 1 estimate, that is the following proposition:

Proposition 3.2. Let (ρN, uN) be the solution established in Corollary 3.1. Then, there is a 
positive time T0 depending only on ρ̄, � and ‖∇u0‖2, such that

sup
0≤t≤T0

‖∇uN‖2
2 +

T0∫
0

(‖√ρN∂tuN‖2
2 + ‖∇2uN‖2

2)dt ≤ C‖∇u0‖2
2,

for a positive constant C depending only on ρ̄ and �.

Proof. Taking w = ∂tuN in (3.2), then it follows from integration by parts and the Young in-
equality that

1

2

d

dt
‖∇uN‖2

2 + ‖√ρN∂tuN‖2
2 = −

∫
�

ρN(uN · ∇)uN · ∂tuNdx

≤ 1

2
‖√ρN∂tuN‖2

2 + 1

2

∫
�

ρN |uN |2|∇uN |2dx,

and thus

d

dt
‖∇uN‖2

2 + ‖√ρN∂tuN‖2
2 ≤

∫
�

ρN |uN |2|∇uN |2dx. (3.12)

Applying the H 2 estimate to (3.11), and noticing that 
∥∥∥∑N

j=1(g,wi)wi

∥∥∥
2

≤ ‖g‖2, for any 

g ∈ L2(�), we deduce
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‖∇2uN‖2
2 ≤ C

∥∥∥∥∥∥
N∑

j=1

(ρN(∂tuN + uN · ∇uN),wj )wj

∥∥∥∥∥∥
2

2

≤ C‖ρN(∂tuN + uN · ∇uN)‖2
2

≤ Cρ̄‖√ρN∂tuN‖2
2 + Cρ̄

∫
�

ρN |uN |2|∇uN |2dx

≤ M1‖√ρN∂tuN‖2
2 + C

∫
�

ρN |uN |2|∇uN |2dx, (3.13)

where M1 and C are positive constants depending only on ρ̄ and �.
Multiplying (3.12) by 2M1, and summing the resultant with (3.13), we obtain

2M1
d

dt
‖∇uN‖2

2 + M1‖√ρN∂tuN‖2
2 + ‖∇2uN‖2

2 ≤ C

∫
�

ρN |uN |2|∇uN |2dx, (3.14)

for a positive constant C depending only on ρ̄ and �.
We have to estimate the term 

∫
�

ρN |uN |2|∇uN |2dx. By the Hölder, Sobolev and Poincaré 
inequalities, we deduce

C

∫
�

ρN |uN |2|∇uN |2dx ≤ C‖uN‖2
6‖∇uN‖2‖∇uN‖6

≤ C‖∇uN‖3
2‖∇2uN‖2 ≤ 1

2
‖∇2uN‖2

2 + C‖∇uN‖6
2, (3.15)

which, substituted into (3.14), gives

2M1
d

dt
‖∇uN‖2

2 + (M1‖√ρN∂tuN‖2
2 + 1

2
‖∇2uN‖2

2) ≤ C‖∇uN‖6
2, (3.16)

for a positive constant C depending only on ρ̄ and �.
Set

FN(t) = 2M1‖∇uN‖2
2(t) +

t∫
0

(M1‖√ρN∂tuN‖2
2 + 1

2
‖∇2uN‖2

2)ds.

Then, it follows from (3.16) that

F ′
N(t) ≤ C1F

3
N(t), t ∈ [0, T ],

where C1 is a positive constant depending only on ρ̄ and �. Simple calculations to the above 
ordinary differential inequality yields
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FN(t) ≤ FN(0)√
1 − 2C1F

2
N(0)t

= 2M1‖∇u0N‖2
2√

1 − 8C1M
2
1‖∇u0N‖4

2t

,

for any t ∈ [0, (16C1M
2
1‖∇u0N‖4

2)
−1], from which, noticing that ‖∇u0N‖2 ≤ ‖∇u0‖2, one ob-

tains

FN(t) ≤ 2
√

2M1‖∇u0N‖2
2 ≤ 2

√
2M1‖∇u0‖2

2, t ∈ [0, (16C1M
2
1‖∇u0‖4

2)
−1].

This completes the proof of Proposition 3.2. �
Next, we study the t -weighted H 2 estimate, which is stated in the next proposition.

Proposition 3.3. Let (ρN, uN) be the solution established in Corollary 3.1 and T0 the number in 
Proposition 3.2. Then, the following estimate holds

sup
0≤t≤T0

t (‖∇2uN‖2
2 + ‖√ρN∂tuN‖2

2) +
T0∫

0

t‖∇∂tuN‖2
2dt ≤ C,

for a positive constant C depending only on ρ̄, T0, � and ‖∇u0‖2.

Proof. Differentiating (3.2)2 with respect to t , and using (3.2)1 yield

(ρN(∂2
t uN + (uN · ∇)∂tuN),w) + (∇∂tuN ,∇w)

=(div (ρNuN)(∂tuN + (uN · ∇)uN),w) − (ρN(∂tuN · ∇)uN,w),

for all w ∈ XN . Taking w = ∂tuN in the above equality, then it follows from integration by parts 
and using equation (3.2)1 that

1

2

d

dt
‖√ρN∂tuN‖2

2 + ‖∇∂tuN‖2
2

= (div (ρNuN)(∂tuN + (uN · ∇)uN) − ρN∂tuN · ∇uN, ∂tuN)

≤
∫
�

[ρN |uN |(2|∂tuN ||∇∂tuN | + |uN ||∇uN ||∇∂tuN |

+|uN ||∇2uN ||∂tuN | + |∇uN |2|∂tuN |) + ρN |∂tuN |2|∇uN |]dx

= 2
∫
�

ρN |uN ||∂tuN ||∇∂tuN |dx +
∫
�

ρN |uN |2|∇uN ||∇∂tuN |dx

+
∫
�

ρN |uN |2|∇2uN ||∂tuN |dx +
∫
�

ρN |uN ||∇uN |2|∂tuN |dx

+
∫

ρN |∂tuN |2|∇uN |dx =:
5∑

i=1

Ii . (3.17)
�
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We estimate Ii, i = 1, 2, · · · , 5, as follows. By the Gagliardo–Nirenberg inequality, ‖f ‖∞ ≤
C‖f ‖

1
2
6 ‖f ‖

1
2
H 2 , it follows from the Sobolev and Poincaré inequalities that

‖uN‖∞ ≤ C‖uN‖
1
2
6 ‖uN‖

1
2
H 2 ≤ C‖∇uN‖

1
2
2 ‖∇2uN‖

1
2
2 . (3.18)

Thanks to this, by the Hölder inequality, we can estimate I1 and I2 as

I1 ≤ 2‖√ρN‖∞‖uN‖∞‖√ρN∂tuN‖2‖∇∂tuN‖2

≤ C‖∇uN‖
1
2
2 ‖∇2uN‖

1
2
2 ‖√ρN∂tuN‖2‖∇∂tuN‖2,

and

I2 ≤ ‖ρN‖∞‖uN‖2∞‖∇uN‖2‖∇∂tuN‖2 ≤ C‖∇uN‖2
2‖∇2uN‖2‖∇∂tuN‖2,

respectively. By the Hölder, Sobolev and Poincaré inequalities, we deuce

I3 ≤ ‖ρN‖∞‖uN‖2
6‖∇2uN‖2‖∂tuN‖6 ≤ C‖∇uN‖2

2‖∇2uN‖2‖∇∂tuN‖2,

I4 ≤ ‖ρN‖∞‖uN‖6‖∇uN‖2‖∇uN‖6‖∂tuN‖6 ≤ C‖∇uN‖2
2‖∇2uN‖2‖∇∂tuN‖2,

and

I5 ≤‖√ρN‖∞‖√ρN∂tuN‖2‖∇uN‖3‖∂tuN‖6

≤C‖√ρN∂tuN‖2‖∇uN‖
1
2
2 ‖∇2uN‖

1
2
2 ‖∇∂tuN‖2.

Substituting the estimates on Ii, i = 1, 2, · · · , 5, into (3.17), and using the Young inequality, 
one obtains

1

2

d

dt
‖√ρN∂tuN‖2

2 + ‖∇∂tuN‖2
2

≤ C‖∇uN‖
1
2
2 ‖∇2uN‖

1
2
2 ‖√ρN∂tuN‖2‖∇∂tuN‖2 + C‖∇uN‖2

2‖∇2uN‖2‖∇∂tuN‖2

≤ 1

2
‖∇∂tuN‖2

2 + C‖∇uN‖2‖∇2uN‖2‖√ρN∂tuN‖2
2 + C‖∇uN‖4

2‖∇2uN‖2
2,

which implies

d

dt
‖√ρN∂tuN‖2

2 + ‖∇∂tuN‖2
2

≤ C(‖∇uN‖2‖∇2uN‖2‖√ρN∂tuN‖2
2 + ‖∇uN‖4

2‖∇2uN‖2
2). (3.19)

Multiplying the above inequality by t yields
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d

dt
(t‖√ρN∂tuN‖2

2) + t‖∇∂tuN‖2
2 ≤ C(t‖∇uN‖4

2‖∇2uN‖2
2 + ‖√ρN∂tuN‖2

2)

+C‖∇uN‖2‖∇2uN‖2t‖√ρN∂tuN‖2
2,

from which, by the Gronwall inequality, and using Proposition 3.2, we obtain

sup
0≤t≤T0

(t‖√ρN∂tuN‖2
2(t)) +

T0∫
0

t‖∇∂tuN‖2
2(t)dt ≤ C, (3.20)

for a positive constant C depending only on ρ̄, T0, � and ‖∇u0‖2.
Substituting (3.15) into (3.13), one obtains

‖∇2uN‖2
2 ≤ C(‖√ρN∂tuN‖2

2 + ‖∇uN‖6
2), (3.21)

for a positive constant C depending only on ρ̄ and �, which along with (3.20) yields the conclu-
sion. �
4. Local existence and uniqueness

This section is devoted to proving the local existence and uniqueness of strong solutions to 
system (1.1)–(1.3), subject to (1.6)–(1.7), in other words, we will give the proof of Theorem 1.1.

Let us first consider the case that the initial density has positive lower bound, and we have the 
following proposition:

Proposition 4.1. Suppose that the initial data (ρ0, u0) ∈ (W 1,γ ∩ L∞) × H 1
0,σ , for some γ ∈

[1, ∞), and that ρ ≤ ρ0 ≤ ρ̄, for two positive constants ρ and ρ̄, and let T0 be the positive time 
stated in Proposition 3.3.

Then, there is a strong solution (ρ, u) to system (1.1)–(1.3), subject to (1.6)–(1.7), in � ×
(0, T0), such that ρ ≤ ρ ≤ ρ̄, and

sup
0≤t≤T0

[‖∇u‖2
2 + ‖∇ρ‖γ

γ + t (‖∇2u‖2
2 + ‖√ρ∂tu‖2

2)] +
T0∫

0

[‖∇2u‖2
2

+ ‖√ρ∂tu‖2
2 + t (‖∇2u‖2

6 + ‖∇∂tu‖2
2) + ‖∇u‖∞ + ‖∂tρ‖4

γ ]dt ≤ C,

for a positive constant C depending only on ρ̄, �, ‖∇u0‖2 and ‖∇ρ0‖γ .

Proof. Choose a sequence of ρ0N ∈ C2(�̄), such that

ρ ≤ ρ0N ≤ ρ̄, ρ0N → ρ0, in W 1,γ (�), ‖∇ρ0N‖γ ≤ ‖∇ρ0‖γ .

Let {wi}∞i=1 be the sequence of eigenfunctions to (3.1), as stated in the previous section, Sec-

tion 3. For any positive integer N , we set u0N = ∑N
i=1(u0, wi)wi . Then, u0N → u0 in H 1(�).

By Corollary 3.1 and Propositions 3.2–3.3, for any positive integer N , there is a solution 
(ρN, uN) to system (3.2), such that ρ ≤ ρN ≤ ρ̄, and
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sup
0≤t≤T0

[‖∇uN‖2
2 + t (‖∇2uN‖2

2 + ‖√ρN∂tuN‖2
2)]

+
T0∫

0

(‖√ρN∂tuN‖2
2 + ‖∇2uN‖2

2 + t‖∇∂tuN‖2
2)dt ≤ C,

where T0 is the positive time stated in Proposition 3.2, and C is a positive constant depending 
only on ρ̄, T0, � and ‖∇u0‖2.

Thanks to the above estimate, using the Cantor diagonal argument, and applying Lemma 2.1, 
there is a subsequence of {(ρN, uN)}∞N=1, still denoted by {(ρN, uN)}∞N=1, and a pair (ρ, u), with 
ρ ≤ ρN ≤ ρ̄ and

sup
0≤t≤T0

[‖∇u‖2
2 + t (‖∇2u‖2

2 + ‖√ρ∂tu‖2
2)]

+
T0∫

0

(‖√ρ∂tu‖2
2 + ‖∇2u‖2

2 + t‖∇∂tu‖2
2)dt ≤ C, (4.1)

for a positive constant C depending only on ρ̄, T0, � and ‖∇u0‖2, such that

ρN → ρ, in C([0, T0];Lq), q ∈ [1,∞),

uN
∗
⇀ u, in L∞(0, T0;H 1) ∩ L∞(τ, T0;H 2),

uN ⇀ u, in L2(0, T0;H 2), ∂tuN
∗
⇀ ∂tu, in L∞(τ, T0;L2),

∂tuN ⇀ ∂tu, in L2(0, T0;L2) ∩ L2(τ, T0;H 1),

for any τ = T0
k

, k = 2, 3, · · · , and thus for any τ ∈ (0, T0), where ⇀ and 
∗
⇀ denote the weak 

and weak-* convergences, respectively. Noticing that H 2 ↪→↪→ H 1 ↪→ L2, by the Aubin–Lions 
compactness lemma, we have uN → u in C([0, T0]; L2) ∩ L2(0, T0; H 1). Therefore, we have 
(ρ, u)|t=0 = (ρ0, u0).

Thanks to the previous convergences, it is clear that (ρ, u) satisfies (1.1), in the sense of distri-
bution, and moreover, since ρ has the regularities ρ ∈ L∞(0, T0; W 1,γ ) and ∂tρ ∈ L4(0, T0; Lγ ), 
which will be proven in the below, (ρ, u) satisfies equation (1.1) pointwisely, a.e. in � × (0, T0). 
The previous convergences also imply

ρN∂tuN ⇀ ρ∂tu, in L2(0, T0;L2),

ρN(uN · ∇)uN ⇀ ρ(u · ∇)u, in L2(0, T0;L2).

Consequently, one can take the limit N → ∞ in the momentum equation in (3.2) to deduce that

(ρ(∂tu + (u · ∇)u),wi) + (∇u,∇wi) = 0, for any positive integer i,

or equivalently, by integration by parts, that
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(ρ(∂tu + (u · ∇)u) − �u,wi) = 0, for any positive integer i.

Since {wN }∞N=1 is a basis in L2
σ (�), and noticing that

ρ(∂tu + (u · ∇)u) − �u ∈ L2(0, T0;L2),

a density argument yields

(ρ(∂tu + (u · ∇)u) − �u,φ) = 0, ∀w ∈ L2
σ (�).

Thanks to this, by Lemma 2.3 and Lemma 2.4, there is a function � ∈ L2(0, T0; H 1), such that

ρ(∂tu + (u · ∇)u) − �u = ∇�,

which is exactly the momentum equation (1.2), by setting p = −�.
In order to complete the proof of Proposition 4.1, one still need to verify

sup
0≤t≤T0

‖∇ρ‖γ
γ +

T0∫
0

(t‖∇2u‖2
6 + ‖∇u‖∞ + ‖∂tρ‖4

γ )dt ≤ C,

for a positive constant C depending only on ρ̄, T0, �, ‖∇u0‖2 and ‖∇ρ0‖γ .
Similar to (3.18), one has ‖u‖2∞ ≤ C‖∇u‖2‖∇2u‖2. Thanks to this, by the elliptic estimate 

for the Stokes equations, and using the Sobolev inequality, we deduce

‖∇2u‖6 ≤ C‖ρ(∂tu + u · ∇u)‖6 ≤ C(‖∂tu‖6 + ‖u‖∞‖∇u‖6)

≤ C(‖∇∂tu‖2 + ‖∇u‖
1
2
2 ‖∇2u‖

3
2
2 ),

and thus, recalling (4.1), we obtain

T0∫
0

t‖∇2u‖2
6dt ≤ C

T0∫
0

t (‖∇∂tu‖2
2 + ‖∇u‖2‖∇2u‖3

2)dt ≤ C,

for a positive constant C depending only on ρ̄, T0, � and ‖∇u0‖2.

By the Gagliardo–Nirenberg inequality, ‖f ‖∞ ≤ C(�)‖f ‖
1
2
6 ‖f ‖

1
2
W 1,6(�)

, and using the 
Sobolev and Poincaré inequalities, we have

‖∇u‖∞ ≤ C‖∇u‖
1
2
6 ‖∇u‖

1
2
W 1,6 ≤ C‖∇2u‖

1
2
2 ‖∇2u‖

1
2
6 .

Thus, it follows from the Hölder inequality and (4.1) that
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T0∫
0

‖∇u‖∞dt ≤ C

T0∫
0

‖∇2u‖
1
2
2 ‖∇2u‖

1
2
6 dt = C

T0∫
0

‖∇2u‖
1
2
2 (t‖∇2u‖2

6)
1
4 t−

1
4 dt

≤ C

⎛
⎝ T0∫

0

‖∇2u‖2
2dt

⎞
⎠

1
4 ⎛
⎝ T0∫

0

t‖∇2u‖2
6dt

⎞
⎠

1
4 ⎛
⎝ T0∫

0

t−
1
2 dt

⎞
⎠

1
2

≤ C,

for a positive constant C depending only on ρ̄, T0, � and ‖∇u0‖2. Thanks to this estimate, and 
applying Lemma 2.2, one obtains

sup
0≤t≤T0

‖∇ρ‖γ
γ ≤ C,

for a positive constant C depending only on ρ̄, T0, �, ‖∇u0‖2 and ‖∇ρ0‖γ .

Recall that ‖u‖∞ ≤ C(�)‖∇u‖
1
2
2 ‖∇2u‖

1
2
2 , it follows from the continuity equation (1.1) that

T0∫
0

‖∂tρ‖4
γ dt ≤

T0∫
0

‖u‖4∞‖∇ρ‖4
γ dt ≤ C

T0∫
0

‖∇u‖2
2‖∇2u‖2

2‖∇ρ‖4
γ dt ≤ C,

for a positive constant C depending only on ρ̄, T0, �, ‖∇u0‖2 and ‖∇ρ0‖γ . This completes the 
proof of Proposition 4.1. �

We are now ready to prove our main result, Theorem 1.1.

Proof of Theorem 1.1. Take a sequence {ρ0n}∞n=1, such that

1

n
≤ ρ0n ≤ ρ̄ + 1, ρ0n → ρ0 in W 1,γ , ‖∇ρ0n‖γ ≤ ‖∇ρ0‖γ + 1.

By Proposition 4.1, there is a positive time T0 depending only on ρ̄, �, ‖∇u0‖2, such that, for 
each n, there is a strong solution (ρn, un) to system (1.1)–(1.3), subject to (1.6)–(1.7), with initial 
data (ρ0n, u0), in � × (0, T0), satisfying 1

n
≤ ρ0n ≤ ρ̄ + 1 and

sup
0≤t≤T0

[‖∇un‖2
2 + ‖∇ρn‖γ

γ + t (‖∇2un‖2
2 + ‖√ρn∂tun‖2

2)] +
T0∫

0

[‖∇2un‖2
2

+ ‖√ρn∂tun‖2
2 + t (‖∇2un‖2

6 + ‖∇∂tun‖2
2) + ‖∇un‖∞ + ‖∂tρn‖4

γ ]dt ≤ C, (4.2)

for a positive constant C depending only on ρ̄, T0, �, ‖∇u0‖2 and ‖∇ρ0‖γ .
Thanks to the above estimates, by the Cantor diagonal argument, there is a subsequence of 

{(ρn, un)}∞ , still denoted by {(ρn, un)}∞ , and a pair (ρ, u), such that
n=1 n=1
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un
∗
⇀ u, in L∞(0, T0;H 1) ∩ L∞(τ, T0;H 2),

un ⇀ u, in L2(0, T0;H 2) ∩ L2(τ, T0;W 2,6),

∂tun ⇀ ∂tu, in L2(τ, T0;H 1),

ρn
∗
⇀ ρ, in L∞(0, T0;W 1,γ ∩ L∞), ∂tρn ⇀ ∂tρ, in L4(0, T0;Lγ ),

for any τ = T0
k

, k = 1, 2, · · · , and thus for any τ ∈ (0, T0). Therefore, by the Aubin–Lions com-
pactness lemma, the following two strong convergences hold

un → u, in C([τ, T0];H 1 ∩ L6) ∩ L2(τ, T0;C(�̄)),

ρn → ρ, in C([0, T0];Lq), for any 1 ≤ q < ∞.

Claim 1: (ρ, u) has the regularities stated in Theorem 1.1, and satisfies system (1.1)–(1.3)
pointwisely, a.e. in � × (0, T0).

The regularities of (ρ, u) stated in Theorem 1.1, except ρu ∈ C([0, T0]; L2), which will be 
proven in Claim 2, below, follow from the previous weakly convergences. Besides, thanks to the 
previous convergences, one can check that

un · ∇ρn ⇀ u · ∇ρ, in L2(τ, T0;Lγ ),

ρn∂tun ⇀ ρ∂tu, in L2(τ, T0;L2),

ρn(un · ∇)un ⇀ ρ(u · ∇)u, in L2(τ, T0;L2),

for any τ ∈ (0, T0). Therefore, one can take the limit n → ∞ to see that (ρ, u) satisfies equations 
(1.1)–(1.3), in the sense of distribution, and further a.e. in � × (0, T0), by the regularities of 
(ρ, u). This proves claim 1.

Claim 2: ρu ∈ C([0, T0]; L2) and (ρ, u) satisfies the initial condition (1.7).
Since ρn → ρ in C([0, T0]; L2), ρn|t=0 = ρ0n and ρ0n → ρ0 in W 1,γ , one has ρ|t=0 = ρ0. 

Recall that un → u in C([τ, T0]; H 1) and ρn → ρ in C([0, T0]; Lq), for any q ∈ [1, ∞), it is 
clear that ρnun → ρu, in C([τ, T0]; L2), for any τ ∈ (0, T0). It remains to verify the continuity 
of ρu at the original time and the initial data of ρu.

Similar to (3.18), one has ‖un‖2∞ ≤ C‖∇un‖2‖∇2un‖2. Thanks to this, recalling that ρn ≤
ρ̄ + 1, and using (4.2), it follow from the Hölder that

‖(ρnun)(t) − ρ0nu0‖1 =
∥∥∥∥∥∥

t∫
0

∂t (ρnun)dτ

∥∥∥∥∥∥
1

=
∥∥∥∥∥∥

t∫
0

(ρn∂tun + ∂tρnun)dτ

∥∥∥∥∥∥
1

≤
t∫

0

(‖ρn∂tun‖1 + ‖∂tρnun‖1)dτ

≤ C

t∫
(‖√ρn‖∞‖√ρn∂tun‖2 + ‖∂tρn‖γ ‖un‖∞)dτ
0
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≤ C

t∫
0

(‖√ρn∂tun‖2 + ‖∂tρn‖γ ‖∇un‖
1
2
2 ‖∇2un‖

1
2
2 )dτ

≤ C
√

t

⎡
⎢⎣

⎛
⎝ t∫

0

‖√ρn∂tun‖2
2dτ

⎞
⎠

1
2

+
⎛
⎝ t∫

0

‖∂tρn‖4
γ dτ

⎞
⎠

1
4
⎛
⎝ t∫

0

‖∇2un‖2
2dτ

⎞
⎠

1
4
⎤
⎥⎦

≤ C(γ, ρ̄, T0,�,‖∇u0‖2,‖∇ρ0‖γ )
√

t,

for any t ∈ (0, T0). With the aid of the above estimate, and using (4.2) again, it follows from the 
Hölder and Sobolev inequalities that

‖(ρnun)(t) − ρ0nu0‖2 ≤ ‖(ρnun)(t) − ρ0nun‖
2
5
1 ‖(ρnun)(t) − ρ0nun‖

3
5
6

≤ Ct
1
5 (‖∇un‖2(t) + ‖∇u0‖2)

3
5 ≤ Ct

1
5 ,

for any t ∈ (0, T0), where C is a positive constant independent of n.
Thanks to the above estimate, for any t ∈ (0, T0), we have

‖(ρu)(t) − ρ0u0‖2

≤ ‖(ρu)(t) − (ρnun)(t)‖2 + ‖(ρnun)(t) − ρ0nu0‖2 + ‖ρ0nu0 − ρ0u0‖2

≤ ‖(ρu)(t) − (ρnun)(t)‖2 + ‖ρ0nu0 − ρ0u0‖2 + Ct
1
5 ,

for any positive integer n, where C is a positive constant independent of n. Recall that ρnun →
ρu in C([τ, T0]; L2), for any τ ∈ (0, T0), and ρn → ρ in C([0, T ]; Lq), for any q ∈ [1, ∞). Thus, 
we have

‖(ρu)(t) − ρ0u0‖2 ≤ lim
n→∞

(‖(ρu)(t) − (ρnun)(t)‖2 + ‖ρ0nu0 − ρ0u0‖2) + Ct
1
5 = Ct

1
5 ,

for any t ∈ (0, T0), which implies that ρu is continuous at the original time and satisfies the 
initial condition ρu|t=0 = ρ0u0. This proves Claim 2, and thus further the existence part of 
Theorem 1.1.

We now prove the uniqueness part of Theorem 1.1. Let (ρ̃, ũ) and (ρ̂, û) be two local strong 
solutions to system (1.1)–(1.3), subject to (1.6)–(1.7), on � × (0, T ), for a positive time T , with 
the same initial data (u0, ρ0). Then, we have following regularities

ρ̃, ρ̂ ∈ L∞(0, T ;H 1), ũ, û ∈ L2(0, T ;H 2), (4.3)
√

t ũ,
√

t û ∈ L∞(0, T ;H 2),
√

t∂t ũ,
√

t û ∈ L2(0, T ;H 1). (4.4)

Setting

ρ = ρ̃ − ρ̂, u = ũ − û,

then (ρ, u) satisfies
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∂tρ + ũ · ∇ρ + u · ∇ρ̂ = 0, (4.5)

divu = 0, (4.6)

ρ̃(∂tu + ũ · ∇u) − �u + ∇p = −ρ̃u · ∇û − ρ(∂t û + û · ∇û), (4.7)

a.e. in � × (0, T ).
Multiplying equation (4.5) by |ρ|− 1

2 ρ, and integration by parts, then it follows from the 
Hölder, Sobolev and Poincaré inequalities that

2

3

d

dt
‖ρ‖3/2

3/2 = −
∫
�

u · ∇ρ̂|ρ|− 1
2 ρdx ≤ ‖u‖6‖∇ρ̂‖2‖ρ‖1/2

3/2

≤ C‖∇u‖2‖∇ρ̂‖2‖ρ‖1/2
3/2,

from which, recalling (4.3), one obtains

d

dt
‖ρ‖3/2 ≤ A‖∇u‖2, (4.8)

for a positive constant A.
Same to (3.18), we have ‖û‖2∞ ≤ C‖∇û‖2‖∇2û‖2. Multiplying equation (4.7) by u, and using 

equation (4.5), it follows from integration by parts, the Hölder, Sobolev, Poincaré and Young 
inequalities that

1

2

d

dt
‖√ρ̃u‖2

2 + ‖∇u‖2
2 = −

∫
�

[ρ̃u · ∇û − ρ(∂t û + û · ∇û)] · udx

≤ ‖√ρ̃‖∞‖√ρ̃u‖2‖u‖6‖∇û‖3 + ‖ρ‖3/2(‖∂t û‖6‖u‖6 + ‖û‖∞‖∇û‖6‖u‖6)

≤ C‖√ρ̃u‖2‖∇u‖2‖∇û‖H 1 + C‖ρ‖3/2(‖∇∂t û‖2‖∇u‖2 + ‖∇û‖1/2
2 ‖∇û‖3/2

H 1 ‖∇u‖2)

≤ 1

2
‖∇u‖2

2 + C‖∇û‖2
H 1‖

√
ρ̃u‖2

2 + C(‖∇∂t û‖2
2 + ‖∇û‖2‖∇û‖3

H 1)‖ρ‖2
3/2,

from which, one obtains

d

dt
‖√ρ̃u‖2

2 + ‖∇u‖2
2 ≤ α(t)‖√ρ̃u‖2

2 + β(t)‖ρ‖2
3/2, (4.9)

where

α(t) = C‖∇û‖2
H 1(t), β(t) = C(‖∇∂t û‖2

2 + ‖∇û‖2‖∇û‖3
H 1)(t).

Recalling (4.4), it is clear that α ∈ L1((0, T )) and tβ(t) ∈ L1((0, T )). As a result, combining 
(4.8) and (4.9), and applying Lemma 2.5, one obtains ‖ρ‖3/2 ≡ ‖√ρ̃u‖2 ≡ ‖∇u‖2 ≡ 0. Thus 
ρ ≡ u ≡ 0, proving the uniqueness part of Theorem 1.1. �
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