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Abstract

In this paper, we propose a sufficient and necessary condition for the boundedness of all the solutions 
for the equation ẍ + n2x + g(x) = p(t) with the critical situation that 

∣∣ ∫ 2π
0 p(t)e−int dt

∣∣ = 2
∣∣g(+∞) −

g(−∞)
∣∣ on g and p, where n ∈N

+, p(t) is periodic and g(x) is bounded.
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1. Introduction and the main results

The boundedness for semilinear equations at resonance is very complicate. It is well known 
that the linear equation

ẍ + n2x = sinnt, n ∈ N
+
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has no bounded solutions, where ẍ = d2x/dt2. Ding [4] constructed another example as follows:

ẍ + n2x + arctanx = 4 cosnt, n ∈N
+

for which each solution is unbounded. Due to these resonance phenomenons, the existence of 
bounded solutions and the boundedness of all the solutions for semilinear equation at resonance 
are very delicate.

In 1969, Lazer and Leach [7] studied the following semilinear equations:

ẍ + n2x + g(x) = p(t), n ∈ N
+, (1.1)

where p(t + 2π) = p(t) and g is continuous and bounded. They obtained the existence of a 
periodic solution of (1.1) if∣∣∣∣∣∣

2π∫
0

p(t)e−int dt

∣∣∣∣∣∣ < 2(lim inf
x→+∞g − lim sup

x→−∞
g). (1.2)

In addition, they obtained that each solution of (1.1) is unbounded if∣∣∣∣∣∣
2π∫

0

p(t)e−int dt

∣∣∣∣∣∣ ≥ 2(supg − infg). (1.3)

It implies that the Lazer-Leach condition (1.2) is also necessary for the existence of bounded 
solutions if

lim
x→−∞g(x) = g(−∞) ≤ g(x) ≤ g(+∞) = lim

x→+∞g(x), ∀x ∈ R. (1.4)

Later, Alonso and Ortega [1] studied the following equation:

ẍ + n2x + g(x) + ψ ′(x) = p(t), n ∈N
+, (1.5)

where g and p are the same as above and the perturbation ψ ′(x) is small at infinity in the 
following sense:

lim|x|→∞
ψ(x)

x
= 0.

They showed that unboundedness for each solution with a large initial condition if∣∣∣∣∣∣
2π∫

0

p(t)e−int dt

∣∣∣∣∣∣ > 2(H − K),

where
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H = max{lim sup
x→−∞

g, lim sup
x→+∞

g}, K = min{lim inf
x→−∞g, lim inf

x→+∞g}.

Ortega [16] obtained the first positive result on the boundedness of (1.1). He established a variant 
of Moser’s small twist theorem, with which he proved the boundedness for the equation

ẍ + n2x + hL(x) = p(t), p(t) ∈ C5(R/2πZ),

where L > 0 and hL(x) is a piecewise linear function of the form

hL(x) =
⎧⎨⎩

L, if x ≥ 1,

Lx, if − 1 ≤ x ≤ 1,

−L, if x ≤ −1,

and p(t) satisfies ∣∣∣∣∣∣
2π∫

0

p(t)e−int dt

∣∣∣∣∣∣ < 4L.

Then Liu [9] studied the equation (1.1) with p(t) ∈ C7(R/2πZ), g(x) ∈ C6(R) satisfying

g(±∞) = lim
x→±∞g(x) exist and are finite, (1.6)

and

lim|x|→+∞xkg(k)(x) = 0, 0 ≤ k ≤ 6. (1.7)

He showed that the Lazer-Leach condition (1.2) implies the twist condition in Ortega’s small 
twist theorem, by which the boundedness of (1.1) is obtained.

One can refer to [9–12,16,17] for the applications of Ortega’s small twist theorem.
Recently Wang, Wang and Piao [18] studied the equation

ẍ + n2x + g(x) + ψ ′(x) = p(t), n ∈N, (1.8)

where g(x) and p(t) are similar to those in [9] and ψ(x + T ) = ψ(x).
They proved that the Lazer-Leach condition (1.2) on g and p is sufficient for the boundedness 

of (1.8) with the existence of an oscillating term ψ , in other words, the oscillating term does not 
play any role in the boundedness.

If ∣∣∣∣∣
2π∫

0

p(t)e−int dt

∣∣∣∣∣ > 2
∣∣g(+∞) − g(−∞)

∣∣, (1.9)

then Alonso–Ortega’s result [1] implies the existence of unbounded solutions for (1.8), one can 
also see [9]. Thus Wang, Wang and Piao [18] obtained that if
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∣∣∣∣∣
2π∫

0

p(t)e−int dt

∣∣∣∣∣ 
= 2(g(+∞) − g(−∞), (1.10)

then (1.2) is sufficient and necessary for the boundedness of (1.8).
Other conditions for the existence of bounded and unbounded solutions are described in [1,2,

5,6,13,14] and their references.
We say (1.1) is in the critical situation if

∣∣∣∣∣
2π∫

0

p(t)e−int dt

∣∣∣∣∣ = 2
∣∣g(+∞) − g(−∞)

∣∣. (1.11)

In this case, due to the absence of the Laser-Leach condition (1.2), the study on the validity of the 
twist condition becomes more subtle and the corresponding results on the boundedness solutions 
of (1.1) are very few. In fact, the only known work for equation (1.1) is about the unboundedness 
of each solution in [7] (see (1.3)) for the case

min{g(−∞), g(+∞)} ≤ g(x) ≤ max{g(−∞), g(+∞)}. (1.12)

In this paper, we will study the boundedness of (1.1) in the critical situation if the condition 
(1.12) is violated.

Let 0 < d 
= 1. Suppose that g(x) ∈ Cυ1(R), p(t) ∈ Cυ2(R/2πZ) and there exist two con-
stants c± satisfying c± > 0 if 0 < d < 1 and c± < 0 if d > 1 such that

lim|x|→±∞xk−1+dG
(k)
± (x) = 0, 0 < k ≤ υ1 + 1, (1.13)

where

G±(x) =
x∫

0

(g(x) − g(±∞))dx − c± · (1 + x2)
1−d

2 . (1.14)

Remark 1. From the assumptions (1.13) and (1.14), one can easily check that g does not satisfy 
the condition (1.12).

Let ν = 5. The main result of the paper is as follows.

Theorem 1.1. Let 0 < d 
= 1 and υ1 = 5 + ν, υ2 = 1 + ν. Assume (1.6), (1.11), (1.13) and (1.14)
hold true. Then the sufficient and necessary condition for the boundedness of (1.1) is 0 < d < 1.

Example 1. Let g(x) = arctanx + 2x(1 + x2)−2/3 and p(t) = 2 cos(nt). Then the sufficient 
condition in Theorem 1.1 for boundedness are met with g(±∞) = ± π/2, d = 1/3 < 1, c± = 3. 
On the other hand, let p(t) be the same as above and g(x) = arctanx + x(1/3 + x2)−1 + x(1 +
x2)−3/2 and d = 2 > 1, c± = −1. Then Theorem 1.1 implies that (1.1) has unbounded solutions.
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This paper is organized as follows. We prove the boundedness result for 0 < d < 1 in sec-
tions 2, 3 and 4. In Section 2, we define action-angle coordinates. In Section 3, we introduce a 
rotation transformation such that a nearly integrable sublinear system is obtained under a series 
of canonical transformations. In Section 4 we show that a twist condition in some weak way 
holds true which implies the boundedness of solutions in Theorem 1.1 by Moser’s twist theorem. 
The last two sections are devoted to the unboundedness result for d > 1. In section 5, we first 
make a series of canonical transformations to obtain a normal form (for which the twist condition 
is violated). Then in last section we show the existence of an invariant set such that each solution 
starting from it is unbounded.

2. Action-angle coordinates

Let y = ẋ/n, equation (1.8) is equivalent to a Hamiltonian system with the Hamiltonian

H(x,y, t) = 1

2
n(x2 + y2) + 1

n
G(x) − 1

n
xp(t), (2.15)

where G(x) = ∫ x

0 g(s)ds.
Under the action-angle coordinates transformation (dx ∧ dy = dI ∧ dθ )⎧⎨⎩ x = x(I, θ) =

√
2
n
I

1
2 cosnθ

y = y(I, θ) =
√

2
n
I

1
2 sinnθ

, (I, θ) ∈R
+ ×R/(

2π

n
Z),

(2.15) is transformed into

H(I, θ, t) = I + 1

n
G(

√
2

n
I

1
2 cosnθ) − 1

n

√
2

n
I

1
2 cosnθp(t). (2.16)

Denote f1(I, θ) = 1
n
G(

√
2
n
I

1
2 cosnθ), f2(I, θ, t) = − 1

n

√
2
n
I

1
2 cosnθp(t), then (2.16) is 

rewritten by

H(I, θ, t) = I + f1(I, θ) + f2(I, θ, t), (I, θ, t) ∈ R
+ × S

1 × S
1 (2.17)

with S1 =R/(2πZ).

Remark 2. From the action-angle coordinates, the Hamiltonian (2.16) is 2π/n periodic in θ , 
then it is also 2π periodic in θ for n ∈ N+. Thus, for convenience, we assume H be defined in 
R

+ × S
1 × S

1.

In this context, we denote [f ](·) = 1

2π

2π∫
0

f (·, θ)dθ be the average function of f (·, θ) with 

respect to θ . Without loss of generality, C > 1, c < 1 are two universal positive constants not 
concerning their quantities, and j, k, l, ν, κ , etc., are non-negative integers.

Next, we give several lemmas about the estimates on f1(I, θ), f2(I, θ, t).
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Lemma 2.1. For I large enough, θ ∈ S
1, k + j ≤ υ1 + 1, we have the estimates on f1(I, θ) as 

follows: ∣∣∣f1(I, θ)

∣∣∣ ≤ CI
1
2 ,

∣∣∣∂k
I ∂

j
θ f1(I, θ)

∣∣∣ ≤ CI
1
2 −k+ 1

2 (max{1,j}−1);

The estimates about Lemma 2.1 are classic and can be obtained by direct calculations. Thus 
we omit it. Readers can refer to [9].

Direct calculations can lead to the following conclusions:

Lemma 2.2. For I large enough, θ, t ∈ S
1, k + j ≤ υ1 + 1 and l ≤ υ2, we have the estimates on 

f2(I, θ, t) as follows: ∣∣∣∂k
I ∂

j
θ ∂l

t f2(I, θ, t)

∣∣∣ ≤ CI
1
2 −k.

3. A sublinear system and its normal form for 0 < d < 1

In this section, we first transform the semilinear system into a sublinear one by a rotation 
transformation. Then by a series of canonical transformation, we obtain the normal form of the 
sublinear system, for which a weak twist condition holds true.

3.1. A rotation transformation

Since ∂IH > 1/2 when I is sufficiently large, we can solve (2.17) for I as follows:

I = I (h, t, θ) = h − R(h, t, θ), (3.18)

where R(h, t, θ) is determined implicitly by the equation

R = f1(h − R,θ) + f2(h − R,θ, t). (3.19)

It is obvious that h → +∞ if and only if I → +∞. Since Idθ −hdt = −(hdt − Idθ), we know 
that the new Hamiltonian system ⎧⎪⎨⎪⎩

dt

dθ
= −∂hI (h, t, θ),

dh

dθ
= ∂t I (h, t, θ)

is equivalent to the original one, see [3,8,9,19]. Note that in the new system, θ is the new time 
variable, thus it can be eliminated from f1 by a canonical transformation, which is helpful to 
obtain a normal form later.

We present some estimates on R(h, t, θ) in (3.18).

Lemma 3.1. For h large enough, θ, t ∈ S
1, k + j ≤ υ1 + 1 and l ≤ υ2, we have estimates on 

R(h, t, θ) as follows: ∣∣∣∂k
h∂l

t ∂
j
θ R

∣∣∣ ≤ Ch
1
2 −k+ 1

2 (max{1,j}−1).
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The proof is given in the Appendix.
From the identity (3.19), R has the following form by Taylor’s formula:

R = f1(h, θ) + f2(h, t, θ) −
1∫

0

∂I f1(h − μR,θ)Rdμ −
1∫

0

∂I f2(h − μR,θ, t)Rdμ. (3.20)

(3.18) and (3.20) yield

I = h − f1(h, θ) − f2(h, θ, t) + R0(h, t, θ), (3.21)

where R0(h, t, θ) = ∫ 1
0 ∂I f1(h −μR, θ)Rdμ +∫ 1

0 ∂I f2(h −μR, θ, t)Rdμ. Moreover, for h large 
enough, θ, t ∈ S

1, k + j ≤ υ1 + 1 and l ≤ υ2, R0(h, t, θ) satisfies∣∣∣∂k
h∂l

t ∂
j
θ R0

∣∣∣ ≤ Ch−k+ j
2 (3.22)

by direct calculations.
Next we introduce a rotation transformation to eliminate the linear part of the Hamiltonian 

which helps us to obtain a sublinear function.
Define a rotation transformation 	1 : (h1, t1, θ) → (h, t, θ) by{

h = h1
t = t1 + θ.

(3.23)

Under 	1, the original semilinear system determined by the Hamiltonian I is transformed into a 
sublinear system given by the following Hamiltonian:

I1(h1, t1, θ) = −f1(h1, θ) − f2(h1, θ, t1 + θ) + R1(h1, t1, θ)

with R1(h1, t1, θ) = R0(h1, t1 + θ, θ).

Lemma 3.2. For h1 large enough, θ, t1 ∈ S
1, and k + j ≤ υ1 + 1, l ≤ υ2, it holds that:

|∂k
h1

∂l
t1
∂

j
θ R1| ≤ Ch1

−k+ j
2 .

Proof. It is obtained from formula (3.22). �
3.2. Normal form with a weak twist condition

Since θ is the new time variable, we can easily eliminate it from f1(h, θ) by a canonical 
transformation 	2 : (h2, t2, θ) → (h1, t1, θ) given by{

h1 = h2,

t1 = t2 − ∂h2S2(h2, θ)
(3.24)

with the generating function S2(h2, θ) determined by
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S2(h2, θ) =
θ∫

0

(
f1(h2, θ) − [f1](h2)

)
dθ. (3.25)

Under 	2, the Hamiltonian I1 is transformed into I2 as follows

I2(h2, t2, θ) = −f1(h2, θ) − f2(h2, θ, t2 + θ − ∂h2S2(h2, θ)) + R1(h2, t2 − ∂h2S2(h2, θ), θ)

= −[f1](h2) − f2(h2, θ, t2 + θ) + [f1](h2) − f1(h2, θ) + ∂θS2(h2, θ)

+
1∫

0

∂t1f2(h2, θ, t2 + θ − μ∂h2S2(h2, θ))∂h2S2(h2, θ)dμ

+R1(h2, t2 − ∂h2S2(h2, θ), θ).

It is obvious that (3.25) implies

[f1](h2) − f1(h2, θ) + ∂

∂θ
S2(h2, θ) = 0.

Let

R2(h2, t2, θ) = R1(h2, t2 − ∂h2S2(h2, θ), θ)

+
1∫

0

∂t1f2(h2, θ, t2 − μ∂h2S2(h2, θ))∂h2S2(h2, θ)dμ. (3.26)

Thus, I2 is rewritten as

I2(h2, t2, θ) = −[f1](h2) − f2(h2, θ, t2 + θ) + R2(h2, t2, θ).

We have the following estimates:

Lemma 3.3. For h2 large enough, θ, t2 ∈ S
1, it holds that

|∂k
h2

∂
j
θ S2(h2, θ)| ≤ Ch

1
2 −k+ j

2
2 , k + j ≤ υ1 + 1, (3.27)

and

|∂h2 t1| ≤ Ch2
− 3

2 , ∂t2 t1 = 1, |∂θ t1| ≤ Ch2
− 1

2 ,

|∂k
h2

∂l
t2
∂

j
θ t1| ≤ Ch2

− 1
2 −k+ j

2 , k + l + j ≥ 2, k + j ≤ υ1, l ≤ ν2.

Moreover, for k + j ≤ υ1 and l ≤ υ2 − 1, it holds that:

|∂k
h2

∂l
t2
∂

j
θ R2| ≤ Ch2

−k+ j
2 .
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The proof is given in the Appendix.
Now we are in a position to eliminate θ from f2(h2, θ, t2 + θ). Without causing confusion, 

for convenience we still denote

[f2](h, t) = 1

2π

2π∫
0

f2(h, θ, t + θ)dθ.

Then we have

Lemma 3.4. For any h ∈R
+, t ∈ S

1, it holds that

[f2](h, t) = −
√

2

2π
n− 3

2 h
1
2

{
cos(nt)

2π∫
0

p(τ) cos(nτ)dτ + sin(nt)

2π∫
0

p(τ) sin(nτ)dτ
}
. (3.28)

Moreover,

∣∣∣[f2](h, t)

∣∣∣ ≤
√

2

2π
n− 3

2 h
1
2

∣∣∣∣∣
2π∫

0

p(τ)einτ dτ

∣∣∣∣∣. (3.29)

Proof.

[f2](h, t) = 1

2π

2π∫
0

f2(h, θ, t + θ)dθ = −
√

2

2π
n− 3

2 h
1
2

2π∫
0

cos(nθ)p(t + θ)dθ

= −
√

2

2π
n− 3

2 h
1
2 {cos(nt)

2π∫
0

p(τ) cos(nτ)dτ + sin(nt)

2π∫
0

p(τ) sin(nτ)dτ }.

Thus, (3.29) is obtained immediately. �
We make a transformation 	3 : (h3, t3, θ) → (h2, t2, θ) implicitly given by

{
h2 = h3 + ∂t2S3(h3, t2, θ)

t3 = t2 + ∂h3S3(h3, t2, θ)
(3.30)

with

S3(h3, t2, θ) =
θ∫
(f2(h3, θ, t2 + θ) − [f2](h3, t2))dθ. (3.31)
0
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Under 	3, the Hamiltonian I2 is transformed into I3 as follows

I3(h3, t3, θ) = −[f1](h3 + ∂t2S3) − f2(h3 + ∂t2S3, θ, t2 + θ) + R2(h3 + ∂t2S3, t3 − ∂h3S3, θ)

+∂θS3

= −[f1](h3) − [f2](h3, t3) + [f2](h3, t2) − f2(h3, θ, t2 + θ) + ∂θS3

−
1∫

0

[f1]′(h3 + μ∂t2S3)∂t2S3(h3, t2, θ)dμ

−
1∫

0

∂I f2(h3 + μ∂t2S3, θ, t2 + θ)∂t2S3(h3, t2, θ)dμ

+
1∫

0

∂t [f2](h3, t3 − μ∂h3S3)∂h3S3dμ + R2(h3 + ∂t2S3, t3 − ∂h3S3, θ).

(3.31) implies

[f2](h3, t2) − f2(h3, θ, t2 + θ) + ∂θS3 = 0.

Let

α(h3, t3) = −[f1](h3) − [f2](h3, t3);

R3(h3, t3, θ) = R2(h3 + ∂t2S3, t3 − ∂h3S3, θ) −
1∫

0

[f1]′(h3 + μ∂t2S3)∂t2S3(h3, t2, θ)dμ

−
1∫

0

∂I f2(h3 + μ∂t2S3, θ, t2 + θ)∂t2S3(h3, t2, θ)dμ

+
1∫

0

∂t [f2](h3, t3 − μ∂h3S3)∂h3S3dμ;

Thus we have

I3(h3, t3, θ) = α(h3, t3) + R3(h3, t3, θ). (3.32)

Lemma 3.5. For h3 large enough, θ, t3 ∈ S1 and k + j ≤ υ1, l ≤ υ2 − 1, it holds that:∣∣∣∂k
h3

∂l
t3
∂

j
θ R3

∣∣∣ ≤ Ch3
−k+ j

2 . (3.33)
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Proof. The proof is similar to the one of Lemma 3.3. �
Next we estimate the lower and upper bounds for derivatives of α(h3, t3) in (3.32), which 

shows that α(h3, t3) satisfies some weak twist condition. Denote

β(h3) = [f1](h3) −
√

2

π
n− 3

2 h
1
2
3 · ∣∣g(+∞) − g(−∞)

∣∣
and

a(t3) =
√

2

2π
n− 3

2

(
2
∣∣g(+∞) − g(−∞)

∣∣ − (
cosnt3

2π∫
0

p(s) cosnsds + sinnt3

2π∫
0

p(s) sinnsds
))

.

Then it holds that

−α(h3, t3) = a(t3) · h
1
2
3 + β(h3). (3.34)

Denote A :=
∣∣∣ ∫ 2π

0 p(t)e−int dt

∣∣∣ = 2
∣∣g(+∞) − g(−∞)

∣∣, then we have that

a(t3) =
√

2

2π
n− 3

2 A(1 − cos(nt3 − ξ)) (3.35)

with tan ξ =
∫ 2π

0 p(s) sin(ns)ds∫ 2π
0 p(s) cos(ns)ds

.

Obviously, a(t3) ≥ 0 and a(t3) = 0 if and only if the following holds true:

(cos(nt3), sin(nt3)) = (
∫ 2π

0 p(s) cos(ns)ds,
∫ 2π

0 p(s) sin(ns)ds)∣∣∣ ∫ 2π

0 p(t)e−int dt

∣∣∣ .

We have the following estimate on β:

Lemma 3.6. For h3 large enough, β(h3) satisfies

C · h
1−d

2 −k

3 ≥ β(k)(h3) ≥ c · h
1−d

2 −k

3 for k = 0, 1, |β(2)(h3)| ≥ c · h
1−d

2 −2
3 ,

and

|β(k)(h3)| ≤ C · h
1−d

2 −k

3 , k ≤ υ1 + 1. (3.36)

Proof. Without loss of generality, assume g(+∞) ≥ g(−∞). Note that

β(h3) = 1

2nπ

2π∫
G(

√
2

n
h

1
2
3 cosnθ)dθ −

√
2

π
n− 3

2
(
g(+∞) − g(−∞)

) · h
1
2
3 .
0
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Then we have

β ′(h3) =
√

2

4π
n− 3

2 h
− 1

2
3

( 2π∫
0

g(

√
2

n
h

1
2
3 cosnθ) cosnθdθ − 2

(
g(+∞) − g(−∞)

))

=
√

2

4π
n− 3

2 h
− 1

2
3

n∑
k=1

(
Jk+(h3)−Jk−(h3)

)
(3.37)

where

Jk+(h3) =
2kπ
n

+ π
2n∫

2kπ
n

− π
2n

(
g(

√
2

n
h

1
2
3 cosnθ) − g(+∞)

)
cosnθdθ, (3.38)

Jk−(h3) =
2kπ
n

+ 3π
2n∫

2kπ
n

+ π
2n

(
g(

√
2

n
h

1
2
3 cosnθ) − g(−∞)

)
cosnθdθ.

From (1.13),

(
2

n
h3)

d
2 Jk+(h3) =

2kπ
n

+ π
2n∫

2kπ
n

− π
2n

(
g(

√
2

n
h

1
2
3 cosnθ) − g(+∞)

)
(

√
2

n
h

1
2
3 cosnθ)d cos1−d nθdθ

→ s(d)c+, as h3 → ∞,

(3.39)

with s(d) some positive constant. Similarly, we have

(
2

n
h3)

d
2 Jk−(h3) =

2kπ
n

+ 3π
2n∫

2kπ
n

+ π
2n

(
g(

√
2

n
h

1
2
3 cosnθ) − g(−∞)

)
(

√
2

n
h

1
2
3 cosnθ)d cos1−d nθdθ

→ −s(d)c−, as h3 → ∞.

(3.40)

Thus

(
2

n
h3)

1+d
2 β ′(h3) → 1

2nπ
s(d)(c++c−), as h3 → ∞, (3.41)

which means that

c · h
1−d

2 −1
3 ≤ β ′(h3) ≤ C · h

1−d
2 −1

3 .

With L’Hospital’s rule, (3.41) implies
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c · h
1−d

2
3 ≤ β(h3) ≤ C · h

1−d
2

3 .

From (3.38) and (1.13), we have

2
(√

2

n

)d

h
1+ d

2
3 J ′

k+(h3) =
2kπ
n

+ π
2n∫

2kπ
n

− π
2n

(
g′(

√
2

n
h

1
2
3 cosnθ)(

√
2

n
h

1
2
3 cosnθ)1+d cos1−d nθdθ,

→ −s̃(d)c+d(1 − d), as h3 → ∞,

with s̃(d) some positive constant. Similarly, we have

2
(√

2

n

)d

h
1+ d

2
3 J ′

k−(h3) =
2kπ
n

+ 3π
2n∫

2kπ
n

+ π
2n

(
g′(

√
2

n
h

1
2
3 cosnθ)(

√
2

n
h

1
2
3 cosnθ)1+d cos1−d nθdθ,

→ s̃(d)c−d(1 − d), as h3 → ∞.

Thus

(
J ′

k+(h3) − J ′
k−(h3)

)
→ −d(1 − d)s̃(d)(c++c−)

1

2

(√
2

n

)−d

h
−1− d

2
3 , as h3 → ∞. (3.42)

Note that

β ′′(h3) = −1

2
h−1

3 β ′(h3) +
√

2

4π
n− 3

2 h
− 1

2
3

n∑
k=1

(
J ′

k+(h3)−J ′
k−(h3)

)
(3.43)

By this together with (3.41) and (3.42), we have |β ′′(h3)| ≥ c · h
1−d

2 −2
3 .

For the remaining upper bound estimates, by direct calculations, we have for m ≤ υ1 + 1 that

h
m+ d

2
3 J

(m)
k+ (h3) =

2kπ
n

+ π
2n∫

2kπ
n

− π
2n

m∑
i=1

cg(i)
(√

2

n
h

1
2
3 cosnθ

)
(

√
2

n
h

1
2
3 cosnθ

)i+d

cos1−d nθdθ,

which together with (1.13) implies

|J (m)
k+ (h3)| < C · h− d

2 −m

3 . (3.44)

Similarly, we have

|J (m)
k− (h3)| ≤ C · h−m− d

2
3 , as h3 → ∞. (3.45)

Thus (3.37), (3.44) and (3.45) gives (3.36). �
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Consequently, α(h3, t3) in (3.32) satisfies a weak twist condition:

|∂k
h3

α(h3, t3)| ≥ c · h
1−d

2 −k

3 , k = 0, 1, 2, (3.46)

and for k ≤ υ1 + 1, l ≤ υ2,

|∂k
h3

∂l
t3
α(h3, t3)| ≤ C · h

1
2 −k

3 . (3.47)

3.3. A nearly integrable system

Lemma 3.7. Assume Hamiltonian

I = α(h, t) + R(h, t, θ)

with α satisfying (3.46), (3.47) for k ≤ m, l ≤ n, and R(h, t, θ) satisfying∣∣∣∂k
h∂l

t ∂
j
θ R

∣∣∣ ≤ Ch− i
2 −k+max{0,

j−i
2 },

for h large enough, k + j ≤ m1, l ≤ n1(m1 ≤ m, n1 ≤ n).
Then there exists a transformation 	+ : (h+, t+, θ) → (h, t, θ), such that

I+(h+, t+, θ) = I ◦ 	+(h, t, θ) = α+(h+, t+) + R+(h+, t+, θ),

with α+(h+, t+) = α(h+, t+) + [R](h+, t+) satisfying (3.46) and (3.47) for k ≤ m1, l ≤ n1. 
Moreover for h+ � 1, l ≤ n1 − 1, k + j ≤ m1 − 1, it holds that

∣∣∣∂k
h+∂l

t+∂
j
θ R+

∣∣∣ ≤ Ch
− i+1

2 −k+max{0,
j−i−1

2 }
+

Proof. Set 	+ : (h+, t+, θ) → (h, t, θ) implicitly given by{
h = h+ + ∂tS+(h+, t, θ)

t+ = t + ∂h+S+(h+, t, θ)

with the generating function S+(h+, t, θ) determined by

S+(h+, t, θ) = −
θ∫

0

(R(h+, t, θ) − [R](h+, t))dθ.

It is easy to show that, for k ≤ m1, l ≤ n1, j ≤ i,

∣∣∣∂k
h ∂l

t ∂
j
θ S+(h+, t, θ)

∣∣∣ ≤ Ch
− i

2 −k

+ , j = 0, 1, · · · , i + 1.
+
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Under 	+, the Hamiltonian I is transformed into I+ as follows

I+(h+, t+, θ) = α(h+ + ∂tS+, t+ − ∂h+S+) + R(h+ + ∂tS+, t, θ) + ∂θS+
= α(h+, t+) + R+(h+, t+, θ),

where

R+(h+, t+, θ) =
1∫

0

∂Iα(h+ + μ∂tS+, t)∂tS+dμ −
1∫

0

∂tα(h+, t+ − μ∂h+S+)∂h+S+dμ

−
1∫

0

∂t [R](h+, t+ − μ∂h+S+)∂h+S+dμ +
1∫

0

∂hR(h+ + μ∂tS+, t, θ)∂tS+dμ.

Then the estimates on R+ can be obtained by direct computations. �
Remark 3. Without loss of generality, α+ is still denoted by α.

With repeated applications of canonical transformations given in Lemma 3.7 by ν times, the 
Hamiltonian system with the Hamiltonian I3 can be changed into the one with the following 
Hamiltonian

I4 = α(h4, t4) + R4(h4, t4, θ), (3.48)

where α(h4, t4) satisfies

|∂k
h4

α(h4, t4)| ≥ c · h
1−d

2 −k

4 , for k = 0, 1, 2, (3.49)

|∂k
h4

∂l
t4
α(h4, t4)| ≤ C · h

1
2 −k

4 , for k ≤ υ1 + 1 − ν, l ≤ υ2 − ν; (3.50)

and R4 satisfies

|∂k
h4

∂l
t4
∂

j
θ R4| ≤ C · h− ν

2 −k

4 , for j ≤ ν, k + j ≤ υ1 − ν, l ≤ υ2 − 1 − ν. (3.51)

4. The boundedness result for 0 < d < 1

In (3.48), the leading term α depends on the angle variable t4. Hence we have to exchange the 

roles of angle and time variables again. From (3.49) and (3.51), we have ∂h4I4 > ch
−1−d

2
4 > 0 as 

h4 → ∞, for large h4 we can solve (3.48) for it with the following form:

h4(I4, θ, t4) =N (I4, t4) +P(I4, θ, t4), (4.52)

where h4 =N (I4, t4) is the inverse function of I4 = α(h4, t4). With (3.48) and (4.52), we have
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I4 = α(N +P, t4) + R4(N +P, t4, θ)

= α(N , t4) +
⎛⎝ 1∫

0

∂h4α(N + μP, t4)dμ

⎞⎠P + R4(N +P, t4, θ). (4.53)

Note that I4 = α(N , t4), then

0 =
⎛⎝ 1∫

0

∂h4α(N + μP, t4)dμ

⎞⎠P + R4(N +P, t4, θ).

Implicitly,

P = − R4(N +P, t4, θ)∫ 1
0 ∂h4α(N + μP, t4)dμ

. (4.54)

Exchanging the roles of time and angle variables, we obtain the new system determined by the 
Hamiltonian (4.52). Without leading to confusion, we denote (I4, h4, t4) by (I, h, τ), α4 by α
and R4 by R, then the new Hamiltonian is as follows:

h(I, θ, τ ) =N (I, τ ) +P(I, θ, τ ). (4.55)

It holds that

Lemma 4.1. For I large enough, θ, t ∈ S
1, it holds that:

c · I2 ≤
∣∣∣N ∣∣∣ ≤ C · I 2

1−d , cN · I−k ≤
∣∣∣∂k
IN

∣∣∣ ≤ CN · I−k, k = 1,2 (4.56)∣∣∣∂k
IN

∣∣∣ ≤ CNI−k, k ≤ υ1 + 1 − ν. (4.57)

Moreover, P satisfies

|∂k
I∂

j
θ P| ≤ C · I−k−1N · |R|. (4.58)

for j ≤ ν, k + j ≤ υ1 − ν.

The proof is similar to the one of Lemma 3.1. For the sake of readers, we provide the details 
of the proof in the Appendix.

4.1. The Poincaré map

Consider the system with Hamiltonian (4.55), that is⎧⎪⎪⎨⎪⎪⎩
dθ

dτ
= ∂IN(I, τ ) + ∂IP (I, θ, τ ),

dI = −∂θP (I, θ, τ ).

(4.59)
dτ
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The Poincaré map P of (4.59) is of the form{
θ1 = θ + r(I ) + F1(I, θ),

I1 = I + F2(I, θ),
(4.60)

where (I, θ) = (I (0), θ(0)), and

r(I ) =
2π∫

0

∂IN(I, τ )dτ ;

F1(I, θ) =
2π∫

0

∂IP (I (τ )), θ(τ ), τ )dτ +
2π∫

0

∂IN(I (τ ), τ )dτ −
2π∫

0

∂IN(I, τ )dτ ;

F2(I, θ) = −
2π∫

0

∂θP (I (τ ), θ(τ ), τ )dτ.

From Lemma 4.1, we have the following estimates on the map P :

Lemma 4.2. Given I large enough and θ ∈ S
1, for j ≤ ν − 1, k + j ≤ υ1 − ν − 1, it holds that:

|∂k
I ∂

j
θ F1(I, θ)| ≤ C(N · I−2 + 1) · I−k−1N · |R|. (4.61)

|∂k
I ∂

j
θ F2(I, θ)| ≤ C · I−k−1N · |R|. (4.62)

Moreover, the following estimates hold true for r(I):

cI ≤
∣∣∣r(I)

∣∣∣ ≤ CI
1+d
1−d , c ≤

∣∣∣r ′(I)

∣∣∣ ≤ CI
2d

1−d ; (4.63)

and

|r(k)(I)| ≤ CI
1+d
1−d

−k, k ≤ υ1 − ν. (4.64)

Let I(r) be the inverse function of r(I). From (4.63) and (4.64), we obtain the following 
estimates on I(r):

c · r 1−d
1+d ≤ I ≤ C · r, (4.65)

|I(k)(r)| ≤ C · r−k|I|, k ≤ υ1 − ν. (4.66)

With a transformation: (θ, I) → (θ, r), we obtain the following map:{
θ1 = θ + r + F̃1(r, θ)

r1 = r + F̃2(r, θ),
(4.67)

where
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F̃1(r, θ) = F1(I(r), θ), F̃2(r, θ) =
1∫

0

r ′(I + λF2(I, θ))F2(I, θ)dλ.

From Lemma 4.2 and (4.65), (4.66), we have that for j ≤ ν − 1, k + j ≤ υ1 − ν − 1,

|∂k
r ∂

j
θ F̃1| ≤ ∑k

i=1 |∂i
I∂

j
θ F1| · |I(k1)(r) · · ·I(ki )(r)|

≤ CN 2 · I−i−3|R| · I i · r−k

≤ CI−3 · r−k · |R| ·N 2,

(4.68)

where 
∑

k1+···+ki
= k. Similarly, we have that for j ≤ ν − 1, k + j ≤ υ1 − ν − 1,

|∂k
r ∂

j
θ F̃2| ≤ CI−3 · r−k · |R| ·N 2. (4.69)

Recall in (3.51) we have the estimate

|∂k
h4

∂l
t4
∂

j
θ R| ≤ C · h− ν

2 −k

4 , for j ≤ ν, k + j ≤ υ1 − ν, l ≤ υ2 − 1 − ν.

Since N = h4, thus for j ≤ ν − 1, k + j ≤ υ1 − ν − 1, (4.68) and (4.69) yield that

|∂k
r ∂

j
θ F̃i | ≤ CI−3 · r−k · h− ν

2 +2 ≤ CI−3, i = 1,2

if ν ≥ 4. Assume

ν ≥ 4,

ν − 1 ≥ 4,

υ1 − ν − 1 ≥ 4,

υ2 − (ν + 1) ≥ 0.

Therefore, let ν = 5, υ1 = 5 + ν, υ2 = 1 + ν, then the map (4.67) is a C4-perturbation of the 
twist map, hence meets all the conditions of Moser’s small twist Theorem [15]. Thus we obtain 
the boundedness results of Theorem 1.1.

5. Unbounded results for d > 1

In this section, we make a series of canonical transformations to obtain a normal form for 
which the twist condition is violated.

5.1. Some lemmas

We say a function f (x) is of Om(|x|c0) for c0 ∈ R if |f (k)(x)| ≤ C|x|c0−k for x satisfying 
|x| � 1 and 0 ≤ k ≤ m. Similarly, for a function f : R+ × S

2 → R, we say f (I, θ, t) is of 
Om(Ic0) for c0 ∈R if |∂k∂

j
∂l
t f | ≤ CIc0−k for j ≤ 1, j + k + l ≤ m and I � 1.
I θ
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Since G(x) = ∫ x

0 g(x)dx = x · g(x) − ∫ x

0 xg′(x)dx := xg(x) − f3(x), we have

f1 = 1

n
G(

√
2

n
I

1
2 cosnθ) = f̃1(I, θ) + f3(I, θ)

with f̃1(I, θ) = 1
n

√
2
n
I

1
2 cosnθ · g(

√
2
n
I

1
2 cosnθ), f3(I, θ) = − 1

n
f3(

√
2
n
I

1
2 cosnθ).

Therefore, (2.16) can be rewritten as

h = I + f̃1(I, θ) + f2(I, θ, t) + f3(I, θ), (5.69)

where f2(I, θ, t) = − 1
n

√
2
n
I

1
2 cosnθp(t). From the condition (1.13) and (1.14) on g, we have

f3(x) = O4(|x|1−d). (5.70)

Similarly, for k + j ≤ 4 and j ≤ 1 we have

|∂k
I ∂

j
θ f̃1(I, θ)|, |∂k

I ∂
j
θ f2(I, θ, t)| ≤ CI

1
2 −k. (5.71)

Since ∂IH > 1/2 when I is sufficiently large, we can solve (5.69) for large I as follows:

I = I (h, t, θ) = h − R(h, t, θ),

where R(h, t, θ) is determined implicitly by the equation

R = f̃1(h − R,θ) + f2(h − R,θ, t) + f3(h − R,θ). (5.72)

We present some estimates on R(h, t, θ) in (5.72).

Lemma 5.1. For h large enough, θ, t ∈ S
1, j ≤ 1, k + j + l ≤ 5, we have the estimates on 

R(h, t, θ) as follows: ∣∣∣∂k
h∂l

t ∂
j
θ R

∣∣∣ ≤ Ch
1
2 −k. (5.73)

The proof is similar to the proof of Lemma 3.1. So we omit it.
Then we have

I = h − f̃1(h − R,θ) − f2(h − R,θ, t) − f3(h − R,θ)

= h − f̃1(h, θ) − f2(h, θ, t) − f3(h, θ)

+(∂I f̃1(h, θ) + ∂I f2(h, θ, t) + ∂I f3(h, θ)) · R(h, θ, t) + R00(h, θ, t),

where

R00(h, θ, t) =
1∫ 1∫

∂2
I (f̃1(h−sμR, θ)+f2(h−sμR, θ, t)+f3(h−sμR, θ)) ·R2(h, θ, t)dsdμ.
0 0
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Moreover, from (5.70), (5.71) and Lemma 5.1, it holds that

R00(h, θ, t) ∈ O4(h
− 1

2 ).

From the definition of f̃1, f2, f3, we claim that

(∂I f̃1(h, θ) + ∂I f2(h, θ, t) + ∂I f3(h, θ)) · R(h, t, θ) := R1(h, t, θ) + O4(h
− 1

2 ), (5.74)

where

R1(h, t, θ) =
∑

i

f4,i (g(

√
2

n
h

1
2 cosnθ)) · f5,i (t, θ),

with f4,i ∈ C4(R1) and f5,i ∈ C4(T2) are finitely many smooth functions. In fact,(
∂I f̃1(h, θ) + ∂I f2(h, θ, t) + ∂I f3(

√
2
n
h

1
2 cosnθ)

)
· R(h, θ, t)

=
(
∂I f̃1(h, θ) + ∂I f2(h, θ, t) + ∂I f3(

√
2
n
h

1
2 cosnθ)

)
·
(
f̃1(h − R,θ) + f2(h − R,θ, t) + f3(h − R,θ)

)
= ∂I f̃1 · f̃1 + ∂I f2 · f̃1 + ∂I f3 · f̃1 + ∂I f̃1 · f2 + ∂I f2 · f2 + ∂I f3 · f2

+∂I f̃1 · f3 + ∂I f2 · f3 + ∂I f3 · f3.

From (5.70), (5.71) and Lemma 5.1, we have

∂I f̃1(I, θ) · f̃1(h − R,θ) = n−3g2(

√
2
n
h

1
2 cosnθ) · cos2 nθ + O4(h

− 1
2 ),

∂I f2(h, θ, t) · f̃1(h − R,θ) = −n−3g(

√
2
n
h

1
2 cosnθ) · cos2 nθ · p(t) + O4(h

− 1
2 ),

∂I f̃1(h, θ) · f2(h − R,θ, t) = −n−3g(

√
2
n
h

1
2 cosnθ) · cos2 nθ · p(t) + O4(h

− 1
2 ),

∂I f2(h, θ) · f2(h − R,θ, t) = n−3 cos2 nθ · p2(t) + O4(h
− 1

2 ),

∂I f3(h, θ) · f̃1(h − R,θ) + ∂I f3(h, θ) · f2(h − R,θ, t) = O4(h
− 1

2 ),

∂I f̃1(I, θ) · f3(h − R,θ) + ∂I f2(h, θ, t) · f3(h − R,θ) + ∂I f3(I, θ) · f3(h − R,θ)

= O4(h
− 1

2 ).

Denote

R1 = n−3 cos2 nθ
{
g2(

√
2

n
h

1
2 cosnθ) − 2g(

√
2

n
h

1
2 cosnθ) · p(t) + p2(t)

}
. (5.75)

Therefore, we get the conclusion. Meanwhile, again from (1.13) and (1.14), we have

R1 ∈ O4(1).
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Now I can be rewritten as

I = h − f̃1(h, θ) − f2(h, θ, t) − f3(h, θ) + R1(h, t, θ) + R02(h, t, θ), (5.76)

where

R02(h, t, θ) = R00(h, θ, t) + O4(h
− 1

2 ) ∈ O4(h
− 1

2 ).

5.2. A sublinear system and its normal form

Still using the rotation transformation 	1 defined in (3.23), the Hamiltonian (5.76) is trans-
formed into a sublinear system with the following Hamiltonian

I1 = −f̃1(h1, θ) − f2(h1, θ, t1 + θ) − f3(h1, θ) + R11(h1, t1, θ) + R12(h1, t1, θ),

where

R11(h1, t1, θ) = R1(h1, θ, t1 + θ) ∈ O4(1) (5.77)

and

R12(h1, t1, θ) = R02(h1, θ, t1 + θ) ∈ O4(h
− 1

2
1 ). (5.78)

To eliminate the new time variable in f̃1 and f2, we make a transformation � : (h2, t2, θ) →
(h1, t1, θ) implicitly given by

{
h1 = h2 + ∂t1S1,

t2 = t1 + ∂h2S1,

with

S1(h2, t1, θ) =
θ∫

0

{−f̃1(h2, θ) − f2(h2, θ, t1 + θ) + [f̃1](h2) + [f2](h2, t1)}dθ,

where [f̃1] =
∫ 2π

0 f̃1(h2, θ)dθ and [f2](h2, t1) =
∫ 2π

0 f2(h2, θ, t1 + θ)dθ satisfying similar esti-
mates as in (5.71).

Similar to Lemma 3.3, we have

Lemma 5.2. For h2 large enough, θ, t2 ∈ S
1, it holds that:

∣∣∣∂k
h ∂l

t ∂
j
θ S1(h2, t1, θ)

∣∣∣ ≤ Ch
1
2 −k

, j ≤ 1, k + l + j ≤ 4;

2 1 2
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Moreover, the map � satisfies

|∂h2 t1| ≤ Ch3
− 3

2 ,
1

2
≤ |∂t2 t1| ≤ 2, |∂θ t1| ≤ Ch2

− 1
2 ,

|∂k
h2

∂l
t2
∂

j
θ t1| ≤ Ch2

− 1
2 −k, j ≤ 1,2 ≤ k + l + j ≤ 3;

1

2
≤ |∂h2h1| ≤ 2, |∂t2h1| ≤ Ch2

1
2 , |∂θh1| ≤ Ch2

1
2 ,

|∂k
h2

∂l
t2
∂

j
θ h1| ≤ Ch2

1
2 −k, j ≤ 1, 2 ≤ k + l + j ≤ 3.

Under �, the Hamiltonian I1 is transformed into I2(h2, t2, θ) as follows

I2 = −[f̃1](h2) − [f2](h2, t2) − f3(h2, θ) + R21(h2, t2, θ) + R22u(h2, t2, θ),

where R21 = R11(h2, t2, θ) and

R22u = −
1∫

0

∂h1(f̃1(h2 + μ∂t1S1, θ) + f2(h2 + μ∂t1S1, θ, t1 + θ) + f3(h2 + ∂t1S1, θ))∂t1S1dμ

+
1∫

0

∂h1R11(h2 + μ∂t1S1, θ, t2 − ∂h2S1)∂t1S1dμ −
1∫

0

∂t1R11(h2, θ, t2 − ∂h2S1)∂h2S1dμ

+
1∫

0

∂t1 [f2](h2, t2 − μ∂h2S1)∂h2S1dμ + R12(h2 + ∂t1S1, θ, t2 − ∂h2S1)

= −∂h1(f̃1(h2, θ) + f2(h2, θ, t1 + θ))∂t1S1 + ∂t1 [f2](h2, t2) · ∂h2S1 + R22yu,

where

R22yu = −
1∫

0

1∫
0

∂2
h1

(f̃1(h2 + sμ∂t1S1, θ) + f2(h2 + sμ∂t1S1, θ, t1 + θ))(∂t1S1)
2dsdμ

−
1∫

0

∂h1f3(h2 + ∂t1S1, θ)∂t1S1dμ −
1∫

0

1∫
0

∂2
t1
[f2](h2, t2 − sμ∂h2S1)(∂h2S1)

2dμds

−
1∫

0

∂t1R11(h2, θ, t2 − ∂h2S1)∂h2S1dμ +
1∫

0

∂h1R11(h2 + μ∂t1S1, θ, t2)∂h1S1dμ

+R12(h2 + ∂t1S1, θ, t2 − ∂h2S1).

Obviously, R22yu ∈ O3(h
− 1

2 ) follows from (5.70), (5.71), (5.77), (5.78) and Lemma 5.2.
2
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From the definition of f̃1, f2, f3 and Lemma 5.2, the only term in ∂h1(f̃1 +f2) ·∂t1S1 depend-

ing on g′(
√

2
n
h

1
2
2 cosnθ) is

1

2n

√
2

n
cos2 nθ · g′(

√
2

n
h

1
2
2 cosnθ) = 1

2n

√
2

n
(h

1
2
2 cosnθ)2 · h−1

2 · g′(
√

2

n
I

1
2 cosnθ)

� (∂h1(f̃1 + f2) · ∂t1S1)I ,

which is O3(h
− 1

2
1 ) since g′(x) = ((1 + x2)− 1+d

2 )′′ · (1 + o(1)) for |x| � 1.
Denote

(∂h1(f̃1 + f2) · ∂t1S1)II = ∂h1(f̃1 + f2) · ∂t1S1 − (∂h1(f̃1 + f2) · ∂t1S1)I .

Then one can easily obtain from the definition of f̃1, f2, f3 that

(∂h1(f̃1 + f2) · ∂t1S1)II =
∑

i

f6,i (g(

√
2

n
h

1
2 cosnθ))) · f7,i (θ, t1) (5.79)

with f6,i ∈ C4(R1) and f7,i ∈ C4(T2) are finitely many smooth functions.
Similarly, the only terms in ∂t1[f2] · ∂h2S1 depending on g′ are

∂t1 [f2] ·
θ∫

0

(−1

2
cos2 nθ · g′(·) + [1

2
cos2 nθ · g′(·)])dθ � (∂t1 [f2] · ∂h2S1)I ∈ O3(h

− 1
2

2 ),

where g′(·) = g′(
√

2
n
h

1
2
2 cosnθ). Let (∂t1 [f2] · ∂h2S1)II = (∂t1 [f2] · ∂h2S1) − (∂t1 [f2] · ∂h2S1)I .

Then a direct computation shows that

(∂t1 [f2] · ∂h2S1)II = ∫ 2π

0 f2(h2, θ, t1 + θ)dθ · ∫ θ

0 ( 1
2h

− 1
2

2 cosnθ · g(·) − [ 1
2h

− 1
2

2 cosnθ · g(·)])dθ

= − ∫ 2π

0
1
n

√
2
n

cos θp(t1 + θ)dθ · ∫ θ

0 ( 1
2 cosnθ · g(·) − [ 1

2 cosnθ · g(·)])dθ.

Thus we obtain a Hamiltonian as follows:

I2 = −[f̃1](h2) − [f2](h2, t2) − f3(h2, θ) + f6·7(h2, t2, θ) + R2(h2, t2, θ),

where

f6·7 =
∑

i

f6,i (g(

√
2

n
h

1
2 cosnθ)) · f7,i (θ, t2)

+
2π∫

1

2n

√
2

n
cos θp(t2 + θ)dθ ·

θ∫
(cosnθ · g(·) − [cosnθ · g(·)])dθ
0 0
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and

R2(h2, t2, θ) = R22yu + O3(h2
− 1

2 ) ∈ O3(h
− 1

2
2 ). (5.80)

Next, to eliminate the term f6·7, we make the following canonical transformation �1:{
h2 = h3 + ∂t2S2,

t3 = t2 + ∂h3S2

with the generating function S2 determined by

S2(h3, t2, θ) =
θ∫

0

{−f6·7 + [f6·7](h3, t2)}dθ

with

[f6·7](h3, t2) = 1

2π

2π∫
0

f6·7dθ.

Under �1, Hamiltonian I2 is transformed into I3 as follows

I3 = −[f̃1](h3) − [f2](h3, t3) − f3(h3 + ∂t2S2, θ) + [f6·7] + R3,

where

R3 = −
1∫

0

([f̃1]′(h3 + s∂t2S2) + ∂h2 [f2](h3 + s∂t2S2, t2))∂t2S2ds

+
1∫

0

∂t2 [f2](h3, t3 − ∂h3S2)∂h3S2ds + R2

We have the following estimates:

Lemma 5.3. For h3 large enough, θ, t3 ∈ S
1, we have the estimates on R3(h3, t3, θ) as follows: 

for j ≤ 1, k + l + j ≤ 2, ∣∣∣∂k
h3

∂l
t3
∂

j
θ R3(h3, t3, θ)

∣∣∣ ≤ Ch3
− 1

2 −k;

Proof. Similar to the proof of Lemma 3.3, the estimates are obtained by direct calculations from 
(5.80). �

Note that f̃1(I, θ) = f1(I, θ) − f3(I, θ). From (3.35) and (5.70), we have

[f̃1](h3) + [f2](h3, t3) = −
√

2
n− 3

2 A(1 − cos(nt3 + ξ))
√

h3 + O2(h3
1−d

2 ).

2π
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In conclusion, the new Hamiltonian I3 can be rewritten as

I3 = −
√

2

2π
n− 3

2 A(1 − cos(nt3 − ξ))
√

h3 − f3(

√
2

n
h3

1
2 cosnθ) + [f6·7] + O2(h

max{− 1
2 , 1−d

2 }
3 ).

Similarly, we can construct a canonical transformation to eliminate the term f3(

√
2
n
h3

1
2 cosnθ)

by the following canonical transformation �2:{
h3 = ρ,

τ = t3 + ∂ρS3

with

S3(ρ, θ) =
θ∫

0

{f3(

√
2

n
ρ

1
2 cosnθ) − [f3](ρ)}dθ,

where [f3](ρ) = ∫ 2π

0 f3(

√
2
n
ρ

1
2 cosnθ)dθ .

Under �2, the Hamiltonian I3 is transformed into I4(ρ, τ, θ) as follows

I4 = −
√

2

2π
n− 3

2 A(1 − cos(nτ + ξ))
√

ρ − [f3](ρ) + f8(τ ) + O2(h
max{− 1

2 , 1−d
2 }

3 ).

With the help of (5.70), we have

|[f3](k)(ρ)| ≤ C · ρ−k−max{− 1
2 , 1−d

2 }, k = 0,1. (5.81)

In fact, for ρ large enough,

∣∣∣[f3](ρ)

∣∣∣ ≤ 4

ρ
− 1

2∫
0

∣∣∣f3(

√
2

n
ρ

1
2 sinnθ)

∣∣∣dθ + 4

π
2∫

ρ
− 1

2

∣∣∣f3(

√
2

n
ρ

1
2 sinnθ)

∣∣∣dθ

≤ C1 · ρ− 1
2 + 4

π
2∫

ρ
− 1

2

|x|d−1
∣∣∣f3(x)

∣∣∣ρ 1−d
2 sin1−d θdθ

≤ C1 · ρ− 1
2 + C2ρ

1−d
2

π
2∫

ρ
− 1

2

sin1−d θdθ

≤ C1 · ρ− 1
2 + 2

π
C2ρ

1−d
2

π
2∫

ρ
− 1

2

θ1−ddθ ≤ C · max{ρ− 1
2 , ρ

1−d
2 },

where x =
√

2 ρ
1
2 sinnθ . Moreover, the estimate of [f3]′(ρ) is similar. Therefore, (5.81) holds.
n
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Similarly, from (1.13) and (1.14) we have that

[f6·7](h3, t3) = f8(t3) + O2(h3
− d

10 ), (5.82)

where f8(t3)=∑
i (

∫
cos nθ≥0f6,i (g(+∞)) ·f7,i (θ, t3)dθ −∫

cos nθ≤0f6,i (g(−∞)) ·f7,i (θ, t3)dθ) ∈
C2(S1).

From (5.81) and (5.82), we have that

h(ρ, τ, θ) = −
√

2

2π
n− 3

2 A(1 − cos(nτ + ξ))
√

ρ + f8(τ ) + O1(ρ
−δ), (5.83)

where −δ = max{− 1
2 , 1−d

2 , − d
10 } < 0 for d > 1.

6. The existence of unbounded solutions for d > 1

Finally, we prove that

Lemma 6.1. The Hamiltonian system with Hamiltonian (5.83) has unbounded solutions.

Proof. The system with Hamiltonian (5.83) is given by⎧⎪⎨⎪⎩
dτ

dθ
= ∂ρh(ρ, τ, θ),

dρ

dθ
= −∂τh(ρ, τ, θ).

(6.84)

Let ρ∗ � 1 determined later. Assume τ ∗ satisfy 1 − cos(nτ ∗ + ξ) = 0, i.e., nτ ∗ + ξ = 0. 
Denote ζ = τ − τ ∗, then we have⎧⎪⎪⎨⎪⎪⎩

dζ

dθ
= −

√
2

4π
n− 3

2 A(1 − cos(nζ ))ρ− 1
2 + O0(ρ

−δ−1),

dρ

dθ
=

√
2

2π
n− 1

2 A sin(nζ )ρ
1
2 − f ′

8(τ
∗ + ζ ) + O0(ρ

−δ).

(6.85)

Assume ρ(0) ≥ ρ∗. The second equation in (6.85) implies that dρ
dθ

= O(ρ1/2 +1), it holds that 
ρ(θ) ≥ 1

2ρ∗ for any θ ∈ [0, 1] if ρ∗ � max{A, n, ‖f ′
8‖}, which is true if ρ∗ � max{n, ‖g‖, ‖p‖}.

Next we further assume that (ζ(0), ρ(0)) ∈ D = {
(ζ, ρ)

∣∣ρ− 1+δ
4 ≤ ζ ≤ ρ− 1

20
}
. We claim that 

(ζ(θ), ρ(θ)) ∈ D for any θ ∈ [0, 1].
Otherwise, let θ1 � sup{θ | (ζ(s), ρ(s)) ∈ D, 0 ≤ s ≤ θ} < 1. Obviously, it holds that 

(ζ(θ1), ρ(θ1)) ∈ ∂D. Thus ρ(θ1)
−ι = ζ(θ1) with ι = 1

20 or 1+δ
4 , that is, ρ(θ1)

ι · ζ(θ1) = 1 (note 
that ρ(s) ≥ 1

2ρ∗ � 1 for any 0 ≤ s ≤ 1). By a direct computation, we have

(ρ(θ)ι · ζ(θ))′ |θ=θ1

= ιρ(θ)ι−1 · ζ(θ) · (
√

2
2π

n− 1
2 A sin(nζ(θ))ρ(θ)

1
2 − f ′

8(τ
∗ + ζ(θ)) + O0(ρ(θ)−δ)) |θ=θ1

+ρ(θ)ι · (−
√

2
4π

n− 3
2 A(1 − cos(nζ(θ))ρ(θ)− 1

2 + O0(ρ(θ)−δ−1)) |θ=θ1

� J + J .
1 2
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From ρ(θ1)
ι ·ζ(θ1) = 1, ρ(θ1) ≥ 1

2ρ∗ � max{n, ‖g‖, ‖p‖} and the facts that sinx = x+O0(|x|3)
for small x, we have that

sin(nζ(θ1)) = n · ρ(θ1)
−ι + O0(ρ(θ1)

−3ι), 1 − cos(nζ(θ1)) = n2

2
· ρ(θ1)

−2ι + O0(ρ(θ1)
−4ι).

Thus we obtain

J1 = ιρ(θ1)
−1 · (

√
2

2π
n− 1

2 A sin(nζ(θ1))ρ(θ1)
1
2 − f ′

8(τ
∗ + ζ(θ1)) + O0(ρ(θ1)

−δ))

=
√

2A
2π

n
1
2 · ι · ρ(θ1)

− 1
2 −ι + O0(ρ(θ1)

−1)

and

J2 = −
√

2A

8π
n

1
2 · ρ(θ1)

− 1
2 −ι + O0(ρ(θ1)

max{− 1
2 −3ι, ι−1−δ}).

Hence for ι = 1
20 , we have

(ρ(θ)ι · ζ(θ))′ |θ=θ1=
√

2A

2π
n

1
2 · (ι − 1

4
) · ρ(θ1)

− 1
2 −ι · (1 + o(1)) < 0,

which implies that there is a θ2 > θ1 such that ρ(θ)
1
20 · ζ(θ) ≤ 1 for θ ∈ [θ1, θ2]. It contradicts 

the definition of θ1. Thus for all θ ∈ [0, 1], it holds that ζ(θ) ≤ (ρ(θ))− 1
20 .

Similarly for ι = 1+δ
4 > 1

4 , we have − 1
2 − ι > max{− 1

2 − 3ι, ι − 1 − δ}. Then we have

(ρ(θ)ι · ζ(θ))′ |θ=θ1=
√

2A

2π
n

1
2 · (ι − 1

4
) · ρ(θ1)

− 1
2 −ι · (1 + o(1)) > 0,

which implies that there is a θ2 > θ1 such that ρ(θ)
1+δ

4 · ζ(θ) ≥ 1 for θ ∈ [θ1, θ2]. It contradicts 
the definition of θ1. Thus ζ(θ) ≥ (ρ(θ))− 1+δ

4 for all θ ∈ [0, 1]. The proof of the claim is thus 
completed.

From the claim and δ ≤ 1
2 , we obtain ζ(θ) ≥ ρ(θ)− 1+δ

4 ≥ ρ(θ)− 3
8 for all θ ∈ [0, 1]. Thus again 

from the second equation in (6.85), we have that

dρ

dθ
=

√
2A

2π
n

1
2 (ζ(θ) + O0(|ζ(θ)|3))ρ(θ)

1
2 + O0(1) ≥

√
A

2π
n

1
2 · ζ(θ) · ρ(θ)

1
2 ≥

√
A

2π
n

1
2 · ρ(θ)

1
8

for 0 ≤ θ ≤ 1, which implies that ρ(1) > ρ(0) + 1 > ρ∗. In a word, if ρ(0) ≥ ρ∗ and 
(ζ(0), ρ(0)) ∈ D, then ρ(1) ≥ ρ(0) + 1 ≥ ρ∗ and (ζ(1), ρ(1)) ∈ D.

Since the system (6.85) is periodic in θ , using the above argument repeatedly, we obtain that 
if (ζ(0), ρ(0)) satisfies the initial conditions stated above, then ρ(i + 1) ≥ ρ(i) + 1 for any i. It 
leads that the solution (ζ(θ), ρ(θ)) is unbounded. �

Let the map t = t (τ, ρ, θ), h = h(τ, ρ, θ) is determined by �2 ◦ �1 ◦ � ◦ 	. For a solution 
(τ, ρ) = (τ (θ), ρ(θ)) of (6.84), let (t, h) = (t (τ (θ), ρ(θ), θ), h(τ(θ), ρ(θ), θ)) � (t (θ), h(θ)) be 
the corresponding solution for the system determined by the Hamiltonian (5.76).
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Let θ(t) be the inverse function of t (θ), then (θ, I ) = (θ(t), I (θ(t), h(t), t)) � (θ(t), I (t)) is 
a solution of (1.1).

From (5.69), one can easily see that θ → +∞ is equivalent to t → +∞. Moreover, from 
the constructed canonical transformations, we know that I = I (ρ, θ, τ) = ρ + o(ρ). Thus for 
d > 1, if a solution (τ, ρ) = (τ (θ), ρ(θ)) of (6.84) is unbounded, i.e., lim supθ ρ(θ) = ∞, then 
(θ, I ) = (θ(t), I (t)) is an unbounded solution of (1.1), that is, lim supt I (t) = ∞. This completes 
the proof for the instability of (1.1) for d > 1.
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Appendix A. Proof of Lemma 3.1

Proof. Suppose k + j ≤ υ1 + 1 and l ≤ υ2.
i) When k + j + l = 0, the conclusion follows from Lemmas 2.1 and 2.2.
ii) When k + j + l = 1, define

g1(h, t, θ) = ∂I f1(h − R,θ) + ∂I f2(h − R, t, θ);
g2(h, t, θ) = ∂tf2(h − R, t, θ);
g3(h, t, θ) = ∂θf1(h − R,θ) + ∂θf2(h − R, t, θ);
�(h, t, θ) = 1 + ∂I f1(h − R,θ) + ∂I f2(h − R, t, θ).

Obviously, �(h, t, θ) ≥ 1/2 for h � 1 and

� · ∂hR(h, t, θ) = g1(h, t, θ), � · ∂tR(h, t, θ) = g2(h, t, θ), � · ∂θR(h, t, θ) = g3(h, t, θ).

(A.1)

From Lemmas 2.1–2.2, we obtain

1

2

∣∣∣∂hR(h, t, θ)

∣∣∣ ≤
∣∣∣� · ∂hR(h, t, θ)

∣∣∣
=

∣∣∣∂I f1(h − R,θ) + ∂I f2(h − R, t, θ)

∣∣∣
≤ C(h − R)−

1
2 ≤ Ch− 1

2 ,

1

2

∣∣∣∂tR(h, t, θ)

∣∣∣ ≤
∣∣∣� · ∂tR(h, t, θ)

∣∣∣ =
∣∣∣∂tf2(h − R, t, θ)

∣∣∣
≤ C(h − R)

1
2 ≤ Ch

1
2 ,

and
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1

2

∣∣∣∂θR(h, t, θ)

∣∣∣ ≤
∣∣∣� · ∂θR(h, t, θ)

∣∣∣
=

∣∣∣∂θf1(h − R,θ) + ∂θf2(h − R, t, θ)

∣∣∣
≤ C(h − R)

1
2 ≤ Ch

1
2 .

iii) When k + j + l = 2, from i) and ii), we have∣∣∣∂hg1(h, t, θ)

∣∣∣ ≤ Ch− 3
2 ,

∣∣∣∂tg1(h, t, θ)

∣∣∣ ≤ Ch− 1
2 ,

∣∣∣∂θg1(h, t, θ)

∣∣∣ ≤ Ch− 1
2 ;∣∣∣∂hg2(h, t, θ)

∣∣∣ ≤ Ch− 1
2 ,

∣∣∣∂tg2(h, t, θ)

∣∣∣ ≤ Ch
1
2 ,

∣∣∣∂θg2(h, t, θ)

∣∣∣ ≤ Ch
1
2 ;∣∣∣∂hg3(h, t, θ)

∣∣∣ ≤ Ch0,

∣∣∣∂tg3(h, t, θ)

∣∣∣ ≤ Ch
1
2 ,

∣∣∣∂θg3(h, t, θ)

∣∣∣ ≤ Ch
1
2 ;

and ∣∣∣∂h�(h, t, θ)

∣∣∣ ≤ Ch− 3
2 ,

∣∣∣∂t�(h, t, θ)

∣∣∣ ≤ Ch− 1
2 ,

∣∣∣∂θ�(h, t, θ)

∣∣∣ ≤ Ch0.

From (A.1), differentiating on both sides of the equations, we obtain:

� · ∂2
hR(h, t, θ) = ∂hg1(h, t, θ) − ∂h� · ∂hR(h, t, θ),

� · ∂2
t R(h, t, θ) = ∂tg2(h, t, θ) − ∂t� · ∂tR(h, t, θ),

� · ∂2
θ R(h, t, θ) = ∂θg3(h, t, θ) − ∂θ� · ∂θR(h, t, θ),

� · ∂h∂tR(h, t, θ) = ∂tg1(h, t, θ) − ∂t� · ∂hR(h, t, θ),

� · ∂h∂θR(h, t, θ) = ∂θg1(h, t, θ) − ∂θ� · ∂hR(h, t, θ),

� · ∂t ∂θR(h, t, θ) = ∂θg2(h, t, θ) − ∂θ� · ∂tR(h, t, θ).

It follows that

1

2

∣∣∣∂2
hR(h, t, θ)

∣∣∣ ≤
∣∣∣∂hg1(h, t, θ)

∣∣∣ +
∣∣∣∂h� · ∂hR(h, t, θ)

∣∣∣ ≤ Ch− 3
2 ,

1

2

∣∣∣∂2
t R(h, t, θ)

∣∣∣ ≤
∣∣∣∂tg2(h, t, θ)

∣∣∣ +
∣∣∣∂t� · ∂tR(h, t, θ)

∣∣∣ ≤ Ch
1
2 ,

1

2

∣∣∣∂2
θ R(h, t, θ)

∣∣∣ ≤
∣∣∣∂θg3(h, t, θ)

∣∣∣ +
∣∣∣∂θ� · ∂θR(h, t, θ)

∣∣∣ ≤ Ch1,

1

2

∣∣∣∂h∂tR(h, t, θ)

∣∣∣ ≤
∣∣∣∂tg1(h, t, θ)

∣∣∣ +
∣∣∣∂t� · ∂hR(h, t, θ)

∣∣∣ ≤ Ch− 1
2 ,

1

2

∣∣∣∂h∂θR(h, t, θ)

∣∣∣ ≤
∣∣∣∂θg1(h, t, θ)

∣∣∣ +
∣∣∣∂θ� · ∂hR(h, t, θ)

∣∣∣ ≤ Ch− 1
2 ,

1 ∣∣∣∂t ∂θR(h, t, θ)

∣∣∣ ≤
∣∣∣∂θg2(h, t, θ)

∣∣∣ +
∣∣∣∂θ� · ∂tR(h, t, θ)

∣∣∣ ≤ Ch
1
2 .
2
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Generally, if∣∣∣∂k
h∂l

t ∂
j
θ R(h, t, θ)

∣∣∣ ≤ Ch
1
2 −k+ 1

2 (max{1,j}−1), for 1 ≤ j + k + l ≤ m,

then∣∣∣∂k
h∂l

t ∂
j
θ g1(h, t, θ)

∣∣∣ ≤ Ch− 1
2 −k+ 1

2 (max{1,j}−1),

∣∣∣∂k
h∂l

t ∂
j
θ g2(h, t, θ)

∣∣∣ ≤ Ch
1
2 −k+ 1

2 (max{1,j}−1),∣∣∣∂k
h∂l

t ∂
j
θ g3(h, t, θ)

∣∣∣ ≤ Ch
1
2 −k+ 1

2 (max{1,j}−1),

∣∣∣∂k
h∂l

t ∂
j
θ �(h, t, θ)

∣∣∣ ≤ Ch− 1
2 −k+ 1

2 (max{1,j}−1).

The proof of these estimates is based on Leibniz’s rule and direct calculations. Consequently, by 
induction and Leibniz’s rule again to (A.1), we obtain∣∣∣∂k

h∂l
t ∂

j
θ R(h, t, θ)

∣∣∣ ≤ Ch
1
2 −k+ 1

2 (max{1,j}−1), for j + k + l ≤ m + 1. �
Appendix B. Proof of Lemma 3.3

Proof. (3.27) follows from (3.25) and Lemma 2.1.
From (3.24), it is easy to see

|∂h2 t1| ≤ Ch2
− 3

2 , ∂t2 t1 = 1, |∂θ t1| ≤ Ch2
− 1

2 .

By direct calculations, for k + l + j ≥ 2 and k + j ≤ υ1,

|∂k
h2

∂l
t2
∂

j
θ t1| = |∂k

h2
∂l
t2
∂

j
θ (t2 − ∂h2S2(h2, θ))| = |∂k+1

h2
∂l
t2
∂

j
θ S2(h2, θ)|

≤ Ch2
− 1

2 −k+ 1
2 (max{1,j}−1).

Next, we consider the estimates on R21. Firstly, it holds that |R21| ≤ C.
Suppose k + j ≤ υ1 − 1.
i) Consider ∂k

h2
∂l
t2
∂

j
θ R1(h2, t2 − ∂h2S2(h2, θ), θ). From Lemma 3.2 and by Leibniz’s rule, it is 

the sum of terms

(∂
p
h1

∂
q
t1
∂r
θ R1)(�

q

i=1∂
ki

h2
∂

li
t2
∂

ji

θ t1)

with 1 ≤ p + q + r ≤ j + k + l, p + ∑q
i=1 ki = k, 

∑q
i=1 li = l, r + ∑q

i=1 ji = j, and ki + ji +
li ≥ 1, i = 1, . . . , q , which implies that

|∂k
h2

∂l
t2
∂

j
θ R1(h2, t2 − ∂h2S2(h2, θ), θ)| ≤ Ch2

−k+ j
2 , for l ≤ υ2.

ii) Similar to part i), with Lemma 2.2 we have

|∂k
h2

∂l
t2
∂

j
θ (∂t1f2(h2, θ, t2 + θ − μ∂h2S2))| ≤ Ch2

−k+ 1
2 (max{1,j}−1)+ 1

2 , for l ≤ υ2 − 1.

By Leibniz’s rule and the estimates on ∂k ∂l
t ∂

j
S2(h2, θ), it holds that
h2 2 θ
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|∂k
h2

∂l
t2
∂

j
θ (∂t1f2(h2, θ, t2 − μ∂h2S2)∂h2S2)| ≤ Ch2

− 1
2 −k+ 1

2 (max{1,j}−1), for l ≤ υ2 − 1,

which, together with part i) and part ii), implies that

|∂k
h2

∂l
t2
∂

j
θ R2| ≤ Ch2

−k+ j
2 , for l ≤ υ2 − 1. �

Appendix C. Proof of Lemma 4.1

(i) Firstly, we estimate N(I, τ). Note that α(N(I, τ), τ) ≡ I , then

cI 2 ≤
∣∣∣N ∣∣∣ ≤ CI

2
1−d , (C.1)

and

∂h4α · ∂I4N = 1, ∂h4α · ∂t4N + ∂t4α = 0.

Thus from (3.34) and (3.35) and Lemma 3.6, it follows that

c · α ≤ h · ∂hα = a(t)

2
h

1
2 + 1 − d

2
h

1−d
2 ≤ C · α

Since α(h, t) = I and N(I, τ) = h,

∂I h = ∂IN = (∂h4α)−1 ∈ [chI−1, ChI−1]∼ [cI−1N, CI−1N ]. (C.2)

It together with (C.1) implies

cI ≤ ∂IN ≤ CI
1+d
1−d . (C.3)

A direct computation shows that

∂2
I N = ∂I (

1

∂hα
) = −∂I h · ∂2

hα

(∂hα)2 = −∂IN · ∂2
hα

(∂hα)2 .

Since ∂2
hα = − a(t)

4 h− 1
2 − 1−d2

4 h− 3+d
2 , we have ch−1|∂hα| ≤ |∂2

hα| ≤ Ch−1|∂hα|. Together with 
(C.2) and (C.3), we have

|∂2
I N | ≤ |∂IN · h−1

(∂hα)
| ≤ |∂I h · h−1 · ∂IN | ≤ CI−1 · |∂IN | ≤ CI−2 · |N |. (C.4)

Similarly, we have

|∂2N | ≥ cI−1 · |∂IN | ≥ cI−2 · |N |. (C.5)
I
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Generally, for 2 ≤ k ≤ υ1 + 1 − ν, using Leibniz’s rule, ∂k
I N is the sum of terms

∂u
h4

(
∂2
hα

(∂hα)2

)
�u

i=1∂
ki

I N

with 0 ≤ u ≤ k, 
∑u

i=1 ki = k − 1, and ki ≥ 1, i = 1, . . . , u. Since |hk∂k
hα| ≤ C|α| for any k, the 

following are obtained inductively with the help of (C.2):

|∂k
I N | ≤ C · I−k|N |, k ≥ 1. (C.6)

(ii) Secondly, from (4.54), we obtain

∣∣P ∣∣ ≤ 1

2

∣∣∣N ∣∣∣. (C.7)

Furthermore, it holds that

|P | ≤ |R(N + P, t, θ)| ·
∣∣∣∣∣∣

1∫
0

∂h4α(N + μP, t4)dμ

∣∣∣∣∣∣
−1

≤ CI−1N |R| ≤ C∂IN · R. (C.8)

For the estimate of ∂IP , we have

∂IP = −(∂hR + P
∫ 1

0 ∂2
h4

α(N + μP, t4)) · ∂IN∫ 1
0 ∂h4α(N + μP, t4)dμ + P

∫ 1
0 ∂2

h4
α(N + μP, t4)μdμ + ∂hR

.

From (C.8) and |h4∂
2
h4

α| ≤ C|∂h4α|, |P | � N = h4 and |∂hR| � |∂hα|, it holds for I � 1 that

| ∫ 1
0 ∂h4α(N + μP, t4)dμ + λP

∫ 1
0 ∂2

h4
α(N + μP, t4)dμ + ∂hR|

≥ 1
2 | ∫ 1

0 ∂h4α(N + μP, t4)dμ|
≥ ch−1I.

From |∂hR| ≤ Ch−1|R| and (C.8) which implies |P ∫ 1
0 ∂2

h4
α(N + μP, t4) ≤ C · ∂IN ·

h−2I |R| ≤ Ch−1|R|, it follows that

|∂IP | ≤ Ch−1|R| · |∂IN | · hI−1 ≤ CI−1|R| · |∂IN |.
Similar to the proof of (C.6), inductively for any k we can obtain

|∂k
I P | ≤ CI−k|R| · |∂IN |.

A direct computation shows that

∂θP = −∂θR∫ 1
∂ α(N + μP, t )dμ + P

∫ 1
∂2 α(N + μP, t )μdμ + ∂ R

,

0 h4 4 0 h4 4 h
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from (3.51) we have

|∂θP | ≤ C · I−1h · |∂θR| ≤ C · ∂IN · |R|.
Similar to the above argument, we have

|∂k
I ∂

j
θ P | ≤ C · I−k|R| · |∂IN |. �
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