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Abstract

We study the overdetermined problem for a large family of non-local operators given by generators of 
subordinate Brownian motions. In particular, this family includes the fractional Laplacian, relativistic stable 
operators etc. We consider these problems in bounded domains, exterior domains, and in annular domains 
and we show that under suitable conditions, the domains and solutions are both radially symmetric. Our 
method uses both analytic and probabilistic tools.
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1. Introduction

In his celebrated work [28], Serrin solved the following overdetermined problem: Given a 
bounded C2 domain D, if there exists a positive solution u to

−�u = 1 in D, u = 0 on ∂D, ∂ηu = c ∈R on ∂D, (1.1)
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then D is necessarily a ball. In the above, ∂η denotes the Neumann derivative along the exterior 
normal η. A very large number of extensions of Serrin’s result can be found in the literature and 
it is virtually impossible to provide a complete list of bibliography. To cite a few we refer to [1,
9,11,12,15–17,29]. Overdetermined problems for the Laplacian operator in exterior domains are 
first studied by Reichel [26]. In this work it was established that if D and Rd \ D̄ are connected, 
D is a bounded C2 domain, and there exists a solution to

−�u = f (u) in Rd \ D̄, u → 0, as |x| → ∞,

u = A on ∂D, ∂nu = constant ≤ 0 on ∂D, 0 ≤ u < A in Rd \ D̄,

where f is Lipschitz in [0, A] and non-increasing close to 0, then D has to be a ball, and u is 
radially symmetric and radially decreasing. This result is further extended to quasi-linear opera-
tors in [25,26]. Overdetermined problems for annular domains are considered in [2,23,24]. The 
key ingredients in all the above works are a boundary point lemma (or Hopf’s lemma) and the 
moving plane method. Very recently, overdetermined problems for the fractional Laplacian have 
been studied. It should be kept in mind that for the α-fractional Laplacian operator the Neumann 
derivative in (1.1) does not exist due to the boundary behavior of solutions, but can be replaced 
by

(∂η)αu = lim
t→0+

u(x − tη)

tα
for x ∈ ∂D.

Fall and the second named author [14] (see also [13] for d = 2, α = 1
2 ) study the overdeter-

mined problem for the fractional Laplacian in bounded domains whereas Soave and Valdinoci 
[30] consider the problem in exterior and annulus domains. Let us also mention [19] where an 
overdetermined problem for the fractional Laplacian is studied with (∂n)αu being given by a 
suitable increasing function on the boundary.

In the present article we generalize the above results to a large family of isotropic nonlocal 
operators. More precisely, these operators are obtained as the generator of subordinate Brownian 
motions. For instance, when the subordinator is a α-stable process we get the α-fractional Lapla-
cian as the generator of the corresponding subordinate Brownian motion. We refer to Section 1.1
for more details. In this article, we denote these operators by �(−�), where � is a Bernstein 
function vanishing at 0, and given by

�(−�)f (x) =
∫
Rd

(f (x) − f (x + z) + 1{|z|}≤1}z · ∇f (x))j (|z|)dz, f ∈ C2
b(Rd),

where j is a suitable nonlocal kernel (see (1.2)). For �(t) = tα, α ∈ (0, 1), we have j (r) =
r−d−2α for r > 0. Note that unlike the fractional Laplacian, these operators need not have a 
global scaling property. It turns out that if � has certain scaling properties at 0 and ∞ then one 
can obtain the heat kernel estimates for the associated operator and therefore, a PDE analysis 
is possible in many cases. Interested readers may consult [7,22] for more details. As mentioned 
above, one of the key steps in studying overdetermined problems for �(−�) is to have Hopf-type 
lemmas and narrow domain maximum principles. The maximum principle may be obtained as 
consequence of heat-kernel estimates (see [5] where the authors consider semigroup solutions). 
Using the observation that any viscosity solution can be represented as a semigroup solution we 
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obtain the narrow domain maximum principle (see Theorem 3.1). Recently, the first named au-
thor and Lőrinczi [4] establish a Hopf’s lemma for �(−�). For this they use the sharp boundary 
behavior for Dirichlet solutions of �(−�) obtained in [21]. It turns out that the renewal function 
V corresponding to a one dimensional Lévy process associated to the one generated by �(−�)

is related to the boundary behavior of the Dirichlet solution. This can be heuristically seen as fol-
lows: for the domain D if we consider the Dirichlet problem �(−�)v = 1 in D with vanishing 
exterior condition, then the unique solution is given by the mean exit time of the Lévy process 
from D. Therefore, applying [8, Theorem 4.6], it follows that v ≈ V (δD) where δD denotes the 
distance function from the boundary ∂D. We draw our inspiration from these results to find a 
Hopf’s lemma for anti-symmetric supersolutions (see Theorem 3.2) as also a corner point ver-
sion of Hopf’s Lemma (see Lemma 3.3). These ingredients play a key role in our overdetermined 
problems and the application of the moving plane method. We study the overdetermined prob-
lems in bounded domains (Theorem 2.1 and 2.2), exterior domains (Theorem 2.3 and 2.4), and 
in annuli domains (Theorem 2.6).

1.1. Subordinate Brownian motions

The class of non-local operators we would be interested in are generators of a large family 
of Lévy processes, known as subordinate Brownian motions. These processes are obtained by a 
time change of a Brownian motion by independent subordinators. In this section we briefly recall 
the essentials of the subordinate process which will be particularly used in this article.

A Bernstein function is a non-negative completely monotone function, i.e., an element of the 
set

B =
{
f ∈ C∞((0,∞)) : f ≥ 0 and (−1)n

dnf

dxn
≤ 0, for all n ∈ N

}
.

In particular, Bernstein functions are increasing and concave. We will consider the following 
subset

B0 =
{
f ∈ B : lim

x↓0
f (x) = 0

}
.

For a detailed discussion of Bernstein functions we refer to the monograph [27]. Bernstein func-
tions are closely related to subordinators. Recall that a subordinator {St}t≥0 is a one-dimensional, 
non-decreasing Lévy process defined on some probability space (�S, FS, PS). The Laplace 
transform of a subordinator is given by a Bernstein function, i.e.,

EPS
[e−xSt ] = e−t�(x), t, x ≥ 0,

where � ∈ B0. In particular, there is a bijection between the set of subordinators on a given 
probability space and Bernstein functions with vanishing right limits at zero.

Let B be an Rd -valued Brownian motion on the Wiener space (�W, FW, PW), running twice 
as fast as standard d-dimensional Brownian motion, and let S be an independent subordinator 
with characteristic exponent �. The random process

�W × �S � (ω1,ω2) �→ BSt (ω )(ω1) ∈Rd

2
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is called subordinate Brownian motion under S. For simplicity, we will denote a subordinate 
Brownian motion by {Xt }t≥0, its probability measure for the process starting at x ∈ Rd by Px , 
and expectation with respect to this measure by Ex . Note that the characteristic exponent of a 
pure jump process {Xt }t≥0 (i.e., with b = 0) is given by

�(|z|2) =
∫

Rd\{0}
(1 − cos(y · z))j (|y|) dy,

where the Lévy measure of {Xt }t≥0 has a density y �→ j (|y|), j : (0, ∞) → (0, ∞), with respect 
to the Lebesgue measure, given by

j (r) =
∞∫

0

(4πt)−d/2e− r2
4t m(dt), (1.2)

where m is the unique measure on (0, ∞) satisfying

�(λ) =
∫

(0,∞)

(1 − e−λt )m(dt).

In this article we impose the following weak scaling condition on the subordinators.

There are 0 < a1 ≤ a2 < 1 ≤ b1 such that
1

b1

(R

r

)a1 ≤ �(R)

�(r)
≤ b1

(R

r

)a2
for 1 ≤ r ≤ R,

(1.3)
and,

there is b2 > 1 such that j (r) ≤ b2 j (r + 1) for r ≥ 1. (1.4)

There is large family of subordinators that satisfy (1.3) (see [5,21]). Moreover, any complete 
Bernstein function satisfying (1.3) also satisfies (1.4) [22, Theorem 13.3.5].

For some of our proofs below we use some information on the normalized ascending ladder-
height process of {X1

t }t≥0, where X1
t denotes the first coordinate of Xt . Recall that the ascending 

ladder-height process of a Lévy process Z is the process of the right inverse (Z
L−1

t
)t≥0, where Lt

is the local time of Zt reflected at its supremum (for details and further information we refer to 
[3, Chapter 6]). Also, we note that the ladder-height process of X1 is a subordinator with Laplace 
exponent

�̃(x) = exp

⎛⎝ 1

π

∞∫
0

log�(xy)

1 + y2 dy

⎞⎠ , x ≥ 0.

Consider the potential measure V (x) of this process on the half-line (−∞, x). Its Laplace trans-
form is given by
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∞∫
0

V (x)e−sx dx = 1

s�̃(s)
, s > 0.

It is also known that V (x) = 0 for x ≤ 0, the function V is continuous and strictly increasing 
in (0, ∞) with V (∞) = ∞ (see [18] for more details). As shown in [6, Lemma 1.2] and [7, 
Corollary 3], there exists a constant C = C(d) such that

1

C
�(1/r2) ≤ 1

V 2(r)
≤ C �(1/r2), r > 0.

Also, using [7, see expression (15)] we obtain

j (r) ≤ C
�(r−2)

rd
r > 0, (1.5)

for some constant C > 1. We define the operator

−�(−�)f (x) =
∫
Rd

(f (x + z) − f (x) − 1{|z|}≤1}z · ∇f (x))j (|z|)dz

= 1

2

∫
Rd

(f (x + z) + f (x − z) − 2f (x))j (|z|)dz,

for f ∈ C2
b(Rd), by functional calculus. The operator −�(−�) is the Markov generator of sub-

ordinate Brownian motion {Xt}t≥0 corresponding to the subordinator S, uniquely determined by 
�.

2. Main results

Let D ⊂ Rd, d ≥ 2, be a bounded domain with C2 boundary. Now given any continuous 
function f let us consider the viscosity solution u ∈ C(D̄) of

�(−�)u = f in D, and, u = 0 in Dc.

By [21, Theorem 2.1] and (1.3) we know that u is Hölder continuous in Rd . Furthermore, the 
function u/V (δD) is Hölder continuous in D [21, Theorem 2.2] where δD(x) = infd(x, Dc)

is the distance function from the boundary. Thus, we can define the trace of u/V (δD) on the 
boundary ∂D as

TrV (u)(x) = lim
D�z→x

u(x)

V (δD(z))
, x ∈ ∂D. (2.1)

This trace operator plays an important role in the study of overdetermined problems.
Let Br denote the ball of radius r around 0. By τr we denote the exit time of X from Br i.e.

τr = inf{t > 0 : Xt /∈ Br}.
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By [4, Section 4.2] the function ur(x) = Ex[τr ] is a solution to the overdetermined problem⎧⎪⎪⎨⎪⎪⎩
�(−�)ur = 1 in Br(0);

ur = 0 in Rd \ Br(0);

TrV (ur) = constant = Hr on ∂Br(0).

(2.2)

Furthermore, the function r �→ Hr is positive and strictly increasing in (0, ∞) [4, Lemma 4.1]. 
Here and in what follows, by a solution we always mean a viscosity solution.

The goal of this work is to show that indeed for an open bounded set D the overdetermined 
problem {

�(−�)u = 1 in D;

u = 0 in Rd \ D,
(2.3)

with TrV (u) = constant on ∂D has a solution if and only if D = Br(0), that is, we have

Theorem 2.1. Let D be an open bounded set with C2 boundary and d ≥ 2. Assume there is a 
solution u of (2.3) satisfying for some fixed c ∈ R

TrV (u) = c on ∂D.

Then, up to translation, D = Br(0) for some r > 0 and u = ur given by (2.2).

Remark 2.1. We emphasize that connectedness of D is not assumed a priori. In fact, due to the 
nonlocal character of �(−�) the connectedness follows a posteriori.

Theorem 2.1 is indeed a special case of a more general result concerning semilinear problems. 
In particular, we show

Theorem 2.2. Let D ⊂ Rd, d ≥ 2, be an open bounded set with C2 boundary. Let f ∈ C0,1(R)

and assume there is a nonnegative nontrivial bounded solution of{
�(−�)u = f (u) in D,

u = 0 in Rd \ D,

which satisfies for some fixed c ≥ 0

TrV (u) = c on ∂D.

Then, up to translation, D = Br(0) for some r > 0, u > 0 in D, and u is radially symmetric and 
strictly decreasing in the radial direction.

Our next result concerns an overdetermined problem in the complement of a bounded set in 
the spirit of [30] (for the local case, we also refer to [26]). Note that here, we assume u to be a 
positive constant on this compact set. Hence the trace defined in (2.1) is adjusted by this constant.
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Theorem 2.3. Let G1, . . . , Gn ⊂ Rd , d ≥ 2, be a family of compact connected sets with C2

boundary such that Gi ∩ Gj = ∅ for i �= j and let G := ⋃n
k=1 Gk . Let A > 0 and f ∈

C0,1([0, A]) be nonincreasing for small arguments. Assume that for some given A1, . . . , An ≤ 0
there is a solution u ∈ Cβ(Rd) for some β ∈ (0, 1) of the problem⎧⎪⎪⎨⎪⎪⎩

�(−�)u = f (u) in Rd \ G,

u = A in G,

TrV (u − A) = Ak on ∂Gk,

with 0 ≤ u < A on Rd \G and lim|x|→∞u(x) = 0. Then G is a ball and u is radially symmetric and 

strictly decreasing in the radial direction with respect to the center of G.

We emphasize that in contrast to the [30, Theorem 1.3], where the above theorem was 
stated for the fractional Laplacian, we do not need an additional regularity assumption on 
u/(V ◦ δRd\G). Indeed, the above theorem extends the one from [30] and this is mainly due 
a narrow type maximum principle Lemma 3.1.

Remark 2.2. As we have discussed above the trace operator of the boundary is justified from 
[21], but when D is unbounded, some explanation is required to justify the boundary trace TrV (·). 
To do so consider the exterior domain Dirichlet problem

�(−�)u = f in Gc, and u = 0 in G,

where f is a bounded continuous function, G is closed bounded with C2 boundary, and u is a 
bounded viscosity solution. Observe that for any bounded domain D ⊂ Gc , with C2 boundary, 
we can write (see [4] or [5, Remark 3.2])

u(x) =Ex[u(XτD
)] −Ex

⎡⎣ τD∫
0

f (Xs)ds

⎤⎦ , x ∈ D,

where τD denotes the exit time from D. This follows from the uniqueness of viscosity solution 
[21, Theorem 3.8] and the fact that the right hand side function is a viscosity solution in D with 
exterior boundary data being u. With this representation we can write u = w1 + w2 where

w1(x) =Ex[u(XτD
)], a harmonic function in D,

and,

w2(x) = −Ex

⎡⎣ τD∫
0

f (Xs)ds

⎤⎦ satisfying �(−�)w2 = f in D, w2 = 0 in Dc.

Furthermore, we also check that for any x ∈ D we have

Aw1(x) := lim
1

(Ex[w1(Xt )] − w1(x)) = 0. (2.4)

t↓0 t
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Indeed, for any ball Br(x) ⊂ D we have

|Ex[w1(Xt )] − w1(x)| = ∣∣[w1(Xt )] −Ex[w1(Xt∧τBr (x)
)]∣∣

= ∣∣Ex[w1(Xt )1{t>τBr (x)}] −Ex[w1(XτBr (x)
)1{t>τBr (x)}]

∣∣
=

∣∣∣Ex[1{t>τBr (x)}EXτBr (x)
[w1(Xt−τBr (x)

)]] −Ex[w1(XτBr (x)
)1{t>τBr (x)}]

∣∣∣ ,
where in the first and third line we use the strong Markov property of X. Now observe that for 
any non-negative cut-off function ζ , 0 ≤ ζ ≤ 1, that vanishes outside a compact set, we have ζw

uniformly continuous in Rd , and therefore,

sup
x∈Rd

Ex[sup
s≤t

|(ζw1)(Xs) − ζ(x)w1(x)|] → 0, as t → 0.

Thus using [8, Corollary 2.8] we get

1

t

∣∣∣Ex[1{t>τBr (x)}EXτBr (x)
[ζw1(Xt−τBr (x)

)]] −Ex[ζw1(XτBr (x)
)1{t>τBr (x)}]

∣∣∣ → 0,

as t → 0. Now let ζ = 1 in Bm(0) and let τm be the exit time from Bm(0). Then

1

t
Ex[|(1 − ζ(Xt ))w1(Xt )|1{t>τBr (x)}] ≤ 1

t
sup |w1|Px(τm ≤ t)

� sup |w1| 1

V 2(m)
→ 0, as m → ∞,

where the last line follows from [8, Corollary 2.8]. Again,

|(1 − ζ(XτBr (x)
))w1(XτBr (x)

)|1{t>τBr (x)} �= 0

would imply for some point s ≤ t we have |Xs | > m, and thus, it is included in {τm ≤ t}. So we 
can use the above argument to show

1

t
Ex

[|(1 − ζ(XτBr (x)
))w1(XτBr (x)

)|1{t>τBr (x)}
] → 0, uniformly in t > 0,

as m → ∞. Thus we have (2.4).
With the above decomposition of u (i.e. w1 + w2 with respect to any sub-domain D) one 

can follow the arguments of [21] to conclude that TrV (u) exists on ∂Gc. Indeed, this will be a 
consequence of [21, Lemma 4.10]. Furthermore, if u ∈ Cβ(Rd) then we get from the arguments 
of Theorem 2.2 of [21] that u

V (δGc )
is Hölder continuous in a neighborhood of ∂Gc.

Theorem 2.4. The conclusion of Theorem 2.3 remains true, if f is additionally assumed to be 
non-increasing in [0, A] but only assuming 0 ≤ u ≤ A.

In the spirit of the moving plane method, which we use to prove Theorem 2.3, we have the 
following result
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Theorem 2.5. Let A > 0 and f ∈ C0,1([0, A]) such that f is non-increasing for small t . Then 
any continuous solution u of the problem{

�(−�)u = f (u) in Rd \ {0},
u(0) = A

with 0 ≤ u ≤ A on Rd and lim|x|→∞u(x) = 0 is radially symmetric and strictly decreasing in the 

radial direction.

An immediate consequence gives

Corollary 2.1. Let f ∈ C0,1((0, ∞)) such that f is non-increasing for small t . Then any non-
negative continuous solution u of the problem

�(−�)u = f (u) in Rd , with lim|x|→∞u(x) = 0

is radially symmetric up to translation. Moreover, either u ≡ 0 or up to translation u is strictly 
decreasing in the radial direction.

Concerning radial sets, we get

Corollary 2.2. Let r, A > 0, A1 ∈ R, d ≥ 2, and f ∈ C0,1([0, A]) be non-increasing. Then any 
Hölder continuous solution u of{

�(−�)u = f (u) in Rd \ Br(0),

u = A in Br(0),

with 0 ≤ u ≤ A and lim|x|→∞u(x) = 0 is radially symmetric and strictly decreasing in the radial 

direction.

Moreover, the approach in complements allows also to tread annular-like sets.

Theorem 2.6. Let G1, . . . , Gn ⊂ Rd , d ≥ 2, be a family of compact connected sets with C2

boundary such that Gi ∩ Gj = ∅ for i �= j and let G := ⋃n
k=1 Gk . Let D ⊂ Rd be an open 

bounded set with C2 boundary and such that G � D. Let A > 0 and f ∈ C0,1([0, A]). Assume 
that for some given B ≥ 0, A1, . . . , An ≤ 0 there is a continuous solution u of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(−�)u = f (u) in D \ G,

u = 0 in Rd \ D,

u = A in G,

TrV (u − A) = Ak on ∂Gk,

Tr (u) = B on ∂D,
V
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with 0 ≤ u < A on Rd \ G. Then D and G are concentric balls and u is radially symmetric and 
strictly decreasing in the radial direction with respect to the center of G.

Remark 2.3. Consider a smooth function ζ satisfying the boundary condition

ζ = 0 in Dc, and ζ = A in G.

ζ being smooth we have g = �(−�)ζ continuous in D \ G, and using [10, Lemma 5.8] we 
obtain

�(−�)(u − ζ ) = f (u) − g in D \ G, and (u − ζ ) = 0 in (D \ G)c.

Hence, by [21, Theorem 2.1], (u − ζ ) is Hölder continuous in Rd , and thus, u is Hölder contin-
uous in Rd . Furthermore, TrV (u − ζ ) is also Hölder continuous. Note that since ζ is smooth, we 
have

TrV (ζ ) = 0 on ∂D, and TrV (A − ζ ) = 0 on ∂Gk.

This follows from the fact that V (r) � ra2 for all r ∈ (0, 1). Hence the operator TrV is well 
defined on u near the boundary. Furthermore, Remark 2.2 suggests that the trace functions are 
Hölder continuous near the boundaries.

As before, as an immediate consequence, we have

Corollary 2.3. Let 0 < r < R < ∞, A > 0, A1 ∈ R, d ≥ 2, and f ∈ C0,1([0, A]). Then any 
continuous solution u of ⎧⎪⎪⎨⎪⎪⎩

�(−�)u = f (u) in BR(0) \ Br(0);

u = 0 in Rd \ BR(0);

u = A in Br(0);

with 0 ≤ u ≤ A is radially symmetric and strictly decreasing in the radial direction.

3. Proofs of main results

3.1. Maximum principles for anti-symmetric viscosity solutions

As is well known, maximum principles for anti-symmetric solutions play a key role in the 
analysis of overdetermined problems. In this section we develop all the required tools in the 
direction which will later be used to establish our main results. Since our framework is based on 
viscosity solutions, we recall the definition of viscosity solution from [10] for convenience.

Definition 3.1 (Viscosity solution). Let D ⊂ Rd be open. An upper semi-continuous function 
u : Rd → R in D̄ is said to be a viscosity sub-solution of

−�(−�)u + c(x)u = g in D, (3.1)
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if for every x ∈ D and test function ϕ ∈ Cb(x) (Cb(x) is the set of all bounded continuous func-
tions that are twice continuously differentiable in a neighborhood of x) satisfying u(x) = ϕ(x)

and

ϕ(y) > u(y) y ∈Rd \ {x},
we have

−�(−�)ϕ(x) + c(x)u(x) ≥ g(x).

Similarly, a lower semi-continuous function is a viscosity super-solution of (3.1) whenever 
ϕ(y) < u(y), y ∈ Rd \ {x}, implies −�(−�)ϕ(x) + c(x)u(x) ≤ g(x). Furthermore, u is said 
to be a viscosity solution if it is both a viscosity sub- and super-solution.

Let H be the half-space defined by

H = {x ∈Rd : x · e > λ},
and we denote by xλ = R(x) = Rλ,e(x) := x − 2(x · e)e + 2λe the reflection at ∂H = {x · e = λ}
of x. Let u : Rd → R, then we call u anti-symmetric (w.r.t. H ) if u = −u ◦ R on Rd . Let � ⊂ H

and u be a bounded anti-symmetric super-solution of �(−�)u = g in � with u ≥ 0 in H \ �. 
Define

v =
{ −u if x ∈ {u < 0} ∩ �

0 otherwise.
(3.2)

Denote by � = {u < 0} ∩ �. Note that v is upper semi-continuous and � is open. We claim that

−�(−�)v ≥ g in �, (3.3)

in viscosity sense. To prove the above, consider any point x ∈ � and a test function ϕ that touches 
v from above at the point x. Then ψ := ϕ + (−u − v) touches −u from above at the point x. 
Since −u is a sub-solution, it follows that

−�(−�)ϕ(x) − �(−�)η(x) = −�(−�)ψ(x) ≥ g(x),

where η = −u − v. To prove (3.3), we only need to show that

−�(−�)η(x) ≤ 0.

Since η = 0 in � and equals to −u in �c, we have

−�(−�)η(x) = −
∫
�c

u(z)j (|x − z|)dz

= −
∫

R(�)

u(z)j (|x − z|)dz −
∫

R(H\�)∩(H\�)

u(z)j (|x − z|)dz.
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Note that the first term is non-positive due to the anti-symmetry of u and the fact u < 0 in �. On 
the other hand the second term equals to∫

R(H\�)∩(H\�)

u(z)j (|x − z|)dz =
∫

H\�
u(z)(j (|x − z|) − j (|x − R(z)|)dz ≥ 0,

since u ≥ 0 in H \ �, and j is radially decreasing. This completes the proof of (3.3). (3.3) will 
be useful in proving anti-symmetric maximum principle.

Theorem 3.1. Let H be a half-space, � ⊂ H open and bounded, and c be bounded. Then there 
exists p ≥ 1 and C > 0, depending only on � and diameter of �, such that if u ∈ Cb(Rd) is an 
anti-symmetric super-solution of

�(−�)u + c(x)u = 0 in �,

with u ≥ 0 on H \ �, then we must have

sup
�

u− ≤ C‖c+‖L∞(�) ‖u−‖Lp(�).

In particular, given c∞ > 0 such that c+ ≤ c∞ on � there is δ > 0 such that if |�| < δ, then 
u ≥ 0.

Proof. As discussed above, we consider the set � = {u < 0} ∩ � and the function v as in (3.2). 
From (3.3) we have

−�(−�)v + c+(x)v ≥ 0 in �.

We follow the arguments of [4, Theorem 3.1]. Since ∂� is not nice in general, we consider a 
collection of increasing smooth sets {Dn}n, contained in � and increasing to �. Let wn be the 
unique viscosity solution of

−�(−�)wn = −g in Dn, and wn = v in Dc
n,

where g = ‖c+‖L∞(�)v. From the comparison principle [10, Theorem 5.2], [21, Theorem 3.8] it 
follows that

v ≤ wn in Rd .

Moreover, wn attends a stochastic representation given by

wn(x) =Ex[v(XτDn
)] +Ex

⎡⎣ τDn∫
0

g(Xs)ds

⎤⎦ , x ∈ Dn. (3.4)

Hence, using (1.3)-(3.4) and [5, Theorem 3.3] we see that for some constant C, p > 1 we have
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sup
Dc

n

wn + C‖g‖Lp(Dn) ≤ sup
Dc

n

|v| + C‖g‖Lp(�),

which in turn, implies

sup
Dn

v ≤ sup
Dc

n

|v| + C‖g‖Lp(�).

Thus, the result follows by letting n → ∞. �
Our next result concerns a version of Hopf’s Lemma for �(−�) for anti-symmetric super-

solutions

Theorem 3.2. Let H be a half-space, � ⊂ H open, and c ∈ L∞(�). If u ∈ Cb(Rd) is an anti-
symmetric super-solution of

�(−�)u + c(x)u = 0 in �

with u ≥ 0 in H . Then either u ≡ 0 or u > 0 in �. Moreover, if u �≡ 0 and there is x0 ∈ ∂� \ ∂H

with u(x0) = 0 and such that there is a ball B ⊂ � with x0 ∈ ∂B , then there is c > 0 such that

lim inf
t→0+

u(x0 − tη)

V (t)
≥ c.

In particular, if TrV (u)(x0) exists, then TrV (u)(x0) > 0. Here η denotes the outward normal at 
x0.

Proof. Assume u �≡ 0 on Rd , then there is a compact set K � H with infK u = δ > 0. Suppose 
that u(x) = 0 for some x ∈ �. Consider a test function ϕ ≥ 0 with the following property: for 
some ball B2δ(x) � � we have

ϕ ≤ u in Rd , ϕ = 0 in Bδ(x), ϕ = u in Bc
2δ(x).

We may also choose δ small enough so that the ball is far from K . Thus, by definition, we have

�(−�)ϕ(x) ≥ 0,

which implies

0 ≥
∫
Rd

ϕ(y)j (|x − y|)dy

=
∫

R(B2δ(x))

u(z)j (|x − y|)dy +
∫

H\B2δ(x)

u(y)(j (|x − y|) − j (|x − yλ|))dy

=
∫

R(B2δ(x))

u(z)j (|x − y|)dy +
∫
K

u(y)(j (x − y|) − j (|x − yλ|))dy.
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Thus if we choose δ small enough the RHS of the above display is positive which leads to a 
contradiction. Hence we must have u > 0 in �. This proves the first part.

Now we prove the second part. Let B be a ball that touches � at x0 from inside. Let ϑ be the 
expected exit time from B . Define w = a(ϑ − ϑ ◦ R) as before. It is straightforward to see that

�(−�)w ≤ aC in B,

for some constant C. To complete the proof we only need to show that for some a0 > 0 we have 
u ≥ w in B and then, the proof follows from (2.2). To the contrary, assume that no such a0 exists. 
Now it follows from [10, Lemma 5.8] that va = u − w is an anti-symmetric super-solution of

�(−�)va = −(‖c‖L∞(�)u + aC) = −g in B.

Let xa ∈ ArgminBva . Since minB̄ va < 0, it follows that xa → ∂B as a → 0. This also implies 
u(xa) ≤ w(xa) = aϑ(xa) → 0 as a → 0. Now we choose a test function ϕ(≥ minB̄ va) that 
touches va at xa from below and agrees with va outside a ball B ′ � B . By definition, it then 
follows that

�(−�)ϕ(xa) ≥ −(‖c‖L∞(�)u(xa) + Ca) → 0 as a → 0.

Let us now compute the LHS. Let K be any compact set inside B and we may assume that 
xa /∈ K .

�(−�)ϕ(xa) =
∫
Rd

(ϕ(xa) − ϕ(y))j (|xa − y|)dy

=
∫
H

(ϕ(xa) − ϕ(y))(j (|xa − y|) − j (|xa − yλ|))dy

≤
∫
K

(ϕ(xa) − ϕ(y))(j (|xa − y|) − j (|xa − yλ|))dy

≤ (a‖ϑ‖L∞(B) − min
K

u)

∫
K

(j (|xa − y|) − j (|xa − yλ|))dy < 0,

for all a small. This is a contradiction. Thus we have the second part. �
Our last result on maximum principles for antisymmetric functions concerns unbounded sets, 

where we have a sign on the linear part given by c.

Lemma 3.1. Let H be a half-space, � ⊂ H open, and c∞, R > 0. Then there is δ > 0 such that 
the following holds. Let c ∈ L∞(�) with c− ≤ c∞ and such that there is K ⊂ � with � \ K ⊂
BR(0) and c ≥ 0 on K . If u ∈ Cb(Rd) is an anti-symmetric super-solution of

�(−�)u + c(x)u = 0 in �
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with u ≥ 0 in 
(
H \�

)
∪

((
� ∩ {x ∈ H : dist(x, ∂H) ≥ δ}

)
\K

)
and lim inf

x∈H,|x|→∞u(x) ≥ 0, then 

u ≥ 0 in H .

Proof. Let c∞ > 0 be given and denote H ′ = {x ∈ Rd : dist(x, H) > δ} for δ > 0. Note that we 
can fix δ > 0 such that

inf
x∈Rd , dist(x,H ′)<2δ

∫
H ′

j (|x − y|) dy > c∞

since j /∈ L1(Rd) and hence the above value convergence to infinity for δ → 0. Next assume that 
c, K, u are given as stated and that u changes sign in H . Moreover, let v be given in (3.2) and 
note that v satisfies in viscosity sense

�(−�)v ≤ c(x)u = −c(x)v ≤ c−(x)v ≤ c∞1�\Kv in � := {u < 0} ∩ �,

with v = 0 in Rd \ �. Moreover, since lim inf
x∈H,|x|→∞u(x) ≥ 0, we have lim|x|→∞v(x) = 0 and v ∈

Cb(Rd). In particular, there is x ∈ � with a := maxRd v = v(x) > 0. Moreover, let ϕ ∈ C2(Rd)

(0 ≤ ϕ ≤ a) with ϕ ≡ a on H and ϕ ≡ 0 on H ′. Then ϕ touches v from above at x and ϕ ≥ v in 
Rd . Thus

c∞1�\K(x)v(x) = c∞1�\K(x)a ≥ �(−�)ϕ(x) = p.v.

∫
Rd

(ϕ(x) − ϕ(y))j (|x − y|) dy

≥ a

∫
H ′

j (|x − y|) dy.

That is, at the maximal point x we have

c∞1�\K(x) ≥
∫
H ′

j (|x − y|) dy.

Clearly, from this inequality it follows that we must have x ∈ � \ K . Moreover, since u ≥ 0 in 

H \ � and 
(
� ∩ {x ∈ H : dist(x, ∂H) ≥ δ}

)
\ K we must have dist(x, ∂H) ≤ δ. But then this is 

again a contradiction by the choice of δ. Hence v = 0, and thus u ≥ 0 in H as claimed. �
3.2. Proof of Theorem 2.1

Proof of Theorem 2.1. We follow the idea of moving planes described in the classical case by 
Serrin [28] and for the fractional Laplacian, i.e. the case �(r) = rα/2, α ∈ (0, 2) in [14]. In the 
following let D ⊂ Rd be a fixed open bounded set with C2 boundary and let u be a solution of 
(2.3) satisfying TrV (u) = c on ∂D. Note that u > 0 in D by the maximum principle. Moreover, 
as explained above, u is Hölder continuous in Rd [21] and thus in particular bounded. Given 
λ ∈ R, e ∈ ∂B1(0) denote

v(x) = vλ,e(x) = u(x) − u(x̄), x ∈ Rd,
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Fig. 1. Situation 1 at p0; Situation 2 at p̃0.

where x̄ := Rλ,e(x) := x − 2(x · e)e + 2λe denotes the reflection of x at Tλ,e := ∂Hλ,e , Hλ,e :=
{x ∈ Rd : x · e > λ}. Note that we have Rd \ Hλ,e = H−λ,−e . Moreover, fix e ∈ ∂B1(0) and let 
λ < l := supx∈D x · e. Then H ∩ D is nonempty for all λ < l and we put Dλ := Rλ,e(D ∩ Hλ). 
Then for all λ < l the function v satisfies in viscosity sense

⎧⎪⎪⎨⎪⎪⎩
�(−�)v = 0 in Dλ;

v ≥ 0 in H−λ,−e \ Dλ;

v(x) = −v(x̄) for x ∈Rd .

Hence we must have v > 0 in Dλ or v ≡ 0 in Rd by Theorem 3.1 and 3.2 for λ close to l. As we 
decrease λ, there are two possible situations that may occur (Fig. 1):

Situation 1: There is p0 ∈ ∂D ∩ ∂Dλ \ Tλ,e or (3.5)

Situation 2: Tλ,e is orthogonal to ∂D at some point p0 ∈ ∂D ∩ Tλ,e. (3.6)

We fix λ0 as the maximal value in (−∞, l) such that one of these situations occur (or, equiva-
lently, the first time while moving λ from l to −∞ where one of the two situations occur). Our 
goal is to show that in either case we have that D is symmetric with respect to Tλ0,e , which im-
plies the theorem since e was chosen arbitrarily. For this, we show first that we have v = vλ0,e ≡ 0
on Rd . In the following we assume v > 0 in Dλ0 .

Situation 1: Note that u(p0) = 0 = u(p̄0) and hence v(p0) = 0. Hopf’s Lemma, Theorem 3.2, 
implies 0 �= TrV (v)(p0) = TrV (u) − TrV (u ◦ Rλ0,e) = 0. This is a contradiction and hence we 
cannot be in Situation 1.

Situation 2: Let T = Tλ0,e, H = Hλ0,e, and R = Rλ0,e . Moreover, let p0 ∈ T ∩ ∂D such that 
T is orthogonal to ∂D at p0. By translation and rotation, we may assume λ0 = 0, p0 = 0, e = e1, 
and e2 ∈ T is the interior normal at ∂D. Note that this implies ∇2δD(0) is diagonal. We have
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Lemma 3.2. We have

v(tη̄) = o(V (t)t) as t → 0+,

where η̄ = e2 − e1 = (−1, 1, 0, . . . , 0) ∈ Rd .

Lemma 3.3. Let � ⊂ Rd , d ≥ 2, be an open set such that 0 ∈ ∂� and {x1 = 0} is orthogonal to 
∂� at 0. Moreover, let � be symmetric about the hyperplane {x1 = 0} and there is a ball B ⊂ �

with B ∩ ∂� = {0}. Denote D∗ := � ∩ {x1 < 0} and assume w ∈ Cb(Rd) satisfies⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�(−�)w + c(x)w ≥ 0 in D∗,

w ≥ 0 in {x1 < 0},
w > 0 in D∗;

w(x) = w(x1, x
′) = −w(−x1, x

′) for x = (x1, x
′), x1 ∈ R, x′ ∈Rd−1

in viscosity sense, where c ∈ L∞(D∗). Let η̄ = e2 − e1 = (−1, 1, 0, . . . , 0) ∈ Rd , then there is 
C, t0 > 0, depending on D∗, N , �, such that

w(tη̄) ≥ CV (t)t for all t ∈ (0, t0).

Combining Lemma 3.2 and 3.3 (see proofs below), with � = D ∩ H ∪ Dλ0 and D∗ = Dλ0 , it 
follows that we cannot have v > 0 in Situation 2.

Thus, we must have v ≡ 0 in Rd . From here, the claim follows analogously to the proof of 
Theorem 1.1 in [14] (see page 9 there). �
Proof of Lemma 3.2. We use [21, Theorem 2.2], which gives a function ψ ∈ Cα(D) for some 
α > 0 such that

u(x) = V (δD(x))ψ(x) for x ∈ Rd .

Moreover, by assumption

ψ(x) = c for x ∈ ∂D.

Let η̄ = e2 −e1, η = e2 +e1 and in the following we let t to be small enough such that t η̄, tη ∈ D. 
Then

ψ(tη̄) = c + o(1) = ψ(tη) as t → 0+.

But then

v(tη̄) = u(tη̄) − u(tη) = [V (δD(tη̄)) − V (δD(tη))](c + o(1)) as t → 0+. (3.7)

Moreover, we have
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δD(tη̄) = δD(0) + t∇δD(0) · η̄ + t2

2
∇2δD(0)[η̄] · η̄ + o(t2)

= te2 · η̄ + t2

2
∇2δD(0)[η̄] · η̄ + o(t2) = t + t2

2
C + o(t2) as t → 0+,

where C = ∇2δD(0)[e2] · e2 + ∇2δD(0)[e1] · e1, and similarly

δD(tη) = t + t2

2
C + o(t2) as t → 0+.

Thus we have δD(tη̄) − δD(tη) = o(t2) for t → 0+ and hence, for some τ ∈ (0, 1), the mean 
value theorem gives

V (δD(tη̄)) − V (δD(tη)) = V ′(δD(tη) + τ(δD(tη̄) − δD(tη))
)(

δD(tη̄) − δD(tη)
)

= o(V ′(t)t2) = o(V (t)t) as t → 0+,

where in the last step we used [20, Proposition 3.1] (see also [21, Lemma 2.5]). Combining this 
with (3.7) the claim follows. �
Proof of Lemma 3.3. By assumption, we can fix a ball B = BR(Re2) ⊂ � for some R > 0
small enough with ∂B ∩ ∂� = {0}. We put

K := B ∩ {x1 < 0}.

Moreover, let M1 � D∗ such that δ = essinf
M1

w > 0 and let M2 = R0,e1(M1). Note that we 

may assume that M1 is an open ball. Moreover, by making R smaller, we may assume that 
dist(M1, K) > 0. Moreover, by making R even smaller if necessary, we may also assume that 
|K| is small enough with respect to ‖c‖L∞(�) to apply the second assertion of Theorem 3.1. Let 
g be the unique (viscosity) solution of{

�(−�)g = 1 in B;

g = 0 in Rd \ B.
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Note that g(x) = uR(x − e2) with uR satisfying (2.2) from the introduction. Let ϕ ∈ C∞
c (Rd)

with supp ϕ ⊂ M1, 0 ≤ ϕ ≤ 1 and there is U � M1, |U | > 0 such that ϕ = 1 in U . We claim that 
there is C > 0 such that the bounded continuous function

x �→ h(x) = −κx1g(x) + δϕ(x) − δϕ(R0,e1(x))

satisfies for some fixed κ > 0, to be chosen later,

�(−�)h + c(x)h ≤ 0 in K, (3.8)

in viscosity sense. Having shown this, and noting that by construction w − h is anti-symmetric 
bounded and continuous with w − h ≥ 0 on {x1 < 0} \ K , the maximum principle for anti-
symmetric functions, Theorem 3.1 (in K), implies

w(tη̄) ≥ h(tη̄) = κtV (t) for t > 0 small enough,

as claimed. It remains to show (3.8). For this, let x ∈ K and we write

�(−�)h(x) = −κ�(−�)(x1g)(x) + δ�(−�)[ϕ − ϕ ◦ R0,e1](x).

For the second term (which can be computed classically, since it is smooth in K) note that

�(−�)[ϕ − ϕ ◦ R0,e1 ](x) = −
∫

M1

ϕ(y)j (|x − y|) − j (|x − R0,e1(y)|) dy

≤ −
∫
U

(
j (|x − y|) − j (|R0,e1(x) − y|) dy ≤ −C1,

where C1 > 0 is a constant depending only on K , U , and j . And for the first term we show that 
for some constant C2 we have

�(−�)(x1g(x)) ≤ C2 in K, (3.9)

in viscosity sense. Let x be a point in K and ψ be a C2 function that touches −y1g(y) from 
above at x. Let Bx ⊂ B1(0) be a ball around x satisfying Bx � K . Let

�(y) =
{

ψ(y) for y ∈ Bx,

−y1g(y) otherwise.

Thus to establish (3.9) we need to show that

�(−�)�(x) ≤ C2.

Let us also define

�̂(y) =
{

− 1
y1

ψ(y) for y ∈ Bx,

g(y) otherwise.
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Now by [21, Theorem 1.1] we have

|g(y) − g(x)| ≤ C4χ(|x − y|) for x, y ∈Rd , where χ(r) = �(r−2)−
1
2 ,

and C4 > 0 depending on d , B , and �. Observe that, by (1.3), χ(r) ≤ C5r
a1 for all r < 1. Thus 

g is a1-Hölder continuous in Rd . Let

�′(y) =
{

(− 1
y1

ψ(y)) ∧ (g(x) + C4χ(|x − y|)) for y ∈ Bx

g(y) otherwise.

Note that �′ touches g from above at x and when y is very close to x we have �̂(y) = �′(y). 
This is possible since χ(r) � ra2 where a2 < 1. Since g is a viscosity solution we have 
�(−�)�′(x) ≤ 1. On the other hand �(y) ≥ −y1�

′(y) := �′′(y) in Rd . Let us now compute

�(−�)(�)(x) ≤ �(−�)(�′′)(x)

=
∫
Rd

(−x1�
′(x) + (x1 + y1)�

′(x + y) − 1{|y|≤1}y · ∇[x1�
′(x)])j (|y|) dy

= −x1�(−�)�′(x) +
∫
Rd

(y1�
′(x + y) − 1{|y|≤1}y1�

′(x))j (|y|) dy

≤ −x1 +
∫

B1(0)

(�′(x + y) − �′(x))y1j (|y|) dy +
∫

Rd\B1(0)

y1g(x + y)j (|y|) dy

≤ C3 +
∫

B1(0)

(�′(x + y) − g(x))y1j (|y|) dy dy + C3.

Since �′ touches g from above it follows that |�′(x + y) − g(x)| ≤ C4χ(|y|) and therefore, 
using (1.5) we have

∫
B1(0)

(g(x + y) − g(x))|y|j (|y|) dy ≤ C5

∫
B1(0)

�(|y|−2)
1
2 |y|1−d dy ≤ C5

1∫
0

�(r−2)
1
2 dr = C6,

where C5, C6 > 0 is a constant depending on d , B , and � and the finiteness follows from (1.3)
and the fact that a2 < 1. Hence (3.9) holds. Next, let κ ≤ δC1

C2+‖c‖L∞(D∗)‖g‖L∞(B)
, then for x ∈ K

we have

�(−�)h(x) ≤ κC2 − δC1 ≤ −‖c‖L∞(D∗)κ‖g‖L∞(B) ≤ −c(x)h(x)

as claimed in (3.8). �



JID:YJDEQ AID:9980 /FLA [m1+; v1.304; Prn:20/09/2019; 9:29] P.21 (1-26)

A. Biswas, S. Jarohs / J. Differential Equations ••• (••••) •••–••• 21
3.3. Proof of Theorem 2.2

Proof of Theorem 2.2. As in the proof of Theorem 2.1, given λ ∈R, e ∈ ∂B1(0) denote

v(x) = vλ,e(x) = u(x) − u(x̄), x ∈ Rd,

where x̄ := Rλ,e(x) := x − 2(x · e)e + 2λe denotes the reflection of x at Tλ,e := ∂Hλ,e , Hλ,e :=
{x ∈ Rd : x · e > λ}. Moreover, fix e ∈ ∂B1(0) and let λ < l := supx∈D x · e. Then Hλ,e ∩ D

is nonempty for all λ < l and we put Dλ := Rλ,e(D ∩ Hλ) ⊂ H−λ,−e . Then for all λ < l the 
function v satisfies in viscosity sense⎧⎪⎪⎨⎪⎪⎩

�(−�)v + c(x)v = 0 in Dλ;

v ≥ 0 in Hλ,−e \ Dλ;

v(x) = −v(x̄) for x ∈Rd ,

where

c(x) = cf (x) =

⎧⎪⎨⎪⎩
f (u(x̄) − f (u(x))

u(x) − u(x̄)
, u(x) �= u(x̄);

0, u(x) = u(x̄).

Note that since u is bounded and f is locally Lipschitz continuous, there is c∞ > 0 independent 
of λ such that

‖c‖L∞(Dλ) ≤ c∞ for all λ < l.

Moreover, since u is continuous, we have hence c ∈ L∞(Dλ). Next, we show that we can move 
the hyperplanes from l up to the first occurrence of either situation (3.5) or (3.6). Denote λ0 < l

as this first occurrence. In order to apply the argumentation in these two situations as in the case 
f (u) ≡ 1, we need to show that

v = vλ = u − u ◦ Rλ,e ≥ 0 in Dλ for all λ ∈ [λ0, l).

First note that due to Theorem 3.1 there is ε > 0 such that we have v ≥ 0 in Dλ for λ ∈ [l − ε, l). 
Let

λ∗ = inf{λ < l : vμ ≥ 0 in Hμ,−e for all μ ∈ (λ, l)}
Clearly, λ∗ ≥ λ0. Assume by contradiction λ∗ > λ0. By continuity, we have v = vλ∗ ≥ 0 in Dλ∗ . 
Then Theorem 3.2 implies v ≡ 0 on Rd or v > 0 in Dλ∗ . Assume that v ≡ 0 on Rd . Then u is 
symmetric with respect to ∂Hλ∗,e since D \ (Hλ∗,e ∪ Dλ∗) has nonempty interior by assumption, 
we can also move hyperplanes from l− := supx∈D x · (−e) to −∞ and due to the symmetry of u
with respect to ∂Hλ∗,e there is ε′ > 0 such that v−λ,−e ≡ 0 on D−λ,−e for λ ∈ (l− − ε′, l−). But 
then this implies u ≡ 0 in contradiction to the assumption that u is nontrivial. Hence we have 
v = vλ∗ > 0 in Dλ∗ . By continuity of v and λ �→ vλ, there is δ > 0 and K ⊂ Dλ∗ such that for 
any ε ∈ [0, δ] we have vλ∗−ε > 0 in K and |Dλ∗−δ \ K| is small enough (with respect to c∞) to 
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apply the second assertion of Theorem 3.1. But then, Theorem 3.1 applied to � = Dλ∗−ε \ K

implies vλ∗−ε ≥ 0 in Hλ∗−ε,−e for all ε ∈ [0, δ]. This is a contradiction to the definition of λ∗ and 
hence we must have λ∗ = λ0. From here, the proof follows as the proof of Theorem 2.1. �
3.4. Proof of Theorem 2.3

In the following, we assume there is a solution as stated in Theorem 2.3 and we let 
G1, . . . , Gn, G be compact sets and A1, . . . , An, A ∈ R, A > 0 as stated. We proceed similarly 
as in the proof of Theorem 2.1 and 2.2, however, arguing with the Situations 2 occurring in the 
previous proofs this time for the set G. We continue with the notation of the previous sections. 
In particular, the function vλ = vλ,e = u − u ◦ Rλ,e for λ ∈ R, e ∈ ∂B1(0) satisfies in viscosity 
sense ⎧⎪⎪⎨⎪⎪⎩

�(−�)vλ + c(x)vλ = 0 in Dλ;

vλ ≥ 0 in H−λ,−e \ Dλ;

vλ(x) = −vλ(Rλ,e(x)) for x ∈ Rd ,

where Dλ = H−λ,−e \ (G ∪ Rλ,e(G)) and

c(x) = cf,λ,e(x) =

⎧⎪⎨⎪⎩
f (u(Rλ,e(x)) − f (u(x))

u(x) − u(Rλ,ex)
, u(x) �= u(Rλ,e(x)),

0, u(x) = u(Rλ,e(x)).

Since f is assumed to be Lipschitz continuous and u is bounded we have

‖c‖L∞(Dλ) ≤ c∞ for all λ ∈R, e ∈ ∂B1(0).

As before, we denote λ0 ∈ R as the largest number such that we have

Situation 1: There is p0 ∈ ∂G ∩ ∂Rλ,e(G ∩ Hλ,e) \ Tλ,e or (3.10)

Situation 2: Tλ,e is orthogonal to ∂G at some point p0 ∈ ∂G ∩ Tλ,e, (3.11)

and moreover

λ∗ := inf{λ ≥ λ0 : vμ ≥ 0 in H−μ,−e for all μ ∈ (λ,∞)}.

Clearly, as in the previous case, we have λ0 ∈ R due to the boundedness of G and the regularity 
assumptions on its boundary. In the following, we let e ∈ ∂B1(0) be fixed and we aim at showing 
that we have λ0 = λ∗ to conclude our result. For simplicity of the notation, we may assume 
λ0 = 0 and e = e1 by translation and rotation of the problem, and denote

Hλ = {x1 > λ},
Hλ = {x1 < λ} =Rd \ Hλ = H−λ,−e ,
1



JID:YJDEQ AID:9980 /FLA [m1+; v1.304; Prn:20/09/2019; 9:29] P.23 (1-26)

A. Biswas, S. Jarohs / J. Differential Equations ••• (••••) •••–••• 23
Rλ(x) = Rλ,e1(x) = (2λ − x1, x
′), for x = (x1, x

′), x ∈R, x′ ∈ Rd−1, and

Dλ = {x1 < λ} \ (G ∪ Rλ(G)).

Moreover, we consider the statement

(Sλ) vμ > 0 in Dμ for μ ≥ λ.

Since we assume f is non-increasing for small arguments we can find f0 ∈ (0, A] such that 
f |[0,f0] is non-increasing. Note that since u → 0 for |x| → ∞, given λ > 0 there is R > 0 such 
that |vλ| ≤ uλ + u ≤ f0 in Rd \ BR(0) and in particular, c ≥ 0 on Dλ \ BR(0). To begin the 
moving plane method, we note that

Lemma 3.4. (Sλ) holds for λ large enough.

Proof. We first show that we have vλ ≥ 0 in Hλ for λ large enough. First note that G ⊂ Hλ for λ
large and hence Dλ = Hλ \ G. Moreover, since u → 0 for |x| → ∞, we can fix R > 0 such that 
u ≤ f0

2 (with f0 ∈ (0, A] such that f |(0,f0] being non-increasing). Hence, by making λ larger if 
necessary, we have u ◦Rλ ≤ f0

2 in Hλ. Moreover, clearly vλ ≥ 0 in {u ≥ f0/2} ∩Hλ and c ≥ 0 in 
� := Dλ ∩ {u < f0/2}. With K = � in Lemma 3.1 implies vλ ≥ 0 in Hλ. Having shown vλ ≥ 0
in Hλ for λ large, we note that Theorem 3.2 implies vλ ≡ 0 or vλ > 0. But since u is nontrivial 
and u → 0 for |x| → ∞ we cannot have vλ = 0 for λ large. This finishes the proof. �
Lemma 3.5. (Sλ) holds for all λ > λ∗. Moreover, vλ∗ ≥ 0 in Hλ∗

.

Proof. Let λ̄ = inf{λ : (Sλ) holds}. Then λ∗ ≤ λ̄ < ∞ by Lemma 3.4. And by continuity, we 
have vλ̄ ≥ 0 in Hλ̄. The statement follows once we have shown λ̄ = λ∗. Assume by contradiction 
λ̄ > λ∗ and let λ ∈ (λ∗, ̄λ]. By Theorem 3.2 we have vλ ≡ 0 in Rd or vλ > 0 in Dλ. First, assume 
vλ ≡ 0 in Rd . Note that this implies we have u(t, x′) = u(2λ − t, x′) for all t ∈ R, x′ ∈ Rd−1. 
Moreover, since vμ ≥ 0 in Hμ for μ ≥ λ∗, we have u(t, x′) ≥ u(2μ − t, x′) for all t < μ, μ ≥ λ∗
and x′ ∈Rd−1. In particular, we have μ ∈ (λ∗, λ), t < μ, and x′ ∈Rd−1 we have

u(2λ − t, x′) = u(t, x′) ≥ u(2μ − t, x′) ≥ u(2λ − t, x′),

where in the last inequality, we have used the monotonicity of u for μ̃ = (μ + λ) − t ≥ λ∗—note 
that 2μ − t < μ̃ and Rμ̃(2μ − t, x′) = (2λ − t, x′). This implies that we have vμ ≡ 0 in Rd

for all μ ∈ [λ∗, λ]. Let μ̄ = sup{μ : vμ ≡ 0}. Then λ ≤ μ̄ ≤ λ̄ and by continuity vμ̄ ≡ 0 in 
Rd , but vμ̄+ε > 0 in Hμ̄+ε for all ε > 0. But this implies t �→ u(t + μ̄, x′) = u(−t + μ̄, x′) is 
strictly decreasing on (0, ∞) for all x′ ∈ Rd−1, which is a contradiction to the symmetry of u
with respect to {x1 = μ} for all μ ∈ (λ∗, λ). Hence we must have vλ > 0 in Dλ. But since λ
was chosen arbitrarily in (λ∗, ̄λ], this contradicts the definition of λ̄ and hence we must have 
λ̄ = λ∗. �
Lemma 3.6. If λ∗ > λ0, then vλ∗ ≡ 0 on Rd .

Proof. Note that Theorem 3.2 implies either the claim or vλ∗ > 0 in Dλ∗ . Hence, we may assume 
by contradiction that the latter holds. Recall that we assume f |[0,f ] is non-increasing for some 
0
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f0 ∈ (0, A]. So we choose R large enough so that |vλ∗ | ≤ 1
2f0 on Rd \ BR(0). For any δ ∈

(0, λ0 −λ∗) we define U = BR(0) ∩Dλ∗ ∩ {x1 ≤ λ∗ − δ}. We claim that minŪ vλ∗ = ε > 0. If this 
does not hold true, Ū being compact, we can find a point x ∈ D̄λ∗ ∩ G ∩ {x1 ≤ λ∗ − δ} such that 
vλ∗(x) = 0. But, since u < A in Gc, this is possible if x ∈ Rλ∗(G ∩Hλ∗) ∩∂(G ∩Hλ∗

) \{x1 = λ∗}. 
This is contradicting to the definition of λ0. Thus we must have minŪ vλ∗ = ε > 0. Choose 
μ ∈ (λ∗, λ0). Using continuity we note that for μ sufficiently close to λ∗ we must have vμ > 0
in Ū . Moreover, on Hμ \ Dμ we have vμ ≥ 0, where we use again λ∗ > λ0. Lemma 3.1 applied 
to � = Dμ \ U , K = Dμ \ BR(0) implies vμ ≥ 0 in Hμ for μ < λ∗, λ∗ − μ small, which is a 
contradiction to the definition of λ∗. Hence vλ∗ ≡ 0 as claimed. �
Lemma 3.7. We have λ∗ = λ0.

Proof. Recall, λ0 = 0 ≤ λ∗. Assume by contradiction λ∗ > 0 and note that by Lemma 3.5 and 3.6
we have that u is symmetric with respect to ∂Hλ∗ and strictly decreasing in x1 > λ∗, i.e. for t >

s ≥ λ∗ and x′ ∈ Rd−1 we have u(t, x′) < u(s, x′) and u(s, x′) = u(2λ∗ − s, x′). Moreover, there 
is x0 ∈ G ∩ Hλ∗ \ Rλ∗(G) since λ∗ > 0. Since u(x0) = A is a global maximum this contradicts 
the fact that u is strictly decreasing in the direction x1 > λ∗ (this follows similarly as in the proof 
of Lemma 3.5). Hence λ∗ = 0 as claimed. �
Remark 3.1. We note that due to Lemma 3.4–Lemma 3.7 and by rotation and translation, we 
actually have u is symmetric about ∂Hλ0,e and strictly decreasing in the direction x · e away 
from ∂Hλ0,e. In particular, this implies that G must be connected in x · e direction and symmetric 
about ∂Hλ0,e.

Proof of Theorem 2.3. The Lemma 3.4–3.7 imply that we can move the hyperplanes up the 
first time one of the two situations (3.10) and (3.11) occurs. From there, the statement follows as 
outlined in the proof of Theorem 2.1. Indeed, Theorem 3.2 rules out vλ0 > 0 in Dλ0 in Situation 
1, while in Situation 2 we can rule out vλ0 > 0 in Dλ0 by a combination of Lemma 3.2 and 
Lemma 3.3. For the application of the first Lemma, we note that also in the unbounded case we 
indeed have u/[V ◦ δD] is Hölder continuous (see Remark 2.2). It then follows that we have 
vλ0 ≡ 0 and then the statement follows analogously to the proof of Theorem 2.1 (see also the 
argument for the end of the proof of [30, Theorem 1.3]). �

To extend the proof of Theorem 2.3 to the situation of Theorem 2.4 we need the following 
adjustment of Lemma 3.6 and Lemma 3.7.

Lemma 3.8. Assuming f is nonincreasing on [0, A], but 0 ≤ u ≤ A, then λ∗ = λ0.

Proof. Suppose that λ∗ > λ0. Then it follows that none of the situations (3.10), (3.11) can occur 
of λ > λ∗ − ε for some ε > 0 small. Fix λ ∈ (λ∗ − ε, λ∗) and note that we have Rλ,e(Hλ ∩ G) =
Rλ,e(G) ∩ Hλ ⊂ Hλ ∩ G. Thus vλ ≥ 0 in Hλ ∩ G. Moreover, vλ solves

�(−�)vλ + c(x)vλ ≥ 0 in Dλ = Hλ \ G.

Note that since f is nonincreasing, we have c ≥ 0 on Dλ. Since also vλ = vλ ◦ Rλ on Tλ,e and 
vλ → 0 for |x| → ∞, Lemma 3.1 with K = � = Dλ implies vλ ≥ 0 in Hλ. Since λ was chosen 
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arbitrarily in (λ∗ − ε, λ∗), this gives a contradiction to the definition of λ∗ and hence we must 
have λ∗ = λ0. �
Proof of Theorem 2.4. The proof follows as the proof of Theorem 2.3 but with Lemma 3.8 in 
place of Lemma 3.6 and Lemma 3.7. �
3.5. Proof of Theorem 2.5 and Corollary 2.1

Proof of Theorem 2.5. Analogously to the Lemmas 3.4–3.7 (with λ0 = 0), using the same no-
tation, we have for any e ∈ ∂B1(0) that λ∗ = 0, v0,e ≡ 0 and vλ,e > 0 in H−λ,−e for all λ > 0. 
We do not need u < A, since G = {0} ⊂ H−λ,−e for all λ ≥ 0. These statements imply that for 
each e ∈ ∂B1(0), λ ∈ R we have u ≥ u ◦ Rλ,e on Hλ,e or u ≤ u ◦ Rλ,e on Hλ,e. [14, Proposition 
6.1] then implies u is radially symmetric and strictly decreasing (due to Lemma 3.5). �
Proof of Corollary 2.1. If u is nontrivial, there is, by assumption, A = maxRd u = u(x0) > 0
for some x0 ∈ Rd . Replacing u with u(· − x0) the statement follows from Theorem 2.5. �
3.6. Proofs of Theorem 2.6 and Corollaries 2.2 and 2.3

Proof of Theorem 2.6. This statement follows analogously to the proof of Theorem 2.3 (see 
also the proof of Theorem 2.5). However, since D is bounded, the moving plane argument can 
be done as prescribed in the proof of Theorem 2.2 using Theorem 3.1 instead of Lemma 3.1. In 
fact, one can follow the arguments in [30, Theorem 1.7]. �
Proof of Corollary 2.2 and 2.3. Both statements follow immediately from the moving plane ar-
gument explained in the proof of Theorem 2.2, 2.3, and 2.5. �
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