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Abstract

The main purpose of this paper is to investigate mathematically gas discharge. Townsend discovered 
α- and γ -mechanisms which are essential for ionization of gas, and then derived a threshold of voltage 
at which gas discharge can happen. In this derivation, he used some simplification such as discretization 
of time. Therefore, it is an interesting problem to analyze the threshold by using the Degond–Lucquin-
Desreux–Morrow model and also to compare the results of analysis with Townsend’s theory. Note that gas 
discharge never happens in Townsend’s theory if γ -mechanism is not taken into account. In this paper, we 
study an initial–boundary value problem to the model with α-mechanism but no γ -mechanism. This prob-
lem has a trivial stationary solution of which the electron and ion densities are zero. It is shown that there 
exists a threshold of voltage at which the trivial solution becomes unstable from stable. Then we conclude 
that gas discharge can happen for a voltage greater than this threshold even if γ -mechanism is not taken 
into account. It is also of interest to know the asymptotic behavior of solutions to this initial–boundary 
value problem for the case that the trivial solution is unstable. To this end, we establish bifurcation of non-
trivial stationary solutions by applying Crandall and Rabinowitz’s Theorem, and show the linear stability 
and instability of those non-trivial solutions.
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1. Introduction

We are interested in the mathematical analysis of gas ionization processes. At the begin-
ning of the 1900s, Townsend discovered two essential mechanisms for ionization of gas. He 
experimented what happens in a chamber consisting of two planar parallel plates and filled 
with a gas, which is an insulator, when he apply a high-voltage to these two plates. Here the 
higher voltage plate is the anode, and another one is the cathode. If electrons are emitted in 
the tube, these initial electrons are accelerated from the cathode to the anode by high-voltage 
and simultaneously make ions and additional electrons by the collision with gas particles. This 
mechanism is called as α-mechanism. Another one is γ -mechanism which is the secondary 
emission of electrons caused by impact of positive ions with the cathode. These two mecha-
nisms yield the electric multiplication which permit large current flow throughout the gas. This 
phenomenon is called as gas discharge or avalanche breakdown. From an observation taking
α- and γ -mechanisms into account, Townsend also derived a threshold of voltage at which 
gas discharge can happen and continue. This threshold is called as sparking voltage. However, 
he used several simplification such as discretization of time and ignorance of advection in the 
derivation of sparking voltage (for more details, see [20]). Therefore, it is an interesting problem 
to analyze the sparking voltage by using a partial differential equation with no simplification 
and then compare the results of analysis with Townsend’s theory. It should be noted here that 
gas discharge never happens in Townsend’s theory if γ -mechanism is not taken into account. 
In this paper, we study an initial–boundary value problem of a partial differential equation with 
α-mechanism but no γ -mechanism, and also make clear whether we can have a sparking voltage 
or not.

Several mathematical models for gas discharge were proposed in [1,5,6,9–11,15]. These mod-
els vary with the constitutive equations of velocities. In this paper, we adopt the model derived 
by Morrow in [15]. This model has been widely used in a lot of numerical researches (for ex-
ample, see [12,16,17]). Moreover, Degond and Lucquin-Desreux [4] formally derived it from 
the Euler–Maxwell system. Hence, it is reasonable to adopt this model from both physical and 
mathematical points of view. Throughout this paper, we call this model as the Degond–Lucquin-
Desreux–Morrow model. It consists of two continuity equations for the densities of positive ions 
and of electrons, adopting constitutive velocity relations, coupled with the Poisson equation for 
the electrostatic potential:

∂tρi + ∂x(ρiui) = a exp
(
−b|∂x�|−1

)
ρe |ve| , (1.1a)

∂tρe + ∂x(ρeue) = a exp
(
−b|∂x�|−1

)
ρe |ve| , (1.1b)

λ∂xx� = ρi − ρe, (1.1c)

ui := ki∂x�, ue := ve − ke∂xρe/ρe, ve := −ke∂x�, x ∈ I := (0,L), t > 0, (1.1d)

where L is a width of the planar parallel plates. The unknown functions ρi , ρe, and −� denote 
the positive ion density, the electron density, and the electrostatic potential, respectively. The ion
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and electron velocities ui and ue are assumed to obey (1.1d). Moreover, ki , ke , a, b, and λ are 
positive constants. The right hand sides of (1.1a) and (1.1b) come from α-mechanism. In partic-
ular, α = a exp

(−b|∂x�|−1
)

is the first Townsend ionization coefficient expressing the number 
of ion–electron pairs generated per unit volume by the electron impact ionization. We notice that 
this model is a hyperbolic-parabolic-elliptic coupled system by substituting constitutive velocity 
relations (1.1d) into continuity equations (1.1a) and (1.1b).

We consider the initial–boundary value problem of (1.1) by prescribing the initial and bound-
ary data

(ρi, ρe)(0, x) = (ρi0, ρe0)(x), ρi0(x) ≥ 0, ρe0(x) ≥ 0, x ∈ I = (0,L), (1.1e)

ρi(t,0) = ρe(t,0) = �(t,0) = 0, (1.1f)

ρe(t,L) = 0, �(t,L) = Vc > 0. (1.1g)

The boundaries x = 0 and x = L correspond to the anode and cathode, respectively, since −�

is the electrostatic potential. Boundary condition (1.1f) means that, in an instant, electrons are 
absorbed to the anode and ions are excluded near the anode. We emphasize that γ -mechanism 
is not taken into account on the cathode x = L, and thus the zero Dirichlet boundary condition 
is adopted. From physical point of view, it is reasonable to assume the non-negativity of initial 
densities ρi0 and ρe0. For the compatibility, they are also assumed to satisfy

ρi0(0) = ρe0(0) = ρe0(L) = 0.

The first mathematical work for the Degond–Lucquin-Desreux–Morrow model was an-
nounced by the present authors [21]. They showed the time-local solvability of an initial bound-
ary value problem over a domain � :=R3+\K , where R3+ is a half space, K is a simply connected 
open set, and the intersection of ∂R3+ and K is the empty set. They also mentioned several re-
marks on the time-local solvability over other domains of which boundaries are two of plates and 
spheres, because the typical shapes of the cathode and anode are either a sphere or plate for the 
physical and numerical experiments.

In this paper, we study the Degond–Lucquin-Desreux–Morrow model only over a bounded 
interval to derive the sparking voltage in the same situation as in Townsend’s theory. Initial–
boundary value problem (1.1) has a trivial stationary solution of which densities ρi and ρe are 
zero. We will show that there exists a threshold of voltage at which the trivial solution be-
comes unstable from stable. This fact means that gas discharge can happen and continue for 
a voltage greater than the threshold. Therefore, we conclude that gas discharge can happen even 
if γ -mechanism is not taken into account, whereas it cannot happen without γ -mechanism in 
Townsend’s theory. It is also of interest to know the asymptotic behavior of solutions to prob-
lem (1.1) for the case that the trivial solution is unstable. To do so, we establish bifurcation 
of non-trivial stationary solutions from the trivial stationary solution by applying Crandall and 
Rabinowitz’s Theorem, and show the linear stability and instability of those non-trivial solu-
tions.

Notation. For 1 ≤ p ≤ ∞, Lp(�) is the Lebesgue space equipped with the norm | · |p . For a 
non-negative integer k, Hk(I) is the k-th order Sobolev space in L2 sense, equipped with the
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norm ‖ · ‖k . Note that H 0(I ) = L2(I ) and ‖ · ‖ := ‖ · ‖0. The inner product of L2(I ) is denoted 
by 〈f, g〉 for f, g ∈ L2(I ). Moreover, H 1

0 (I ) and H 1
0l(I ) are closures of C∞

0 (I ) and C∞
0 ((0, L])

with respect to H 1-norm, respectively. We denote by Cm([0, T ]; X) the space of the m-times 
continuously differentiable functions on the interval [0, T ] with values in a Banach space X, 
and by Hm(0, T ; X) the space of Hm–functions on (0, T ) with values in a Banach space X. 
Furthermore, we denote by c and C generic positive constants and by C[α, β, · · · ] a generic 
positive constant depending on special parameters α, β , . . ..

2. Main results

For mathematical convenience, let us rewrite initial–boundary value problem (1.1) by using 
the new unknown functions

Ri := ρie
− L

Vc
x
, Re := ρee

Vc
2L

x

and the new given functions

h(x) := a exp

(−b

|x|
)

|x|, g(Vc) := h

(
Vc

L

)
− V 2

c

4L2 .

Note that the function g plays essential roles in our analysis. We also decompose the electrostatic 
potential as

� = V + Vc

L
x,

where Vcx/L is a solution to the equation ∂xxu = 0 with the boundary conditions u(0) = 0 and 
u(L) = Vc. As a result, we have the following problem

∂tRi + ki∂x

{(
∂x(V [Ri,Re,Vc]) + Vc

L

)
Ri

}
+ kiRi

= keh

(
Vc

L

)
e
− L

Vc
x− Vc

2L
x
Re + kifi[Ri,Re,Vc], (2.1a)

∂tRe − ke∂xxRe − keg(Vc)Re = kefe[Ri,Re,Vc], (2.1b)

V [Ri,Re,Vc] := 1

λ

L̂

0

G(x,y)
(
e

L
Vc

y
Ri(t, y) − e− Vc

2L
yRe(t, y)

)
dy, (2.1c)

(Ri,Re)(0, x) = (Ri0,Re0)(x), Ri0(x) ≥ 0, Re0(x) ≥ 0, (2.1d)

Ri(t,0) = Re(t,0) = Re(t,L) = 0, (2.1e)

where G(x, y) is the Green function of the Laplace operator ∂xx with the Dirichlet zero condition, 
and the nonlinear terms fi and fe are defined as
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fi[Ri,Re,Vc] := − L

Vc

Ri∂x(V [Ri,Re,Vc])

− ke

ki

{
h

(
Vc

L

)
− h

(
∂x(V [Ri,Re,Vc]) + Vc

L

)}
e
− L

Vc
x− Vc

2L
x
Re, (2.2a)

fe[Ri,Re,Vc] :=∂x(V [Ri,Re,Vc])∂xRe − Vc

2L
Re∂x(V [Ri,Re,Vc]) + Re∂xx(V [Ri,Re,Vc])

−
{
h

(
Vc

L

)
− h

(
∂x(V [Ri,Re,Vc]) + Vc

L

)}
Re. (2.2b)

It is easy to check that the corresponding stationary problem has a trivial stationary solution

(Ri,Re) = (0,0).

The advantage of using the new unknown functions Ri and Re lies in the following two facts. 
The first one is that the rewritten hyperbolic equation has the dissipative term kiRi , although the 
original hyperbolic equation does not have any dissipative structure. Secondly, the linear part of 
the rewritten parabolic equation is self-adjoint. These two facts play important roles in the proofs 
of both the nonlinear stability and instability of the trivial stationary solution.

We state the nonlinear stability and instability theorems for the trivial stationary solution.

Theorem 2.1. Let g(Vc) < π2/L2. There exists ε > 0 such that if the initial data (Ri0, Re0) ∈
H 1

0l (I ) × H 1
0 (I ) satisfy ‖Ri0‖1 + ‖Re0‖1 < ε, then problem (2.1) has a unique time-global solu-

tion (Ri, Re) as

Ri ≥ 0, Ri ∈ C([0,∞);H 1
0l (I )) ∩ C1([0,∞);L2(I )), (2.3a)

Re ≥ 0, Re ∈ C([0,∞);H 1
0 (I )) ∩ L2(0,∞;H 2(I )) ∩ H 1(0,∞;L2(I )). (2.3b)

Moreover, it converges to zero exponentially fast in H 1(I ) × H 1(I ) as t goes to infinity.

Theorem 2.2. Let g(Vc) > π2/L2 and (ψi, ψe) ∈ H 1
0l (I ) × H 1

0 (I ) satisfy

ψi,ψe ≥ 0, ‖ψi‖2
1 + ‖ψe‖2

1 = 1,

L̂

0

ψe sin
π

L
x dx > 0. (2.4)

There exists ε > 0 such that for any sufficiently small δ > 0, problem (2.1) with the initial data 
(Ri0, Re0) = (δψi, δψe) has a unique solution (Ri, Re) satisfying ‖Ri(T )‖1 +‖Re(T )‖1 ≥ ε for 
some T > 0.

In this instability theorem, the last inequality in (2.4) is equivalent to that the initial datum 
Re0 is a non-zero function. It is of interest to know what happens for the case that Re0 is the zero 
function. For this question, Proposition 2.3 gives an answer that there exists a unique time-global 
solution, and it attains the trivial stationary solution at finite time.
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Proposition 2.3. Let Vc > 0. There exists ε > 0 such that if the initial data (Ri0, Re0) ∈ H 1
0l (I ) ×

H 1
0 (I ) satisfy Re0 = 0 and ‖Ri0‖H 1 < ε, then problem (2.1) has a unique time-global solution 

(Ri, Re) as (2.3). Furthermore, there exists T0 > 0 such that

(Ri,Re)(t, x) = (0,0) for (t, x) ∈ [T0,∞) × I. (2.5)

The principal significance of this proposition is that a set {(Ri0, Re0) ∈ H 1
0l (I ) × H 1

0 (I );
Re0 = 0} is a local stable manifold of system (2.1a)–(2.1c) for any Vc > 0.

Now we mention physical observation from Theorems 2.1 and 2.2 and Proposition 2.3 in the 
next remark.

Remark 2.4. Townsend defined the sparking voltage as a threshold of voltage at which gas dis-
charge happens and continues. In following his manner, it is reasonable from Theorems 2.1
and 2.2 to define the sparking voltage for the Degond–Lucquin-Desreux–Morrow model by 
V ∗

c > 0 with

g(V ∗
c ) = π2

L2 , g′(V ∗
c ) > 0. (2.6)

In fact, the solution never goes to the trivial stationary solution (Ri, Re) = (0, 0) in the case 
Vc < V ∗

c ; the solution converges to the trivial solution as t tends to infinity in the case Vc > V ∗
c . 

These facts mean that V ∗
c is a threshold of voltage at which gas discharge happens and continues. 

Therefore we conclude that gas discharge can happen even if γ -mechanism is not taken into ac-
count, whereas it cannot happen without γ -mechanism in Townsend’s theory. On the other hand, 
in common with Townsend’s theory, we cannot have gas discharge for the Degond–Lucquin-
Desreux–Morrow model without α-mechanism, since there does not exist V ∗

c with (2.6) in the 
case a = 0. We also remark that there exists the sparking voltage in (2.6) for some physical 
parameters, and moreover it is unique if it exists. For more details, see Appendix A.

Physically speaking, in the case that the electron density is zero, α-mechanism never happens 
and neither does gas discharge. Proposition 2.3 really coincides with this observation.

Next we are interested in finding the asymptotic behavior of solutions to problem (2.1) for the 
case g(Vc) > π2/L2. Then it is expected from Theorems 2.1 and 2.2 by regarding the voltage 
Vc as the bifurcation parameter that there is a non-trivial stationary solution curve near the 
point (Ri, Re, Vc) = (0, 0, V ∗

c ). The results on bifurcation are summarized in Theorem 2.5 and 
Corollary 2.6.

Theorem 2.5. Let a positive number V ∗
c satisfy (2.6). There exist η > 0, Vc ∈ C2([−η, η]; R), 

and z ∈ C2([−η, η]; H 1
0l (I ) × (H 1

0 (I ) ∩H 2(I ))) such that Vc(0) = V ∗
c , z(0) = 0, and stationary 

problem to (2.1) with Vc = Vc(s) has a non-trivial solution (Ri, Re)(s) = s(ϕi, ϕe) + sz(s) for 
s ∈ [−η, η], where

ϕi(x) := a
ke

ki

e
− bL

V ∗
c

− L

V ∗
c

x

xˆ

0

e− V ∗
c

2L
yϕe(y)dy, ϕe(x) := sin

π

L
x.

Moreover, V̇c(0) � 0 holds, where “˙” denotes the derivative with respect to s, if and only if
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VcV ∗
c

NLS

LS

NLU

Re

O

Fig. 1. Case V̇c(0) > 0.

VcV ∗
c

NLS

LU

NLU

Re

O

Fig. 2. Case V̇c(0) < 0.

−2Lg′(V ∗
c )

L̂

0

ϕ2
e ∂x(V [ϕi,ϕe,V

∗
c ])dx −

L̂

0

ϕ2
e ∂xx(V [ϕi,ϕe,V

∗
c ])dx � 0. (2.7)

Corollary 2.6. Let V̇c(0) in Theorem 2.5 be nonzero. Then there exists a positive constant θ such 
that (Ri(s), Re(s)) satisfy

sV̇c(0)Ri(s, x) > 0, sV̇c(0)Re(s, x) > 0 for s ∈ [−θ, θ ]\{0}, x ∈ I. (2.8)

Furthermore, the positive non-trivial solution is linearly stable if V̇c(0) > 0, and linearly unsta-
ble if V̇c(0) < 0.

From Theorem 2.5 and Corollary 2.6, we can draw the bifurcation diagram of stationary 
solutions as Figs. 1 and 2. Both diagrams are truly possible for some physical parameters ki , ke, 
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a, b, and L (for details, see Appendix B). For the case Vc > V ∗
c , the solution to problem (2.1)

may approach to the positive non-trivial stationary solution as t tends to infinity if V̇c(0) > 0; the 
solution may either blow up or grow up as time goes by if V̇c(0) < 0.

Outline of paper. This paper is organized as follows. We show the nonlinear stability of the 
trivial solution in Subsection 3.1. The proof is based on the energy method with using the best 
constant in Poincaré inequality. Subsection 3.2 deals with the nonlinear instability of the triv-
ial solution. Here we construct the Green function of the linearized equation of (2.1b) by using 
the eigenvalues and eigenfunctions, and then represent the solutions Re to (2.1b) by applying 
Duhamel’s principle. This formula enables us to find a growth mode of solutions. In Subsec-
tion 3.3, we prove Proposition 2.3 asserting that system (2.1a)–(2.1c) has a local stable manifold 
for any voltage Vc > 0. The main idea of the proof is to combine the energy method and Green’s 
Theorem. Section 4 establishes the bifurcation of a non-trivial solution from the trivial solution 
by the application of Crandall and Rabinowitz’s Theorem, and also provides some properties of 
the non-trivial solution such as the positivity, linear stability, and linear instability.

3. Trivial stationary solution

Section 3 deals with the stability and instability of the trivial stationary solution (Ri, Re) =
(0, 0). Throughout this section, we use a new notation

N(T ) := sup
0≤t≤T

(‖Ri(t)‖1 + ‖Re(t)‖1).

Let us observe several fundamental properties of solutions (Ri, Re) to problem (2.1). From 
formula (2.1c), one can obtain the elliptic estimate

‖V [Ri,Re,Vc](t)‖2+k ≤ C‖Ri(t)‖k + C‖Re(t)‖k for t ≥ 0, k = 0,1. (3.1)

This gives

∂xV [Ri,Re,Vc](t, x) + Vc

L
>

Vc

2L
> 0 (3.2)

if N(T ) is sufficiently small. Then it follows from equation (2.1a) and boundary condition (2.1e)
that

∂xRi(t,0) = 0 for t ≥ 0, (3.3)

provided that ∂tRi(t), ∂xRi(t) ∈ H 1(I ). Furthermore, if N(T ) < 1, the nonlinear terms fi and 
fe in (2.1) are estimated as

|fe[Ri,Re,Vc]| ≤ C(‖Ri‖1 + ‖Re‖1)(|Re| + |∂xRe|) ≤ CN(T )(|Re| + |∂xRe|), (3.4)

k∑
l=0

|∂l
x(fi[Ri,Re,Vc])| ≤ C[V −1

c ]N(T )

k∑
l=0

(|∂l
xRi | + |∂l

xRe|) for k = 0,1, (3.5)
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by (3.1) and Sobolev’s inequality. Note that the above properties hold for any Vc > 0. The con-
stant C[V −1

c ] on the right hand side of (3.5) diverges if Vc tends to zero. This fact does not cause 
any issues in our proofs. Indeed we first fix Vc > 0 in all Theorems 2.1 and 2.2 and Proposi-
tion 2.3. Furthermore, the proofs in Subsections 3.1–3.3 work even if all constants C depend on 
fixed Vc > 0. Hereafter we do not write the dependence of C for V −1

c .
We also use Poincaré’s inequality

‖f ‖ ≤ L

π
‖∂xf ‖ for f ∈ H 1

0 (I ), (3.6)

where L/π is the best constant in Poincaré’s inequality.

3.1. Nonlinear stability

In this subsection we discuss the nonlinear stability of the trivial stationary solution (Ri, Re) =
(0, 0). The time local solvability of problem (2.1) is summarized as follows. Here the smallness 
assumption for the initial data is required to determine the sign of characteristic of hyperbolic 
equation (2.1a) as (3.2).

Lemma 3.1. For any Vc > 0, there exists ε > 0 such that if the initial data (Ri0, Re0) ∈ H 1
0l (I ) ×

H 1
0 (I ) satisfy ‖Ri0‖1 + ‖Re0‖1 < ε, then problem (2.1) has a unique solution (Ri, Re) as

Ri ≥ 0, Ri ∈ C([0, T ];H 1
0l (I )) ∩ C1([0, T ];L2(I )), (3.7a)

Re ≥ 0, Re ∈ C([0, T ];H 1
0 (I )) ∩ L2(0, T ;H 2(I )) ∩ H 1(0, T ;L2(I )), (3.7b)

and N(T ) ≤ 2(‖Ri0‖1 + ‖Re0‖1) for some T > 0 depending only on ε, L, a, b, ki , ke, and λ.

Proof. The proof is similar in spirit to those of Lemma 3.1 in [18] and Lemma 6.3 in [19]. �
The stability analysis of the trivial solution is completed by deriving the a priori estimate 

below.

Lemma 3.2. Let g(Vc) < π2/L2. Suppose that (Ri, Re) satisfying (3.7) is a solution to problem 
(2.1). There exists δ > 0 such that if N(T ) ≤ δ, then it holds for t ∈ [0, T ] that

eγ t (‖Ri(t)‖2
1 + ‖Re(t)‖2

1) +
tˆ

0

eγ τ (‖Ri(τ )‖2
1 + ‖Re(τ)‖2

2)dτ ≤ C(‖Ri0‖2
1 + ‖Re0‖2

1), (3.8)

where γ and C are positive constants independent of t .

Notice that the time-global solution (Ri, Re) with the properties in (2.3) can be constructed 
by the standard continuation argument using the time local solvability established in Lemma 3.1
and the a priori estimate in Lemma 3.2. Because this argument is well-known (for example, 
see [13,14]), we give briefly the proof. Let us take ‖Ri0‖1 + ‖Re0‖1 so small that it is less 
than min{ε/2, δ/2} and that the right hand side of (3.8) is less than min{ε2/4, δ2/4} for ε and 
δ being in Lemmas 3.1 and 3.2. First we see from Lemma 3.1 that a time-local solution exists 
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at t = T and satisfies N(T ) ≤ δ. Then applying Lemma 3.2 to the time-local solution leads 
to the fact N(T ) ≤ min{ε/2, δ/2}. Regarding T and (Ri, Re)(T ) as an initial time and datum 
and then using Lemma 3.1, one can have a time-local solution with N(2T ) ≤ δ until t = 2T . 
Again Lemma 3.2 ensures N(2T ) ≤ min{ε/2, δ/2}. Repeating this argument, we conclude that 
a time-global solution exists and satisfies N(S) ≤ δ/2 for any S > 0.

Once the global solution is constructed, it is obvious that the resulting global solution satisfies 
the estimate (3.8) for t ∈ [0, ∞). This means that the global solution decays exponentially fast 
in H 1 × H 1 as t goes to infinity. Thanks to this standard machinery for the time-asymptotic 
stability, it suffices to show Lemma 3.2 in order to prove Theorem 2.1. The rest of this subsection 
is devoted to proving Lemma 3.2.

Proof of Lemma 3.2. Multiply (2.1b) by 2eγ1tRe , integrate it by parts over [0, t] × I , and use 
boundary condition (2.1e). The result is

eγ1t

L̂

0

R2
e dx + 2ke

tˆ

0

L̂

0

eγ1τ
{
(∂xRe)

2 − g(Vc)R
2
e

}
dxdτ

=
L̂

0

R2
e0 dx + γ1

tˆ

0

L̂

0

eγ1τR2
e dxdτ + 2ke

tˆ

0

L̂

0

eγ1τ feRe dxdτ

≤ ‖Re0‖2 + C(γ1 + N(T ))

tˆ

0

eγ1τ‖Re(τ)‖2
1 dτ, (3.9)

where we have used (3.4). Applying Poincaré’s inequality (3.6) to the second term of the left 
hand side of (3.9), using the assumption g(Vc) < π2/L2, and taking γ1 > 0 and N(T ) sufficiently 
small, we have

eγ1t‖Re(t)‖2 + c

tˆ

0

eγ1τ‖Re(τ)‖2
1 dτ ≤ C‖Re0‖2, (3.10)

where c and C are positive constants independent of t .
Multiply (2.1b) by 2eγ1t ∂xxRe, integrate the result by parts over [0, t] × I , and use boundary 

condition (2.1e) to obtain

eγ1t

L̂

0

(∂xRe)
2 dx + 2ke

tˆ

0

L̂

0

eγ1τ (∂xxRe)
2 dxdτ

=
L̂

(∂xRe0)
2 dx + γ1

tˆ L̂

eγ1τ (∂xRe)
2 dxdτ − 2ke

tˆ L̂

eγ1τ (g(Vc)Re + fe)∂xxRe dxdτ
0 0 0 0 0
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≤ ‖∂xRe0‖2 + μ

tˆ

0

eγ1τ‖∂xxRe(τ )‖2dτ + C[μ]
tˆ

0

eγ1τ‖Re(τ)‖2 dτ. (3.11)

Here μ is a positive constant to be determined later and we have used (3.4) with Hölder’s 
and Gagliardo–Nirenberg–Sobolev’s inequalities in deriving the above inequality. Then taking 
μ small enough and using (3.10) leads to

eγ1t‖∂xRe(t)‖2 + c

tˆ

0

eγ1τ‖∂xxRe(τ )‖2 dτ ≤ C‖Re0‖2
1. (3.12)

Multiply (2.1a) by 2eγ2tRi , integrate it by parts over [0, t] × I , and use boundary condition 
(2.1e). Moreover, differentiate (2.1a) with respect to x, multiply the result by 2eγ2t ∂xRi , and use 
boundary condition (3.3). Then summing up these two equalities gives

eγ2t

L̂

0

{R2
i + (∂xRi)

2}dx + 2ki

tˆ

0

L̂

0

eγ2τ {R2
i + (∂xRi)

2}dxdτ

+ ki

tˆ

0

eγ2τ

(
∂xV + Vc

L

)
{R2

i + (∂xRi)
2}(τ,L)dτ

=
L̂

0

{R2
i0 + (∂xRi0)

2}dx + γ2

tˆ

0

L̂

0

eγ2τ {R2
i + (∂xRi)

2}dxdτ

−
tˆ

0

L̂

0

eγ2τ

{
ki(∂xxV )Ri − 2keh

(
Vc

L

)
e
− L

Vc
x− Vc

2L
x
Re − 2kifi

}
Ri dxdτ

−
tˆ

0

L̂

0

eγ2τ

{
ki(∂xxV )(∂xRi) + 2ki∂x((∂xxV )Ri)

− ∂x

(
2keh

(
Vc

L

)
e
− L

Vc
x− Vc

2L
x
Re + 2kifi

)}
∂xRi dxdτ

≤ ‖Ri0‖2
1 + C(γ2 + μ + N(T ))

tˆ

0

eγ2τ‖Ri(τ )‖2
1 dτ + C[μ]

tˆ

0

eγ2τ‖Re(τ)‖2
1 dτ, (3.13)

where we have used (3.1), (3.5), and Schwarz’s and Sobolev’s inequalities in deriving the above 
inequality. Owing to (3.2), the third term of the left hand side of (3.13) is non-negative and thus 
negligible. Then letting γ2 > 0, μ, and N(T ) be sufficiently small, setting γ := min{γ1, γ2}, and 
using (3.10), we conclude
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eγ t‖Ri(t)‖2
1 + c

tˆ

0

eγ τ‖Ri(τ )‖2
1 dτ ≤ C(‖Ri0‖2

1 + ‖Re0‖2
1), (3.14)

where c and C are positive constants independent of t . Then summing up (3.10), (3.12), and 
(3.14) completes the proof. �

In the proof of Lemma 3.2, we need to justify the formal computations in the derivation of 
(3.14). Because a standard mollifier technique is not applicable, we need to make an approximate 
sequence {Rj

i }j∈N for Ri by solving an initial–boundary value problem, whose initial datum 

Ri0 has higher regularity, and then prove Rj
i satisfies (3.14) for any j ∈N . We omit the detailed 

argument, since it is straightforward.

3.2. Nonlinear instability

This subsection provides the proof of Theorem 2.2 which ensures the instability of the trivial 
stationary solution (Ri, Re) = (0, 0). To this end, we use Duhamel’s principle for Re as

Re(t, x) =
∞∑

n=1

ekeμnt 〈Re0, ϕn〉ϕn(x) + ke

∞∑
n=1

tˆ

0

ekeμn(t−τ)〈fe[Ri,Re,Vc](τ, ·), ϕn〉ϕn(x)dτ,

(3.15)

ϕn(x) :=
√

2

L
sin

nπ

L
x, μn := g(Vc) − n2π2

L2 ,

where ϕn and μn are the eigenfunctions and eigenvalues of the operator ∂xx + g(Vc) with the 
zero Dirichlet boundary condition.

We begin by showing the following lemma for ψi and ψe defined in Theorem 2.2. Note that 
μ1 > 0 is equivalent to the condition g(Vc) > π2/L2.

Lemma 3.3. Let g(Vc) > π2/L2. There exists ε0 > 0 such that if the solution (Ri, Re) to problem 
(2.1) with (Ri0, Re0) = (δψi, δψe) for any δ ∈ (0, ε0) satisfies N(T ) ≤ ε0 and

∥∥∥∥∥Re(t) − δ

∞∑
n=1

ekeμnt 〈ψe,ϕn〉ϕn

∥∥∥∥∥ ≤ δekeμ1t for t ∈ [0, T ], (3.16)

then it holds that

‖Ri(t)‖1 + ‖Re(t)‖1 ≤ Cδekeμ1t , (3.17)∥∥∥∥∥Re(t) − δ

∞∑
n=1

ekeμnt 〈ψe,ϕn〉ϕn

∥∥∥∥∥ < mδ2e2keμ1t for t ∈ [0, T ], (3.18)

where C and m are positive constants independent of t .
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Proof. We first show (3.17). The triangle inequality together with (3.16) gives

‖Re(t)‖ ≤ Cδekeμ1t . (3.19)

Even for the case g(Vc) > π2/L2, the inequalities (3.11) and (3.13) hold. Set γ1 = 0 in (3.11), 
take μ small enough, and use (3.19), Re0 = δψe, and assumption (2.4) to obtain

‖∂xRe(t)‖ ≤ Cδekeμ1t . (3.20)

Furthermore, set γ2 = 0 in (3.13), take μ + N(T ) small enough, and use (3.2), (3.19), (3.20), 
Ri0 = δψi , and assumption (2.4). Then we have

‖Ri(t)‖1 ≤ Cδekeμ1t . (3.21)

Consequently, inequalities (3.19)–(3.21) give (3.17).
Let us prove (3.18). It follows from Re0 = δψe, representation (3.15), and Parseval’s equality 

that

∥∥∥∥∥Re(t) − δ

∞∑
n=1

ekeμnt 〈ψe,ϕn〉ϕn

∥∥∥∥∥
2

= k2
e

∞∑
n=1

∣∣∣∣∣∣〈
tˆ

0

ekeμn(t−τ)fe[Ri,Re,Vc](τ, ·)dτ,ϕn〉
∣∣∣∣∣∣
2

.

Using Schwarz’s inequality, (3.4), and (3.17), one can estimate this right hand side from above 
as

(RHS) ≤ k2
e

∞∑
n=1

∣∣∣∣∣∣
tˆ

0

ekeμn(t−τ)‖fe[Ri,Re,Vc](τ, ·)‖dτ

∣∣∣∣∣∣
2

≤ C

∞∑
n=1

∣∣∣∣∣∣
tˆ

0

ekeμn(t−τ)(‖Ri(τ )‖2
1 + ‖Re(τ)‖2

1)dτ

∣∣∣∣∣∣
2

< m2δ4e4keμ1t ,

where m is a positive constant independent of t . Hence, this inequality concludes (3.18). �
From now on we prove Theorem 2.2 by using Lemma 3.3.

Proof of Theorem 2.2. For ε0 and m being in Lemma 3.3, we take positive constants ν, ε, δ, T
as

ν = 〈ψe,ϕ1〉, ε < min

{
1, ε0,

ν

3m
,

ν2

6m

}
, δ < min

{ε0

2
, ε

}
,

T = sup

{
t ;

∥∥∥∥∥Re(τ) − δ

∞∑
ekeμnτ 〈ψe,ϕn〉ϕn

∥∥∥∥∥ ≤ δekeμ1τ ,
n=1
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‖Ri(τ )‖1 + ‖Re(τ)‖1 < ε for τ ∈ (0, t)

}
,

where the last inequality in (2.4) ensures ν > 0. Then we also take T∗ as

2ε < δνekeμ1T∗ < 3ε.

If T = ∞, it is obvious that T∗ < T . For the case T < ∞, let us show that either T∗ < T

or N(T ) = ε holds. Suppose, contrary to our claim, that T∗ ≥ T and N(T ) < ε hold. From the 
definition of T , the following equality holds:

δekeμ1T =
∥∥∥∥∥Re(T ) − δ

∞∑
n=1

ekeμnT 〈ψe,ϕn〉ϕn

∥∥∥∥∥
< mδ2e2keμ1T ,

where the above inequality holds by the virtue of Lemma 3.3. This gives 1/m < δekeμ1T . On the 
other hand, the definitions of T∗ and ε yield δekeμ1T∗ < 3ε/ν ≤ 1/m. These two inequalities lead 
to T∗ < T which contradicts our assumption T∗ ≥ T .

If N(T ) = ε holds, the proof is complete. Thus, it remains to deal with the case T∗ < T for 
which (3.18) holds from Lemma 3.3. By (3.18), the triangle inequality, and Parseval’s equality, 
we obtain

‖Re(T∗)‖ ≥ δ

∥∥∥∥∥
∞∑

n=1

ekeμnT∗〈ψe,ϕn〉ϕn

∥∥∥∥∥ − mδ2e2keμ1T∗

= δ

( ∞∑
n=1

e2keμnT∗ |〈ψe,ϕn〉|2
)1/2

− mδ2e2keμ1T∗ .

Use the definitions of ν, T∗, and ε to estimate this rightmost from below by

δekeμ1T∗〈ψe,ϕ1〉 − mδ2e2keμ1T∗ = δνekeμ1T∗
(

1 − m

ν2 δνekeμ1T∗
)

≥ 2ε
(

1 − 3
m

ν2 ε
)

> ε.

Consequently, we can conclude ‖Ri(T∗)‖1 + ‖Re(T∗)‖1 ≥ ‖Re(T∗)‖ ≥ ε. �
3.3. Stable manifold

This subsection is devoted to showing Proposition 2.3 which asserts that a set {(Ri0, Re0) ∈
H 1

0l (I ) × H 1
0 (I ) ; Re0 = 0} is a local stable manifold of system (2.1a)–(2.1c) for any Vc > 0. 

Similarly to the argument in subsection 3.1, we can establish a unique existence of time-global 
solutions to problem (2.1) by combining the time-local solvability stated in Lemma 3.1 and the 
following a priori estimate.

Lemma 3.4. Let Vc > 0. Suppose that (Ri, Re) satisfying (3.7) is a solution to problem (2.1) with 
the initial data Re0 = 0. There exists δ > 0 such that if N(T ) ≤ δ, then it holds
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Re(t, x) = 0 for (t, x) ∈ [0, T ] × I, (3.22)

‖Ri(t)‖2
1 ≤ ‖Ri0‖2

1 for t ∈ [0, T ]. (3.23)

Proof. We begin by proving (3.22). Multiply (2.1b) by 2Re, integrate it by parts over [0, t] × I , 
and use boundary condition (2.1e) and Re0 = 0. The result is

L̂

0

R2
e dx + 2ke

tˆ

0

L̂

0

(∂xRe)
2 dxdτ = 2ke

tˆ

0

L̂

0

g(Vc)R
2
e dxdτ + 2ke

tˆ

0

L̂

0

feRe dxdτ

≤ μ

tˆ

0

‖∂xRe(τ )‖2 dτ + C[μ,N(T )]
tˆ

0

‖Re(τ)‖2 dτ,

(3.24)

where μ is a positive constant to be determined later and we have used (3.4) and Schwarz’s 
inequality in deriving the above inequality. Then letting μ be small enough and applying Gron-
wall’s inequality to (3.24) yield ‖Re(t)‖2 = 0 which means (3.22).

Let us show (3.23). Even for the case Vc > 0, the inequality (3.13) holds. Hence, setting 
γ2 = Re = 0 in (3.13), letting μ + N(T ) be sufficiently small, and using (3.2), we conclude 
(3.23). �

The proof of Proposition 2.3 is completed by showing (2.5).

Proof of Proposition 2.3. We have shown Re = 0 in Lemma 3.4. Hence, it suffices to prove that 
there exists T0 > 0 such that Ri(T0, x) = 0 for any x ∈ I , because problem (2.1) with the initial 
time t = T0 and the initial data Ri(T0, x) = Re(T0, x) = 0 has a unique solution (Ri, Re) = (0, 0).

Substitute Re = 0 into (2.1a), multiply the result by 2Ri , and integrate over the domain

�T0 :=
{
(τ, x)

∣∣∣∣0 ≤ τ ≤ T0, 0 ≤ x ≤ kiVc

2L
τ

}
, where T0 := 2L2

kiVc

.

Then we have

¨

�T0

∂t (R
2
i ) + ∂x

{
ki

(
∂xV + Vc

L

)
R2

i

}
dxdτ =

¨

�T0

ki(2fi − (∂xxV )Ri − 2Ri)Ri dxdτ

≤ C

¨

�T0

R2
i dxdτ, (3.25)

where we have used (3.1), (3.5) with Re = 0, (3.23) and Schwarz’s inequality in deriving the 
above inequality. To apply Green’s theorem to the left hand side of (3.25), let us set curves c1, 
c2, and c3 as
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c1 : τ = s, x = 0, s ∈ [0, T0], c2 : τ = T0, x = s, s ∈ [0,L],
c3 : τ = 2L

kiVc

(L − s), x = L − s, s ∈ [0,L].

Note that ∂�T0 = c1 + c2 + c3. Then Green’s theorem with boundary condition (2.1e) yields

(LHS) = −
˛

c1+c2+c3

{
ki

(
∂xV + Vc

L

)
R2

i dτ − R2
i dx

}

=
L̂

0

R2
i (T0, x) dx +

L̂

0

{
2L

Vc

(
∂xV + Vc

L

)
R2

i − R2
i

}(
2L

kiVc

(L − s),L − s

)
ds.

(3.26)

We notice that the rightmost of (3.26) is non-negative thanks to (3.2). Hence, substituting (3.26)
into (3.25) leads to

‖Ri(T0)‖2
L2(0,L)

≤ C

¨

�T0

R2
i dxdτ = C

T0ˆ

0

‖Ri(τ )‖2
L2(0,(kiVc/2L)τ)

dτ.

Note that the function ‖Ri(τ )‖L2(0,(kiVc/2L)τ) of τ is continuous on [0, T0], and (kiVc/2L)T0 = L

holds. Then applying Gronwall’s lemma to the above inequality, we conclude ‖Ri(T0)‖L2(0,L) =
0 which means that Ri(T0, x) = 0 for any x ∈ I . �
4. Non-trivial stationary solutions

In this section, we investigate a non-trivial stationary solution bifurcating from the trivial 
stationary solution (Ri, Re) = (0, 0) at Vc = V ∗

c . For this purpose, we set up notation

X := H 1
0l (I ) × (H 1

0 (I ) ∩ H 2(I )), Y := L2(I ) × L2(I ),

ρ := (Ri,Re) ∈ X, U := {ρ ∈ X ; ‖ρ‖X < 1}, J := (V ∗
c /2,2V ∗

c )

and define the mapping F := (Fi, Fe) : X × J → Y as

Fi(ρ,Vc) := ki∂x

{(
∂x(V [Ri,Re,Vc]) + Vc

L

)
Ri

}

+ kiRi − keh

(
Vc

L

)
e
− L

Vc
x− Vc

2L
x
Re − kifi[Ri,Re,Vc],

Fe(ρ,Vc) := −ke∂xxRe − keg(Vc)Re − kefe[Ri,Re,Vc].

Here V [Ri, Re, Vc], fi[Ri, Re, Vc], fe[Ri, Re, Vc], and V ∗
c are defined in (2.1c), (2.2a), (2.2b), 

and (2.6), respectively. Note that ρ = (Ri, Re) is a stationary solution to problem (2.1) for Vc > 0
if and only if F(ρ, Vc) = 0.
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4.1. Bifurcation of non-trivial solutions

This subsection is devoted to showing Theorem 2.5 which ensures the bifurcation of non-
trivial solution. The proof is based on the application of Crandall and Rabinowitz’s Theorem to 
the mapping F . For this theorem, we refer the reader to [2, Theorem 1.7] and [8, Theorem I.5.1].

Proof of Theorem 2.5. Let us check that the mapping F satisfies the assumptions of Crandall 
and Rabinowitz’s Theorem. It is evident that

F ∈ C3(U × J ), F (0,Vc) = 0 for Vc ∈ J, (4.1)

DρFi(0,Vc)[ρ] = kiVc

L
∂xRi + kiRi − keh

(
Vc

L

)
e
− L

Vc
x− Vc

2L
x
Re,

DρFe(0,Vc)[ρ] = −ke∂xxRe − keg(Vc)Re,

where Dρ means the Fréchet derivative with respect to ρ.
We denote by N(DρF (0, V ∗

c )) and R(DρF (0, V ∗
c )) the kernel and range of the linear operator 

DρF (0, V ∗
c ), respectively, and show

dimN(DρF (0,V ∗
c )) = codimR(DρF (0,V ∗

c )) = 1. (4.2)

From a standard theory of ordinary differential equations, we see that solutions to the scalar 
equation DρFe(0, V ∗

c )[ρ] = 0 are only Re = cϕe for any c ∈ R. Then the scalar equation 
DρFi(0, V ∗

c )[ρ] = 0 with Re = cϕe has a unique solution Ri = cϕi . Here ϕe and ϕi are defined 
in Theorem 2.5. Hence, it holds that

N(DρF (0,V ∗
c )) = {(cϕi, cϕe) ∈ X ; c ∈R} . (4.3)

On the other hand, Fredholm’s alternative theorem immediately ensures R(DρFe(0, V ∗
c )[ρ]) =

{ψe ∈ L2(I ) ; 〈ψe, ϕe〉 = 0}. Letting Re be a solution to the scalar equation DρFe(0, V ∗
c )[ρ] =

ψe ∈ R(DρFe(0, V ∗
c )[ρ]) and

Ri := L

kiV ∗
c

e
− L

V ∗
c

x

xˆ

0

e
L

V ∗
c

y
ψi(y) + keh

(
V ∗

c

L

)
e− V ∗

c
2L

yRe(y)dy for any ψi ∈ L2(I ),

we see DρFi(0, V ∗
c )[(Ri, Re)] = ψi and thus

R(DρF (0,V ∗
c )) = {(ψi,ψe) ∈ Y ; 〈ψe,ϕe〉 = 0}. (4.4)

This together with (4.3) concludes (4.2).
One can also see

DρVcF (0,V ∗
c )[ϕ] /∈ R(DρF (0,V ∗

c )), ϕ := (ϕi, ϕe) (4.5)

since it holds that
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〈DρVcFe(0,V ∗
c )[ϕ], ϕe〉 = −keg

′(V ∗
c )〈ϕe,ϕe〉 < 0. (4.6)

Now Crandall and Rabinowitz’s Theorem is applicable to the mapping F with aid of (4.1), (4.2), 
and (4.5). Then we conclude that there exist η > 0, Vc ∈ C2([−η, η]; R), and z ∈ C2([−η, η]; X)

such that Vc(0) = V ∗
c , z(0) = 0, and the equation F (ρ(s), Vc(s)) = 0 has a non-trivial solution 

ρ(s) = (Ri(s), Re(s)) = s(ϕi, ϕe) + sz(s) for s ∈ [−η, η].
It is left to prove that V̇c(0) � 0 holds if and only if (2.7) holds. Differentiating Fe(ρ(s),

Vc(s)) = 0 twice with respect to s and evaluating the result at s = 0, we obtain

DρρFe(0,V ∗
c )[ρ̇(0), ρ̇(0)] + DρFe(0,V ∗

c )[ρ̈(0)] + 2DρVcFe(0,V ∗
c )[ρ̇(0)]V̇c(0)

+ DVcVcFe(0,V ∗
c )(V̇c(0))2 + DVcFe(0,V ∗

c )V̈c(0) = 0. (4.7)

Here Dρρ , DρVc DVcVc , and DVc mean the Fréchet derivatives with respect to ρ and Vc. Fur-
thermore, “ ˙” and “ ¨” denote the derivatives with respect to s. It is easy to check ρ̇(0) = ϕ and 
DVcFe(0, V ∗

c ) = DVcVcFe(0, V ∗
c ) = 0. Substituting these two equalities into (4.7) leads to

DρρFe(0,V ∗
c )[ϕ,ϕ] + DρFe(0,V ∗

c )[ρ̈(0)] + 2DρVcFe(0,V ∗
c )[ϕ]V̇c(0) = 0.

Then taking the L2-inner product of this equation with ϕe and using (4.4), we have

V̇c(0) = k−1
e 〈DρρFe(0,V ∗

c )[ϕ,ϕ], ϕe〉
−2k−1

e 〈DρVcFe(0,V ∗
c )[ϕ], ϕe〉

, (4.8)

where the denominator of the right hand side is positive owing to (4.6). We also see from inte-
gration by parts and (V ∗

c /2L) −h′(V ∗
c /L) = −Lg′(V ∗

c ) that the numerator of the right hand side 
equals to the left hand side of (2.7). Hence, V̇c(0) � 0 holds if and only if (2.7) holds. �
4.2. Linear stability and instability of positive non-trivial solutions

This subsection is devoted to the proof of Corollary 2.6. Let us denote ρ(s) = (Ri(s), Re(s)) =
sϕ + sz(s) by the non-trivial solution in Theorem 2.5.

Proof of Corollary 2.6. We discuss only in the case V̇c(0) > 0 and s > 0, since the other cases 
are shown similarly. We can assume by taking θ1 > 0 small enough that z(s) = (zi(s), ze(s)), 
(Ri(s), Re(s)), and Vc(s) satisfy

sup
s∈[−θ1,θ1]

(|ze(s)|∞ + |∂xze(s)|∞ + |∂x(V [Ri(s),Re(s),Vc(s)])|∞)

≤ min

{√
2

4
,

√
2π

4L
,
V ∗

c

4L

}
, (4.9)

inf
s∈[−θ1,θ1]

Vc(s) ≥ V ∗
c

2
, (4.10)

and the bounded linear operator DρF (ρ(s), Vc(s)) + I has a bounded inverse for s ∈ [−θ1, θ1], 
where I denotes the identity operator on X.
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The proof of (2.8) is completed by showing Ri(s), Re(s) > 0. Let us first prove Re(s) > 0. It 
is straightforward to see from (4.9) that

Re(s, x) = sϕe(x) + sze(s, x) ≥ s(
√

2/2 − √
2/4) > 0

for x ∈ [L/4,3L/4],
∂xRe(s, x) = s∂xϕe(x) + s∂xze(s, x) ≥ s(

√
2π/2L − √

2π/4L) > 0

for x ∈ (0,L/4),

∂xRe(s, x) = s∂xϕe(x) + s∂xze(s, x) ≤ s(−√
2π/2L + √

2π/4L) < 0

for x ∈ (3L/4,L).

These inequalities together with the boundary condition (2.1e) leads to Re(s, x) > 0 for x ∈ I . 
We next show Ri(s) > 0. It is seen from Fi(ρ(s), Vc(s)) = 0 that

Ri(s, x) =ke

ki

e
− L

Vc(s)
x

(
∂x(V [Ri(s),Re(s),Vc(s)]) + Vc(s)

L

)−1

×
xˆ

0

h

(
∂x(V [Ri(s),Re(s),Vc(s)]) + Vc(s)

L

)
e− Vc(s)

2L
yRe(s, y)dy.

Furthermore, (4.9) and (4.10) yields ∂x(V [Ri(s), Re(s), Vc(s)]) + Vc(s)/L > 0. Hence,
Ri(s, x) > 0 holds for x ∈ I .

It remains to prove that this non-trivial solution is linearly stable. We begin by analyzing the 
perturbation of the critical zero eigenvalue of DρF (0, V ∗

c ) to an eigenvalue of DρF (ρ, Vc(s)). 
It is obvious that (ρ(0), Vc(0)) = (0, V ∗

c ) and F (ρ(s), Vc(s)) = 0. We also see from (4.3) and 
(4.4) that the zero eigenvalue of DρF (0, V ∗

c ) is simple. Then Corollary 1.13 in [3] (see also 
[8, Theorem I.7.2]) ensures that there exist θ2 > 0, μ ∈ C1([−θ2, θ2]; R), and w = (wi, we) ∈
C1([−θ2, θ2]; X) such that μ(0) = 0, w(0) = 0, and DρF (ρ(s), Vc(s))[ϕ + w(s)] = μ(s)(ϕ +
w(s)). Differentiate this equation with respect to s, evaluate the result at s = 0, and use ρ̇(0) = ϕ

to get

DρρFe(0,V ∗
c )[ϕ,ϕ] + DρVcFe(0,V ∗

c )[ϕ]V̇c(0) + DρFe(0,V ∗
c )[ẇ(0)] = μ̇(0)ϕe.

Taking the L2-inner product of the result with ϕe, and use (4.4) and (4.8) to obtain

μ̇(0)‖ϕe‖2 = −V̇c(0)〈DρVcFe(0,V ∗
c )[ρ̇(0)], ϕe〉.

This together with V̇c(0) > 0 and (4.6) leads to μ̇(s) > 0. Hence, there exists θ3 > 0 such that 
μ(s) > 0 holds for s ∈ (0, θ3] owing to μ(0) = 0 (for the case V̇c(0) < 0 and s < 0, the proof 
above gives μ(s) < 0 which means that the positive non-trivial solution is linearly unstable).

We next prove that the real parts of all other eigenvalues of DρF (ρ(s), Vc(s)) are also pos-
itive. For this purpose, we denote G(s) by the inverse operator of DρF (ρ(s), Vc(s)) + I and 
show that the eigenvalues of DρF (ρ(s), Vc(s)) is continuous on s ∈ [−θ1, θ1]. The eigenvalue 
problem of DρF (ρ(s), Vc(s)) can be reduced to that of G(s), since G(s)[ψ] = (μ + 1)−1ψ



JID:YJDEQ AID:10070 /FLA [m1+; v1.304; Prn:6/11/2019; 10:55] P.20 (1-23)

20 M. Suzuki, A. Tani / J. Differential Equations ••• (••••) •••–•••
holds if and only if DρF (ρ(s), Vc(s))[ψ] = μψ . Note here that μ = −1 is not an eigen-
value of DρF (ρ(s), Vc(s)). Therefore, it suffices to investigate G(s). It is straightforward to 
check G(s) ∈ C([−θ1, θ1]; K(Y )), where K(Y ) denotes the space of the compact operators 
on Y . Then Kato’s perturbation theory in [7] ensures that the eigenvalues of G(s) are con-
tinuous on [−θ1, θ1] and so are those of DρF (ρ(s), Vc(s)). On the other hand, the nonzero 
eigenvalues of DρF (0, V ∗

c ) are only (n2 − 1)(π/L)2 for n = 2, 3, 4, . . .. Consequently, by 
taking θ(≤ min{θ1, θ3}) sufficiently small, we deduce that the real parts of all eigenvalues of 
DρF (ρ(s), Vc(s)) are positive.

We complete the proof by showing that the spectrum of DρF (ρ(s), Vc(s)) consists of only 
eigenvalues above. It suffices to show that if μ is not an eigenvalue of DρF (ρ(s), Vc(s)), then 
μ belongs to the resolvent set. We first see from a standard theory of elliptic equations that 
DρF (ρ(s), Vc(s)) is a closed operator. Let us next find the inverse of (DρF (ρ(s), Vc(s)) −μI). 
We know that G(s) defined above is a compact operator on Y and thus the spectrum of G(s)

consists of only eigenvalues and zero. By this fact, the inverse operator {G(s) − (μ + 1)−1I }−1

is well-defined as a bounded operator on Y since μ is not an eigenvalue of DρF (ρ(s), Vc(s))
−1, 

that is, (μ + 1)−1 is not an eigenvalue of G(s). Using this operator, we can write explicitly the 
inverse of (DρF (ρ(s), Vc(s)) − μI) as

(DρF (ρ(s),Vc(s)) − μI)−1 = −1

μ + 1

{
G(s) − 1

μ + 1
I

}−1

G(s).

It is straightforward to check that this inverse is a bounded operator on Y . Therefore, we conclude 
that μ belongs the resolvent set of DρF (ρ(s), Vc(s)). The proof is complete. �
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Appendix A. Graph of g and well-definedness of V ∗
c

Appendix A is devoted to studying the properties of the function g subject to the physical 
parameters a, b, and L. There exist two cases such as Figs. 3 and 4. For the first case, g has only 
one local minimum and only one global maximum. For the second case, g is strictly decreasing. 
Furthermore, we show that the sparking voltage is well-defined for suitable choice of physical 
parameters.

Let us explain why we have the above graphs. It is straightforward to check that g′(Vc) � 0
holds for Vc > 0 if and only if q(Vc) := −(bL/Vc) − 2 logVc + log(bL + Vc) + log(2aL) � 0. 
By the first derivative test, we also see that q(Vc) is strictly increasing on the interval (0, (−1 +√

5)bL/2] and strictly decreasing on the interval [(−1 + √
5)bL/2, ∞). This fact together with 

g(0) = 0 gives the graph in Fig. 3 if the maximum of q(Vc) is positive, and the graph in Fig. 4
if the maximum is negative. It is also obvious from these two graphs that the sparking voltage 
defined in (2.6) is unique if it exists.

We discuss the well-definedness of sparking voltage provided the condition ae−1 − 4−1b > 0
holds. From the equality L2g(bL) = L2b(ae−1 − 4−1b), it follows that g(bL) > π2/L2 holds 
if either L or a is large enough. Then the graph of the function g must be drown as in Fig. 5. 
Consequently, the sparking voltage is well-defined for some physical parameters.
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O
Vc

g(Vc)

Fig. 3. Case 1.

O
Vc

g(Vc)

Fig. 4. Case 2.

O
Vc

g(Vc)

V ∗
c

π2

L2

Fig. 5. Well-definedness of V ∗
c .

Appendix B. Sign of V̇c(0)

In Appendix B we investigate the sign of V̇c(0) being in Theorem 2.5. We emphasize once 
again that this sign is same as that of the quantity
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l := −2Lg′(V ∗
c )

L̂

0

ϕ2
e ∂x(V [ϕi,ϕe,V

∗
c ])dx −

L̂

0

ϕ2
e ∂xx(V [ϕi,ϕe,V

∗
c ])dx.

First let us show V̇c(0) > 0 in the case that ke/ki is sufficiently small. The quantity l can be 
written as

l = − 2Lg′(V ∗
c )

L̂

0

ϕ2
e ∂x(V [ϕi,0,V ∗

c ])dx −
L̂

0

ϕ2
e ∂xx(V [ϕi,0,V ∗

c ])dx

− 2Lg′(V ∗
c )

L̂

0

ϕ2
e ∂x(V [0, ϕe,V

∗
c ])dx −

L̂

0

ϕ2
e ∂xx(V [0, ϕe,V

∗
c ])dx.

The first and second terms of this right hand side can be taken arbitrarily small for suitably small 
ke/ki , since V ∗

c defined in (2.6) is independent of ki and ke. On the other hand, the third and 
fourth terms are positive and independent of ke and ki . Hence, V̇c(0) > 0 holds provided that 
ke/ki is small enough.

Next, setting L = 1 and a = 2
√

eb/3, we prove V̇c(0) < 0 for suitable choice of b and ke/ki . 
It holds that

l
ki

ke

= − 2g′(V ∗
c )

1ˆ

0

ϕ2
e ∂x(V [(ki/ke)ϕi,0,V ∗

c ])dx −
1ˆ

0

ϕ2
e ∂xx(V [(ki/ke)ϕi,0,V ∗

c ])dx

− 2
ki

ke

g′(V ∗
c )

1ˆ

0

ϕ2
e ∂x(V [0, ϕe,V

∗
c ])dx − ki

ke

1ˆ

0

ϕ2
e ∂xx(V [0, ϕe,V

∗
c ])dx.

If ke/ki is sufficiently large, one can make the third and forth terms of this right hand side 
arbitrarily small. We also notice that the first and second terms are independent of ke and ki . 
Therefore, the proof of V̇c(0) < 0 is completed by showing that the sum of the first and sec-
ond terms is negative. For a moment, we assume that |V ∗

c − 2m| and g′(V ∗
c ) > 0 can be taken 

arbitrarily small, where

m := √
3π.

Then the second term is uniformly negative with respect to V ∗
c and the first term is arbitrarily 

small and thus negligible. Therefore, the sum of the first and second terms is negative.
What is left is to obtain the desired sparking voltage V ∗

c satisfying the above assumption for 
some b. Note that V ∗

c depends only on b since L = 1 and a = 2
√

eb/3. We define the functions 
H1(b, Vc) := g(Vc) −π2 and H2(b, Vc) := Vc − 2b. Then it holds at the point (b, Vc) = (m, 2m)

that

H1(m,2m) = H2(m,2m) = 0,

H1b(m,2m) > 0, H2b(m,2m) < 0, H1Vc (m,2m) = 0, H2Vc (m,2m) > 0,
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since H2(b, Vc) = 0 holds if and only if g′(Vc) = 0 and g′′(Vc) < 0 hold. Therefore the equations 
H1(b, Vc) = 0 and H2(b, Vc) = 0 give two curves parameterized by b and crossing each other at 
the point (m, 2m). The important point to note here is that H1 = 0 and H2 = 0 ensure the first 
condition in (2.6) and g′(Vc) = 0, respectively. Then it is possible to take a point (b, V ∗

c ) on the 
curve H1(b, Vc) = 0 near the point (m, 2m) so that |V ∗

c − 2m| and g′(V ∗
c ) > 0 are arbitrarily 

small. Consequently, we have the desired sparking voltage V ∗
c .
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