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Abstract

By proving the existence of non-monotone and non-oscillating wavefronts for the Nicholson’s blowflies 
diffusive equation (the NDE), we answer an open question from [16]. Surprisingly, wavefronts of such a 
kind can be observed even for arbitrarily small delays. Similarly to the pushed fronts, obtained waves are 
not linearly determined. In contrast, a broader family of eventually monotone wavefronts for the NDE is in-
deed determined by properties of the spectra of the linearized equations. Our proofs use essentially several 
specific characteristics of the blowflies birth function (its unimodal form and the negativity of its Schwarz 
derivative, among others). One of the key auxiliary results of the paper shows that the Mallet-Paret–Cao–
Arino theory of super-exponential solutions for scalar equations can be extended for some classes of second 
order delay differential equations. For the new type of non-monotone waves to the NDE, our numerical sim-
ulations also confirm their stability properties established by Mei et al.
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1. Introduction and main results

Nicholson’s blowflies delay differential equation

u′(t) = −δu(t) + pu(t − τ)e−au(t−τ), u ≥ 0, (1)

was introduced in 1980 by Gurney, Blythe and Nisbet [21] to provide a better description of 
the evolution of the population u(t) of mature adults of the Australian sheep-blowflies (Lucilia 
cuprina) observed in a series of highly careful laboratory experiments realized by A. J. Nicholson 
[33]. The positive parameters δ, p, a, τ are the model’s specific constants and simple scaling of 
variables allows us to assume that δ = a = 1 without any restriction of generality. Equation (1)
was introduced as a more elaborate alternative to the delayed logistic equation: in contrast to 
(1), the latter was unable to explain some irregular oscillations of u(t) observed in the collected 
experimental data. In a short time, it became clear that Nicholson’s blowflies equation represents 
a fascinating and non-trivial object of investigation from the dynamical point of view. This fact 
attracted the interest of numerous researchers over the decades, cf. [4,15,29,33,35,43]. Moreover, 
following the same logic as in the case of delayed logistic equation (cf. [3]), in 1996 Yang and 
So [43] introduced the following diffusive version of (1):

∂tu(t, x) = ∂xxu(t, x) − u(t, x) + pu(t − τ, x)e−u(t−τ,x), x ∈R. (2)

The positive semi-wavefronts u(t, x) = φ(x + ct), φ(−∞) = 0, lim inft→+∞ φ(t) > 0, are the 
fundamental transitory regimes in the dynamics generated by the diffusive Nicholson’s equation. 
The existence, uniqueness, oscillation/monotonicity and stability properties of these waves were 
studied, among many other works, in [7,12,15,16,26,27,37,38,42] and the non-local version of 
(2) was considered, among many other articles, in [17–20,24,25,28,36,44,45].

In this paper, we revisit the topic of possible shapes for wavefronts u(t, x) = φ(x + ct), 
φ(−∞) = 0, φ(+∞) = lnp, of equation (2). Our first main result, Theorem 1, shows that equa-
tion (2) can have wavefronts which are neither monotone nor oscillating even if the linearization 
of the profile equation at the positive equilibrium has negative eigenvalues. This fact rules out 
the tacitly accepted hypothesis, cf. [7,27], that the shape of φ(t) is determined by the spectra of 
linearized equations at the equilibria (as it happens, for instance, in the delayed or nonlocal KPP-
Fisher equations [8,11]). This implies that a non-monotone wave with unusually high leading 
edge (see Fig. 1) can appear in (2) even if the associated linearized equations predict the existence 
of exclusively monotone waves. Surprisingly enough, this strange type of wavefront’s behavior 
can occur for arbitrarily small delays τ , to some extent contradicting the folklore principle “Small 
delays are harmless” of the theory of delay differential equations [35]. The mechanism behind 
this loss of monotonicity of wavefronts is precisely the same one which causes the “linear deter-
minacy principle” [23] to fail for the monostable population models possessing the weak Allee 
effect (leading to the appearance of pushed or non-linearly determined waves). In order to state 
our first result, we introduce some notation. In the sequel, �(z, s) will denote the lower incom-
plete gamma function, χ(z) will denote the characteristic function of equation (1) with a = δ = 1
linearized at u = 0:
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Fig. 1. Non-monotone non-oscillating wavefront for equation (2) with τ = 0.07, p = 365 and c = +∞.

�(z, s) =
z∫

0

t s−1e−t dt, χ(z) = z + 1 − pe−zτ . (3)

It is easy to see that for each p > 1 the characteristic equation χ(z) = 0 has exactly one positive 
root μ. Set q̄2 := −pe−2μτ /χ(2μ) < 0, m := μ−1 and

ζ := (1 + q̄2)e
−τ +pm

(
�(1,m + 1) − �(e−μτ ,m + 1) + q̄2�(1,m + 2) − q̄2�(e−μτ ,m + 2)

)
.

Theorem 1. Let p, τ be such that p ∈ I := (e2, exp(1 + exp(−1 − τ)/τ)) and ζ > lnp. Then 
there exists ĉ(τ, p) > 0 such that for each c ≥ ĉ(τ, p) equation (2) has a positive wavefront 
propagating with the speed c and whose profile φc(t) is eventually monotone at ±∞ and is 
non-monotone on R. In fact, |φc(·)|∞ ≥ ζ > lnp.

Example 2. Consider ‘small’ delay τ = 0.07 and take p = 365 ∈ I. In such a case, formal linear 
analysis predicts the existence of a unique monotone wavefront connecting 0 and lnp. However, 
it is easy to find that μ = 33.64 . . . , q̄2 = −0.05 . . . and ζ = 6.46 . . . > lnp = 5.89 . . . . Therefore 
the conclusions of Theorem 1 hold for equation (2) with τ = 0.07, p = 365. Fig. 1 shows a 
very accurate approximation of the scaled profiles φc(ct) of the corresponding non-monotone 
and non-oscillating wavefronts (nm-waves, for short) in the limit case c = +∞. This picture 
perfectly agrees with the considerations of Remark 17 where we present a numerical solution of 
(2) with τ = 0.07, p = 365 converging to a wavefront propagating with the large but finite speed 
c ≈ 50.
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Fig. 2. Dashed domain corresponds to parameters (τ,p) satisfying the assumptions of Theorem 1.

Theorem 1 and Example 2 answer affirmatively an open question raised in [16, p. 53] about 
the existence of an eventually monotone and non-monotone front of (2) for some p > e2. In fact, 
there are many such wavefronts: Fig. 2 presents the set of parameters (τ, ln lnp) satisfying all 
requirements of Theorem 1. Formally, Theorem 1 works for sufficiently fast wavefronts: since 
the minimal speed of propagation c∗ = 7.89 . . . in Example 2 is relatively large (in the sense 
that c−2∗ = 0.016 · · · 	 τ ), one might expect that even the minimal wavefront in Example 2
has non-monotone and non-oscillating profile. Our numerical simulations confirm this informal 
conclusion: on Fig. 3, we present three consecutive positions (at the times t = 1, 3, 5) of solution 
for equation (2) with τ = 0.07, p = 365 and with the Heaviside step function as the initial datum. 
This numerical solution was obtained by applying the second order central difference schemes 
for the space derivative. The resulting transformed system of ordinary delayed equations has 
been solved by Matlab built-in function dde23. We take x ∈ [−500, 500] and t ∈ [0, 5]. This 
numerical result complements the discussion in Section 7 of [7].

The Nicholson’s blowflies diffusive equation together with the food-limited diffusive equa-
tions [22,39] seem to be the first scalar models coming from applications where untypical 
behavior in the form of non-monotone non-oscillating wavefronts is established analytically and 
also observed in numerical experiments. Among previous studies, we would like to mention an 
illustrative example in [10] of the Mackey-Glass type diffusive equation with a single delay and 
with a piece-wise linear birth function.

Theorem 1 will be proved in the next section within the framework of the singular perturba-
tion theory developed by Faria et al. in [12–14]. First, in Subsection 2.1, we analyze the unique 
heteroclinic solution u∗(t) of equation (1). We show that the asymptotic Dirichlet series ap-
proximating u∗(t) at −∞ is uniformly convergent on a sufficiently long time interval. Then we 
use these approximations to detect parameters (τ, p) for which u∗(t) is a non-monotone (but 
eventually monotone at ±∞) and non-oscillating solution of (1). Next, in Subsection 2.2, we 
extend the aforementioned properties of u∗(t) on the wavefront profiles φc(t) for all sufficiently 
large speeds c. The key technical result of this subsection is Lemma 15 which excludes the exis-
tence of profiles φc(t) slowly oscillating around the steady state u = lnp and super-exponentially 
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Fig. 3. Numerical approximations of the minimal wavefront for equation (2) with τ = 0.07, p = 365.

converging to u = lnp at +∞. Lemma 15 shows that the Mallet-Paret–Cao–Arino theory of 
super-exponential solutions [2,6,30] for scalar equations can be extended for some classes of 
second order delay differential equations. Lemma 15 also helps to show that, in contrast to the 
monotone wavefronts, eventually monotone wavefronts are linearly determined:

Theorem 3. Let u = φ(x +ct) be a wavefront for equation (2). Then the profile φ(t) is eventually 
monotone at +∞ if and only if the characteristic function χ+(z, c) = z2 −cz−1 −Pe−zcτ , P :=
lnp − 1, at the equilibrium u = lnp has at least one negative zero.

Note that, by [40, Theorem 1], the leading edge of the profile φ(t) is strictly increasing till 
its first intersection with the equilibrium level u = lnp. Eventual monotonicity criterion of The-
orem 3 complements previous information concerning the shapes of waves for the Nicholson’s 
diffusive equation, cf. [16,27,40]. It is worth mentioning that our proofs use in an essential way 
several specific characteristics of the blowflies birth function (in particular, its unimodal form and 
the negativity of its Schwarz derivative). There are various other monostable population models 
with unimodal birth functions (e.g., see [3, Table 1], the cases with overcompensating density 
dependence). We believe that the problem of the nm-waves in these models can be approached 
by using techniques from the present work. For certain, this does not mean that each population 
model with overcompensating density dependence [3] necessarily possesses a nm-wave.

Eventual monotonicity criterion of Theorem 3 is proved in Section 2.3 as Corollary 18. We 
did not succeed to demonstrate this result by using well-known methods of upper and lower 
solutions or global continuation of waves (these methods were quite efficient in establishing cri-
teria of wave’s monotonicity on R [11,16]). Instead, we have combined the above mentioned 
Lemma 15 with wavefront’s existence and oscillation results from [40,41] (stated as Proposi-
tion 19 in Appendix). With such an approach, the main technical difficulty was establishing a 
connection between two different series of conditions (the first one given in Theorem 3 and the 
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second one given in Proposition 19). The required relation (in the form of somewhat cumbersome 
inequality (20)) is proved in Appendix, Lemma 21.

2. Existence of non-monotone and non-oscillating wavefronts

2.1. On the approximation of the heteroclinic connections for the blowflies equation

In this subsection, we establish several key properties of the positive heteroclinic connections 
to the Nicholson’s blowflies delayed equation

u′(t) = −u(t) + f (u(t − τ)), f (u) = pue−u, p > 1. (4)

The existence and uniqueness of these connections was previously demonstrated in [13,15], 
yet the mentioned works did not provide acceptable analytical tools to approximate the unique 
heteroclinic solution u∗(t) (normalized at −∞) on a given time interval. Sufficiently sharp ap-
proximations are however necessary to prove the existence of the nm-waves, cf. [22]. To obtain 
such an approximation, we are using here the asymptotic Dirichlet series representing u∗(t) at 
−∞. It can be deduced from the Murovtsev theory [32] that this series is uniformly convergent 
on some infinite interval (−∞, s). In the next theorem we are trying to find s as large as pos-
sible by realizing a direct estimation of the Dirichlet series coefficients (in [32], the method of 
majorization of u∗(t) by analytic functions was used).

Theorem 4. Suppose that p > 1, τ > 0, and ε ∈ (0, eμτ − 1). Then equation (4) has a unique 
(up to translation) positive solution u∗(t) defined for all t ∈ R and satisfying u∗(−∞) = 0. In 
addition, u∗(t) is bounded, lim inft→+∞ u∗(t) > 0, and u∗(t) is a real analytic function. More-
over, the solution u∗(t) at −∞ can be represented, modulo an appropriate shift in time, by the 
Dirichlet series

u∗(t) = eμt + q̄2e
2μt + q̄3e

3μt + · · · + q̄ne
nμt + . . . , t → −∞, (5)

absolutely and uniformly converging on closed subsets of the interval

(−∞, T ) :=
(

−∞, τ + μ−1 ln

[
ε

1 + ε
ln

(
1 + 1

|q̄2|(1 + ε)

)])
.

The coefficients q̄j , j ≥ 2, alternate in sign and can be calculated recursively from equation (4). 
In particular, q̄2 = −pe−2μτ /χ(2μ) < 0, q̄3 = p(0.5 − 2q̄2)e

−3μτ /χ(3μ) > 0, with χ defined 
in (3).

Proof. We look for an analytic solution u = u(t) of equation (4) in the form

u(t) = q1e
μt + q2e

2μt + q3e
3μt + · · · + qne

nμt + . . . , (6)

with some q1 > 0. After comparing the coefficients of e(n+1)μt in both sides of the next equation 
(obtained from (4) by using a series representation for f (u))

u′(t) + u(t) − pu(t − τ) = −p

(
u2(t − τ) − u3(t − τ) + · · · + (−1)n+1 un+1(t − τ) + . . .

)

2! n!
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we get the recurrence formula for determining qn+1, n ≥ 1:

qn+1 = − pe−(n+1)μτ

χ((n + 1)μ)

⎡
⎣ ∑

i1+i2=n+1

qi1qi2 − 1

2!
∑

i1+i2+i3=n+1

qi1qi2qi3 + · · · + (−1)n+1

n! qn+1
1

⎤
⎦ .

The general term of the sum in brackets is

Ak := (−1)k

(k − 1)!
∑

i1+i2···+ik=n+1

qi1qi2 . . . qik , k ≥ 2.

Assuming that (−1)j+1qj > 0 for all j ≤ n, we find that the sign of the coefficients Ak is

sign
(−1)n+1+k+k

(k − 1)!
∑

i1+i2···+ik=n+1

(−1)i1+1qi1(−1)i2+1qi2 . . . (−1)ik+1qik = sign (−1)n+1.

Therefore signqn+1 = −signAk = sign (−1)n. Notice here that χ((n + 1)μ) ≥ χ(2μ) > 0 for 
all n ∈N .

Suppose now that |qj | ≤ q1 := σ for each j = 1, . . . , n. Then, invoking elementary combina-
torics together with the Egorychev method [9], we find that, for each ε > 0,

|qn+1| ≤ pe−(n+1)μτ

χ((n + 1)μ)

⎡
⎣ ∑

i1+i2=n+1

σ 2 + 1

2!
∑

i1+i2+i3=n+1

σ 3 + · · · + σn+1

n!

⎤
⎦=

pe−(n+1)μτ

χ((n + 1)μ)

[
σ 2
(

n

1

)
+ σ 3

2!
(

n

2

)
+ · · · + σn+1

n!
(

n

n

)]
=

pe−(n+1)μτ

χ((n + 1)μ)

1

2πi

∮
|z|=ε

(1 + z)n
[
σ 2

z2 + σ 3

z32! + · · · + σn+1

zn+1n!
]

dz ≤

pe−(n+1)μτ

χ((n + 1)μ)

1

2πi

∮
|z|=ε

σ (1 + z)n

z

[
σ

z
+ σ 2

z22! + · · · + σn

znn! + . . .

]
dz ≤

σpe−(n+1)μτ

χ((n + 1)μ)
(eσ/ε − 1)(1 + ε)n ≤ σ |q̄2|(eσ/ε − 1)eμτ (e−μτ (1 + ε))n ≤ σ

whenever |q̄2|(eσ/ε − 1)(1 + ε) ≤ 1 and e−μτ (1 + ε) < 1. Thus, for each ε ∈ (0, eμτ − 1), the 
Dirichlet series (6) with q1 = ε ln(1 + [|q̄2|(1 + ε)]−1) converges absolutely and uniformly on 
each closed subset of (−∞, τ − μ−1 ln(1 + ε)). Equivalently, the shifted series

u∗(t) := u(t − μ−1 lnq1) = eμt + q2

q2
1

e2μt + q3

q3
1

e3μt + · · · + qn

qn
1
enμt + . . .

converges for all t < T = τ − μ−1 ln(1 + ε) + μ−1 lnq1. Hence, equation (4) has an analytic 
solution u∗(t) defined and positive on some interval (−∞, T1] ⊂ (−∞, T ). Clearly, integrat-
ing (4) step by step, we can extend this solution for all t ∈ R. Since f (u) > 0 for u > 0, we 
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easily find, by using the variation of constants formula, that the positivity of the solution u∗(t)
is preserved for t > T1, i.e. u∗(t) > 0 for all t ∈ R. Now, since the function f : R+ → R+ is 
bounded, every solution u : R → R+ of (4) is bounded on R+. Consequently, u∗(t) is bounded 
on R. Then by the classical Nussbaum theorem [34] (for the reader’s convenience, it is given in 
Appendix), u∗(t) is a real analytic function on R. Finally, the uniqueness of u∗ is established in 
the proofs of [13, Lemmas 6 and 8] while the inequality lim inft→+∞ u∗(t) > 0 follows from [4, 
Theorem 2.4]. �
Remark 5. Suppose that either 1 < p ≤ e2 or p > e2 and

e−τ > P ln
P 2 + P

P 2 + 1
, where P = lnp − 1. (7)

Then [29, Theorem 2.1] implies that the positive solution u∗(t) given in Theorem 4 converges at 
+∞: u∗(+∞) = lnp.

Example 6. As in Example 2, take τ = 0.07 and p = 365 and choose ε = 2.2 < eμτ − 1 =
9.536 . . . . Then Theorem 4 provides the convergence interval (−∞, 0.079] ⊃ R− for the series 
(5). In addition, in this particular case, |q̄j | are decreasing which suggests the following estimates 
for u∗(t) in the spirit of the alternating series test:

u2(t) := eμt + q̄2e
2μt < u∗(t) < eμt =: u1(t), t ≤ 0. (8)

Our next result shows that this estimate is indeed true.

Theorem 7. Solution u∗(t) described in Theorem 4 and normalized at −∞ by (5) satisfies (8).

Proof. In view of Theorem 4, the inequalities (8) hold on some interval (−∞, L) with L ≤ 0. 
It is easy to see that u∗(t) < u1(t) for all t ∈ R. Indeed, suppose that u1(a) = u∗(a) at some 
leftmost point a. Then u′

1(a) ≤ (u∗)′(a), u1(a − τ) > u∗(a − τ), so that

0 = (u∗)′(a) + u∗(a) − f (u∗(a − τ)) > (u∗)′(a) + u∗(a) − pu∗(a − τ) >

(u1)
′(a) + u1(a) − pu1(a − τ) = 0,

a contradiction. Hence u∗(t) < eμt for all t ∈R. In particular, u∗(t) < 1 for all t ≤ 0.
Next, we have that

u′
2(t) + u2(t) − f (u2(t − τ)) < u′

2(t) + u2(t) − p(u2(t − τ) − u2
2(t − τ))

= pq̄2e
3μ(t−τ)(2 + q̄2e

μ(t−τ)).

Since u2(t) > 0 if and only if 1 + q̄2e
μt > 0, we conclude that u′

2(t) + u2(t) − f (u2(t − τ)) < 0
whenever u2(t) > 0.

We claim that actually the first inequality in (8) also holds for all t ≤ 0. Since u∗(t) > 0 for all 
t ∈ R, it suffices to prove it only for those t < 0 for which u2(t) > 0. Arguing by contradiction 
again, suppose that u2(a) = u∗(a) > 0 at some leftmost point a ≤ 0. Then u′

2(a) ≥ (u∗)′(a), 
u2(a − τ) < u∗(a − τ) < 1 so that
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0 = (u∗)′(a) + u∗(a) − f (u∗(a − τ)) < (u2)
′(a) + u2(a) − f (u2(a − τ)) < 0,

a contradiction. Observe here that the strict monotonicity of f (x) = pxe−x on the interval [0, 1]
plays an essential role in the last argument. �

We will also need the following property of u∗(t):

Lemma 8. (u∗)′(t) > 0 on some maximal interval (−∞, M) ⊆ R. Clearly, if M = +∞, then 
u∗(M) = lnp. If M is finite, then u∗(M) > lnp.

Proof. By differentiating (5), we find that (u∗)′(t) = μeμt (1 +o(1)) > 0 at t = −∞, from which 
the existence of the above mentioned M follows. Suppose that M is finite, then (u∗)′(M) = 0, 
(u∗)′′(M) ≤ 0, (u∗)′(M − τ) > 0. Since (4) implies the relation

(u∗)′′(M) = f ′(u∗(M − τ))(u∗)′(M − τ),

we obtain f ′(u∗(M − τ)) ≤ 0 so that u∗(M − τ) ≥ 1. Clearly, if also u∗(M − τ) ≥ lnp then 
u∗(M) > u∗(M − τ) ≥ lnp and the lemma is proved in such a case. On the other hand, if 
u∗(M − τ) ∈ [1, lnp) then the statement follows from the relation u∗(M) = f (u∗(M − τ)) >
lnp. �

Now, looking for wavefronts to (2) in the form u(t, x) = φ(
√

εx + t), ε = c−2, we obtain the 
profile equation

εφ′′(t) − φ′(t) − φ(t) + f (φ(t − τ)) = 0. (9)

Equation (9) was analyzed in [1,13,15,16,26,27,37,40]. The list below briefly summarizes known 
uniqueness and monotone/oscillatory results about profiles φ(t, ε).

• Since the first derivative of f (x) = pxe−x is dominated by f ′(0) = p, |f ′(x)| ≤ p for all 
x ≥ 0, uniqueness (up to translation) of each semi-wavefront φ(t, ε) to (9) follows from 
[1, Theorem 7].

• If 1 < p ≤ e (i.e. f (x) is monotone on [0, lnp]) then φ′(t, ε) > 0 for all t ∈ R, see [37] or 
[40, Corollary 12].

• When p ∈ (e, e2], f (x) is no longer monotone on [0, lnp]. Nevertheless, in such a case 
f ′(lnp) ≤ f ′(x) ≤ f ′(0) for all x ∈ [0, lnp] and f (x) satisfies the feedback condition on 
the set O \ lnp := (f (p/e), p/e) \ lnp (see condition (17) in Appendix). Therefore [16,
40] assure that if e < p ≤ e2 then φ(t, ε) is either monotone or sine-like slowly oscillating
around lnp at +∞; moreover, the type of monotonicity/oscillation property is linearly de-
termined.

• When p > e2 and pτeτ−1 ≤ 1, [16, Theorem 2.5] implies that φ(t, ε) is strictly increasing 
for each fixed ε > 0.

Next, it is easy to see that the characteristic function χ+(z, ε) := εz2 − z − 1 − Pe−zτ does 
not have real negative zeros for every ε > 0 when Pτe1+τ > 1. Then [40, Lemma 25] implies 
that φ(t, ε) cannot be eventually monotone for all small ε > 0 if Pτe1+τ > 1. Hence, we have 
established the following result:
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Lemma 9. Suppose that for each sufficiently large velocity c > 0 equation (2) has a nm-wave 
u(t, x) = φc(x + ct). Then necessarily p > e2, Pτe1+τ ≤ 1 and pτeτ−1 > 1. In particular, 
τ ∈ (0, τ∗) where τ∗ = 0.278 . . . solves equation τe1+τ = 1.

Corollary 10. If for each sufficiently large velocity c > 0 equation (2) has a nm-wave u(t, x) =
φc(x + ct) then e−μτ < 0.5 and q̄2 ∈ (−1, 0).

Proof. Indeed, μ + 1 = pe−μτ > e1−(μ+1)τ /τ . Set ρ = τ(μ + 1), then ρ > e−ρ+1 imply-
ing that ρ > 1. Consequently, −τμ < τ − 1 and e−τμ < e−1+τ < e−1+τ∗ = 0.48 . . . , −q̄2 =
pe−2μτ /χ(2μ) = pe−2μτ /(μ + p(e−μτ − e−2μτ )) < e−μτ /(1 − e−μτ ) = 0.94 . . . �

In the next stage of our proof, we continue to analyze the heteroclinic solution u∗(t) given in 
Theorem 4. This time, we will take parameters (τ, p) as in Lemma 9 which will have important 
consequences for the form and estimates of u∗(t). For example, in such a case, due to Corol-
lary 10 the lower bound u2(t) in (8) is positive for all t ≤ 0. We will be especially interested 
in the oscillation properties (around the equilibrium lnp) of u∗(t). Since u∗(t) is a real analytic 
function on R, the set of all solutions of equation u∗(t) = lnp is either an empty set or can be 
represented as a strictly increasing sequence S = {tj } of positive numbers. By the same reason, if 
the sequence S is infinite, it should converge to +∞. Our next goal is to prove that tj are simple 
zeros of u∗(t) − lnp and that tj+1 − tj > τ . The main complication here consists in the fact 
that the birth function f (x) = pxe−x for p > 16.99 . . . does not satisfy the feedback condition 
(17) with O \ lnp = (f (p/e), p/e) \ lnp, cf. [16,40]. Our arguments below are inspired by the 
classical theory of J. Mallet-Paret [30].

Lemma 11. Suppose that p > e2 and Pτe1+τ ≤ 1. Then inequality (7) is satisfied so that 
u∗(+∞) = lnp and, in fact, u∗(t) is eventually monotone solution. Furthermore, the above 
defined sequence {tj } has at most a finite number of elements, t1 < t2 < · · · < tm, m ∈ N and 
tj+1 − tj > τ , (u∗)′(tj ) �= 0 for each such tj .

Proof. It is easy to check that the smooth curves γ1, γ2 ⊂R2+ defined by equations Pτe1+τ = 1

and e−τ = P ln P 2+P
P 2+1

, respectively, intersect at some point (τ0, P0) if and only if τ0 satisfies the 

equation eτe(1 + τ 2e2(1+τ)) = τe1+τ + 1. However, a straightforward comparison of the Taylor 
coefficients in this equation shows that eτe > τe1+τ + 1 for all positive τ . Hence, γ1 ∩ γ2 = ∅. 
Actually, an easy inspection shows that the domain bounded by γ1 and the coordinate axes lies 
inside the domain bounded by γ2 and the coordinate axes.

Now, suppose that t1 is the moment of the first intersection of the graph of u∗(t) with the 
line u = lnp. Then (u∗)′(t1) > 0 in view of Lemma 8. Suppose further that t2 is the moment 
of the second intersection of u∗(t) with the line u = lnp and u∗(s1) := max{u∗(t), t ∈ [t1, t2]}. 
Then (u∗)′(s1) = 0, (u∗)′(t2) ≤ 0, from which we obtain lnp < u∗(s1) = f (u∗(s1 − τ)), lnp =
u∗(t2) ≥ f (u∗(t2 −τ)). In the case when t2 − t1 ≤ τ we have, in addition, that lnp ≥ u∗(t2 −τ) >
u∗(s1 −τ). Consider first the situation when lnp > u∗(t2 −τ). Then lnp ≥ f (u∗(t2 −τ)) implies 
that u∗(t2 −τ) ≤ minf −1(lnp). On the other hand, the inequality lnp < u∗(s1) = f (u∗(s1 −τ))

implies that u∗(s1 − τ) > minf −1(lnp). Thus u∗(t2 − τ) < u∗(s1 − τ), a contradiction. Finally, 
suppose that lnp = u∗(t2 −τ) = u∗(t2). Then (u∗)′(t2) = 0 implying the following contradictory 
relation (u∗)′′(t2) = f ′(u∗(t2 −τ))(u∗)′(t2 −τ) < 0. The above discussion shows that t2 − t1 > τ

and that (u∗)′(t2) < 0.
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By our convention, u∗(t) < lnp for t ∈ (t2, t3) and u∗(s2) = min{u∗(t), t ∈ [t2, t3]} for some 
leftmost s2 ∈ (t2, t3). Again, lnp > u∗(s2) = f (u∗(s2 − τ)). Since u∗(s2) < u∗(s2 − τ), the latter 
implies that u∗(s2 − τ) > lnp and, consequently, that s2 − t2 ≤ τ . Therefore, using the variation 
of constant formula, we get

u∗(s2) = e−(s2−t2) lnp +
s2∫

t2

e−(s2−s)f (u∗(s − τ))ds > e−τ lnp ≥ e−τ∗ ln e2 = 1.51. . . > 1.

In particular, u∗(t) > 1 for all t ∈ (t2, t3). Now, since (u∗)′(t3) ≥ 0, we find that lnp = u∗(t3) ≤
f (u∗(t3 − τ)). This implies that u∗(t3 − τ) ≤ lnp. Suppose that u∗(t3 − τ) = lnp, then ob-
viously t3 − τ = t2 (since t1 < t1 + τ < t2 < t3 are the consecutive zeros of u∗(t) − lnp) and 
(u∗)′′(t3) = f ′(lnp)(u∗)′(t2) > 0, a contradiction. Consequently, u∗(t3 −τ) < lnp, (u∗)′(t3) > 0
and t3 − t2 > τ .

Next, u∗(t) > lnp for t ∈ (t3, t4) and (u∗)′(t4) ≤ 0. Thus lnp = u∗(t4) ≥ f (u∗(t4 −τ)), which 
implies u∗(t4 − τ) ≥ lnp (here we used the inequality u∗(t) > 1 for t ∈ [t1, t4]). Suppose that 
u∗(t4 − τ) = lnp, then again we get t4 − τ = t3 and (u∗)′′(t4) = f ′(lnp)(u∗)′(t3) < 0, which is a 
contradiction. Consequently, u∗(t4 − τ) > lnp, (u∗)′(t4) < 0 and t4 − t3 > τ . Clearly, the above 
described inductive steps can be continued to include all points tj .

Finally, we will prove that the sequence {tj } is finite. Linearizing (1) at the equilibrium lnp, 
we find the associated characteristic function χ+(z) := z + 1 + Pe−zτ . After a straightforward 
computation, we find that χ+(z) has exactly two real zeros (counting multiplicity) z2 ≤ z1 < 0 if 
and only if Pτe1+τ ≤ 1. Moreover, in such a case, each other zero zj = αj + iβj , βj ≥ 0, j > 2, 
of χ+(z) satisfies the inequalities αj < z2 and βj > 2π/τ , see [30, Theorem 6.1]. In particular, 
the steady state u = lnp is exponentially stable. We claim that u∗(t) is eventually monotone at 
+∞ if Pτe1+τ ≤ 1. Indeed, otherwise, it is easy to see that the sequence {ti} is infinite so that 
u∗(t) exponentially converges to the steady state lnp and oscillates around it by crossing the 
equilibrium level u = lnp at the points ti , i ∈ N , where ti+1 − ti > τ for all i. Then in view of 
Yulin Cao results [6, Theorem 3.4] on super-exponential solutions, there is a root zj = αj + iβj

of the characteristic equation χ+(z) = 0 and C �= 0, δ > 0, θ ∈R, k ∈ {0, 1}, such that

u∗(t) − lnp = Ctkeαj t cos(βj t + θ) + O(e(αj −δ)t ), t → +∞.

Now, if zj is not a real root, the above representation implies that the distance between large 
adjacent zeros of u∗(t) − lnp is less than τ/2, a contradiction. This completes the proof of 
Lemma 11. �

Importantly, the sequence S can be non-empty for certain parameters p, τ . The next result 
shows that generally m ≥ 1 in Lemma 11. It is an open question, however, whether there exist p
and τ for which m ≥ 2.

Corollary 12. In addition to the assumptions of Lemma 11, suppose that ζ > lnp where ζ
was defined in Theorem 1. Then the solution u∗(t) is eventually monotone at +∞ and is non-
monotone on R. Moreover, maxR u∗(t) > ζ .

Proof. Indeed, after using the variation of constant formula on [0, τ ] and monotonicity of f (u)

on the interval [0, 1], we find that
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u∗(τ ) = u∗(0)e−τ +
τ∫

0

es−τ f (u∗(s − τ))ds > u2(0)e−τ +
τ∫

0

es−τ f (u2(s − τ))ds >

u2(0)e−τ + p

τ∫
0

es−τ u2(s − τ)e−u1(s−τ)ds =

(1 + q̄2)e
−τ + p

0∫
−τ

eμses(1 + q̄2e
μs) exp(−eμs)ds = ζ.

Finally, recall that ζ > lnp for the parameters p = 365, τ = 0.07, see Example 2. �
2.2. Proof of Theorem 1

The key relation between u∗(t) and φ(t, ε) is given in the next assertion.

Proposition 13. Let all the conditions of Corollary 12 be satisfied. Then φ(+∞, ε) = lnp for 
all sufficiently small ε > 0. Moreover, limε→0+ φ(t, ε) = u∗(t) uniformly on R (possibly, after 
appropriate translations of the wavefronts). In particular, the wave profiles u = φ(t, ε) are not 
monotone for all small ε > 0.

Proof. This result follows from the general Theorem 3.8 in [14] (providing sufficient conditions 
for the existence of a continuous family of wavefronts u = φ(t, ε) at some vicinity of ε = 0) 
applied to the Nicholson’s diffusive equation. �

To complete the proof of Theorem 1, we have to extend the eventual monotonicity property of 
φ(t, 0) = u∗(t) established in Lemma 11 on the profiles φ(t, ε) for all sufficiently small ε > 0. 
Observe that, taking into account Proposition 13 and using [31, Theorem 2.1] we obtain (see [40, 
pp. 2321-2322] for more detail) that φ(t, ε) is either eventually monotone or slowly oscillating 
around lnp at +∞ in the following sense:

Definition 14. Set K = [−τ, 0] ∪ {1}. For any v ∈ C(K) \ {0} we define the number of sign 
changes by

sc(v) = sup{k ≥ 1 : there are t0 < · · · < tk, tj ∈K, such that v(ti−1)v(ti) < 0 for i ≥ 1}.
We set sc(v) = 0 if v(s) ≥ 0 or v(s) ≤ 0 for s ∈K. Next, for a smooth function ψ : [T0, +∞) →
R and a real number κ , we write (ψt )(s) = ψ(t + s) − κ if s ∈ [−τ, 0], and (ψt )(1) = ψ ′(t). 
We say that ψ(t) is slowly oscillating around κ on a connected interval J ⊂ [T0 + τ, +∞) if the 
following conditions are satisfied:

(d1) ψ(t) oscillates around κ and
(d2) for each t ∈ J, it holds that either sc(ψt ) = 1 or sc(ψt ) = 2.

Therefore our immediate goal is to demonstrate that φ(t, ε) is not a slowly oscillating solution 
of equation (9) whenever all the conditions of Corollary 12 are satisfied. We have already solved a 
similar problem, proving eventual monotonicity of u∗(t) in Lemma 11. However, trying to argue 
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as at the end of the proof of Lemma 11, we noticed the lack of an analog of the Mallet-Paret–
Cao–Arino theory [2,6,30] of super-exponential solutions (i.e. solutions converging to their finite 
limits at ∞ faster than any exponential) for the second order delay differential equations. The 
key idea of this theory was concisely described by Ovide Arino: “Surprisingly, the proof [. . . ] is 
based on quite an elementary although very neat observation, which is, essentially, if you assume 
a solution has a rapid decay from t to t + τ , it indicates rapid oscillations before t”, see [2, p. 
178]. In our next lemma, we contribute to the analysis of super-exponential solutions by devel-
oping this idea for second order delay differential equations (at a level of generality sufficient for 
our purposes).

Lemma 15. Let y(t), y(+∞) = 0, slowly oscillate around 0 and satisfy equation

y′′(t) − Ay′(t) − By(t) − C(t)y(t − τ) = 0, t ∈R, (10)

where A, B > 0 and continuous function C(t) converges to a positive number C at +∞. Suppose 
also that the set of zeros of y′(t) does not contain a non-degenerate interval. Then y(t) is not a 
super-exponentially decaying (i.e. small) solution.

Proof. Arguing by contradiction, suppose that equation (10) has a slowly oscillating small so-
lution y(t). After realizing the change of variables y(t) = ert z(t), where r is a negative root of 
equation r2 − Ar − B = 0, we obtain the delay differential equation for z of the same type as 
(10) (i.e. a > 0, c(+∞) > 0) except that now B = 0:

y′′(t) − ay′(t) − c(t)y(t − τ) = 0, t ∈R. (11)

Obviously, z(t) = e−rt y(t) is super-exponentially decaying at +∞. It is easy to check that, being 
a small solution, z(t) = e−rt y(t) with r < 0 shares the slow oscillation property of y(t). We will 
arrive to a contradiction by supposing the existence of a slowly oscillating small solution y(t) of 
equation (11).

Hence, aiming for a contradiction, suppose that equation (11) has a slowly oscillating small 
solution y(t). In our subsequent argumentation, we will use the notation yt(s) = y(t + s), s ∈
[−τ, 0] so that yt ∈ C[−τ, 0] and ‖yt‖ = max{|y(t + s)|, s ∈ [−τ, 0]}. It is easy to see that the 
‘smallness’ of y(t) implies the existence of an increasing sequence {tj }, tj → +∞, such that 
‖ytj +2τ‖/‖ytj +τ‖ → 0 as j → +∞ (since y(t) oscillates, we have that yt �= 0 for each t ).

Set zj (t) = y(tj + t)/‖ytj +τ‖, clearly |zj (t)| ≤ 1 for t ∈ [0, τ ] and |zj (ξj )| = 1 for some 
ξj ∈ [0, τ). Without loss of generality, we can further assume that zj (ξj ) = 1 and that ξj → ξ∗ for 
some ξ∗ ∈ [0, τ ]. Due to our choice of {tj }, we also find that zj (t) → 0 uniformly on the interval 
[τ, 2τ ]. In addition, zj (t) is a slowly oscillating small solution of the differential equation

z′′(t) − az′(t) − cj (t)z(t − τ) = 0, t ∈R, where cj (t) := c(t + tj ) → c∗ := Ce−rτ > 0. (12)

We will say that an interval (p, q) is a maximal complete interval of monotonicity for some zj if 
zj (t) is monotone on (p, q), z′

j (p) = z′
j (q) = 0 and (p, q) is not properly contained in a larger 

interval with the same properties. Then there exists some r0 ∈ (p, q) such that 0 �= |z′
j (r0))| =

max{|z′
j (s)|, s ∈ (p, q)} and z′′

j (r0) = 0. Thus

sign zj (r0 − τ) = sign (−az′ (r0)/cj (r0)) = −sign z′ (r0)
j j
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so that zj (t) can have at most 3 maximal complete intervals of monotonicity on each interval 
of length τ (consequently, at most 5 intervals of monotonicity). As a consequence, we can find 
a subsequence {zji

(t)} of {zj (t)} such that all zji
(t) have exactly the same number of intervals 

of monotonicity (p(ji)
k , q(ji )

k ) inside of each of the segments [−τ, 0], [0, τ ], [τ, 2τ ], while the 

sequences p(ji)
k , q(ji )

k are converging to their respective limits pk, qk . Without loss of generality, 

we can also assume that every zji
(t) does not change its sign on each of the intervals (p(ji)

k , q(ji )
k ). 

Furthermore, due tho the Helly selection theorem [5, p. 250], we can assume that there exists a 
piece-wise monotone function z∗(t), t ∈ [0, 2τ ], such that z∗(t) = 0, t ∈ [τ, 2τ ] and zji

(t) →
z∗(t) pointwise on [0, 2τ ]. In the sequel, to simplify the notation, we will denote by zj (t) also 
any subsequence of {zj (t)}.

We claim that z∗(t) = 0 almost everywhere on [0, τ ]. First, observe that the sequence of the 
total variations 

∫ 2τ

τ
|z′

j (s)|ds of the smooth functions zj (t) on [τ, 2τ ] converges to 0. Then, by 
the Riesz theorem [5, p. 79], we can extract a subsequence z′

j (t) such that z′
j (t) → 0 almost 

everywhere on [τ, 2τ ]. Take some s1 < s2, sk ∈ [τ, 2τ ], k = 1, 2, such that limj→∞ z′
j (sk) = 0. 

By integrating (12), we find that

z′
j (s2) = ea(s2−s1)z′

j (s1) +
s2∫

s1

ea(s2−s)cj (s)zj (s − τ)ds. (13)

Passing to the limit j → +∞ in (13), we find that, for almost all s1 < s2, sk ∈ [τ, 2τ ], k = 1, 2,

s2∫
s1

ea(s2−s)z∗(s − τ)ds = 0,

which proves our claim.
Now, fix some non-empty monotonicity interval (pk, qk) ⊂ [0, τ ] introduced before. Due 

to the claim of the previous paragraph, we know that there are r1, r2 ∈ (pk, qk) such that 
limj→∞ zj (rk) = 0. Then we find immediately that 

∫ r2
r1

|z′
j (t)|dt → 0 and zj (t) → 0 uniformly 

on [r1, r2]. Arguing now as in the previous paragraph and passing to subsequences if necessary, 
we can conclude that z′

j (t) → 0 almost everywhere on (pk, qk). Hence, we have proved that 
there exists a finite set of points R = {pk, qj : pk, qj ∈ [0, τ ]} such that zj (t) → 0 uniformly on 
each closed interval I ⊂ [0, τ ] \ R. Consequently, z′

j (t) → 0 almost everywhere on [0, τ ] and 
ξ∗ ∈ R.

In the next stage, we will analyze the sequence {zj(t)} on the interval [−τ, 0]. Set R1 =
{pk, qj : pk, qj ∈ [−τ, 0]} and consider some closed interval [α, β] ⊂ [−τ, 0] \R1. For all suffi-
ciently large j , the functions zj (t) have the same type of positivity and monotonicity properties 
on [α, β]. We claim that we can choose a subsequence in such a way that zj (t) → 0 uniformly 
on [α, β]. To be more specific, suppose, for example, that zj (t) are non-negative and decreas-
ing on [α, β]. If some subsequence of {zj (s)} converges to +∞ for s ∈ (α, β), then clearly 
zj (t) → +∞ uniformly on [α, s] while z′

j (t) → 0 almost everywhere on [α + τ, s + τ ]. But 
then, after taking some s1 < s2, sk ∈ [α + τ, s + τ ], k = 1, 2, such that limj→∞ z′

j (sk) = 0 and 
using (13), we immediately get a contradiction. This implies that the sequence zj (t) is bounded 
for each t ∈ (α, β). In fact, since we can slightly move the endpoints α, β of this interval, the 
sequences zj (α), zj (β) are also bounded. This allows us to conclude that {zj (t)} is uniformly 
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bounded on [α, β]. Consequently, by arguing as above and passing to subsequences if necessary, 
we find that zj (t) → 0 uniformly on [α, β] and z′

j (t) → 0 almost everywhere on [α, β]. In other 
words, zj (t), z′

j (t) have similar convergence properties on the intervals [0, τ ] and [−τ, 0].
Therefore, in each δ-neighborhood of ξ∗, we can find points t1 < ξ∗ < t2, θj such that 

lim zj (tk) = lim z′
j (tk) = 0, k = 1, 2, t1 < θj ≤ ξj < t2 (whenever j is sufficiently large) and 

z′
j (θj ) = 0, z′′

j (θj ) ≤ 0, zj (θj ) ≥ 1. Similarly, the interval [ξ∗ − τ + δ, ξ∗ − τ + 2δ] contains a 
point t3 > t2 − τ such that lim zj (t3) = lim z′

j (t3) = 0.
But then, if δ ∈ (0, 0.5), there are some points sj , Sj satisfying the inequalities t1 < sj < θj <

Sj < t2 and the relations z′
j (sj ) > 2, z′′

j (sj ) = 0, z′
j (Sj ) < −2, z′′

j (Sj ) = 0. Since cj (tj ) → c∗ >

0, we can also assume that 0 < cj (t) < 2c∗. Consequently, in view of equation (12),

zj (θj − τ) ≤ 0, zj (sj − τ) = −az′(sj )/cj (sj ) < −2a/cj (sj ) < −a/c∗ < 0,

zj (Sj − τ) = −az′(Sj )/cj (Sj ) > 2a/cj (Sj ) > a/c∗ > 0.

Now, since ξ∗ − δ − τ < θj − τ < Sj − τ < ξ∗ + δ − τ < t3 < ξ∗ + 2δ − τ , for each j big 
enough we can find points Mj, Tj ∈ [θj − τ, t3] such that Mj < Tj , zj (Mj ) = max{zj (s), s ∈
[θj − τ, t3]}, z′

j (Tj ) < −2a/(3c∗), z′′
j (Tj ) = 0. Thus zj (Tj − τ) = −az′(Tj )/cj (Tj ) > 0. Fi-

nally, consider four points Tj − τ < sj − τ < Mj < Tj . Since zj (Tj − τ) > 0, zj (sj − τ) < 0, 
zj (Mj ) > 0, z′

j (Tj ) < 0, we conclude that sc((z̄j )T ) > 2 so that zj (t) does not slowly oscillate 
around 0. The obtained contradiction completes the proof of Lemma 15. �
Corollary 16. Assume all the conditions of Corollary 12. Then there exists ε0 > 0 such that the 
solution φ(t, ε) is eventually monotone at +∞ for each ε ∈ [0, ε0].

Proof. After linearizing (9) at the equilibrium φ(t) = lnp, we find the related characteristic 
equation

χ+(z, ε) = εz2 − z − 1 − Pe−zτ = 0. (14)

If Pτe1+τ < 1, it follows from [16, Lemma 1.1] and [41, Lemma 2.1] that there are δ > 0 and 
ε1 > 0 such that (14) has in the half-plane �z > z2 − 2δ for each ε ∈ (0, ε1] exactly three roots 
zj (ε), j = 0, 1, 2. Moreover, these roots are real and zj (ε) → zj , j = 1, 2, and z0(ε) → +∞
as ε → 0− (as in Lemma 11, here zj denote the zeros of χ+(z, 0)). Therefore the steady state 
lnp of (9) is hyperbolic and the orbit associated with φ(t, ε) belongs to the stable manifold of 
φ(t) = lnp. Thus y(t) := φ(t, ε) − lnp and y ′(t) have at least the exponential rate of decay at 
+∞. Now, arguing by contradiction, suppose that the function y(t) = φ(t, ε) − lnp oscillates 
slowly around 0. Clearly, y(t) satisfies equation (10) where A = B = ε−1,

C(t) = −ε−1

1∫
0

f ′(φ(t, ε)s + (1 − s) lnp)ds, C(+∞) = −ε−1f ′(lnp) = ε−1P > 0.

But then Lemma 15 guarantees that y(t) has at most the exponential rate of decay at +∞. 
This implies that there is a complex zero zj (ε) = αj (ε) + iβj (ε), βj (ε) > 0, αj (ε) < z2(ε), of 
χ+(z, ε) and d(ε) �= 0, δ > 0, θ ∈ R, such that
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Fig. 4. Equation (2) with τ = 0.07, p = 365: numerical approximations of the wavefront u(t, x) = φc(x + ct) moving 
leftward with the speed c ≈ 50 (left); the rescaled profile φc(tc) for c ≈ 50 (right).

φ(t, ε) − lnp = d(ε)eαj (ε)t cos(βj (ε)t + θ) + O(e(αj (ε)−δ)t ), t → +∞.

Now, by Lemma 21 in [40], βj (ε) ≥ 2π/τ and therefore y(t) does not oscillate slowly around 0. 
The obtained contradiction completes the proof of Corollary 16. �

Clearly, Theorem 1 is a direct consequence of Proposition 13 and Corollaries 12 and 16.

Remark 17. Fig. 4 depicts a fast traveling wave for equation (2) with τ = 0.07, p = 365. The 
numerical simulations are based on the Crank-Nicholson method which is second-order accurate 
in both spatial and temporal directions. The initial function is

u0(t, x) =
{

exp(0.7x), as x < 0, t ∈ [−τ,0],
ln(p), as x ≥ 0, t ∈ [−τ,0].

The spatial step size is chosen as �x = 0.05 in the computational domain x ∈ [−150, 150] where 
the Dirichlet boundary conditions u(t, −150) = 0 and u(t, 150) = lnp are imposed. The tempo-
ral step size is �t = 0.01. After some short initial period, the numerical solution u(t, x) behaves 
like a nm-wave moving leftward with the speed c ≈ 50. This provides an additional numerical 
confirmation of the theoretical result in [27] in the case of nm-waves (theoretical speed of prop-
agation is c = 48.26 . . . ). Observe that the rescaled profile φc(ct), c ≈ 50, approximates quite 
well the limit profile, c = ∞, see Fig. 1.

2.3. Proof of Theorem 3

Theorem 3 follows from the following equivalent statement:
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Corollary 18. Let u(t, x) = φ(x + ct) be a wavefront for equation (2). Then the profile φ(t) is 
eventually monotone at +∞ if and only if the function χ+(z, ε) = εz2 − z − 1 − Pe−zτ with 
ε = c−2 has at least one negative zero.

Proof. The part ‘only if ’ of the corollary has been proved in [16, Lemma 4.6]. Suppose now 
that, given a fixed pair (τ, c) of positive parameters, equation (2) possesses a semi-wavefront 
u(t, x) = φ(x + ct) and χ+(z, ε) has a negative zero z1 < 0. We will denote the latter fact as 
(τ, c) ∈ Dm, where

Dm =
{
τ ≥ 0, c > 0; z2 − cz − 1 − Pe−zcτ = 0 has a negative root

}
.

We have to prove that, in such a case, φ(t) is monotone in some neighborhood of +∞. First, 
consider P ∈ (−1, 0]. Then φ(t) is necessarily monotone on R in view of So and Zou main 
theorem in [37] and the semi-wavefront uniqueness [1,38,42]. Second, if P ∈ (0, 1], then the 
monotonicity of φ(t) on R was established in [16, Theorem 2.3].

Hence, in what follows, we can assume that P > 1. Then the relation (19) in Appendix says 
that (τ, c) ∈ Dm ⊂ Ds , where Ds ⊂ R2+ is some auxiliary domain defined in Appendix. Impor-
tantly, since 1 − 1/P > (P 2 − P)/(P 2 + 1), each pair (τ, c) ∈ Ds satisfies the inequality (16)
of Proposition 19 from Appendix which guarantees that φ(+∞) = lnp (i.e. φ is a wavefront). 
Moreover, φ(t) − lnp decays exponentially to 0 as t → +∞ (e.g. see [16, Lemma 1.1] or [41, 
Proposition 5.6]).

Arguing by contradiction, suppose now that φ oscillates around lnp on some connected neigh-
borhood J of +∞. We claim that these oscillations are necessarily slow on J .

Indeed, if f satisfies the feedback condition (17) with O\ lnp = (f (p/e), p/e) \ lnp and P >

1 (after a straightforward computation, these assumptions can be written as lnp ∈ (2, 2.833 . . . )), 
then Proposition 19 assures that φ(t) oscillates slowly.

Suppose now that lnp > 2.833 and consider the oscillating wavefront φ(t) of equation (9). By 
Proposition 19, the first three critical points t1 < t2 < t3 of φ(t) are finite and such that φ′(t) > 0
on (−∞, t1) ∪ (t2, t3), φ′(t) < 0 on (t1, t2) and φ(t1) > lnp, φ(t2) < lnp < φ(t2 − τ). We will 
prove that φ(t) > 1 for all t ≥ t1. Let s2 be the unique point in (t1, t2) where φ(s2) = lnp. Since, 
in addition, φ′(t2) = 0, by using the variation of constants formula for equation (9) (see [41, 
Lemma 4.2] for some details of the computation), we obtain that

φ(t2) = ξ(t2 − s2)

⎧⎨
⎩lnp + 1

ε(ν − λ)

t2∫
s2

(
eλ(s2−u) − eν(s2−u)

)
f (φ(u − τ))du

⎫⎬
⎭ , (15)

where λ < 0 < ν denote the roots of the equation εz2 − z − 1 = 0 and ξ(x) = (ν − λ)/(νe−λx −
λe−νx). Since s2 ∈ (t2 − τ, t2), (τ, c) ∈ Dm ⊂Ds , P > 1.833 and ξ ′(x) < 0 for x > 0, we imme-
diately find that

φ(t2) > ξ(τ) lnp >

(
1 − 1

P

)
(P + 1) = P − 1

P
≥ 1.833 − 1/1.833 > 1.

Thus φ(t) > 1 for all t ∈ [t1, t3) and if φ(s) ≤ 1 at some point s ≥ t3, then there exists the leftmost 
critical point t∗ > t3 such that φ(t∗) = min{φ(s), s ∈ [t1, t∗]} ≤ 1, φ′(t∗) = 0 and φ′′(t∗) ≥ 0. 
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In particular, φ(t∗ − τ) > φ(t∗). Furthermore, equation (9) implies that φ(t∗) ≥ f (φ(t∗ − τ)). 
Thus necessarily φ(t∗ − τ) > lnp so that φ(s∗) = lnp for some s∗ ∈ (t∗ − τ, t∗). Invoking again 
formula (15), we find that φ(t∗) > ξ(τ) lnp > 1. This contradiction proves that actually φ(t) > 1
for all t ≥ t1. Therefore the feedback condition (17) is satisfied on the set {φ(t), t ≥ t1} ⊂
[1, +∞). Since the slow oscillation property of φ(t) follows now from Proposition 19, the claim 
is proved.

Finally, arguing as in the second half of the proof of Corollary 16, we conclude that the as-
sumption (τ, c) ∈Dm is not compatible with the existence of slowly oscillating (around lnp) and 
exponentially converging (toward lnp) wavefront φ(t). Therefore φ(t) is monotone at +∞. �
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Appendix

In this section, we use the notation

λ = 0.5c(c −
√

c2 + 4), ν = 0.5c(c +
√

c2 + 4), P = lnp − 1, ε = c−2.

The next assertion follows from [41, Theorem 1.1] and [40, Theorems 3, 13 and Corollary 14], 
it is instrumental to prove Theorem 3 and Corollary 18 of this paper and is given for the reader’s 
convenience. We consider the following restrictions on the nonlinearity f :

(H) Let f ∈ C3(R+, R+) have only one critical point xM (maximum) and assume that f (0) = 0
and f ′(0) > 1. Suppose further that 0 < f (x) ≤ f ′(0)x, x > 0, that the equation f (x) = x

has exactly two roots 0, κ > 0 with � := f ′(κ) < 0, and that the Schwarz derivative Sf is 
negative for all x > 0, x �= xM :

(Sf )(x) = f ′′′(x)(f ′(x))−1 − (3/2)
(
f ′′(x)(f ′(x))−1

)2
< 0.

Proposition 19. Assume (H), suppose that equation εz2 − z − 1 + f ′(0)e−zτ = 0 has at least 
one positive root, and

ν − λ

νe−λτ − λe−ντ
≥ �2 + �

�2 + 1
. (16)

Then equation (9) has a positive wavefront φ(t). Furthermore, if φ(t) is non-monotone on R, 
then there exist t3 ≥ t2 > t1, t1 ∈ R, t2, t3 ∈ R ∪ {+∞}, such that φ′(t) > 0 on (−∞, t1) ∪
(t2, t3), φ(t1) > κ , φ′(t) < 0 on (t1, t2), and
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f (f (xM)) ≤ φ(t) ≤ f (xM), t ≥ t1.

If t2 is finite then φ(t2) < κ < φ(t2 − τ) and t3 > t2. Finally, if f satisfies the feedback condition

(f (x) − κ)(x − κ) < 0, x ∈ O \ {κ}, (17)

with some interval O containing the set {φ(t) : t ≥ t1}, then φ(t) is either eventually 
monotone or oscillates slowly (see Definition 14) around κ .

Lemma 20. For each fixed c > 0 and P > 1, equation

�(τ, c) := ν − λ

νe−λτ − λe−ντ
= 1 − 1

P
(18)

has a unique positive root τ = τ(c). The function τ(c) : (0, +∞) → (0, +∞) is smooth and has 
a finite limit τ(+∞) = ln(P/(P − 1)) =: τ̂ > 0.

Proof. It is easy to check that ∂�(τ, c)/∂τ < 0 for all τ > 0, c > 0. Taking into account that 
�(0, c) = 1, �(+∞, c) = 0 and P > 1, we deduce the existence of the unique solution τ =
τ(c) of equation (18). Now, let τ̂ be the limit of the sequence τ(cj ) with cj → +∞. Then 
necessarily e−τ̂ = 1 − 1/P which proves the uniqueness and finiteness of τ̂ > 0. Thus τ(+∞) =
ln(P/(P − 1)). �

In the first quadrant of the plane (τ, c), given a fixed number P > 1, together with the above 
defined set Dm of parameters (τ, c), we consider also the following domain

Ds =
{
τ ≥ 0, c > 0, �(τ, c) = ν − λ

νe−λτ − λe−ντ
≥ 1 − 1

P

}
.

Lemma 20 shows that Ds = {(τ, c) ∈ R2+ : 0 ≤ τ ≤ τ(c), c > 0}. On the other hand, it was 
established in [16, Section 2.3] that Dm = {(τ, c) ∈ R2+ : 0 ≤ τ ≤ T (c), c > 0}, where T (c) is 
defined as the unique positive solution of equation

ec2τ 2

2 + √
c4τ 2 + 4c2τ 2 + 4

exp

(√
c4τ 2 + 4c2τ 2 + 4 − c2τ

2

)
= 1

P
.

By [16, Lemma 1.1], T (c) is a smooth decreasing function such that T (0+) = +∞, T (+∞) =
T∗, where PeT∗eT∗ = 1. Observe that Peτ̂eτ̂ = eP 2(P − 1)−1 ln(P/(P − 1)) > 1 for P > 1 so 
that τ(+∞) = τ̂ > T∗ = T (+∞). In fact, the next lemma assures that T (c) < τ(c) for all c > 0
so that

Dm ⊂Ds . (19)

Lemma 21. For each τ > 0 and c > 0, it holds that

ec2τ 2

2 + √
c4τ 2 + 4c2τ 2 + 4

exp

(√
c4τ 2 + 4c2τ 2 + 4 − c2τ

2

)
> 1 − ν − λ

νe−λτ − λe−ντ
. (20)
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Proof. With h = cτ , inequality (20) is equivalent to

l = eh2 exp

(
2(h2 + 1)√

h2(c2 + 4) + 4 + ch

)
>
(

2 +
√

h2(c2 + 4) + 4
)(

1 − ν − λ

νe−λτ − λe−ντ

)
= r.

For fixed h > 0, we maximize r and minimize l with respect to c ∈ R+. The second task is easy: 
l = minc≥0 l = eh2. To maximize r , we will introduce the new variable z = (c + √

c2 + 4)/2, 
z ∈ [1, +∞). Then r takes the form

r = r(z) :=
⎛
⎝2 +

√
h2

(
z + 1

z

)2

+ 4

⎞
⎠(1 − z2 + 1

z2eh/z + e−hz

)
.

We will further simplify r :

r(z) < r1(z) :=
(

4 + h

(
z + 1

z

))(
1 − z2 + 1

z2eh/z + e−hz

)
.

We claim that, for all z ≥ 1, r1(z) ≤ eh2. First, we rewrite this last inequality in the following 
equivalents forms:

1 ≤ t2 + 1

eth + t2e−h/t
+ eh2

4 + h
(
t + 1

t

) , t = 1/z ∈ (0,1], h > 0,

1 ≤ t2 + 1

eσ t2 + t2e−σ
+ eσ 2t2

4 + σ
(
t2 + 1

) , t ∈ (0,1], σ = h

t
> 0,

1 ≤ weσ

ewσ + w − 1
+ eσ 2(w − 1)

4 + wσ
, w = t2 + 1 ∈ (1,2], σ > 0,

ewσ + w − 1 − weσ

ewσ + w − 1
≤ eσ 2(w − 1)

4 + wσ
, w ∈ (1,2], σ > 0,

(
ewσ + w − 1 − weσ

)
(4 + wσ) ≤ eσ 2(w − 1)(ewσ + w − 1),

A(w,σ) := ewσ (eσ 2(w − 1) − (4 + wσ)) + eσ 2(w − 1)2 + (4 + wσ)(1 + w(eσ − 1)) ≥ 0,

to be proved for all w ∈ (1, 2], σ > 0. It is convenient to represent A(w, σ) in the form of the 
power series:

A(w,σ) = w

+∞∑
k=2

Ak(w)

k! σk = wσ 2
(

A2(w)

2! + A3(w)

3! σ + A4(w)

4! σ 2
)

+ w

+∞∑
k=5

Ak(w)

k! σk =

wσ 2

4!
(

12A2(w) + 4A3(w)σ + A4(w)σ 2
)

+ w

+∞∑
k=5

Ak(w)

k! σk =: B(w,σ) + C(w,σ),

where A2(w) = 2(e − 2)(w − 1) > 0, w ∈ (1, 2],
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A3(w) = (w − 1)(6e − 7w − 4) > 0, w ∈ (1,1.75],
A4(w) = −8w3 +12ew2−12ew+4w+4 = −4(w−1)(2w2 +(2−3e)w+1) > 0, w ∈ (1,2],

Ak(w) = −wk−1(k + 4) + ek(k − 1)wk−2 − ek(k − 1)wk−3 + 4 + kw, k ≥ 3.

It follows from the above expressions that Ak(1) = 0 for all k ≥ 2 and since for all k ≥ 5, it holds 
that

A′
k(1) = −(k−1)(k+4)+ek(k−1)(k−2)−ek(k−1)(k−3)+k = (k−1)(ek−k−4)+k > 0,

as well as for w ∈ (1, 2]

A′′
k(w) = −wk−3(k + 4)(k − 1)(k − 2) + ek(k − 1)(k − 2)(k − 3)wk−4

−ek(k − 1)(k − 3)(k − 4)wk−5

= wk−5(k − 1)
{
−w2(k + 4)(k − 2) + ek(k − 2)(k − 3)w − ek(k − 3)(k − 4)

}
> 0,

we conclude that Ak(w) > 0 for all w ∈ (1, 2], k = 2, 4, 5, 6, . . . and A3(w) > 0 for all w ∈
(1, 1.75]. This proves that A(w, σ) > 0 for all w ∈ (1, 1.75], σ > 0, and C(w, σ) > 0 for all 
w ∈ (1, 2], σ > 0. Hence, to complete the proof of the positivity of A(w, σ) for all σ > 0 and 
w ∈ (1, 2], it suffices to establish that B(w, σ) > 0 for all w ∈ [1.75, 2], σ > 0. Now, B(w, σ)

or, equivalently, 12A2(w) + 4A3(w)σ + A4(w)σ 2 will be positive for all σ > 0 and for some 
fixed w ∈ (1, 2] if the discriminant

D(w) = 16(A2
3(w) − 3A2(w)A4(w)) =

16(w − 1)2
(
(6e − 7w − 4)2 + 24(e − 2)(2w2 + (2 − 3e)w + 1)

)

will be negative for this value of w. Observe that D(w) is the product of two quadratic polynomi-
als so that it is immediate to see that D(w) < 0 for all w ∈ (1, 2]. In consequence, B(w, σ) > 0
for all w ∈ (1, 2] and σ > 0 and also A(w, σ) > 0.

Finally, the positivity of A(w, σ) assures that r = r(z) < r1(z) ≤ eh2 = l ≤ l. �
At the end of this section, for the reader’s convenience, we state one important theorem due 

to R. Nussbaum [34, Corollary 2]. This result was used in the proof of Theorem 4:

Proposition 22. Let τj (1 ≤ j ≤ m) be positive constants, and let g : C(m+1)n → Cn be an ana-
lytic mapping such that g

(
R(m+1)n

)⊂Rn. If y :R → Rn is a bounded, continuously differential 
mapping such that

y′(t) = g(y(t), y(t − τ1), . . . , y(t − τm))

for all t , then y has a complex analytic extension defined on a neighborhood of R.
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