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Abstract

This paper addresses a new class of optimal control problems for perturbed sweeping processes with 
measurable controls in additive perturbations of the dynamics and smooth controls in polyhedral moving 
sets. We develop a constructive discrete approximation procedure that allows us to strongly approximate any 
feasible trajectory of the controlled sweeping process by feasible discrete trajectories and also establish a 
W1,2-strong convergence of optimal trajectories for discretized control problems to a given local minimizer 
of the original continuous-time sweeping control problem of the Bolza type. Employing advanced tools 
of first-order and second-order variational analysis and generalized differentiation, we derive necessary 
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optimality conditions for discrete optimal solutions under fairly general assumptions formulated entirely in 
terms of the given data. The obtained results give us efficient suboptimality (“almost optimality”) conditions 
for the original sweeping control problem that are illustrated by a nontrivial numerical example.
© 2020 Elsevier Inc. All rights reserved.
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1. Problem formulation and initial discussions

This paper is devoted to the study of optimal control problems for sweeping processes with 
controlled perturbations and controlled moving sets. The basic uncontrolled sweeping process 
was introduced by Moreau in the 1970s as the dissipative differential inclusion

ẋ(t) ∈ −N
(
x(t);C(t)

)
a.e. t ∈ [0, T ] with x(0) := x0 ∈ C(0) (1.1)

describing the motion of a particle that belongs to a continuously moving set C(t), where the 
normal cone N in (1.1) is understood in the sense of convex analysis

N(x;C) = NC(x) := {v ∈Rn
∣∣ 〈v, y − x〉 ≤ 0, y ∈ C

}
if x ∈ C and N(x;C) := ∅ if x /∈ C.

(1.2)
The sweeping inclusion (1.1) tells us that, depending on the motion of the set, the particle stays 
where it is in the case when it does not hit the set; otherwise, it is swept towards the interior 
of the set. We refer the reader to [31] and to the subsequent work in, e.g., [1,4,17,18,23–26,38]
with the bibliographies therein for further developments and applications. The original motiva-
tion for Moreau came from applications to elastoplasticity, but later on the sweeping process and 
its modifications have been well recognized for many applications to other problems in mechan-
ics, hysteresis, ferromagnetism, electric circuits, phase transitions, traffic equilibria, social and 
economic modelings, etc.; see, e.g., the references above among numerous publications.

Since the Cauchy problem in (1.1) has a unique solution [31] under the absolute continuity 
of C(t), it does not make any sense to formulate optimization problems for the basic Moreau 
sweeping process. This is a striking difference between the discontinuous differential inclusion 
(1.1) and the ones ẋ(t) ∈ F(x(t)) described by Lipschitzian set-valued mappings/multifunctions 
F : Rn ⇒ Rn for which optimal control theory has been well developed; see, e.g., the books 
[11,28,39] for various methods and results on necessary optimality conditions.

It seems that optimal control problems for sweeping differential inclusions were first formu-
lated and studied in the case of control actions entering additive perturbations [21] for which 
existence and relaxation results, while not optimality conditions, were obtained; see [10,36,37]
for subsequent developments in this direction. To the best of our knowledge, the theory of neces-
sary optimality conditions for sweeping processes has been started with [12], where a new class 
of dynamic optimization problems with controlled moving sets C(t) = C(u(t)) in (1.1) was first 
formulated with deriving necessary optimality conditions in the case when C(u) is a half-space. 
Soon after that, necessary optimality conditions were obtained for another class of sweeping 
process without controlled in either moving sets or perturbations, but in a coupling linear ODE. 
2
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Further necessary optimality conditions and their applications for all the three types of controlled 
sweeping processes were developed in [2,3,6–9,13–16,19,22].

This paper concerns the following class of optimal control problems of the generalized 
Bolza type for the perturbed version of the sweeping process in (1.1). Given an extended 
real-valued terminal cost function ϕ : Rn → R := (−∞,∞] and a running cost function 
� : [0, T ] ×R2(n+nm+m)+d → R, our basic problem (P ) is defined by:

minimize J [x, a, b,u] := ϕ
(
x(T )

)+ T∫
0

�
(
t, x(t), a(t), b(t), u(t), ẋ(t), ȧ(t), ḃ(t)

)
dt (1.3)

over control actions a(·) = (a1(·), . . . , am(·)) ∈ W 1,2([0, T ]; Rmn) and b(·) = (b1(·), . . . ,
bm(·)) ∈ W 1,2([0, T ]; Rm) entering the moving set C(t) and measurable controls u(·) ∈
L2([0, T ]; Rd) entering additive perturbations that generate the corresponding trajectories 
x(·) ∈ W 1,2([0, T ]; Rn) of the sweeping differential inclusion{

ẋ(t) ∈ −N
(
x(t);C(t)

)+ g
(
x(t), u(t)

)
a.e. t ∈ [0, T ],

x(0) := x0 ∈ C(0), u(t) ∈ U a.e. t ∈ [0, T ], (1.4)

where the moving set is given in the polyhedral form as

C(t) := {x ∈ Rn
∣∣ 〈ai(t), x〉 ≤ bi(t), i = 1, . . . ,m

}
, (1.5)

and where the initial point x0 ∈ Rn and the final time T > 0 are fixed. All such quadruples 
(x(·), a(·), b(·), u(·)) for which the running cost �(·) is integrable are feasible solutions to prob-
lem (P ).

In addition to the above dynamical system (1.4) with the pointwise/hard constraints on the 
controls u(·) in perturbations, we impose the pointwise constraints on the controls ai(·) in the 
moving set:

‖ai(t)‖ = 1 for all t ∈ [0, T ] and i = 1, . . . ,m. (1.6)

Furthermore, problem (P ) also contains the implicit pointwise mixed state-control constraints

〈ai(t), x(t)〉 ≤ bi(t) for all t ∈ [0, T ] and i = 1, . . . ,m, (1.7)

which are due to construction (1.2) of the normal cone in (1.4).
Our approach to the dynamic optimization problem (P ) is based on the method of discrete ap-

proximation, which was developed in [27,28] for optimization of nonconvex and nonautonomous 
Lipschitzian differential inclusions; see also the references and commentaries therein. Refer-
ring to [27,28] for more details, we specially mention here the books [32] and [35], where 
the former addressed convex and convex-valued inclusions under restrictive assumptions, while 
the latter overcame these assumptions for convex-valued, autonomous, and uniformly bounded 
Lipschitzian inclusions. For the case of various versions of (highly non-Lipschitzian and un-
bounded) sweeping differential inclusions, significant modifications of the method of discrete 
approximations were given in [6–8,12–14,16,22] to handle various optimal control problems for 
3



JID:YJDEQ AID:10640 /FLA [m1+; v1.340] P.4 (1-49)

T.H. Cao, G. Colombo, B.S. Mordukhovich et al. Journal of Differential Equations ••• (••••) •••–•••
sweeping processes. There are four major steps in the realization of this approach to the study of 
continuous-time systems:

(i) Firstly, we construct a well-posed discrete approximation of the sweeping control system from 
(1.1), (1.5) in such a way that any feasible solution to the continuous-time sweeping inclusion 
can be appropriately approximated by feasible solutions to the discretized sweeping control sys-
tems. This step may be also considered from the numerical viewpoint as a finite-dimensional 
approximation of the discontinuous constrained differential inclusion.

(ii) The second approximation step is to construct, with the usage of (i), a sequence of discrete-
time optimal control problems (Pk), k ∈ IN := {1, 2, . . .}, for discretized sweeping inclusions 
such that the approximating problems admit optimal solutions whose continuous-time extensions 
strongly converge as k → ∞ in the requited topology to a chosen local minimizer of the original 
sweeping control problem (P ).

(iii) The next step is to derive necessary conditions that hold for optimal solutions of each 
discrete-time problem (Pk), which can be reduced to a finite-dimensional format of mathematical 
programming with increasingly many geometric constraints of the graphical type. To deal with 
such problems, we employ appropriate tools of first-order and second-order variational analysis
and generalized differentiation. Due to (ii), the obtained results can be viewed as constructive 
suboptimality (almost optimality) conditions for (P ) that practically provide, for large k ∈ IN , 
about the same amount of information as the exact optimality conditions for local minimizers of 
(P ).

(iv) The last step is highly challenging mathematically while being of undoubted importance. It 
furnishes the limiting procedure to pass from the necessary conditions for the optimal solutions of 
the discrete-time problems (Pk) obtained in (iii) to the exact necessary optimality conditions for 
the designated local minimizer of the original sweeping control problem (P ). This step strongly 
involves advanced calculus and computation results of variational analysis and generalized dif-
ferentiation, especially of the second order.

In this paper we comprehensively resolve the issues listed in steps (i)–(iii) for the general 
sweeping control problem (P ) formulated in (1.3)–(1.7) (which is certainly of its independent 
interest and own importance), while step (iv) is furnished in our forthcoming paper [5]. Note that 
some particular cases of problem (P ) were investigated by discrete approximation techniques in 
the papers [6,8,14,16] mentioned above, but the general setting of our consideration is signifi-
cantly more complicated and thus requires careful elaborations, which are provided in this paper 
and subsequently in [5].

The rest of the paper is organized as follows. In Section 2 we formulate the standing as-
sumptions on the given data of (P ) and present preliminary results on the well-posedness of the 
controlled sweeping process under consideration. Section 3 establishes the existence of optimal 
solutions to (P ) and discusses its relaxation stability. In Section 4 we construct a discrete ap-
proximation of the sweeping control system in (1.1), (1.5) that allows us to strongly approximate
any feasible solution to it by feasible solutions to its discrete counterparts. Section 5 develops the 
discrete approximation procedure at the level of optimality while leading us to the strong con-
vergence of optimal solutions for the discrete-time problems to the prescribed local minimizer
of (P ). In Section 6 we first review the tools of generalized differentiation needed for our vari-
ational analysis and then obtain second-order calculation formulas that are crucial for deriving 
necessary optimality conditions. Such conditions are obtained in Section 7 for the constructed 
4
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discrete approximation problems. Finally, we illustrate in Section 8 by a nontrivial example the 
efficiency of the obtained optimality conditions to solve sweeping control problems.

2. Standing assumptions and preliminaries

Throughout the entire paper we use standard notation of variational analysis and control the-
ory (see, e.g., [29,34,39]), except a few special symbols, which are defined where they appear.

In this section we present some results on well-posedness of the sweeping differential inclu-
sions in the aforementioned classes of feasible controls and formulate the standing assumptions 
on problem (P ) that allow us to establish further the main achievements of the paper.

Denoting by d(x; �) the distance between a given point x ∈Rn and a nonempty set � ⊂Rn, 
observe first that the conventional assumption on the moving set C(t) ensuring the existence 
of absolutely continuous solutions to the sweeping differential inclusion (1.4) is formulated as 
follows:

|d(x;C(t)
)− d

(
x;C(s)

)| ≤ |v(t) − v(s)| for all t, s ∈ [0, T ], (2.1)

where v : [0, T ] → R is an absolutely continuous function; see [17,25] and the references therein. 
However, assumption (2.1) is rather restrictive and may fail for polyhedral moving sets C(t) as 
in (1.5), even in the case of half-spaces. An improvement of (2.1) ensuring the existence of 
absolutely continuous solutions to (1.4) was obtained in [13] with the verification of the imposed 
assumption in the case of half-spaces C(t) in [13] and then for general convex polyhedral sets 
(1.5) in [14] under the linear independence constraint qualification (LICQ) meaning that the 
vectors {ai(t)} are linearly independent for all t ∈ [0, T ] along the active constraints. Following 
the approach of Tolstonogov [36], we derive below an advanced result on the existence and 
uniqueness of W 1,2 solutions to (1.4) with the polyhedral moving sets (1.5) generated by W 1,∞
controls (ai(t), bi(t)) and measurable controls u(t) under a major assumption that is significantly 
weaker than LICQ. This result justifies the well-posedness of the sweeping dynamical systems 
under consideration, which is required for the subsequent study of the optimal control problem 
(P ).

Now we formulate the standing assumptions of this paper that include those ensuring the 
existence of the aforementioned solutions to the sweeping system (1.4) and (1.5).

(H1) The control set U from (1.4) is closed and bounded in Rd .
(H2) The derivatives (ȧi(t), ḃi (t)) are uniformly bounded for all i = 1, . . . , m and a.e. t ∈

[0, T ] with the fixed initial points a0 := (a1(0), . . . , am(0)) and b0 := (b1(0), . . . , bm(0)).
(H3) The perturbation mapping g : Rn × Rd → Rn is uniformly Lipschitz continuous with 

respect to both variables x and u ∈ U , i.e., there exists L > 0 for which

‖g(x1, u1) − g(x2, u2)‖ ≤ L(‖x1 − x2‖ + ‖u1 − u2‖) for all (x1, u1) and (x2, u2) ∈ Rn × U.

(2.2)
Furthermore, g satisfies the sublinear growth condition

‖g(x,u)‖ ≤ M (1 + ‖x‖) for all u ∈ U with some M > 0.
5
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(H4) There exists a continuous function ϑ : [0, T ] → R for which sup
t∈[0,T ]

ϑ(t) < 0 and

C0(t) := {x ∈ Rn
∣∣ 〈ai(t), x〉 − bi(t) < ϑ(t), i = 1, . . . ,m

} �= ∅ for all t ∈ [0, T ]. (2.3)

(H5) The terminal cost ϕ : Rn →R is lower semicontinuous (l.s.c.), while the running cost/in-
tegrand �(t, ·) : R2(n+nm+m)+d → R̄ is bounded from below and l.s.c. for a.e. t ∈ [0, T ] around 
the reference feasible solution to (P ). Further, � is a.e. continuous in t and is uniformly majorized 
by a summable function on [0, T ].

Before presenting the aforementioned well-posedness (existence and uniqueness) theorem 
for the sweeping process in (1.4) and (1.5), we discuss the imposed condition (2.3) in (H4). 
Recall that the positive linear independence constraint qualification (PLICQ) condition holds at 
x ∈ C(t) if⎡⎣ ∑

i∈I (x,a(t),b(t))

αiai(t) = 0, αi ≥ 0

⎤⎦=⇒ [
αi = 0 for all i ∈ I

(
x, a(t), b(t)

)]
, (2.4)

where the set of active constraint indices for (1.5) is defined by

I
(
x, a(t), b(t)

) := {i ∈ {1, . . . ,m}∣∣ 〈ai(t), x〉 = bi(t)
}
, t ∈ [0, T ]. (2.5)

The essentially more restrictive linear independence constraint qualification (LICQ) condition 
at x ∈ C(t) used in [14] reads as (2.4) with the replacement of αi ≥ 0 by αi ∈R therein.

It is easy to see the Slater-type condition (2.3) reduces to PLICQ if the polyhedron (1.5) does 
not depend on t , which is the case considered in [16]. In the general nonautonomous case, (2.3)
may be stronger than PLICQ (2.4) while being always weaker than its LICQ counterpart. Note 
also that in our setting, (2.4) corresponds to the Mangasarian-Fromovitz constraint qualifica-
tion, which is classical in nonlinear programming. Furthermore, imposing PLICQ at x ∈ C(t) is 
equivalent to the so-called inverse triangle inequality at this point defined by

∑
i∈I (x,a(t),b(t))

λi ‖ai(t)‖ ≤ γ

∥∥∥∥∥∥
∑

i∈I (x,a(t),b(t))

λiai(t)

∥∥∥∥∥∥ for all λi ≥ 0 (2.6)

with some constant γ > 0 depending on t ; see [38] for more discussions.
We claim now that γ can be chosen uniformly on [0, T ], i.e., that there exists a constant γ > 0

such that (2.6) holds for all t ∈ [0, T ] simultaneously. Indeed, assuming the contrary gives us 
sequences {tk} from [0, T ] and of nonnegative numbers {λk

i } such that

∑
i∈I (a(tk),b(tk))

λk
i ‖ai(t

k)‖ ≥ k

∥∥∥∥ ∑
i∈I (a(tk),b(tk))

λk
i ai(t

k)

∥∥∥∥ for all k ∈ IN. (2.7)

Since the above inequality is positively homogeneous of degree one with respect to the variables 
λi , we suppose without loss of generality that for each k the largest among numbers λk

i is 1. 
It easily follows from (2.7) and the structures of the active index sets (2.5) generated by the 
6
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continuous functions ai(t) and bi(t) that there exist subsequences (with no relabeling) tk → t̄

and λk
i → λ̄i ≥ 0, not all zero, such that

∥∥∥∥ ∑
i∈I (a(t̄),b(t̄))

λ̄iai(t̄ )

∥∥∥∥= 0,

which clearly contradicts the imposed PLICQ and thus verifies the claim.
Now we are ready to present the aforementioned well-posedness result for the sweeping sys-

tem (1.4), (1.5).

Theorem 2.1 (well-posedness of the controlled sweeping process). Let all the assumptions in
(H1)–(H4) be satisfied, and let (a(·), b(·)) ∈ W 1,2([0, T ]; Rmn ×Rm) and u(·) ∈ L2([0, T ]; Rd)

be fixed control actions in (1.4) and (1.5). Then the sweeping differential inclusion (1.4) admits 
the unique solution x(·) ∈ W 1,2([0, T ]; Rn) generated by the control triple (a(·), b(·), u(·)).

Proof. Following [36], it is said that a set-valued mapping C : [0, T ] → Rn is r-uniformly lower 
semicontinuous from the right, if there exists a function vr(·) ∈ W 1,2([0, T ]; Rn) such that for 
any s, t ∈ [0, T ] with s ≤ t , and any x ∈Rn with ‖x‖ ≤ r we have the inequality

d
(
x;C(t)

)≤ d
(
x;C(s)

)+ |vr(t) − vr(s)|.

Let us show that assumption (H4) implies that the polyhedral mapping C(·) defined in (1.5) is 
r-uniformly lower semicontinuous from the right. To proceed, define the function φ : [0, T ] ×
Rn →R by

φ(t, x) := max
1≤i≤m

{ 〈ai(t), x〉 − bi(t)
}
, t ∈ [0, T ], x ∈ Rn, (2.8)

which gives us the representation C(t) = {x ∈Rn| φ(t, x) ≤ 0} of the set C(t) from (1.5) for each 
x ∈Rn. Let us show that function (2.8) satisfies the hypothesis H(φ) formulated in [36, p. 297]. 
Indeed, the convexity of x �→ φ(t, x) and estimates in [36, (4.2)] imposed in H(φ) follow directly 
from the construction of φ. Furthermore, we deduce from (2.3) that the required condition [36, 
(2)] in H(φ) is also satisfied. To verify H(φ), it remains checking the validity of [36, (4.1)]. Since 
bi(·) ∈ W 1,2([0, T ]; R), we clearly have that max

1≤i≤m
max

t∈[0,T ] |bi(t)| < ∞. Moreover, it follows from 

(2.8) for all x ∈Rn for which ‖x‖ ≤ r and all t, s ∈ [0, T ] that

|φ(t, x) − φ(s, x)| ≤ max
1≤i≤m

‖ai(t) − ai(s)‖ · ‖x‖ + max
1≤i≤m

|bi(t) − bi(s)|.

The assumption (H2) implies ai(·) is Lipschitz continuous on [0, T ] with Lipschitz constant La
i . 

As a consequence,

|φ(t, x) − φ(s, x)| ≤ max
1≤i≤m

La
i |t − s|r + max

1≤i≤m
|bi(t) − bi(s)|.

Denote further
7
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ξr (t) :=
t∫

0

(
r max

1≤i≤m
La

i + max
1≤i≤m

|ḃi (τ )|
)

dτ, r ≥ 0.

Then ξr(·) ∈ W 1,2([0, T ]; R) for all r ≥ 0 and

|φ(t, x) − φ(s, x)| ≤ |ξr (t) − ξr (s)| whenever ‖x‖ ≤ r, t, s ∈ [0, T ],

which completes the verification of all the assumptions in H(φ) of [36]. Employing now [36, 
Theorem 4.1] verifies that our polyhedral mapping C(·) is r-uniformly lower semicontinuous 
from the right on [0, T ]. Finally, the existence and uniqueness result claimed in the theorem 
follow from [36, Lemma 3.1 and Theorem 4.1]. �
3. Existence of optimal solutions and relaxation

This section addresses the existence issue for (global) optimal solutions to the sweeping con-
trol problem (P ). Then we define an appropriate notion of local minimizers to (P ) and discuss 
its relaxed counterpart.

Before establishing the existence of optimal solutions to (P ) in the aforementioned class 
of feasible solutions, let us reformulate the sweeping differential inclusion (1.4) in a more 
convenient way. Consider the image of the control set U under the perturbation mapping 
g : Rn ×Rd →Rm defined by

g(x,U) := {v ∈ Rm
∣∣ v = g(x,u) for some u ∈ U

}
, x ∈Rn.

Then the sweeping inclusion (1.4) with the moving set (1.5) is equivalently represented as

−ẋ(t) ∈ N
(
x(t);C(t)

)− g
(
x(t),U

)
a.e. t ∈ [0, T ], x0 ∈ C(0). (3.1)

To elaborate more rigorously upon this statement, we need to use standard facts of the the-
ory of measurable multifunctions; see, e.g., [34, Chapter 14]. Recall that the measurability of 
a closed-valued multifunction S : [0, T ] ⇒ Rn can be described as follows (see [34, Theo-
rem 14.10(b)]): For every ε > 0 there is a closed set Tε ⊂ [0, T ] with mes([0, T ] \ Tε) < ε such 
that S : Tε ⇒Rn is of closed graph. Fix any x(·) ∈ W 1,2([0, T ]; Rn) satisfying (3.1) with some 
(a(·), b(·)) from (1.5) and define the closed-valued mapping S : [0, T ] ⇒Rn by

S(t) :=
{
u ∈ U

∣∣∣− ẋ(t) ∈ N
(
x(t);C(t)

)− g
(
x(t), u

))
a.e. t ∈ [0, T ]. (3.2)

Applying to −ẋ(·) the classical Luzin property of measurable functions in real analysis, for any 
ε > 0 we find a closed set Tε ⊂ [0, T ] with mes([0, T ] \ Tε) < ε for its Lebesgue measure such 
that −ẋ(·) is continuous on Tε . Using the assumed continuity of g(x, u) together with the closed-
graph property of the normal cone mapping in (3.2) with C(t) taken from (1.5) shows that the 
graph of the mapping S : Tε ⇒ Rn from (3.2) is closed. It tells us that the full mapping S(·)
defined in (3.2) for a.e. t ∈ [0, T ] is measurable on [0, T ]. Employing the measurable selection 
theorem from [34, Corollary 14.6] ensures the existence of a measurable control u(t) ∈ U such 
that the pair (x(·), u(·)) together with the corresponding (a(·), b(·)) generated the moving set 
8
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C(t) in (1.5) is feasible to (1.4). The converse implication from (1.4) to (3.1) is obvious, and 
hence we verify the claimed equivalence.

Now we are ready to obtain the existence theorem for optimal solutions to (P ) under certain 
additional convexity assumptions with respect to velocities. For simplicity we suppose here that 
the integrand � does not depend on the control variable u. If it does, we have to impose the 
convexity of an extended velocity set that includes the integrand component.

Theorem 3.1 (existence of optimal solutions to controlled sweeping processes). Let (P ) be the 
optimal control problem formulated in Section 1 with the equivalent form (3.1) of the sweeping 
differential inclusion over all the W 1,2([0, T ]; Rn) × W 1,2([0, T ]; Rmn) × W 1,2([0, T ]; Rm) ×
L2([0, T ]; Rd) quadruples (x(·), a(·), b(·), u(·)). In addition to the standing assumptions
(H1)–(H5), suppose that the integrand � in (1.3) does not depend on the u-variable while be-
ing convex with respect to the velocity variables (ẋ, ȧ, ḃ). Suppose furthermore that along a 
minimizing sequence of 

(
xk(·), ak(·), bk(·), uk(·)) as k ∈ IN we have that �(t, ·) is majorized by 

a summable function, that {(xk(·), ak(·), bk(·))} is bounded in W 1,2([0, T ]; Rn × Rmn × Rm), 
and that the set g(xk(t); U) is convex for all t ∈ [0, T ]. Then (P ) admits an optimal solution in 
W 1,2([0, T ]; Rn+mn+m) × L2([0, T ]; Rd).

Proof. Since the set of feasible solutions to problem (P ) is nonempty by Theorem 2.1, 
we can take the minimizing sequence of quadruples (xk(·), ak(·), bk(·), uk(·)) in (P ) from 
the formulation of the theorem. It follows from the boundedness of {xk(·), (ak(·), bk(·))} in 
W 1,2([0, T ]; Rn × Rmn × Rm) and the weak compactness of the dual ball in L2([0, T ]; Rn ×
Rmn × Rm) that ẋk(·) → vx(·), ȧk(·) → va(·), and ḃk(·) → vb(·) weakly in L2([0, T ]; Rn), 
L2([0, T ]; Rmn), and L2([0, T ]; Rm) along subsequences (without relabeling) for some func-
tions vx(·), va(·), and vb(·) from the corresponding spaces. Employing Mazur’s weak closure 
theorem, we conclude that there are sequences of convex combinations of ẋk(·), ȧk(·), and 
ḃk(·), which strongly converge in the corresponding spaces to vx(·), va(·), and vb(·), respec-
tively. Furthermore, standard real analysis tells us that there exists a subsequence of these 
convex combinations (no relabeling again), which converges to (vx(·), va(·), vb(·) as k → ∞
a.e. pointwise on [0, T ]. Define now x̄(·) ∈ W 1,2([0, T ]; Rn), ā(·) ∈ W 1,2([0, T ]; Rmn), and 
b̄(·) ∈ W 1,2([0, T ]; Rm) by

x̄(t) := x0 +
t∫

0

va(s)ds, ā(t) := a0 +
t∫

0

va(s)ds, and b̄(t) := b0 +
t∫

0

vb(s)ds, t ∈ [0, T ],

and observe that they satisfy the pointwise constraints in (1.6) and (1.7). Furthermore, it follows 
from the closedness and convexity of the normal cone (1.2) to the moving convex polyhedral 
set C(t) in (1.5) and the assumed convexity of the compact sets g(xk(t), U) on [0, T ] that the 
right-hand site velocity set in (3.6) is convex along the selected minimizing sequence, and we 
have

˙̄x(t) ∈ −N
(
x̄(t);C(t)

)+ g
(
x̄(t),U

)
a.e. t ∈ [0, T ], x̄(0) = x0 ∈ C(0)

for the limiting trajectory x̄(·) with x̄(t) ∈ C(t) := {x ∈ Rn| 〈āi (t), x〉 ≤ b̄i (t), i = 1, . . . , m} on 
[0, T ]. Employing now the aforementioned measurable selection allows us to find a measurable 
control ū(·) such that ū(t) ∈ U and
9
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˙̄x(t) ∈ −N
(
x̄(t);C(t)

)+ g
(
x̄(t), ū(t)

)
a.e. t ∈ [0, T ].

It remains to show that the limiting quadruple (x̄(·), ā(·), b̄(·), ū(·)), which is proved to be feasi-
ble for (P ), is an optimal solution to this problem. This is a consequence of the inequality

J [x̄, ā, b̄, ū] ≤ lim inf
k→∞ J [xk, ak, bk, uk] (3.3)

for the cost functional (1.3). To verify (3.3), we use the assumptions in (H5) ensuring the appli-
cation of the Lebesgue dominated convergence theorem together with the imposed convexity of 
integrand with respect to (ẋ, ȧ, ḃ). This allows us to apply the classical lower semicontinuity re-
sult for integral functionals with respect to the weak topology in L2. Observe that there is no need 
to care about the convergence with respect to u-controls in our setting due to the independence 
of the integrand � on the u-component. Thus the proof is complete. �

Justifying the existence of global optimal solutions to the controlled sweeping process un-
der (P ), recall that our goal is the derivation of necessary optimality conditions for suitable 
local minimizers of (P ) by employing the method of discrete approximations. An appropriate 
concept from this viewpoint goes back to intermediate local minimizers introduced in [27] for 
Lipschitzian differential inclusions that occupies an intermediate position between the conven-
tional notions of weak and strong minimizers in dynamic optimization while covering the latter; 
see the books [28,39] and the references therein for more details on this notion for Lipschitzian 
inclusions. In the case of our problem (P ), a natural implementation of this concept reads as 
follows.

Definition 3.2 (intermediate local minimizers for sweeping optimal control). Let (x̄(·), ā(·), b̄(·),
ū(·)) be a feasible solution to problem (P ) under the standing assumptions made. We say 
that (x̄(·), ā(·), b̄(·), ū(·)) is an INTERMEDIATE LOCAL MINIMIZER (i.l.m.) for (P ) if (x̄(·),
ā(·), b̄(·), ū(·)) ∈ W 1,2([0, T ]; Rn) × W 1,2([0, T ]; Rmn) × W 1,2([0, T ]; Rm) × L2([0, T ]; Rd)

and there exists ε > 0 such that

J [x̄, ā, b̄, ū] ≤ J [x, a, b,u]

for any feasible solutions (x(·), a(·), b(·), u(·)) to (P ) satisfying∥∥x(·) − x̄(·)∥∥
W 1,2 + ∥∥(a(·), b(·))− (ā(·), b̄(·))∥∥

W 1,2 + ‖u(·) − ū(·)‖L2 ≤ ε. (3.4)

If the term ‖x(·) − x̄(·)‖W 1,2 in (3.4) is replaced by ‖x(·) − x̄(·)‖C , the norm in the space of 
continuous functions C([0, T ]; Rn), we speak about strong local minimizers for (P ). It is clear 
that any strong local minimizer for (P ) is an intermediate one, but not vice versa as can be 
confirmed by examples.

To implement our approach to study local minimizers of (P ), we need a certain relaxation sta-
bility of the i.l.m. under consideration. The idea of relaxation of variational problems, related to 
convexification with respect to derivative variables, goes back to Bogolyubov and Young for the 
classical calculus of variations and to Gamkrelidze and Warga for optimal control problems gov-
erned by ordinary differential equations; see, e.g., the books [28,39] for more discussions and 
references, where relaxation of control problems for Lipschitzian differential inclusions were 
10
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also investigated and discussed in detail. Relaxation results for non-Lipschitzian differential in-
clusions were more recently developed in [20,21,37].

To proceed in the case of our optimal control problem (P ), consider vectors x := (x1, . . . ,
xn) ∈ Rn, a := (a1, . . . , am) ∈ Rmn, b := (b1, . . . , bm) ∈ Rm, and u := (u1, . . . , ud) ∈ Rd , and 
then define the set-valued mapping F : Rn ×Rmn ×Rm ×Rd ⇒Rn by

F(x, a, b,u) := N
(
x;C(a, b)

)− g(x,u), (3.5)

where N(x; C(a, b)) is taken from in (1.2), and where C(a, b) := {x ∈ Rn | 〈ai, x〉 ≤ bi, i = 1,

. . . , m}. It is not hard to see that F admits the following explicit representation:

F(x, a, b,u) =
{ ∑

i∈I (x,a,b)

ηiai

∣∣∣ ηi ≥ 0
}

− g(x,u) (3.6)

via the active index set (2.5) at x ∈ C(a, b). Let �F (t, a, b, u, ẋ, ȧ, ḃ) be the restriction of the 
integral � on the set F(x, a, b, u) with �F (t, a, b, u, ẋ, ȧ, ḃ) := ∞ if ẋ /∈ F(x, a, b, u). Denoting 
by �̂F the convexification of the integrand (i.e., the largest l.s.c. convex function majorized by 
�(t, x, a, b, ·, ·, ·, ·)) with respect to the velocity variables (ẋ, ȧ, ḃ) as well as to the control u on 
the convex hull coU , define the relaxed optimal control problem (R) by:

minimize Ĵ [x, a, b,u] := ϕ
(
x(T )

)+ T∫
0

�̂F

(
t, x(t), a(t), b(t), u(t), ẋ(t), ȧ(t), ḃ(t)

)
dt (3.7)

over quadruples (x(·), a(·), b(·), u(·)) ∈ W 1,2([0, T ]; Rn) × W 1,2([0, T ]; Rmn) × W 1,2([0, T ];
Rm) × L2([0, T ]; Rd) satisfying (1.6) and giving a finite value of the extended running cost in 
(3.7). All such quadruples are said to be feasible to (R). It follows from (3.7) and the construction 
of �̂F with F taken from (3.5) that u(t) ∈ coU for a.e. t ∈ [0, T ], and that x(·) is a trajectory of 
the convexified differential inclusion

−ẋ(t) ∈ N
(
x(t);C(t)

)− cog
(
x(t),U

)
a.e. t ∈ [0, T ], x0 ∈ C(0) (3.8)

with 〈ai(t), x(t)〉 ≤ bi(t) for i = 1, . . . , m and all t ∈ [0, T ]. The precise justification of this is 
similar to that given above for (3.1) being based on measurable selections.

Now we introduce a new notion of relaxed intermediate local minimizers for (P ); cf. [27]
for Lipschitzian differential inclusions and [16] for a version of problem (P ) with � ≡ 0 and an 
uncontrolled polyhedron C(t) ≡ C.

Definition 3.3 (relaxed intermediate local minimizers). We say that (x̄(·), ā(·), b̄(·), ū(·)) is a
RELAXED INTERMEDIATE LOCAL MINIMIZER (r.i.l.m.) for problem (P ) if it is feasible for (P )

and there exists ε > 0 such that

J [x̄, ā, b̄, ū] = Ĵ [x̄, ā, b̄, ū] ≤ Ĵ [x, a, b,u]

whenever a feasible quadruple (x(·), a(·), b(·), u(·)) for (R) satisfies (3.4).
11
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It follows from Definitions 3.2 and 3.3 in view of the constructions in (3.7) and (3.8) that any 
i.l.m. of (P ) is also its r.i.l.m. provided that the sets U and g(x(t); U) are convex and the inte-
grand �(t, x(t), a(t), b(t), ·, ·, ·, ·) is convex along feasible solutions to (P ). The well-recognized 
beauty of relaxation procedures in variational and control problems is that they keep global or 
local optimal values of cost functionals under relaxation in important situations without any 
convexity assumptions. It is strongly related to deep measure-theoretical results of the Lyapunov-
Aumann type ensuring the automatic convexity of integrals of arbitrary set-valued mappings over 
nonatomic measures. In particular, it has been realized in this way that every strong local mini-
mizer in control problems for Lipschitzian differential inclusions with no constraint of right ends 
of trajectories is always a relaxed one; see, e.g., [28,39]. Similar results for controlled sweep-
ing processes of different types were obtained in [21, Theorem 2] and [37, Theorem 4.2]. We 
conjecture that modifying the proofs of the aforementioned theorems lead us to the fact that any 
strong local minimizer of the nonconvex sweeping control problem (P ) is a relaxed strong lo-
cal minimizer of this problem under the imposed standing assumptions in (H1)–(H5) with the 
replacement of the lower semicontinuity of ϕ and � in (H5) by their continuity.

4. Strong discrete approximation of feasible solutions

In this section we start our detailed development of the method of discrete approximations to 
study the sweeping optimal control problem (P ) formulated in Section 1. In fact, this section does 
not concern the optimization part of (P ) while dealing only with constructive approximations of 
feasible solutions. Our main goal here is to show that the standing assumptions imposed al-
low us to strongly approximate any feasible solution to (P ) by feasible solutions to discrete-time 
problems extended to the continuous-time interval. The result established below significantly im-
proves similar ones obtained in [6,8,14] for particular types of sweeping control problems, and so 
its proof is more involved in comparison with those given in [6,8,14]. Note that another discrete 
approximation scheme was developed in [16] for problem (P ) with � ≡ 0 and an uncontrolled 
polyhedral convex set C(t) ≡ C.

To proceed, for each k ∈ IN define the discrete partition of [0, T ] by

�k :=
{

0 = tk0 < tk1 < . . . < tkν(k)−1 < tkν(k) = T
}

with hk
j := tkj+1 − tkj ≤ ν̃

ν(k)
for j = 0, . . . , ν(k) − 1,

(4.1)

where ν = ν(k) ≥ k, and where ̃ν > 0 is some constant.
Here is a major approximation result, which is of its own interest (also from a numerical view-

point), while being important for the further developments of this paper and its continuation in 
[5]. In this and subsequent theorems we add to our assumptions the bounded variation require-
ment on the reference control and velocities, which is a natural and not restrictive assumption to 
get the strong convergence of discrete approximations. Recall that the mapping F used below is 
defined in (3.5).

Theorem 4.1 (strong discrete approximation of feasible sweeping solutions). Under the standing 
assumptions in (H1)–(H4), fix any feasible solution (x̄(·), ā(·), b̄(·), ū(·)) to (P ) such that the 
functions ˙̄x(·), ˙̄a(·), ˙̄b(·) and ū(·) are of bounded variation on [0, T ], i.e.,
12
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max
{

var
( ˙̄x(·); [0, T ]),var

( ˙̄a(·); [0, T ]),var
( ˙̄b(·); [0, T ]),var

(
ū(·); [0, T ])}≤ K (4.2)

for some constant K > 0. Then there exist partitions �k , k ∈ IN , together with sequences of 
piecewise linear functions (xk(t), ak(t), bk(t)) and piecewise constant functions uk(·) on [0, T ], 
as well as a sequence of positive numbers δk ↓ 0 such that (xk(0), ak(0), bk(0)) = (x0, a0, b0)

for all k ∈ IN , and we have the relationships:

1 − δk ≤
∥∥∥ak

i (t
k
j )

∥∥∥≤ 1 + δk for all tkj ∈ �k, i = 1, . . . ,m, (4.3)

xk(t) = xk(tkj ) + (t − tkj )vk
j , tkj ≤ t ≤ tkj+1 with − vk

j ∈ F
(
xk(tkj ), ak(tkj ), bk(tkj ), uk(tkj )

)
for j = 0, . . . , ν(k) − 1 together with the convergence 

{
(xk(·), ak(·), bk(·))}→ (x̄(·), ā(·), b̄(·))

in the W 1,2-norm topology on [0, T ], and 
{
uk(·)}→ ū(·) in the L2-norm topology on [0, T ] as 

k → ∞.

Proof. We split the proof into the following six major steps. To begin with the proof, observe 
that due to (4.2) the functions ˙̄x, ˙̄a, ˙̄b and ū are defined everywhere.

Step 1: Constructing 
(
uk(·), ak(·)) to approximate (ū(·), ā(·)). Since step functions are dense 

in L2[0, T ], there are sequences of step functions 
{
uk(·)}= {(uk

1(·), . . . , uk
d(·))} and 

{
αk(·)}={(

αk
1(·), . . . , αk

m(·))} with

μk := max

⎧⎨⎩
T∫

0

∥∥∥uk(t) − ū(t)

∥∥∥2
dt,

T∫
0

∥∥∥αk(t) − ˙̄a(t)

∥∥∥2
dt

⎫⎬⎭→ 0 as k → ∞. (4.4)

Furthermore, for each k ∈ IN we find a partition �k of the interval [0, T ] from (4.1) for which 
the step functions 

{
uk(·)} and 

{
αk(·)} are constant on [tj , tj+1) for j = 0, . . . , ν(k) − 1. This 

gives us the strong convergence of 
{(

uk(·), αk(·))} to (ū(·), α(·)) in L2([0, T ]), where α(t) :=
˙̄a(t) for a.e. t ∈ [0, T ]. Since the intervals (tj , tj+1) are not prescribed a priori and since x̄(·)
is a Carathéodory solution to (3.1), up to possibly increasing the number of intervals of the 
partition, we suppose without loss of generality that the differential inclusion (3.1) is satisfied at 
all endpoints of �k that are contained in the open interval (0, T ). Next we define the functions 
ak(·) by

ak(t) := a0 +
t∫

0

αk(s)ds, t ∈ [0, T ]. (4.5)

It tells us that each ak(·) is piecewise linear on [0, T ], since its derivative ȧk(·) = αk(·) is piece-
wise constant on [0, T ]. By (4.4) we have the strong convergence in L2([0, T ]) of 

{
ȧk(·)} to 

˙̄a(·). Moreover, it follows from (4.5) and the classical Hölder inequality that

∣∣∣ak
ip(t) − āip(t)

∣∣∣2 =
∣∣∣∣∣∣

t∫ [
αk

ip(s) − ᾱip(s)
]
ds

∣∣∣∣∣∣
2

≤
⎡⎣ T∫ ∣∣∣αk

ip(s) − ᾱip(s)

∣∣∣2 ds

⎤⎦T ≤ μkT (4.6)
0 0

13
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for all t ∈ [0, T ], i = 1, . . . , m, and each component index p = 1, . . . , n. Hence the sequence of 
functions ak(·) converges strongly to ā(·) in W 1,2([0, T ]) and satisfies the estimates in (4.3) with

δk :=√nμkT . (4.7)

Step 2: Constructing 
(
xk(·), bk(·)) to approximate 

(
x̄(·), b̄(·)). While proceeding recurrently, fix 

any j ∈ {0, . . . , ν(k) − 1}, suppose that the pairs (xk
j , bk

j ) are known for all indexes 0, . . . , j , and 

then construct the pair (xk
j+1, b

k
j+1). Define the numbers

bk
ij :=

〈
ak
i (tj ), x

k
j

〉
+ b̄i (tj ) − 〈āi (tj ), x̄(tj )

〉
for all i = 1, . . . ,m, (4.8)

bk
i (0) := bi0, and bk

i (t) := bk
ij + t − tj

hk
j

(
bk
i,j+1 − bk

ij

)
for all t ∈ [tj , tj+1] and i = 1, . . . ,m.

(4.9)

It gives us bk
ij −

〈
ak
i (tj ), x

k
j

〉
= b̄i (tj ) −

〈
āi (tj ), x̄(tj )

〉
, and hence

I (xk
j , ak(tj ), b

k
j ) = I

(
x̄(tj ), ā(tj ), b̄(tj )

)
for all j = 0, . . . , ν(k). (4.10)

It follows from the fulfillment of − ˙̄x(t) ∈ F(x̄(t), ā(t), b̄(t), ū(t)) for a.e. t ∈ [0, T ] including 
the mesh points of �k with F given in (3.5), the measurability of the set-valued mapping t �→
F(x̄(t), ā(t), b̄(t), ū(t)) on [0, T ] due to [34, Theorem 14.26] with the representation of F in 
(3.6), and the measurable selection result from [34, Corollary 14.6] that there exist nonnegative 
measurable functions ηi(·) on [0, T ] as i = 1, . . . , m ensuring the equality

− ˙̄x(t) =
∑

i∈I (x̄(t),ā(t),b̄(t))

ηi(t)āi (t) − g(x̄(t), ū(t)) for a.e. t ∈ [0, T ].

Define now the vectors vk
j for all indices j = 0, . . . , ν(k) by

−vk
j :=

∑
i∈I (x̄(tj ),ā(tj ),b̄(tj ))

ηi(tj )a
k
i (tj ) − g

(
xk
j , uk(tj )

)
=

∑
i∈I (xk

j ,ak(tj ),bk
j )

ηi(tj )a
k
i (tj ) − g

(
xk
j , uk(tj )

)
,

(4.11)

where the second equality comes from (4.10). Note that, since the BV functions − ˙̄x(t) and ū(t)

are defined everywhere on [0, T ], the usage of the pointwise PLICQ condition coming from 
(H4) justifies that ηi(tj ) ≥ 0 in (4.11) are well-defined. It is obvious furthermore that −vk

j ∈
F(xk

j , ak(tj ), bk(tj ), uk(tj )) for such indices j . Using again the BV property of ˙̄x(t), we have 
by (4.2) that

∥∥ ˙̄x(t) − ˙̄x(0)
∥∥≤ ∥∥ ˙̄x(t) − ˙̄x(0)

∥∥+ ∥∥ ˙̄x(T ) − ˙̄x(t)
∥∥≤ var

( ˙̄x(·); [0, T ])≤ K,
14
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which in turn yields the estimate

∥∥ ˙̄x(t)
∥∥≤ ∥∥ ˙̄x(0)

∥∥+ K := Mx
1

for a.e. t ∈ [0, T ] including the mesh points of �k . Using the inverse triangle inequality (2.6)
implies that

ηi(t) = ηi(t)‖āi (t)‖ ≤
∑

i∈I (x̄(t),ā(t),b̄(t))

ηi(t)‖āi (t)‖ ≤ γ

∥∥∥∥∥∥
∑

i∈I (x̄(t),ā(t),b̄(t))

ηi(t)āi (t)

∥∥∥∥∥∥
≤ γ

∥∥ ˙̄x(t)
∥∥+ γ

∥∥g(x̄(t), ū(t)
)∥∥≤ γMx

1 + γM (1 + ‖x̄(t)‖)

≤ γMx
1 + γM

(
1 + max

t∈[0,T ] ‖x̄(t)‖
)

=: Mx
2

for a.e. t ∈ [0, T ] and for all i ∈ I (x̄(t), ā(t), b̄(t)), where γ > 0 can be chosen independently of 
t ∈ [0, T ] as proved in Section 2. By (2.2) it yields the estimates

∥∥∥vk
j − ˙̄x(tj )

∥∥∥≤
∑

i∈I (x̄(tj ),ā(tj ),b̄(tj ))

ηi(tj )

∥∥∥āi (tj ) − ak
i (tj )

∥∥∥+
∥∥∥g(x̄(tj ), ū(tj )

)− g
(
xk
j , uk(tj )

)∥∥∥
≤ Mx

2

m∑
i=1

∥∥∥āi (tj ) − ak
i (tj )

∥∥∥+ L
(∥∥∥x̄(tj ) − xk

j

∥∥∥+
∥∥∥ū(tj ) − uk(tj )

∥∥∥) .

(4.12)
Letting now xk

j+1 := xk
j + hk

j v
k
j , we define the arcs xk(t) on [0, T ]

xk(t) := xk
j + t − tj

hk
j

(
xk
j+1 − xk

j

)
= xk

j + (t − tj )v
k
j , for t ∈ [tj , tj+1] (4.13)

and thus complete the construction of the pairs 
(
xk(·), bk(·)) in this step.

Step 3: Estimates for trajectories. Having in mind the subsequent proof of the strong W 1,2-
convergence of discrete trajectories, we first derive the uniform estimates of the distance of the 
approximating discrete trajectories from the given one for (1.4). Similarly to ᾱ(t) above, denote 
β̄(t) := ˙̄b(t) on [0, T ] and then for each index j = 0, . . . , ν(k) − 1 and i = 1, . . . , m consider the 
functions on [tj , tj+1) defined by

f x
j (s) := ∥∥ ˙̄x(tj ) − ˙̄x(s)

∥∥ , f u
j (s) := ∥∥ū(tj ) − ū(s)

∥∥ , f a
ij (s) := ∥∥ᾱi(tj ) − ᾱi(s)

∥∥ ,

f b
ij (s) := ∥∥β̄i (tj ) − β̄i (s)

∥∥
and then select sx, su, sa , sb from the subintervals [tj , tj+1) such that
j j ij ij

15
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
s∈[tj ,tj+1]

f x
j (s) ≤

∥∥∥ ˙̄x(tj ) − ˙̄x(sx
j )

∥∥∥+ 2−k,

sup
s∈[tj ,tj+1]

f u
j (s) ≤

∥∥∥ū(tj ) − ū(su
j )

∥∥∥+ 2−k,

sup
s∈[tj ,tj+1]

f a
ij (s) ≤

∥∥∥ᾱ(tj ) − ᾱ(sa
ij )

∥∥∥+ 2−k,

sup
s∈[tj ,tj+1]

f b
ij (s) ≤

∣∣∣β̄(tj ) − β̄(sb
ij )

∣∣∣+ 2−k.

(4.14)

With hk := max
0≤j≤ν(k)−1

{hk
j }, we get from the above the following relationships:

∥∥∥xk
j+1 − x̄(tj+1)

∥∥∥=

∥∥∥∥∥∥∥xk
j + hk

j v
k
j − x̄(tj ) −

tj+1∫
tj

˙̄x(s)ds

∥∥∥∥∥∥∥≤
∥∥∥xk

j − x̄(tj )

∥∥∥+
tj+1∫
tj

∥∥∥vk
j − ˙̄x(s)

∥∥∥ds

≤
∥∥∥xk

j − x̄(tj )

∥∥∥+
tj+1∫
tj

∥∥∥vk
j − ˙̄x(tj )

∥∥∥ds +
tj+1∫
tj

∥∥ ˙̄x(tj ) − ˙̄x(s)
∥∥ds

≤
∥∥∥xk

j − x̄(tj )

∥∥∥+ hk
jL
(∥∥∥xk

j − x̄(tj )

∥∥∥+
∥∥∥ū(tj ) − uk(tj )

∥∥∥)
+ hk

jM
x
2

m∑
i=1

∥∥∥āi (tj ) − ak
i (tj )

∥∥∥+
tj+1∫
tj

f x
j (s)ds

≤
(

1 + Lhk
j

)∥∥∥xk
j − x̄(tj )

∥∥∥+ L

tj+1∫
tj

∥∥ū(tj ) − ū(s)
∥∥ds

+ L

tj+1∫
tj

∥∥∥ū(s) − uk(s)

∥∥∥ds + Mx
2 mhk

j δk +
tj+1∫
tj

f x
j (s)ds

≤ (1 + Lhk)

∥∥∥xk
j − x̄(tj )

∥∥∥+ L

tj+1∫
tj

∥∥∥ū(s) − uk(s)

∥∥∥ds + L

tj+1∫
tj

f u
j (s)ds+

+
tj+1∫
tj

f x
j (s)ds + Mx

2 mhk
j δk.

(4.15)

Let A := 1 + Lhk , and for each j = 0, . . . , ν(k) − 1 denote γj :=
∥∥∥xk

j − x̄(tj )

∥∥∥ and

λj := L

tj+1∫
t

∥∥∥ū(s) − uk(s)

∥∥∥ds + L

tj+1∫
t

f u
j (s)ds +

tj+1∫
t

f x
j (s)ds + Mx

2 mhk
j δk.
j j j
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Then the final estimate in (4.15) reads as

γj+1 ≤ Aγj + λj for j = 0, . . . , ν(k) − 1,

which in turn implies the conditions

γj ≤ Ajγ0 + Aj−1λ0 + Aj−2λ1 + . . .A0λj = Aj−1λ0 + Aj−2λ1 + . . .A0λj .

Since Aj = (1 + Lhk)
j ≤ (1 + Lhk)

ν(k) ≤ eL̃ν , we get γj ≤ eL̃ν
(
λ0 + λ1 + . . . + λj

) ≤

eL̃ν

ν(k)−1∑
j=0

λj .

Let us next estimate the quantity

ν(k)−1∑
j=0

λj =
ν(k)−1∑
j=0

⎡⎢⎣L

tj+1∫
tj

∥∥∥ū(s) − uk(s)

∥∥∥ds + L

tj+1∫
tj

f u
j (s)ds +

tj+1∫
tj

f x
j (s)ds + Mx

2 mhk
j δk

⎤⎥⎦ .

(4.16)
To proceed, we deduce from (4.4) and (4.14) that

ν(k)−1∑
j=0

tj+1∫
tj

∥∥∥ū(s) − uk(s)

∥∥∥ds ≤ √
T

√√√√√√ν(k)−1∑
j=0

tj+1∫
tj

∥∥ū(s) − uk(s)
∥∥2

ds

= √
T

√√√√√ T∫
0

∥∥uk(t) − ū(t)
∥∥2

dt ≤√T μk,

(4.17)

ν(k)−1∑
j=0

tj+1∫
tj

f u
j (s)ds ≤ hk

ν(k)−1∑
j=0

(∥∥∥ū(tj ) − ū(su
j )

∥∥∥+
∥∥∥ū(su

j ) − ū(tj+1)

∥∥∥+ 2−k
)

≤ hkvar
(
ū; [0, T ])+ hkν(k)2−k ≤ hkμ + ν̃2−k.

(4.18)

Using the same arguments leads us to the inequalities

ν(k)−1∑
j=0

tj+1∫
tj

f x
j (s)ds ≤ hk

ν(k)−1∑
j=0

(∥∥∥ ˙̄x(tj ) − ˙̄x(sx
j )

∥∥∥+
∥∥∥ ˙̄x(sx

j ) − ˙̄x(tj+1)

∥∥∥+ 2−k
)

≤ hkvar
( ˙̄x; [0, T ])+ hkν(k)2−k ≤ hkμ + ν̃2−k.

On the other hand, we clearly have that

ν(k)−1∑
Mx

2 mhk
j δk ≤ Mx

2 mν(k)hkδk ≤ Mx
2 mν̃δk.
j=0

17
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Combining all the above brings us to the desired estimate of the quantity (4.16) and hence of 
‖xk

j − x̄(tj )‖:

ν(k)−1∑
j=0

λj ≤ L(
√

T μk + hkμ + ν̃2−k) + hkμ + ν̃2−k + Mx
2 mν̃δk

≤
(
hkμ + ν̃2−k

)
(L + 1) + L

√
T μk + Mx

2 mν̃δk,∥∥∥xk
j − x̄(tj )

∥∥∥≤ ϑk := eL̃ν
[(

hkμ + ν̃2−k
)

(L + 1) + L
√

T μk + Mx
2 mν̃δk

]
(4.19)

for all j = 0, . . . , ν(k). Employing this together with (4.13), (4.15), and (4.19) gives us

∥∥∥xk(t) − x̄(t)

∥∥∥=

∥∥∥∥∥∥∥xk
j + hkv

k
j − x̄(tj ) −

t∫
tj

˙̄x(s)ds

∥∥∥∥∥∥∥≤
∥∥∥xk

j − x̄(tj )

∥∥∥+
t∫

tj

∥∥∥vk
j − ˙̄x(s)

∥∥∥ds

≤
∥∥∥xk

j − x̄(tj )

∥∥∥+
tj+1∫
tj

∥∥∥vk
j − ˙̄x(s)

∥∥∥ds ≤ (1 + Lhk)

∥∥∥xk
j − x̄(tj )

∥∥∥+ λj

≤ (1 + Lhk)ϑk + λj whenever t ∈ (tj , tj+1] and j = 0, . . . , k − 1,

which justifies by λj → 0 the uniform convergence of the sequence 
{
xk(·)} to x̄(·) as k → ∞.

Step 4: Verifying the strong W 1,2-convergence of xk(·) to x̄(·) on [0, T ]. To establish further the 
L2-strong convergence of 

{
ẋk(·)} to ˙̄x(·) on [0, T ] as k → ∞, deduce first from (4.12) that

hk
j

∥∥∥vk
j − ˙̄x(tj )

∥∥∥2 ≤ hk
j

[
Mx

2

m∑
i=1

∥∥∥āi (tj ) − ak
i (tj )

∥∥∥+ L
(∥∥∥x̄(tj ) − xk

j

∥∥∥+
∥∥∥ū(tj ) − uk(tj )

∥∥∥)]2

≤ 3(Mx
2 )2hk

jm

m∑
i=1

∥∥∥āi (tj ) − ak
i (tj )

∥∥∥2 + 3Lhk
j

∥∥∥x̄(tj ) − xk
j

∥∥∥2

+ 3Lhk
j

∥∥∥ū(tj ) − uk(tj )

∥∥∥2

≤ 3(Mx
2 )2m2δ2

khk + 3Lhkδ
2
k + 3Lhk

j

∥∥∥ū(tj ) − uk(tj )

∥∥∥2

for j = 0, . . . , ν(k) − 1 and then subsequently derive the estimates

T∫
0

∥∥∥ẋk(t) − ˙̄x(t)

∥∥∥2
dt =

ν(k)−1∑
j=0

tj+1∫
tj

∥∥∥vk
j − ˙̄x(t)

∥∥∥2
dt

≤
ν(k)−1∑
j=0

tj+1∫
t

(∥∥∥vk
j − ˙̄x(tj )

∥∥∥+ ∥∥ ˙̄x(tj ) − ˙̄x(t)
∥∥)2

dt
j

18
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≤ 2
ν(k)−1∑
j=0

tj+1∫
tj

∥∥∥vk
j − ˙̄x(tj )

∥∥∥2
dt + 2

k−1∑
j=0

tj+1∫
tj

∥∥ ˙̄x(tj ) − ˙̄x(t)
∥∥2

dt

≤ 2
ν(k)−1∑
j=0

[
3(Mx

2 )2m2δ2
khk + 3Lhkδ

2
k + 3Lhk

j

∥∥∥ū(tj ) − uk(tj )

∥∥∥2
]

+ 2
ν(k)−1∑
j=0

tj+1∫
tj

[
f x

j (t)
]2

dt

≤ 6(Mx
2 )2m2δ2

khkν(k) + 6Lhkν(k)δ2
k + 6L

ν(k)−1∑
j=0

hk
j

∥∥∥ū(tj ) − uk(tj )

∥∥∥2

+ 2
ν(k)−1∑
j=0

tj+1∫
tj

[
f x

j (t)
]2

dt

≤ 6(Mx
2 )2m2δ2

k ν̃ + 6L̃νδ2
k + 6L

ν(k)−1∑
j=0

hk
j

∥∥∥ū(tj ) − uk(tj )

∥∥∥2 + 2
ν(k)−1∑
j=0

tj+1∫
tj

[
f x

j (t)
]2

dt.

Since the control set U is compact, there exists a number M > 0 such that max
{‖ū(t)‖ ,∥∥uk(t)

∥∥}≤ M for all t ∈ [0, T ]. On the other hand, it follows from (4.17) and (4.18) that

ν(k)−1∑
j=0

hk
j

∥∥∥ū(tj ) − uk(tj )

∥∥∥2 ≤ 2M

ν(k)−1∑
j=0

tj+1∫
tj

∥∥∥ū(tj ) − uk(tj )

∥∥∥dt

≤ 2M

ν(k)−1∑
j=0

tj+1∫
tj

∥∥ū(tj ) − ū(t)
∥∥dt + 2M

ν(k)−1∑
j=0

tj+1∫
tj

∥∥∥ū(t) − uk(t)

∥∥∥dt

≤ 2M

ν(k)−1∑
j=0

tj+1∫
tj

f u
j (t)dt + 2M

√
T μk

≤ 2M
(
hkμ + ν̃2−k +√T μk

)
.

In addition we get from the constructions and notation above that

ν(k)−1∑
j=0

tj+1∫
tj

[
f x

j (t)
]2

dt ≤
ν(k)−1∑
j=0

tj+1∫
tj

[
f x

j (sj ) + 2−k
]2

dt =
ν(k)−1∑
j=0

hk
j

[
f x

j (sj ) + 2−k
]2

≤ 2hk

ν(k)−1∑ {[
f x

j (sj )
]2 + 4−k

}
≤ 2hk

⎡⎣ν(k)−1∑
f x

j (sj )

⎤⎦2

+ 2hkν(k)4−k
j=0 j=0

19
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≤ 2hk

⎡⎣ν(k)−1∑
j=0

(∥∥∥ ˙̄x(tj ) − ˙̄x(sx
j )

∥∥∥+
∥∥∥ ˙̄x(sx

j ) − ˙̄x(tj+1)

∥∥∥)
⎤⎦2

+ 2̃ν4−k

≤ 2hkvar2 ( ˙̄x(·); [0, T ])+ 2̃ν4−k ≤ 2hkμ
2 + 2̃ν4−k.

This finally brings us to the estimate

T∫
0

∥∥∥ẋk(t) − ˙̄x(t)

∥∥∥2
dt ≤ 6(Mx

2 )2m2δ2
k ν̃ + 6L̃νδ2

k + 12M
(
hkμ + ν̃2−k +√T μk

)
+ 4hkμ

2 + 4̃ν4−k,

which justifies the L2-strong convergence of 
{
ẋk(·)} to ˙̄x(·) in the norm topology as claimed at 

Step 3.

Step 5: Uniform estimates for b-controls. As a part of the verification of the W 1,2-convergence 
of bk(·) to b̄(·), we establish first the needed estimates for approximating b-controls. Picking any 
t ∈ (tj , tj+1] and then using (4.8) and (4.9), we immediately observe that

∣∣∣bk
i (t) − b̄i (t)

∣∣∣= ∣∣∣∣∣bk
ij + t − tj

hk
j

(
bk
i,j+1 − bk

ij

)
− b̄(t)

∣∣∣∣∣
≤ ∣∣b̄i (tj ) − b̄i (t)

∣∣+ ∣∣∣〈ak
i (tj ), x

k
j

〉
− 〈āi (tj ), x̄(tj )

〉∣∣∣+ ∣∣∣bk
i,j+1 − bk

ij

∣∣∣ .
Since b̄(·) is uniformly continuous on [0, T ], for any ε > 0 there exists δ > 0 ensuring that

max {|t − s|, hk} < δ =⇒ ∥∥b̄(t) − b̄(s)
∥∥≤ ε,

which implies that 
∣∣b̄i (tj ) − b̄i (t)

∣∣≤ ε. Furthermore, it follows from (4.6) and (4.19) that∣∣∣〈ak
i (tj ), x

k
j

〉
− 〈āi (tj ), x̄(tj )

〉∣∣∣= ∣∣∣〈ak
i (tj ) − āi (tj ), x

k
j

〉
+
〈
āi (tj ), x

k
j − x̄(tj )

〉∣∣∣
≤
∥∥∥ak

i (tj ) − āi (tj )

∥∥∥ ·
∥∥∥xk

j

∥∥∥+ ∥∥āi (tj )
∥∥∥∥∥xk

j − x̄(tj )

∥∥∥
≤ M1δk + ϑk,

where M1 > 0 is chosen so that 
∥∥∥xk

j

∥∥∥≤ M1 for all j = 0, . . . , k − 1, δk was defined in (4.7), and 
ϑk was defined in (4.19). Consequently we have∣∣∣bk

i,j+1 − bk
ij

∣∣∣= ∣∣∣b̄i (tj+1) − b̄i (tj ) +
〈
ak
i (tj+1), x

k
j+1

〉
− 〈āi (tj+1), x̄(tj+1)

〉
−
〈
ak
i (tj ), x

k
j

〉
+ 〈āi (tj ), x̄(tj )

〉∣∣∣
≤ ∣∣b̄i (tj+1) − b̄i (tj )

∣∣+ ∣∣∣〈ak
i (tj+1), x

k
j+1

〉
− 〈āi (tj+1), x̄(tj+1)

〉∣∣∣
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+
∣∣∣〈ak

i (tj ), x
k
j

〉
− 〈āi (tj ), x̄(tj )

〉∣∣∣
≤ ε + 2 (M1δk + ϑk) ,

which justifies the fulfillment of the claimed estimate

∣∣∣bk
i (t) − b̄i (t)

∣∣∣≤ 2ε + 3 (M1δk + ϑk)

and thus justifies the uniform convergence of 
{
bk(·)} to b̄(·) on [0, T ], thanks to (4.7), (4.4), and 

(4.19).

Step 6: Verifying the convergence of bk(·) to b̄(·) in W 1,2([0, T ]; Rm). It remains to prove the 
L2-strong convergence of ḃk(·) to ˙̄b(·) on [0, T ]. For any t ∈ [tj , tj+1) we get

∣∣∣ḃk
i (t) − ˙̄bi(t)

∣∣∣= ∣∣∣∣∣b
k
i,j+1 − bk

ij

hk
j

− ˙̄bi(t)

∣∣∣∣∣
≤
∣∣∣∣∣ b̄i (tj+1) − b̄i (tj )

hk
j

− ˙̄bi(t)

∣∣∣∣∣
+
∣∣∣∣∣
〈

ak
i (tj+1) − ak

i (tj )

hk
j

− āi (tj+1) − āi (tj )

hk
j

, xk
j+1

〉∣∣∣∣∣
+
∣∣∣∣∣
〈

āi (tj+1) − āi (tj )

hk
j

, xk
j+1 − x̄(tj+1)

〉∣∣∣∣∣
+
∣∣∣∣∣
〈
ak
i (tj ),

xk
j+1 − xk

j

hk
j

− x̄(tj+1) − x̄(tj )

hk
j

〉∣∣∣∣∣
+
∣∣∣∣∣
〈
ak
i (tj ) − āi (tj ),

x̄(tj+1) − x̄(tj )

hk
j

〉∣∣∣∣∣
≤
∣∣∣∣∣ b̄i (tj+1) − b̄i (tj )

hk
j

− ˙̄bi(t)

∣∣∣∣∣+ M1

∥∥∥∥∥ȧk
i (t) − āi (tj+1) − āi (tj )

hk
j

∥∥∥∥∥
+ ϑk

∥∥∥∥∥ āi (tj+1) − āi (tj )

hk
j

∥∥∥∥∥+ (1 + δk)

∥∥∥∥∥ẋk(t) − x̄(tj+1) − x̄(tj )

hk
j

∥∥∥∥∥
+ δk

∥∥∥∥ x̄(tj+1) − x̄(tj )

hk

∥∥∥∥
due to (4.9), (4.3), (4.6), and (4.19). Since ᾱ(·) is a BV function, it follows that

‖ᾱi(s)‖ ≤ M2 := 1 [‖ᾱi0‖ + ‖ᾱi(T )‖ + var
(
ᾱi(·); [0, T ])] for all s ∈ [0, T ],
2
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and therefore 

∥∥∥∥ āi (tj+1) − āi (tj )

hk

∥∥∥∥ = 1

hk

∥∥∥∥∥∥∥
tj+1∫
tj

ᾱi (s)ds

∥∥∥∥∥∥∥ ≤ M2. Arguing in the same way for the 

BV function ˙̄x(·) shows that 

∥∥∥∥ x̄(tj+1) − x̄(tj )

hk

∥∥∥∥≤ M3 with some constant M3 > 0.

Next we estimate the quantities 

∣∣∣∣∣ b̄i (tj+1) − b̄i (tj )

hk
j

− ˙̄bi(t)

∣∣∣∣∣ and 

∥∥∥∥∥ẋk(t) − x̄(tj+1) − x̄(tj )

hk
j

∥∥∥∥∥. Ob-

serve that∣∣∣∣∣ b̄i (tj+1) − b̄i (tj )

hk
j

− ˙̄bi(t)

∣∣∣∣∣≤ 1

hk
j

tj+1∫
tj

∣∣β̄i (s) − β̄i (tj )
∣∣ds + ∣∣β̄i (tj ) − β̄i (t)

∣∣

= 1

hk
j

tj+1∫
tj

f b
ij (s)ds + f b

ij (t) ≤ 2f b
ij (s

b
ij ) + 2−k+1

≤ 2
[∣∣∣β̄i (s

b
ij ) − β̄i (tj )

∣∣∣+ ∣∣∣β̄i (tj+1) − β̄i (s
b
ij )

∣∣∣]+ 2−k+1,

(4.20)

which allows us while arguing as above to get the estimates∥∥∥∥∥ȧk
i (t) − āi (tj+1) − āi (tj )

hk
j

∥∥∥∥∥≤
∥∥∥ȧk

i (t) − ˙̄ai(t)

∥∥∥+
∥∥∥∥∥ ˙̄ai(t) − āi (tj+1) − āi (tj )

hk
j

∥∥∥∥∥
≤
∥∥∥ȧk

i (t) − ˙̄ai(t)

∥∥∥+ 2
[∥∥∥ᾱi (s

a
ij ) − ᾱi (tj )

∥∥∥+
∥∥∥ᾱi (tj+1) − ᾱi(s

a
ij )

∥∥∥]
+ 2−k+1,∥∥∥∥∥ẋk(t) − x̄(tj+1) − x̄(tj )

hk
j

∥∥∥∥∥≤
∥∥∥ẋk(t) − ˙̄x(t)

∥∥∥+
∥∥∥∥∥ ˙̄x(t) − x̄(tj+1) − x̄(tj )

hk
j

∥∥∥∥∥
≤
∥∥∥ẋk(t) − ˙̄x(t)

∥∥∥+ 2
[∥∥∥ ˙̄x(sx

j ) − ˙̄x(tj )

∥∥∥+
∥∥∥ ˙̄x(tj+1) − ˙̄x(sx

j )

∥∥∥]
+ 2−k+1.

(4.21)
It then follows by combining all the estimates in (4.20)–(4.21) that

T∫
0

∣∣∣ḃk
i (t) − ˙̄bi(t)

∣∣∣2 dt =
ν(k)−1∑
j=0

tj+1∫
tj

∣∣∣∣∣b
k
i,j+1 − bk

ij

hk
j

− ˙̄bi(t)

∣∣∣∣∣
2

dt

≤
ν(k)−1∑
j=0

tj+1∫
tj

[
1 + M2

1 + (1 + δk)
2 + 1

][ ∣∣∣∣∣ b̄i (tj+1) − b̄i (tj )

hk
j

− ˙̄bi(t)

∣∣∣∣∣
2

+
∥∥∥∥∥ȧk

i (t) − āi (tj+1) − āi (tj )

hk

∥∥∥∥∥
2

+ ϑ2
k

∥∥∥∥∥ āi (tj+1) − āi (tj )

hk

∥∥∥∥∥
2

j j
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+
∥∥∥∥∥ẋk(t) − x̄(tj+1) − x̄(tj )

hk
j

∥∥∥∥∥
2

+ δ2
k

∥∥∥∥∥ x̄(tj+1) − x̄(tj )

hk
j

∥∥∥∥∥
2 ]

dt

≤ [2 + M2
1 + (1 + δk)

2 ][ ν(k)−1∑
j=0

tj+1∫
tj

∣∣∣∣∣ b̄i (tj+1) − b̄i (tj )

hk
j

− ˙̄bi(t)

∣∣∣∣∣
2

dt

+
ν(k)−1∑
j=0

tj+1∫
tj

∥∥∥∥∥ȧk
i (t) − āi (tj+1) − āi (tj )

hk
j

∥∥∥∥∥
2

dt +
ν(k)−1∑
j=0

tj+1∫
tj

ϑ2
k M2

2dt

+
ν(k)−1∑
j=0

tj+1∫
tj

∥∥∥∥∥ẋk(t) − x̄(tj+1) − x̄(tj )

hk
j

∥∥∥∥∥
2

dt + δ2
k

ν(k)−1∑
j=0

tj+1∫
tj

∥∥∥∥∥ x̄(tj+1) − x̄(tj )

hk
j

∥∥∥∥∥
2

dt

]

≤ [2 + M2
1 + (1 + δk)

2 ][4hk

ν(k)−1∑
j=0

[∣∣∣β̄i (s
b
ij ) − β̄i (tj )

∣∣∣+ ∣∣∣β̄i (tj+1) − β̄i (s
b
ij )

∣∣∣+ 2−k
]2

+
ν(k)−1∑
j=0

tj+1∫
tj

∥∥∥ȧk
i (t) − ˙̄ai(t)

∥∥∥2
dt

+ 4hk

ν(k)−1∑
j=0

[∥∥∥ᾱi(s
a
ij ) − ᾱi(tj )

∥∥∥+
∥∥∥ᾱi(tj+1) − ᾱi (s

a
ij )

∥∥∥+ 2−k
]2 + ϑ2

k M2
2 ν̃

+
ν(k)−1∑
j=0

tj+1∫
tj

∥∥∥ẋk(t) − ˙̄x(t)

∥∥∥2
dt

+ 4hk

ν(k)−1∑
j=0

[∥∥∥ ˙̄x(sx
j ) − ˙̄x(tj )

∥∥∥+
∥∥∥ ˙̄x(tj+1) − ˙̄x(sx

j )

∥∥∥]2 + δ2
k

ν(k)−1∑
j=0

tj+1∫
tj

M2
3 dt

]
.

Finally, we arrive at the relationships

T∫
0

∣∣∣ḃk
i (t) − ˙̄bi(t)

∣∣∣2 dt

≤ [2 + M2
1 + (1 + δk)

2 ]{8hk

ν(k)−1∑
j=0

[∣∣∣β̄i (s
b
ij ) − β̄i (tj )

∣∣∣+ ∣∣∣β̄i (tj+1) − β̄i (s
b
ij )

∣∣∣]2

+ 4−khkν(k) +
T∫ ∥∥∥ȧk

i (t) − ˙̄ai(t)

∥∥∥2
dt
0
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+ 8hk

ν(k)−1∑
j=0

[∥∥∥ᾱi(s
a
ij ) − ᾱi(tj )

∥∥∥+
∥∥∥ᾱi(tj+1) − ᾱi (s

a
ij )

∥∥∥]2

+ 4−khkν(k) + ϑ2
k M2

2 ν̃ +
T∫

0

∥∥∥ẋk(t) − ˙̄x(t)

∥∥∥2
dt

+ 8hk

ν(k)−1∑
j=0

[∥∥∥ ˙̄x(sx
j ) − ˙̄x(tj )

∥∥∥+
∥∥∥ ˙̄x(tj+1) − ˙̄x(sx

j )

∥∥∥]2 + 4−khkν(k) + δ2
kM

2
3 ν̃

}

≤ [2 + M2
1 + (1 + δk)

2 ][8hk

(
var 2(β̄(·); [0, T ]) + var 2(ᾱ(·); [0, T ]) + var 2( ˙̄x(·); [0, T ])

)

+ 3

4k
ν̃ + ϑ2

k M2
2 ν̃ + δ2

kM
2
3 ν̃ +

T∫
0

∥∥∥ȧk
i (t) − ˙̄ai(t)

∥∥∥2
dt +

T∫
0

∥∥∥ẋk(t) − ˙̄x(t)

∥∥∥2
dt

]

≤ [2 + M2
1 + (1 + δk)

2 ]⎡⎣24hkμ
2 + 3

4k
ν̃ + ϑ2

k M2
2 ν̃ + δ2

kM
2
3 ν̃ + μk +

T∫
0

∥∥∥ẋk(t) − ˙̄x(t)

∥∥∥2
dt

⎤⎦ ,

which ensures the convergence of the sequence {ḃk(·)} to ˙̄b(·) strongly in L2([0, T ]; Rm) as 
claimed in Step 4. This therefore completes the proof of the theorem. �

As we see, the entire proof of the theorem is technically involved. It occurs nevertheless 
that the most important and challenging task is the construction of a sequence of piecewise 
linear functions xk(·), which are feasible to the discrete differential inclusion (4.3). The main 
point is in approximating the continuous velocity ˙̄x(tj ) ∈ −F(x̄(tj ), ā(tj ), b̄(tj ), ū(tj )) by its 
discrete counterpart vk

j ∈ −F(xk(tj ), ak(tj ), bk(tj ), uk(tj )), where the velocity mapping F is 

discontinuous. Using the construction of vk
j in (4.11) ensures that the distance between ˙̄x(tj ) and 

vk
j converges to 0 as k → ∞, which is the key.

5. Discrete approximation for relaxed local minimizers

The discrete approximation procedure and results developed in the previous section do not 
require any relaxation stability and do not concern optimal versus feasible solutions. The discrete 
approximation construction and the main result of this section address relaxed local minimizers
of the sweeping optimal control problem (P ).

Let 
(
x̄(·), ā(·), b̄(·), ū(·)) be a given r.i.l.m., and let �k be the discrete mesh defined in (4.1). 

For all k ∈ IN we construct a sequence of approximating problems (Pk) as follows:

minimize Jk[xk, ak, bk, uk]

:= ϕ(xk
ν(k)) +

ν(k)−1∑
hk

j �

(
tkj , xk

j , ak
j , b

k
j , u

k
j ,

xk
j+1 − xk

i

hk
j

,
ak
j+1 − ak

j

hk
j

,
bk
j+1 − bk

j

hk
j

)
(5.1)
j=0
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+ 1

2

ν(k)−1∑
j=0

tkj+1∫
tkj

∥∥∥∥∥
(

xk
j+1 − xk

j

hk
j

,
ak
j+1 − ak

j

hk
j

,
bk
j+1 − bk

j

hk
j

, uk
j

)
−
( ˙̄x(t), ˙̄a(t), ˙̄b(t), ū(t)

)∥∥∥∥∥
2

dt

over discrete quadruples (xk, ak, bk, uk) represented by

(xk, ak, bk, uk) := (xk
0 , xk

1 , . . . , xk
ν(k), a

k
0, ak

1, . . . , ak
ν(k), b

k
0, b

k
1, . . . , b

k
ν(k), u

k
0, u

k
1, . . . , u

k
ν(k)−1)

subject to the geometric and functional constraints given by

xk
j+1 ∈ xk

j − hk
jF (xk

j , ak
j , b

k
j , u

k
j ), j = 0, . . . , ν(k) − 1, (5.2)〈

ak
iν(k), x

k
ν(k)

〉
≤ bk

iν(k), i = 1, . . . ,m, (5.3)

xk
0 = x0 ∈ C(0), ak

0 = a0, bk
0 = b0, uk

0 = ū(0), (5.4)

ν(k)−1∑
j=0

tkj+1∫
tkj

∥∥∥(xk
j , ak

j , b
k
j , u

k
j

)
− (x̄(t), ā(t), b̄(t), ū(t)

)∥∥∥2
dt ≤ ε

2
, (5.5)

ν(k)−1∑
j=0

tkj+1∫
tkj

∥∥∥∥∥
(

xk
j+1 − xk

j

hk
j

,
ak
j+1 − ak

j

hk
j

,
bk
j+1 − bk

j

hk
j

)
−
( ˙̄x(t), ˙̄a(t), ˙̄b(t)

)∥∥∥∥∥
2

dt ≤ ε

2
, (5.6)

uk
j ∈ U, j = 0, . . . , ν(k) − 1, (5.7)

1 − δk ≤ ‖ak
ij‖ ≤ 1 + δk, i = 1, . . . ,m, j = 0, . . . , ν(k), (5.8)

where ε > 0 is taken from Definition 3.3 of the relaxed intermediate local minimizer 
(
x̄(·), ā(·),

b̄(·), ū(·)), where F is defined in (3.5), and where the perturbation sequence δk ↓ 0 as k → ∞ is 
constructed in the proof of Theorem 4.1 for the given quadruple 

(
x̄(·), ā(·), b̄(·), ū(·)).

To proceed further, first we need to make sure that for each k ∈ IN sufficiently large the 
discrete control problem (Pk) defined in (5.1)–(5.8) admits an optimal solution. It is verified in 
the next proposition.

Proposition 5.1 (existence of optimal solutions to discrete sweeping control problems). Under 
the assumptions in Theorem 4.1 holding along the given r.i.l.m. 

(
x̄(·), ā(·), b̄(·), ū(·)), each prob-

lem (Pk) for all sufficiently large k ∈ IN admits an optimal solution.

Proof. It follows from Theorem 4.1 that the set of feasible solutions of problem (Pk) is nonempty 
for all large k. We see in addition that this set is bounded due to the constraint structures in (Pk). 
Furthermore, the cost function in (Pk) is obviously lower semicontinuous for each tkj ∈ �k due 
to (H5). To apply the classical Weierstrass existence theorem in (Pk), it remains to ensure that the 
feasible set in this problem is closed. But it is a direct consequence of the constraint structures in 
(Pk) due to the robustness (closed-graph) property of the normal cone mapping (1.2). Thus we 
arrive at the claimed existence result. �
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Now we are ready to establish the desired theorem on the strong convergence of optimal 
solutions for (Pk) to the given r.i.l.m. of the original sweeping control problem (P ).

Theorem 5.2 (strong convergence of discrete optimal solutions). Let (x̄(·), ā(·), b̄(·), ū(·)) be 
an r.i.l.m. for problem (P ), and let all the assumptions of Proposition 5.1 be satisfied for this 
quadruple. Suppose in addition that the terminal cost ϕ is continuous around x̄(T ), that the run-

ning cost � is continuous at 
(
t, x̄(t), ā(t), b̄(t), ū(t), ˙̄x(t), ˙̄a(t), ˙̄b(t)

)
for a.e. t ∈ [0, T ], and that 

� 
(·, x, a, b,u, ẋ, ȧ, ḃ

)
is uniformly majorized around 

(
x̄(·), ā(·), b̄(·), ū(·)) by a summable func-

tion on [0, T ]. Take any sequence of optimal solutions 
(
x̄k(·), āk(·), b̄k(·), ūk(·)) to the discrete 

problems (Pk) and extend it to the entire interval [0, T ] piecewise linearly for 
(
x̄k(·), āk(·), b̄k(·))

and piecewise constantly for ūk(·). Then the extended sequence of 
(
x̄k(·), āk(·), b̄k(·), ūk(·))

converges to 
(
x̄(·), ā(·), b̄(·), ū(·)) as k → ∞ in the norm topology of W 1,2([0, T ]; Rn) ×

W 1,2([0, T ]; Rmn) × W 1,2([0, T ]; Rm) × L2([0, T ]; Rd).

Proof. Picking any sequence 
(
x̄k(·), āk(·), b̄k(·), ūk(·)) of extended optimal solutions to (Pk), 

we claim that

lim
k→∞

T∫
0

∥∥∥( ˙̄xk(t), ˙̄ak(t), ˙̄bk(t), ūk(t)
)

−
( ˙̄x(t), ˙̄a(t), ˙̄b(t), ū(t)

)∥∥∥2
dt = 0, (5.9)

which clearly ensures the convergence of the quadruples 
(
x̄k(·), āk(·), b̄k(·), ūk(·)) to 

(
x̄(·), ā(·),

b̄(·), ū(·)) in the norm topology of W 1,2([0, T ]; Rn+mn+m) × L2([0, T ]; Rd). To proceed, as-
sume on the contrary that the limit in (5.9), along a subsequence (without relabeling), equals 
to some γ > 0. Then it follows from the weak compactness of the unit ball in L2([0, T ];
Rn+mn+m+d) that there exist functions (vx(·), va(·), vb(·), ̃u(·)) ∈ L2([0, T ]; Rn+mn+m+d) for 
which the quadruples ( ˙̄xk(·), ˙̄ak(·), ˙̄bk(·), ūk(·)) converge weakly to 

(
vx(·), va(·), vb(·), ũ(·))

in the corresponding spaces. Recall that Mazur’s weak closure theorem and basic real anal-
ysis yield the existence of sequences of convex combinations of these quadruples that con-
verge to (vx(·), va(·), vb(·), ̃u(·)) in the L2-norm topology with their subsequences (no re-
labeling) converging to (vx(t), va(t), vb(t), ̃u(t)) for a.e. t ∈ [0, T ]. Define further the triple 
(̃x(·), ̃a(·), ̃b(·)) ∈ W 1,2([0, T ]; Rn+mn+m) by

(
x̃(t), ã(t), b̃(t)

) := (x0, a0, b0) +
t∫

0

(
vx(s), va(s), vb(s)

)
ds for all t ∈ [0, T ].

Then ( ˙̃x(t), ˙̃a(t), ˙̃b(t)) = (vx(t), va(t), vb(t)) for a.e. t ∈ [0, T ], which ensures the weak conver-
gence of ( ˙̄xk(·), ˙̄ak(·), ˙̄bk(·)) to ( ˙̃x(·), ˙̃a(·), ˙̃b(·)) in L2([0, T ]; Rn+mn+m). Observe that ũ(t) ∈
coU for a.e. t ∈ [0, T ] and that the limiting triple (̃x(·), ̃a(·), ̃b(·)) satisfies the differential inclu-
sion (3.8) with

C(t) = C̃(t) := {x ∈Rn| 〈̃ai(t), x〉 ≤ b̃i (t), i = 1, . . . ,m
}

for all t ∈ [0, T ].
Taking into account the convexity of the norm function and hence its lower semicontinuity in the 
L2-weak topology, we get by passing to the limit in (5.5) and (5.6), respectively, that
26



JID:YJDEQ AID:10640 /FLA [m1+; v1.340] P.27 (1-49)

T.H. Cao, G. Colombo, B.S. Mordukhovich et al. Journal of Differential Equations ••• (••••) •••–•••
T∫
0

∥∥(x̃(t), ã(t), b̃(t), ũ(t)
)− (x̄(t), ā(t), b̄(t), ū(t)

)∥∥2
dt

≤ lim inf
k→∞

ν(k)−1∑
j=0

tkj+1∫
tkj

∥∥∥(xk
j , ak

j , b
k
j , u

k
j

)− (x̄(t), ā(t), b̄(t), ū(t)
)∥∥∥2

dt ≤ ε

2
,

T∫
0

∥∥∥( ˙̃x(t), ˙̃a(t), ˙̃b(t)
)

−
( ˙̄x(t), ˙̄a(t), ˙̄b(t)

)∥∥∥2
dt

≤ lim inf
k→∞

ν(k)−1∑
j=0

tkj+1∫
tkj

∥∥∥∥∥
(

xk
j+1 − xk

j

hk
j

,
ak
j+1 − ak

j

hk
j

,
bk
j+1 − bk

j

hk
j

)
−
( ˙̄x(t), ˙̄a(t), ˙̄b(t)

)∥∥∥∥∥
2

dt ≤ ε

2

This implies that the limiting quadruple (̃x(·), ̃a(·), ̃b(·), ̃u(·)) belongs to the given ε-neighbor-
hood of the r.i.l.m. (x̄(·), ā(·), b̄(·), ū(·)) in the space W 1,2([0, T ]; Rn+mn+m) × L2([0, T ]; Rd). 
It is clear furthermore that ã(·) satisfies the pointwise constraint (1.6). Applying now Theo-
rem 4.1 to the r.i.l.m. 

(
x̄(·), ā(·), b̄(·), ū(·)) gives us a sequence (xk(·), ak(·), bk(·), uk(·)) of the 

extended feasible solutions to (Pk) such that xk(·), ak(·), bk(·) and uk(·) strongly approximate 
x̄(·), ā(·), b̄(·) and ū(·) in W 1,2([0, T ]; Rn+mn+m) and L2([0, T ]; Rd) respectively. It then fol-
lows from the imposed convexity of �̂F and the optimality of (x̄k(·), āk(·), b̄k(·), ūk(·)) to (Pk)

that

Ĵ
[̃
x, ã, b̃, ũ

]+ γ

2
= ϕ
(̃
x(T )

)+ T∫
0

�̂F

(
t, x̃(t), ã(t), b̃(t), ũ(t), ˙̃x(t), ˙̃a(t), ˙̃b(t)

)
dt + γ

2

≤ lim inf
k→∞

⎡⎣ϕ (x̄k
ν(k)

)
+ hk

ν(k)−1∑
j=0

�

(
tkj , x̄k

j , āk
j , b̄

k
j , u

k
j ,

x̄k
j+1 − x̄k

i

hk
j

,
āk
j+1 − āk

j

hk
j

,
b̄k
j+1 − b̄k

j

hk
j

)
+ γ

2

⎤⎦
= lim inf

k→∞ Jk

[
x̄k, āk, b̄k, ūk

]
≤ lim inf

k→∞ Jk

[
xk, ak, bk, uk

]
,

(5.10)
which ensures, in particular, that the quadruple (̃x, ̃a, ̃b, ̃u) is feasible for the relaxed problem 
(R). On the other hand, the strong convergence of (xk(·), ak(·), bk(·), uk(·)) to 

(
x̄(·), ā(·), b̄(·),

ū(·)) in W 1,2([0, T ]; Rn+mn+n) ×L2([0, T ]; Rd) from Theorem 4.1 and the imposed continuity 
assumptions on ϕ and � imply that Jk

[
xk, ak, bk, uk

]→ J [x̄, ā, b̄, ū] as k → ∞. Combining it 
with (5.10) tells us that

Ĵ
[̃
x, ã, b̃, ũ

]
< Ĵ

[̃
x, ã, b̃, ũ

]+ γ

2
≤ J

[
x̄, ā, b̄, ū

]= Ĵ
[
x̄, ā, b̄, ū

]
,

which clearly contradicts the fact that (x̄(·), ā(·), b̄(·), ū(·)) is an r.i.l.m. for problem (P ) and 
hence verifies the limiting condition (5.9). This completes the proof of the theorem. �
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6. Generalized differentiation and second-order calculations

Having in hands the strong approximation results of Theorem 5.2, our subsequent goal is to 
derive necessary optimality conditions for the discrete-time approximating problems (Pk) that 
provide constructive suboptimality conditions for the original sweeping control problem (P ). 
Looking at problem (Pk) for each fixed number k ∈ IN , we see that it is a finite-dimensional 
optimization problem with various types of constraints. The most important and challenging of 
these constraints, that are characteristic for sweeping differential and finite-difference inclusions, 
are described by graphs of normal cone mappings. Such sets are nonconvex regardless of the 
convexity and/or smoothness of the given data of (P ). To deal with the problems under consid-
eration, we need to employ appropriate constructions of generalized differentiation in variational 
analysis with paying the major attention to second-order ones. This section briefly reviews the 
concepts and results of generalized differentiation used in what follows. We are mainly based on 
[29], while related first-order constructions can be also found in [34].

Recall that for a set-valued (in particular, single-valued) mapping S : Rn ⇒Rm the symbol

Lim sup
x→x̄

S(x) := {z ∈ Rm
∣∣ ∃ sequences xk → x̄, zk → z such that zk ∈ S(xk), k ∈ IN

}
(6.1)

signifies the (Kuratowski-Painlevé) outer limit of S at x̄. Given a nonempty set � ⊂ Rn locally 
closed around x̄ ∈ �, the (Mordukhovich basic/limiting) normal cone to � at x̄ is defined via the 
outer limit (6.1) by

N(x̄;�) = N�(x̄) := Lim sup
x→x̄

{
cone

[
x − �(x;�)

]}
, (6.2)

where �(x̄; �) stands for the Euclidean projection of x̄ onto � and is defined by

�(x̄;�) := {y ∈ �
∣∣ ‖x̄ − y‖ = d(x̄;�)

}
,

and where ‘cone’ denotes the conic hull of a set. If � is convex, the limiting normal cone (6.2)
reduces to the normal cone of convex analysis (1.2), but in general this cone is nonconvex. Nev-
ertheless, in vast generality the normal cone (6.2) as well as the associated subdifferential and 
coderivative constructions enjoy comprehensive calculus rules based on variational and extremal 
principles of variational analysis; see [28,29,34] for more details.

Given further a set-valued mapping S : Rn ⇒Rm whose graph

gphS := {(x, y) ∈ Rn ×Rm
∣∣ y ∈ S(x)

}
is locally closed around (x̄, ȳ), the coderivative of S at (x̄, ȳ) is defined by

D∗S(x̄, ȳ)(u) := {v ∈Rn
∣∣ (v,−u) ∈ N

(
(x̄, ȳ);gphS

)}
, u ∈Rm. (6.3)

If S : Rn →Rm is single-valued and continuously differentiable (C1-smooth) around x̄, we have

D∗S(x̄)(u) = {∇S(x̄)∗u
}

for all u ∈Rm

via the adjoint/transposed Jacobian matrix ∇S(x̄)∗, where ȳ = S(x̄) is omitted.
28
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For an extended-real-valued l.s.c. function φ : Rn →R with the domain and epigraph defined 
by

domφ := {x ∈ Rn
∣∣ φ(x) < ∞} and epiφ := {(x,α) ∈Rn+1

∣∣ α ≥ φ(x)
}
,

the first-order subdifferential of φ at x̄ ∈ domφ is generated geometrically via (6.2) as

∂φ(x̄) := {v ∈Rn
∣∣ (v,−1) ∈ N

(
(x̄, φ(x̄)); epiφ

)};
see [28,29,34] for equivalent analytic representations. The second-order subdifferential, or gen-
eralized Hessian, of φ at x̄ relative to v̄ ∈ ∂φ(x̄) is the mapping ∂2φ(x̄, v̄) : Rn ⇒ Rn with the 
values

∂2φ(x̄, v̄)(u) := (D∗∂φ
)
(x̄, v̄)(u), u ∈Rn. (6.4)

If φ is a C2-smooth around x̄, then (6.4) with v̄ = ∇φ(x̄) reduces to the classical (symmetric) 
Hessian matrix:

∂2φ(x̄, v̄)(u) = {∇2φ(x)u
}

for all u ∈Rn.

Our main interest in this paper corresponds to the case where φ(x) = δ�(x) is the indicator 
function of a set that equals to 0 for x ∈ � and ∞ otherwise. In this case we have ∂δ�(x̄) =
N�(x̄) whenever x̄ ∈ �. The following result presents evaluations of the coderivative (6.3) of the 
normal cone mapping

G : Rn ×Rmn ×Rm ⇒Rn with G(x,a, b) := N
(
x;C(a, b)

)
(6.5)

associated with the moving polyhedral set (1.5). In fact, we get an efficient upper estimate of the 
coderivative under PLICQ (2.4) and its precise calculation under the corresponding LICQ. The 
proof of this result, given in [14, Lemmas 4.1 and 4.2], is based on the second-order calculus 
obtained in [30] and the seminal theorem by Robinson [33] on the upper Lipschitzian stability 
of polyhedral multifunctions. To proceed, consider the matrix A := [aij ] as i = 1, . . . , m and 
j = 1, . . . , n with the vector columns ai , i = 1, . . . , n. Recall that the symbol ⊥ indicates the 
orthogonal complement of a vector in the space in question.

Lemma 6.1 (coderivative evaluations of the normal cone mapping). Let G be defined in (6.5)
with x ∈ C(a, b) for (x, a, b) ∈ Rn × Rmn × Rm, and let v ∈ G(x, a, b). Suppose that the ac-
tive constraint vectors {ai | i ∈ I (x, a, b)} are positively linearly independent. Then we have the 
coderivative upper estimate

D∗G(x,a, b, v)(w)

⊂
⋃
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝

A∗q
p1w + q1x

...

pmw + qmx

−q

⎞⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣∣ p ∈ NRm−(Ax − b), A∗p = v, q ∈ D∗NRm−(Ax − b,p)(Aw)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

29
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for w ∈
⋂

{i| pi>0}
a⊥
i ⊂Rn and D∗G(x, a, b, v)(w) = ∅ otherwise.

If the active constraint vectors {ai | i ∈ I (x, a, b)} are linearly independent, then we have the 
precise formula

D∗G(x,a, b, v)(w) =
⋃

q∈D∗NRm− (Ax−b,p)(Aw)

⎛⎜⎜⎜⎜⎜⎜⎝

A∗q
p1w + q1x

...

pmw + qmx

−q

⎞⎟⎟⎟⎟⎟⎟⎠ for all w ∈
⋂

{
i
∣∣ pi>0

}a⊥
i ,

where the vector p ∈ NRm−(Ax−b) is uniquely determined by A∗p = v. Furthermore, the coderiva-
tive of the normal cone mapping (6.5) generated by the nonpositive orthant Rm− is computed by

D∗NRm−(x, v)(w) =
{

∅ if ∃ i with viwi �= 0{
γ
∣∣ γi = 0 ∀ i ∈ I1(w), γi ≥ 0 ∀ i ∈ I2(w)

}
otherwise

,

(6.6)
whenever (x, v) ∈ gphNRm− with the index subsets in (6.6) defined by

I1(w) := {i∣∣ xi < 0
}∪ {i∣∣ vi = 0, wi < 0

}
, I2(w) := {i∣∣ xi = 0, vi = 0, wi > 0

}
. (6.7)

The following theorem, which is strongly used in deriving necessary optimality conditions in 
the next section, provides constructive evaluations of the coderivative of the sweeping control 
mapping F taken from (3.5) entirely in terms of the given problem data.

Theorem 6.2 (coderivative evaluations of the sweeping control mapping). Consider the multi-
function F from (3.5) with the polyhedral set C defined in (1.5), where the perturbation mapping 
g(x, u) is C1-smooth around the reference points, and where G is defined in (6.5). Suppose 
that the vectors {ai | i ∈ I (x, a, b)} are positively linearly independent for any triple (x, a, b) ∈
Rn ×Rmn ×Rm. Then for all such triples and all (w, u) ∈Rm ×U with w+g(x, u) ∈ G(x, a, b)

we have the coderivative upper estimate

D∗F(x, a, b,u,w)(y) ⊂
⋃

p∈NRm− (Ax−b), A∗p=w+g(x,u)

q∈D∗NRm− (Ax−b,p)(Ay)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A∗q − ∇xg(x,u)∗y
p1y + q1x

...

pmy + qmx

−q

−∇ug(x,u)∗y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.8)

for any y ∈
⋂

{i| pi>0}
a⊥
i , where the vector q ∈Rm satisfies the conditions

{
qi = 0 for all i such that either 〈ai, x〉 < bi or pi = 0, or 〈ai, y〉 < 0,

qi ≥ 0 for all i such that 〈ai, x〉 = bi, pi = 0, and 〈ai, y〉 > 0.
(6.9)
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Furthermore, the equality holds in (6.8) if the vectors {ai | i ∈ I (x, a, b)} are linearly independent 
in which case the vector p ∈ NRm−(Ax−b) is uniquely determined by A∗p = w + g(x, u).

Proof. Pick any y ∈
⋂

{i| pi>0}
a⊥
i and any z∗ ∈ D∗F(x, a, b, u, w)(y). It follows from the 

coderivative sum rules of the equality type given in [29, Theorem 3.9] that

z∗ ∈

⎛⎜⎜⎜⎜⎜⎜⎝

−∇xg(x,u)∗y
0
...

0

−∇ug(x,u)∗y

⎞⎟⎟⎟⎟⎟⎟⎠y +
(

I 0

0 0

)
D∗G

(
x, a, b,w + g(x,u)

)
(y).

Employing further Lemma 6.1 tells us that

z∗ ∈

⎛⎜⎜⎜⎜⎜⎜⎝

−∇xg(x,u)∗y
0
...

0

−∇ug(x,u)∗y

⎞⎟⎟⎟⎟⎟⎟⎠y +
(

I 0

0 0

)
⎛⎜⎜⎜⎜⎜⎜⎝

A∗q
p1y + q1x

...

pmy + qmx

−q

⎞⎟⎟⎟⎟⎟⎟⎠=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A∗q − ∇xg(x,u)∗y
p1y + q1x

...

pmy + qmx

−q

−∇ug(x,u)∗y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
for some p ∈ NRm−(Ax − b) with A∗p = w + g(x, u) and q ∈ D∗NRm−(Ax − b, p)(Ay). Finally, 
conditions (6.9) for the vector q follow from (6.6) and (6.7). This completes the proof of the 
theorem. �
7. Optimality conditions via discrete approximations

This section is devoted to deriving necessary optimality conditions for each discrete-time 
problem (Pk) as k ∈ IN . As followed from Theorem 5.2, the results obtained below give us 
suboptimality conditions for the selected r.i.l.m. of the original sweeping optimal control problem 
(P ) provided that the discretization index k is sufficiently large.

We establish here two results in this direction. The first theorem provides necessary optimality 
conditions to each problem (Pk) defined in Section 5 that are expressed in terms of the normal 
cone to the graph of the velocity mapping F from (3.5), i.e., via the coderivative of this mapping. 
The second theorem is the main result of this section. It derives verifiable necessary conditions 
for the given r.i.l.m. of problem (P ) expressed entirely in terms of the initial data of the original 
sweeping control problem along the strongly converging sequence of optimal solutions to the 
discrete approximation problems (Pk).

Let us start with the first result, which proof is based on the reduction of (Pk) to nonsmooth 
finite-dimensional mathematical programming with increasingly many geometric constraints and 
employing calculus rules of first-order generalized differentiation. As seen below, the proof of the 
main result is largely based on second-order calculations. For convenience we use the notation 
rep m(x) := (x, . . . , x) ∈ Rmn.
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Theorem 7.1 (necessary conditions for discrete optimal solutions). Fix any k ∈ IN and let

(x̄k, āk, b̄k, ūk) = (x̄k
0 , . . . , x̄k

ν(k), ā
k
0, . . . , āk

ν(k), b̄
k
0, . . . , b̄

k
ν(k), ū

k
0, . . . , ū

k
ν(k)−1)

be an optimal solution to (Pk) along which the general assumptions of Theorem 6.2 are ful-
filled. Suppose in addition that the cost functions ϕ and � are locally Lipschitzian around 
the corresponding components of the optimal solution. Then there exist a number λk ≥ 0

and vectors α1k =
(
α1k

0 , . . . , α1k
ν(k)

)
∈ R(ν(k)+1)m

+ , ψk = (ψk
0 , . . . , ψk

ν(k)−1) ∈ Rν(k)d , α2k =(
α2k

0 , . . . , α2k
ν(k)

)
∈ R(ν(k)+1)m

− , ξk = (ξk
1 , . . . , ξk

m) ∈ Rm+, and pk
j =

(
pxk

j ,pak
j ,pbk

j

)
∈ Rn+mn+m

as j = 0, . . . , ν(k) satisfying the relationships:

λk +
∥∥∥ξk
∥∥∥+ ‖α1k + α2k‖ +

ν(k)−1∑
j=0

∥∥∥pxk
j

∥∥∥+ ‖pak
0 ‖ + ‖pbk

0 ‖ +
∥∥∥ψk

∥∥∥ �= 0, (7.1)

ξk
i

(〈
āk
ik, x̄

k
k

〉
− b̄k

ik

)
= 0, i = 1, . . . ,m, (7.2)

α1k
ij

(
‖āk

ij‖ − (1 + δk)
)

= 0, i = 1, . . . ,m, j = 0, . . . , ν(k), (7.3)

α2k
ij

(
‖āk

ij‖ − (1 − δk)
)

= 0, i = 1, . . . ,m, j = 0, . . . , ν(k), (7.4)

−pxk
ν(k) = λkvk

ν(k) +
m∑

i=1

ξk
i āk

iν(k) ∈ λk∂ϕ(x̄k
ν(k)) +

m∑
i=1

ξk
i āk

iν(k), (7.5)

pak
ν(k) = −2

[
α1k

ν(k) + α2k
ν(k), ā

k
iν(k)

]
−
[
ξk, rep m(x̄k

ν(k))
]
, (7.6)

pbk
ν(k) = ξk, (7.7)

pak
j+1 = λk

(
vak
j + 1

hk
j

θAk
j

)
, pbk

j+1 = λk

(
vbk
j + 1

hk
j

θBk
j

)
, j = 0, . . . , ν(k) − 1, (7.8)

(
pxk

j+1 − pxk
j

hk
j

− λkwxk
j ,

pak
j+1 − pak

j

hk
j

− λkwak
j ,

pbk
j+1 − pbk

j

hk
j

− λkwbk
j ,− 1

hk

λkθuk
j

− λkwuk
j ,−pxk

j+1 + λk
(
vxk
j + 1

hk
j

θXk
j

))
∈
(

0,
2

hk
j

[
α1k

j + α2k
j , āk

j

]
,0,

1

hk
j

ψk
j ,0

)

+ N

((
x̄k
j , āk

j , b̄
k
j , ū

k
j ,−

x̄k
j+1 − x̄k

j

hk
j

)
;gphF

)
, j = 0, . . . , ν(k) − 1,

(7.9)

ψk
j ∈ N

(
uk

j ;U
)

, j = 0 . . . , ν(k) − 1, (7.10)

where the quadruple (θuk, θXk, θAk, θBk) is defined by
j j j j
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⎛⎜⎜⎝
tkj+1∫
tkj

(
ūk

j − ū(t)
)

dt,

tkj+1∫
tkj

(
x̄k
j+1 − x̄k

j

hk
j

− ˙̄x(t)

)
dt,

tkj+1∫
tkj

(
āk
j+1 − āk

j

hk
j

− ˙̄a(t)

)
dt,

tkj+1∫
tkj

(
b̄k
j+1 − b̄k

j

hk
j

− ˙̄b(t)

)
dt

⎞⎟⎟⎠
with the running cost subgradient collections

(
wxk

j ,wak
j ,wbk

j ,wuk
j , vxk

j , vak
j , vbk

j

)
∈ ∂�

(
x̄k
j , āk

j , b̄
k
j , ū

k
j ,

x̄k
j+1 − x̄k

j

hk
j

,
āk
j+1 − āk

j

hk
j

,
b̄k
j+1 − b̄k

j

hk
j

)
.

(7.11)

Proof. Take ε > 0 from the definition of the r.i.l.m. (x̄(·), ā(·), b̄(·), ū(·)) in problem (Pk) for 
any fixed k ∈ IN and define the “long” vector reflecting the set of feasible solutions to each 
discrete-time problem (Pk) by

z :=
(
xk

0 , . . . , xk
ν(k), a

k
0, . . . , ak

ν(k), b
k
0, . . . , b

k
ν(k), u

k
0, . . . , u

k
ν(k)−1,X

k
0, . . . ,X

k
ν(k)−1,A

k
0, . . . ,

Ak
ν(k)−1,B

k
0 , . . . ,Bk

ν(k)−1

)
with the fixed starting point as in (5.4). It is clear that each problem (Pk) can be equivalently 
written as the nondynamic problem of mathematical programming (MP) with respect to vec-
tor z:

minimize φ0(z) := ϕ
(
x(T )

)+ ν(k)−1∑
j=0

hk
j �(x

k
j , ak

j , b
k
j , u

k
j ,X

k
j ,A

k
j ,B

k
j )

+ 1

2

ν(k)−1∑
j=0

tkj+1∫
tkj

∥∥∥(Xk
j − ˙̄x(t),Ak

j − ˙̄a(t),Bk
j − ˙̄b(t), uk

j − ū(t)
)∥∥∥2

dt

(7.12)

subject to finitely many equality, inequality, and geometric constraints

κ(z) :=
ν(k)−1∑
j=0

tkj+1∫
tkj

∥∥∥(xk
j , ak

j , b
k
j , u

k
j

)
− (x̄(t), ā(t), b̄(t), ū(t)

)∥∥∥2
dt ≤ ε

2
, (7.13)

φ(z) :=
ν(k)−1∑
j=0

tkj+1∫
tk

∥∥∥(Xk
j ,A

k
j ,B

k
j , uk

j

)
− ( ˙̄x(t), ˙̄a(t), ˙̄b(t), ū(t))

∥∥∥2
dt − ε

2
≤ 0, (7.14)
j

33



JID:YJDEQ AID:10640 /FLA [m1+; v1.340] P.34 (1-49)

T.H. Cao, G. Colombo, B.S. Mordukhovich et al. Journal of Differential Equations ••• (••••) •••–•••
gx
j (z) := xk

j+1 − xk
j − hk

jX
k
j = 0, j = 0, . . . , ν(k) − 1, (7.15)

ga
j (z) := ak

j+1 − ak
j − hk

jA
k
j = 0, j = 0, . . . , ν(k) − 1, (7.16)

gb
j (z) := bk

j+1 − bk
j − hk

jB
k
j = 0, j = 0, . . . , ν(k) − 1, (7.17)

qi(z) :=
〈
ak
iν(k), x

k
ν(k)

〉
− bk

iν(k) ≤ 0, i = 1, . . . ,m, (7.18)

l1
ij (z) :=

∥∥∥ak
ij

∥∥∥2 − (1 + δk)
2 ≤ 0, i = 1, . . . ,m, j = 0, . . . , ν(k), (7.19)

l2
ij (z) :=

∥∥∥ak
ij

∥∥∥2 − (1 − δk)
2 ≥ 0, i = 1, . . . ,m, j = 0, . . . , ν(k), (7.20)

z ∈ �j :=
{
z
∣∣ − Xk

j ∈ F(xk
j , ak

j , b
k
j , u

k
j )
}

, j = 0, . . . , ν(k) − 1, (7.21)

z ∈ �ν(k) :=
{
z
∣∣ xk

0 is fixed, (a0, b0, u0) = (ā(0), b̄(0), ū(0)
)}

, (7.22)

z ∈ �j = {z∣∣ uk
j ∈ U}, j = 0, . . . , ν(k) − 1. (7.23)

Next we apply the necessary conditions from [28, Proposition 6.4(ii) and Theorem 6.5(ii)] to the 
optimal solution

z̄ := (x̄k
0 , . . . , x̄k

ν(k), ā
k
0, . . . , āk

ν(k), b̄
k
0, . . . , b̄

k
ν(k), ū

k
0, . . . , ū

k
ν(k)−1, X̄

k
0, . . . , X̄

k
ν(k)−1, Ā

k
0, . . . ,

Āk
ν(k)−1, B̄

k
0 , . . . , B̄k

ν(k)−1

)
of problem (MP) in (7.12)–(7.23) corresponding to the one for (Pk) given in the theorem. It fol-
lows from Theorem 5.2 that the inequality constraints in (7.13) and (7.14) are inactive for large k, 
and so the corresponding multipliers do not appear in the necessary optimality conditions. Thus 
we find dual elements λk ≥ 0, ξk = (ξk

1 , . . . , ξk
m) ∈ Rm+, α1k = (α1k

0 , . . . , α1k
ν(k)) ∈ Rν(k)+1

+ , α2k =
(α2k

0 , . . . , α2k
ν(k)) ∈ Rν(k)+1

− , pk
j =

(
pxk

j ,pak
j ,pbk

j

)
∈ Rn+mn+m for j = 1, . . . , ν(k), and z∗

j =(
x∗

0j , . . . , x
∗
ν(k)j , a

∗
0j , . . . , a

∗
ν(k)j , b

∗
0j , . . . , b

∗
ν(k)j , u

∗
0j , . . . , u

∗
(ν(k)−1)j , X

∗
0j , . . . , X

∗
(ν(k)−1)j , A

∗
0j ,

. . . , A∗
(ν(k)−1)j , B

∗
0j , . . . , B

∗
(ν(k)−1)j

)
for j = 0, . . . , ν(k), which are not zero simultaneously, such 

that the following relationships are satisfied:

z∗
j ∈
{

N(z̄,�j ) + N(z̄,�j ) if j ∈ {0, . . . , ν(k) − 1}
N(z̄,�j ) if j = ν(k)

, (7.24)

−z∗
0 − . . . − z∗

ν(k) ∈ λk∂φ0(z̄) +
m∑

i=1

ξk
i ∇qi(z̄) +

ν(k)∑
j=0

m∑
i=1

α1k
ij ∇l1

ij (z̄)

+
ν(k)∑
j=0

m∑
i=1

α2k
ij ∇l2

ij (z̄) +
ν(k)−1∑
j=0

(∇gj (z̄))
∗pk

j+1,

(7.25)

ξk
i qi(z̄) = 0, i = 1, . . . ,m, (7.26)

α1k
ij

(∥∥∥ak
ij

∥∥∥− (1 + δk)
)

= 0, i = 1, . . . ,m, j = 0, . . . , ν(k), (7.27)
34



JID:YJDEQ AID:10640 /FLA [m1+; v1.340] P.35 (1-49)

T.H. Cao, G. Colombo, B.S. Mordukhovich et al. Journal of Differential Equations ••• (••••) •••–•••
α2k
ij

(∥∥∥ak
ij

∥∥∥− (1 − δk)
)

= 0, i = 1, . . . ,m, j = 0, . . . , ν(k). (7.28)

Note that the first line in (7.24) comes from applying the normal cone intersection rule from [29, 
Theorem 2.16] to z̄ ∈ �j ∩ �j for j = 0, . . . , ν(k) − 1, where the qualification condition

N(z̄;�j) ∩ (− N(z̄;�j)
)= {0}, j = 0, . . . , ν(k) − 1, (7.29)

imposed therein is fulfilled. Indeed, for any vector z∗
j ∈ N(z̄; �j) ∩ (−N(z̄; �j)) we clearly have 

the inclusions

(x∗
jj , a

∗
jj , b

∗
jj , u

∗
jj ,−X∗

jj ) ∈ N
((

x̄k
j , āk

j , b̄
k
j , ū

k
j ,−

x̄k+1
j − x̄k+1

j

hk

)
;gphF

)
, −u∗

ij ∈ N(ūk
j ;U),

(7.30)
while the other components of z∗

j are zero. It immediately follows from (7.30) that

x∗
jj = 0, a∗

jj = 0, b∗
jj = 0, and X∗

jj = 0.

Substituting this into the first inclusion in (7.30) and using the coderivative definition (6.3) give 
us

(0,0,0, u∗
jj ) ∈ D∗F

(
x̄k
j , āk

j , b̄
k
j , ū

k
j ,−

x̄k+1
j − x̄k

j

hk

)
(0), j = 0, . . . , ν(k) − 1.

Then we deduce directly from the coderivative estimate (6.8) for the velocity mapping F in (3.5)
under the imposed PLICQ that u∗

jj = 0 for all j = 0, . . . , ν(k) − 1. It shows that z∗
j = 0 for such 

indices j , and therefore the qualification condition (7.29) is verified.
To proceed further, observe from the structure of the sets �j and �j in (7.21)–(7.23), respec-

tively, that the inclusions in (7.24) are equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x∗
jj , a

∗
jj , b

∗
jj , u

∗
jj − ψk

j ,−X∗
jj ) ∈ N

((
x̄k
j , āk

j , b̄
k
j , ū

k
j ,−

x̄k
j+1 − x̄k

j

hk
j

)
;gphF

)
for j = 0, . . . , ν(k) − 1,

(x∗
jj , a

∗
jj , b

∗
jj , u

∗
jj ,−X∗

jj ) ∈ N
((

x̄k
j , āk

j , b̄
k
j , ū

k
j ,−

x̄k
j+1 − x̄k

j

hk
j

)
;gphF

)
for j = ν(k)

(7.31)

with ψk
j taken from (7.10), while the other components of z∗

j equal to zero. Similarly we get that 
the vectors x∗

0ν(k), a
∗
0ν(k), b

∗
0ν(k), and u∗

0ν(k) determined by the normal cone to �ν(k) might be the 
only nonzero components of z∗

ν(k). This readily yields the representation

−z∗
0 − . . . − z∗

ν(k) = (−x∗
0ν(k) − x∗

00,−x∗
11, . . . ,−x∗

ν(k)−1,ν(k)−1,0,−a∗
0ν(k) − a∗

00,−a∗
11, . . . ,

−a∗
ν(k)−1ν(k)−1,0,−b∗

0ν(k) − b∗
00,−b∗

11, . . . ,−b∗
ν(k)−1ν(k)−1,0,

−u∗ − u∗ , . . . ,−u∗ ,−X∗ , . . . ,−X∗ ,0, . . . ,0
)
.
0ν(k) 00 ν(k)−1ν(k)−1 00 ν(k)−1ν(k)−1
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Next we represent the right-hand side of the inclusion in (7.25) by

λk∂φ0(z̄) +
m∑

i=1

ξk
i ∇qi(z̄) +

ν(k)−1∑
j=0

α1k
ij ∇l1

ij (z̄) +
ν(k)−1∑
j=0

α2k
ij ∇l2

ij (z̄) +
ν(k)−1∑
j=0

∇gj (z̄)
∗pk

j+1

with the complementary slackness conditions

ξk
i

(〈
ak
iν(k), x

k
ν(k)

〉
− bk

iν(k)

)
= 0, i = 1, . . . ,m.

Unifying the above representations and denoting

ρj (z̄) :=
tkj+1∫
tkj

∥∥∥∥∥
(

x̄k
j+1 − x̄k

j

hk
j

− ˙̄x(t),
āk
j+1 − āk

j

hk
j

− ˙̄a(t),
b̄k
j+1 − b̄k

j

hk
j

− ˙̄b(t), ūk
j (t) − ū(t)

)∥∥∥∥∥
2

dt,

we arrive at the following relationships:

(
m∑

i=1

ξk
i ∇qi(z̄)

)
(xν(k),aν(k),bν(k),uν(k))

=
(

m∑
i=1

ξk
i āk

ik,
[
ξk, rep m(x̄k

ν(k))
]
,−ξk,0

)
,

⎛⎝ν(k)∑
j=0

m∑
i=1

α1k
ij ∇l1

ij (z̄)

⎞⎠
(aj )

= 2
[
α1k

j , āk
j

]
, j = 0, . . . , ν(k) − 1,

⎛⎝ν(k)∑
j=0

m∑
i=1

α2k
ij ∇l2

ij (z̄)

⎞⎠
(aj )

= 2
[
α2k

j , āk
j

]
, j = 0, . . . , ν(k) − 1,

⎛⎝ν(k)−1∑
j=0

∇gj (z̄)
∗pk

j+1

⎞⎠
(xj ,aj ,bj )

=

⎧⎪⎪⎨⎪⎪⎩
−pk

1 if j = 0

pk
j − pk

j+1 if j = 1, . . . , ν(k) − 1

pk
ν(k)

if j = ν(k)

,

⎛⎝ν(k)−1∑
j=0

∇gj (z̄)
∗pk

j+1

⎞⎠
(Xj ,Aj ,Bj )

= (−hk
0p

xk
1 ,−hk

1p
xk
2 , . . . ,−hk

ν(k)−1p
xk
ν(k),

− hk
0p

ak
1 ,−hk

1p
ak
2 , . . . ,−hk

ν(k)−1p
ak
ν(k),−hk

0p
bk
1 ,−hk

1p
bk
2 , . . . ,−hk

ν(k)−1p
bk
ν(k)),

∂φ0(z̄) ⊂ ∂ϕ(x̄k
ν(k)) +

ν(k)−1∑
j=0

hk
j ∂�
(
x̄k
j , āk

j , b̄
k
j , ū

k
j , X̄

k
j , Ā

k
j , B̄

k
j

)
+ 1

2

ν(k)−1∑
j=0

∇ρj (z̄).

Furthermore, the set λk∂φ0(z̄) is represented as the collection of vectors
36
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λk(hk
0w

xk
0 , hk

1w
xk
1 , . . . , hk

ν(k)−1kwxk
ν(k)−1, v

k
ν(k), h

k
0w

ak
0 , hk

1w
ak
1 , . . . , hk

ν(k)−1w
ak
ν(k)−1,0,

hk
0w

bk
0 , hk

1w
bk
1 , . . . , hk

ν(k)−1w
bk
ν(k)−1,0, θuk

0 + hk
0w

uk
0 , θuk

1 + hk
1w

uk
1 , . . . ,

θuk
ν(k)−1 + hk

ν(k)−1w
uk
ν(k)−1, θ

Xk
0 + hk

0v
xk
0 , θXk

1 + hk
1v

xk
1 , . . . , θXk

ν(k)−1 + hk
ν(k)−1v

xk
ν(k)−1,

θAk
0 + hk

0v
ak
0 , θAk

1 + hk
1v

ak
1 , . . . , θAk

ν(k)−1 + hk
ν(k)−1v

ak
ν(k)−1, θ

Bk
0 + hk

0v
bk
0 ,

θBk
1 + hk

1v
bk
1 , . . . , θBk

ν(k)−1 + hk
ν(k)−1v

bk
ν(k)−1),

where the components above are such that

vk
ν(k) ∈ ∂ϕ(x̄k

ν(k)), and(
wxk

j ,wak
j ,wbk

j ,wuk
j , vxk

j , vak
j , vbk

j

)
∈ ∂�

(
x̄k
j , āk

j , b̄
k
j , ū

k
j ,

x̄k
j+1 − x̄k

j

hk
j

,
āk
j+1 − āk

j

hk
j

,
b̄k
j+1 − b̄k

j

hk
j

)
,

(
θuk
j , θXk

j , θAk
j , θBk

j

)
:=⎛⎜⎜⎝

tkj+1∫
tkj

(
ūk

j − ū(t)
)

dt,

tkj+1∫
tkj

(
x̄k
j+1 − x̄k

j

hk
j

− ˙̄x(t)

)
dt,

tkj+1∫
tkj

(
āk
j+1 − āk

j

hk
j

− ˙̄a(t)

)
dt,

tkj+1∫
tkj

(
b̄k
j+1 − b̄k

j

hk
j

− ˙̄b(t)

)
dt

⎞⎟⎟⎠
for j = 0, . . . , ν(k) − 1. Unifying all of this gives us the conditions

−x∗
00 − x∗

0ν(k) = λkhk
0w

xk
0 − pxk

1 , (7.32)

−x∗
jj = λkhk

jw
xk
j + pxk

j − pxk
j+1, j = 1, . . . , ν(k) − 1, (7.33)

0 = λkvk
ν(k) + pxk

ν(k) +
m∑

i=1

ξk
i āk

ik, where vk
ν(k) ∈ ∂ϕ(x̄k

ν(k)), (7.34)

−a∗
00 − a∗

0ν(k) = λkhk
0w

ak
0 + 2

[
α1k

0 + α2k
0 , āk

0

]
− pak

1 , i = 1, . . . ,m, (7.35)

−a∗
jj = λkhk

jw
ak
j + 2

[
α1k

j + α2k
j , āk

j

]
+ pak

j − pak
j+1, i = 1, . . . ,m, j = 1, . . . , ν(k) − 1,

(7.36)

0 = 2
(
α1k

ν(k) + α2k
ν(k)

)
āk
iν(k) + pak

ν(k) +
[
ξk, rep m(x̄k

ν(k))
]
, i = 1, . . . ,m, (7.37)

−b∗
00 − b∗

0ν(k) = λkhk
0w

bk
0 − pbk

1 , (7.38)

−b∗
jj = λkhk

jw
bk
j + pbk

j − pbk
j+1, j = 1, . . . , ν(k) − 1, (7.39)

0 = pbk
ν(k) − ξk, (7.40)

−u∗ = λkθuk + λkhkwuk, (7.41)
00 0 0 0
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−u∗
jj = λkθuk

j + λkhk
jw

uk
j , j = 1, . . . , ν(k) − 1, (7.42)

−X∗
jj = λkθXk

j + λkhkv
xk
j − hk

jp
xk
j+1, j = 0, . . . , ν(k) − 1, (7.43)

0 = λkθAk
j + λkhkv

ak
j − hk

jp
ak
j+1, j = 0, . . . , ν(k) − 1, (7.44)

0 = λkθBk
j + λkhkv

bk
j − hk

jp
bk
j+1, j = 0, . . . , ν(k) − 1. (7.45)

Now we are ready to justify all the necessary optimality conditions claimed in this theorem. 
First observe that (7.5), (7.6), and (7.7) follow from (7.34), (7.37), and (7.40), respectively. Next 

let us extend each vector pk by adding the zero component pk
0 :=

(
x∗

0ν(k), a
∗
0ν(k), b

∗
0ν(k), u

∗
0ν(k)

)
. 

It follows from the relationships in (7.33), (7.36), (7.39), (7.43), (7.44), and (7.45) that

x∗
jj

hk
j

= pxk
j+1 − pxk

j

hk
j

− λkwxk
j ,

a∗
jj

hk
j

= pak
j+1 − pak

j

hk
j

− λkwak
j − 2

hk
j

(
α1k

j + α2k
j

)
āk
ij ,

b∗
jj

hk
j

= pbk
j+1 − pbk

j

hk
j

− λkwbk
j ,

u∗
jj

hk
j

= − 1

hk
j

λkθuk
j − λkwuk

j ,

X∗
jj

hk
j

= − 1

hk
j

λkθXk
j + pxk

j+1 − λkvxk
j ,

0 = − 1

hk
j

λkθAk
j + pak

j+1 − λkvak
j ,

0 = − 1

hk
j

λkθBk
j + pbk

j+1 − λkvbk
j .

Substituting this into the left-hand side of (7.31) and taking into account the equalities in 
(7.26)–(7.28), (7.34), (7.37), and (7.40) justify the claims made in (7.2)–(7.9).

To verify finally the nontriviality condition (7.1), suppose on the contrary that λk = 0, ξk = 0, 
α1k + α2k = 0, pxk

j = 0, pak
j = 0, pbk

j = 0, ψk = 0 for all j = 0, . . . , ν(k) − 1, which yields 

in turn x∗
0k = pxk

0 = 0, a∗
0k = pak

0 = 0, and b∗
0k = pbk

0 = 0. Then it follows from (7.34), (7.37), 

and (7.40) that 
(
pxk

ν(k),p
ak
ν(k),p

bk
ν(k)

)
= 0, and hence 

(
pxk

j ,pak
j ,pbk

j

)
= 0, for all j = 0, . . . , ν(k). 

We see also that the conditions in (7.32), (7.33), (7.35), (7.36), (7.38), (7.39), (7.41), and (7.42)

imply that 
(
x∗

jj , a
∗
jj , b

∗
jj , u

∗
ij

)
= 0 for all j = 0, . . . , ν(k) − 1. In addition, it follows from (7.43), 

(7.44), and (7.45) that X∗
jj = 0, A∗

jj = 0, B∗
jj = 0 for all j = 0, . . . , ν(k) − 1. Furthermore, 

all the components of z∗
j different from (x∗

jj , a
∗
jj , b

∗
jj , u

∗
jj , X

∗
jj , A

∗
jj , B

∗
jj ) are clearly zero for 

j = 0, . . . , ν(k) −1, and hence z∗
j = 0 for j = 0, . . . , ν(k) −1. We similarly conclude that z∗

k = 0, 

since x∗ = pxk = 0 while all the other components of this vector obviously reduce to zero. Thus 
0k 0
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z∗
j = 0 for all j = 0, . . . , ν(k), which violates the nontriviality condition for (MP) and completes 

the proof of the theorem. �
Our next theorem provides verifiable necessary optimality conditions for solutions (x̄k, āk, b̄k,

ūk) to problems (Pk) that strongly approximate the given r.i.l.m. (x̄, ā, b̄, ū) for the original 
sweeping control problem (P ). The proof is based on the results of Theorem 7.1 and the second-
order calculations from Theorem 6.2.

Theorem 7.2 (optimality conditions for discretized sweeping processes via their initial data). 
Let (x̄k, āk, b̄k, ūk) be an optimal solution to problem (Pk) under the notation and assumptions 
of Theorem 7.1 for each fixed index k ∈ IN . Then there exist dual elements (λk, α1k, α2k, ψk, pk)

as in Theorem 7.1 together with vectors ηk
j ∈ Rm+ as j = 0, . . . , ν(k) − 1 and γ k

j ∈ Rm as j =
0, . . . , ν(k) − 1 satisfying the following conditions:

• The PRIMAL ARC REPRESENTATION:

− x̄k
j+1 − x̄k

j

hk
j

+ g(x̄k
j , ūk

j ) =
m∑

i=1

ηk
ij ā

k
ij , j = 0, . . . , ν(k) − 1. (7.46)

• The ADJOINT DYNAMIC RELATIONSHIPS:

pxk
j+1 − pxk

j

hk
j

− λkwxk
j ∈ ∇xg(x̄k

j , ūk
j )

∗( 1

hk
j

λkθXk
j + λkvxk

j − pxk
j+1

)
+

m∑
i=1

γ k
ij ā

k
ij , (7.47)

pak
j+1 − pak

j

hk
j

− λkwak
j − 2

hk
j

[
α1k

j + α2k
j , āk

j

]
=
[
γ k
j , rep m(x̄k

j )
]
+
[
ηk

j , rep m

(
− 1

hk
j

λkθXk
j − λkvxk

j + pxk
j+1

)]
,

(7.48)

pbk
j+1 − pbk

j

hk
j

− λkwbk
j = −γ k

j , j = 0, . . . , ν(k) − 1, (7.49)

where the components of the vectors γ k
j are such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ k
ij = 0 if

〈
āk
ij , x̄

k
j

〉
< b̄k

ij , or ηk
ij = 0 and

〈
āk
ij ,−

1

hk
j

λkθXk
j − λkvxk

j + pxk
j+1

〉
< 0,

γ k
ij ≥ 0 if

〈
āk
ij , x̄

k
j

〉
= b̄k

ij , ηk
ij = 0, and

〈
āk
ij ,−

1

hk
j

λkθXk
j − λkvxk

j + pxk
j+1

〉
> 0,

γ k
ij ∈ R if ηk

ij > 0 and

〈
āk
ij ,−

1

hk
j

λkθXk
j − λkvxk

j + pxk
j+1

〉
= 0

for the indices j = 0, . . . , ν(k) − 1 and i = 1, . . . , m.
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• The LOCAL MAXIMUM PRINCIPLE:

ψk
j ∈ N(ūk

j ;U) with − 1

hk
j

ψk
j − 1

hk
j

λkθuk
j −λkwuk

j ∈ ∇ug(x̄k
j , ūk

j )
∗( 1

hk
j

λkθXk
j +λkvxk

j −pxk
j+1

)
(7.50)

for j = 0, . . . , ν(k) − 1, where the subgradients (wxk
j , wak

j , wbk
j , wuk

j , vxk
j , vak

j , vbk
j ) are taken 

from (7.11). If furthermore the normal cone N(ūk
j ; U) is tangentially generated, i.e.,

N(ūk
j ;U) = T ∗(ūk

j ;U) := {v ∈ Rd
∣∣ 〈v,u〉 ≤ 0 for all u ∈ T (ūk

j ;U)
}
,

for some tangent cone T (ūk
j ; U), then the first inclusion in (7.50) is written as〈

ψk
j , ūk

j

〉
= max

u∈T (ūk
j ;U)

〈
ψk

j ,u
〉
, j = 0, . . . , ν(k) − 1, (7.51)

which reduces to the GLOBAL MAXIMUM PRINCIPLE

〈ψk
j , ūk

j 〉 = max
u∈U

〈
ψk

j ,u
〉
, j = 0, . . . , ν(k) − 1, (7.52)

provided that the control set U is convex.

• The TRANSVERSALITY CONDITIONS at the right endpoint:

−pxk
ν(k) ∈ λk∂ϕ(x̄k

ν(k)) +
m∑

i=1

ηk
iν(k)ā

k
iν(k), (7.53)

pak
ν(k) = −2

[
α1k

ν(k) + α2k
ν(k), ā

k
iν(k)

]
−
[
ηk

ν(k), rep m(x̄k
ν(k))

]
, (7.54)

pbk
iν(k) = ηk

iν(k) ≥ 0,
〈
āk
iν(k), x̄

k
ν(k)

〉
< b̄k

iν(k) =⇒ pbk
iν(k) = 0 for i = 1, . . . ,m (7.55)

with dual vectors α1k
ν(k) and α2k

ν(k) satisfying

α1k
iν(k) ∈ N[0,1+δk](‖āk

iν(k)‖) and α2k
iν(k) ∈ N[1−δk,∞](‖āk

iν(k)‖), i = 1, . . . ,m, (7.56)

where the normal cone to the convex sets is explicitly expressed in form (1.2).

• The COMPLEMENTARITY SLACKNESS CONDITIONS:[〈
ak
ij , x̄

k
j

〉
< b̄k

ij

]
=⇒ ηk

ij = 0, (7.57)[〈
āk
iν(k), x̄

k
ν(k)

〉
< b̄k

iν(k)

]
=⇒ ηk

iν(k) = 0, (7.58)

ηk
ij > 0 =⇒

[〈
āk
ij ,−

1

hk
j

λkθXk
j − λkvxk

j + pxk
j+1

〉
= 0

]
(7.59)

for all the indices j = 0, . . . , ν(k) − 1 and i = 1, . . . , m.
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• The NONTRIVIALITY CONDITIONS:

λk +
∥∥∥α1k + α2k

∥∥∥+
∥∥∥ηk

ν(k)

∥∥∥+
ν(k)−1∑
j=0

∥∥∥pxk
j

∥∥∥+
∥∥∥pak

0

∥∥∥+
∥∥∥pbk

0

∥∥∥+
∥∥∥ψk

∥∥∥ �= 0, (7.60)

λk +
∥∥∥α1k + α2k

∥∥∥+
∥∥∥γ k
∥∥∥ �= 0. (7.61)

Proof. It follows from condition (7.9) of Theorem 7.1 and the coderivative definition (6.3) that

(
pxk

j+1 − pxk
j

hk
j

− λkwxk
j ,

pak
j+1 − pak

j

hk
j

− λkwak
j − 2

hk
j

(
α1k

j + α2k
j

)
āk
ij ,

pbk
j+1 − pbk

j

hk
j

− λkwbk
j ,

− 1

hk
j

λkθuk
j − λkwuk

j − 1

hk
j

ψk
j

)

∈ D∗F
(

x̄k
j , āk

j , b̄
k
j , ū

k
j ,−

x̄k
j+1 − x̄k

j

hk
j

)(
− 1

hk
j

λkθXk
j − λkvxk

j + pxk
j+1

)

for all j = 0, . . . , ν(k) − 1, i = 1, . . . , m. Using the inclusion

− x̄k
j+1 − x̄k

j

hk
j

+ g(x̄k
j , ūk

j ) ∈ G(x̄k
j , āk

j , b̄
k
j )

via the normal cone mapping G from (6.5) and employing the PLICQ property of the vectors {
āk
i | i ∈ I (x̄k, āk, b̄k)

}
give us a unique vector ηk

j ∈ Rm+ such that for all i = 1, . . . , m we have

m∑
i=1

ηk
ij ā

k
ij = − x̄k

j+1 − x̄k
j

hk
j

+ g(x̄k
j , ūk

j ) with ηk
ij ∈ NR−

( 〈
āk
ij , x̄

k
j

〉
− b̄k

ij

)
, j = 0, . . . , ν(k) − 1,

which verifies the implications in (7.46) and (7.57). Applying now the coderivative upper esti-

mate (6.8) from Theorem 6.2 with x := x̄k
j , a := āk

j , b := b̄k
j , u := ūk

j , w := − x̄k
j+1 − x̄k

j

hk
j

, and 

y := − 1

hk

λkθXk
j − λkvxk

j + pxk
j+1 as j = 0, . . . , ν(k) − 1 shows that γ k

j ∈ Rm and that the rela-

tionships

⎛⎜⎜⎜⎝
pxk

j+1 − pxk
j

hk
j

− λkwxk
j ,

pak
j+1 − pak

j

hk
j

− λkwak
j − 2

hk
j

[
α1k

j + α2k
j , āk

j

]
,
pbk

j+1 − pbk
j

hk
j

− λkwbk
j ,

− 1

hk
λkθuk

j − λkwuk
j − 1

hk
ψk

j

⎞⎟⎟⎟⎠

j j
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∈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−∇gx(x̄
k
j , ūk

j )
∗
(

− 1

hk
j

λkθXk
j − λkvxk

j + pxk
j+1

)
+

m∑
i=1

γ k
ij ā

k
ij ,[

γ k
j , rep m(x̄k

j )
]
+
[
ηk

j , rep m

(
− 1

hk
j

λkθXk
j − λkvxk

j + pxk
j+1

)]
,

−γ k
j , −∇gu(x̄

k
j , ūk

j )
∗
(

− 1

hk
j

λkθXk
j − λkvxk

j + pxk
j+1

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
are satisfied, where ψk

j ∈ N(ūk
j ; U) for all j = 0, . . . , ν(k) − 1, and where the components γ k

ij of 

the vectors γ k
j ∈Rm as i = 1, . . . , m are taken from

γ k
ij ∈ D∗NR−

(〈
āk
ij , x̄

k
j

〉
− b̄k

ij , η
k
ij

)(〈
āk
ij ,−

1

hk
j

λkθXk
j − λkvxk

j + pxk
j+1

〉)
. (7.62)

The obtained relationships together with the direct calculation of the coderivative D∗NR− in 
(7.62) ensure the validity of all the conditions in (7.47) as well as the inclusion in (7.50). The 
latter together with (7.10) constitutes an appropriate version of the (linearized) local maximum 
principle for nonconvex discrete-time systems. It immediately gives us the local maximality con-
dition (7.51) in the case of tangentially generated normals, which surely holds for the class of 
normally regular sets U ; see, e.g., [28,34]. The global form of the discrete maximum principle in 
(7.52) is a direct consequence of (7.50) and the normal cone representation (1.2) for convex sets. 
Furthermore, conditions (7.53), (7.54), and (7.55) clearly follow from (7.5), (7.6), and (7.7) due 
to (7.2).

Defining now ηk
ν(k) := ξk via ξk from the statement of Theorem 7.1 yields ηk

j ∈ Rm+ for j =
0, . . . , ν(k) and allows us to deduce the nontriviality condition (7.60) from that in (7.1) and also 
the transversality conditions in (7.53)–(7.55) from those in (7.5)–(7.7). Implication (7.58) is a 
direct consequence of (7.2) and the definition of ηk

ν(k). Observing that (7.59) follows from the 
fact that

− 1

hk
j

λkθXk
j − λkvxk

j + pxk
j+1 ∈

⋂
{
i| ηk

ij >0
}(āk

ij )
⊥,

we get from (7.3) and (7.4) that both inclusions in (7.56) hold.
It remains to verify the nontriviality condition (7.61). Suppose on the contrary that λk = 0, 

α1k + α2k = 0, and γ k = 0. We deduce from (7.8) that pak
ν(k) = 0 and pbk

ν(k) = 0, which clearly 

yield ηk
ν(k) = pbk

ν(k) = 0. Then it follows from (7.53) that pxk
ν(k) = 0, and thus 

(
pxk

j ,pak
j

)
= (0, 0)

for all j = 0, . . . , ν(k) − 1 by (7.47) and (7.48). This implies that ψk = 0 by (7.50). Using finally 
(7.49) tells us that pbk

0 = 0. It means that (7.60) is violated, which is a contradiction that justifies 
the validity of (7.61) and therefore completes the proof of the theorem. �
8. Numerical illustration

In this section we present a nontrivial example illustrating the application of the obtained 
results to solve the sweeping optimal control problem (P ). We consider this problem with the 
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following data, where the a-components and b-components of controls are fixed, and only the 
u-components are used for optimization:⎧⎪⎪⎨⎪⎪⎩

n = 2, m = 1, T = 1, x0 = ( 3
2 ,1
)
, a =

(
− 1√

5
,− 2√

5

)
, b = − 2√

5
,

g(x,u) := u, ϕ(x) := x1 + x2, �(t, x, a, b,u, ẋ, ȧ, ḃ) := 1
2u2

1 + u2
2,

U := [−1,1] × [−1,1].
(8.1)

The set C(t) in the sweeping inclusion (1.1) is described now by

C(t) = C :=
{
(x1, x2) ∈ R2

∣∣ x1 + 2x2 ≥ 2
}

for all t ∈ [0,1].

In what follows we are going to show that applying the optimality conditions of Theorem 7.2
allows us to find optimal solutions to problems (Pk), for each k ∈ IN , that can be viewed as 
(sub)optimal solutions to the original sweeping control problem (P ). By construction, the veloc-
ity of the object and the u-components of controls are piecewise constant functions on [0, 1].

The structure of the problem suggests that the object only changes its velocity when it hits the 
boundary at some time t∗ ∈ [0, 1]. Moreover, if t∗ < 1, the object slides on the boundary of C
for the whole interval [t∗, 1]. In this case, by construction of t∗ it must be one of the mesh points 
tkj of some partition �k in Theorem 4.1. Assume that t∗ = tks for some s ∈ {0, 1, . . . , ν(k)}. It is 
easy to see that all the assumptions of Theorem 7.2 are satisfied for (8.1), and we can employ the 
obtained necessary optimality conditions, where the superscript “k” is dropped, and where the 

quadruple 
(
θu
j , θX

j , θA
j , θB

j

)
is supposed to be 0 for large k due to the established convergence 

of optimal solutions. Then we have the existence of λ ≥ 0, ηj ≥ 0, γj ∈ R, α1
j , α

2
j ∈ R, ψj ∈

R2, (px
j , pa

j , pb
j ) ∈ R5, (wx

j , wa
j , wb

j , w
u
j ) ∈ R7, and (xx

j , va
j , vb

j ) ∈ R5 as j = 0, . . . , ν(k) − 1
satisfying the following relationships:

1.
(
wx

j ,wa
j ,wb

j ,w
u
j

)
= (0, 0, 0, 0, 0, ū1, 2ū2) for j = 0, . . . , ν(k) − 1.

2.
(
vx
j , va

j , vb
j

)
= (0, 0, 0, 0, 0, 0) for j = 0, . . . , ν(k) − 1.

3. ˙̄x(t) =

⎧⎪⎨⎪⎩
ū(t) + η0√

5
(1,2) if t ∈ (0, ts)

ū(t) + ηs√
5
(1,2) if t ∈ (ts,1)

, where ū(t) =
{

ū0 if t ∈ [0, ts)

ūs if t ∈ (ts ,1] .

4.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

hk
j

(
px

j+1 − px
j

)
= γj (1,2),

1

hk
j

(
pa

j+1 − pa
j

)
− 2

hk
j

(
−
(
α1

j + α2
j

)
1√
5
,−
(
α1

j + α2
j

)
2√
5

)
= (γj x̄1j , γj x̄2j

)+ (ηjp
x
1,j+1, ηjp

x
2,j+1

)
,

1

hk
j

(
pb

j+1 − pb
j

)
= −γj for j = 0, . . . , ν(k) − 1.

5.
1

hk
j

ψj + λ 
(
ū1j ,2ū2j

)= px
j+1 for j = 0, . . . , ν(k) − 1.
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6. ψj ∈ N
(
ūj ; [−1,1] × [−1,1]) for j = 0, . . . , ν(k) − 1, which is equivalent to

ψ1j ū1j + ψ2j ū2j = max
(u1,u2)∈[−1,1]×[−1,1]

{
ψ1j u1 + ψ2j u2

}
.

7. x̄1j + 2x̄2j > 2 =⇒ γj = 0 and ηj = 0 for j = 0, . . . , ν(k) − 1.

8. ηj > 0 =⇒
〈
(−1,−2),px

j+1

〉
= 0 for j = 0, . . . , ν(k) − 1.

9. x̄1ν(k) + 2x̄2ν(k) > 2 =⇒ ην(k) = ηs = 0.

10.

⎧⎪⎪⎨⎪⎪⎩
−px

ν(k) = λ(1,1) + ην(k)(1,2),

pa
ν(k) = −2

(
−
(
α1

ν(k) + α2
ν(k)

)
1√
5
,−
(
α1

ν(k) + α2
ν(k)

)
2√
5

)
− (ην(k)x̄1ν(k), ην(k)x̄2ν(k)

)
,

pb
ν(k) = ην(k) ≥ 0.

11. α1
ν(k) ∈ N[0,1+δk](1), α2

ν(k) ∈ N[1−δk,∞)(1), which implies that 
(
α1

ν(k), α
2
ν(k)

)
= (0, 0).

12. λ + ∥∥α1 + α2
∥∥+ ‖γ ‖ > 0.

It clearly follows from (3) that

x̄(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

( 3
2 + t ū10,1 + t ū20

)
if t ∈ [0, ts)(

3
2 + ts ū10 + (t − ts)

(
ū1s + ηs/

√
5
)

,1 + ts ū20 + (t − ts)
(
ū2s + 2ηs/

√
5
)
)
)

if t ∈ [ts ,1],
where we get η0 = 0 due to the conditions in (7). Since t = ts is the time when the moving 
particle hits the boundary, i.e., x̄1(ts) + 2x̄2(ts) = 2, then

ηj =
{

η0 = 0 if j < s

ηs ≥ 0 if j ≥ s.

Of course, the normal vectors are inactive before the hitting time. Consequently, we have that

7

2
+ ts(ū10 + 2ū20) = 2 if t < ts and

7

2
+ ts(ū10 + 2ū20) + (t − ts)

(
ū1s + 2ū2s + √

5ηs

)
= 2 if t ≥ ts .

This allows us to calculate the hitting time as

ts = − 3

2(ū10 + 2ū20)
, (8.2)

which implies in turn the condition

ū10 + 2ū20 ≤ −3

2
due to 0 ≤ ts ≤ 1. (8.3)

When x̄(·) hits the boundary of C, it would stay there while pointing in the direction shown in 
Fig. 1. Thus
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Fig. 1. Dynamics of the controlled sweeping process.

ū1s + 2ū2s + √
5ηs = 0 and hence ηs = − ū1s + 2ū2s√

5
. (8.4)

The cost functional is calculated therefore by

J [x̄, ū] = ts

(
ū2

10

2
+ ū2

20 + ū10 + ū20

)
+ (1 − ts)

(
ū2

1s

2
+ ū2

2s + ū1s + ū2s + 3ηs√
5

)
+ 5

2
,

where ts and ηs are given in (8.2) and (8.4), respectively.
When the object has not hit the boundary of the set C yet, we have t < ts . In this case, the 

implication in (8) cannot be used and the control u should be chosen by taking into account the 
only requirement that the corresponding trajectory hits the boundary exactly at the time ts . We 
examine the following two possibilities:

• Case 1a: If the object is pushed to reach the boundary as soon as possible and it slides there 
after that to reduce the cost functional, we expect to use more energy. Then the control ū0
should be on the boundary of the control set U = [−1, 1] × [−1, 1]. It follows from the 
structure of the problem that either ū10 = −1, or ū20 = −1. In this way we get:

If ū10 = −1, then −1 ≤ ū20 ≤ − 1
4 .

If ū20 = −1, then −1 ≤ ū10 ≤ 1
2 .

• Case 1b: If we wish to save energy, then the control selection is ū0 = (ū10, ū20) ∈ (−1, 1) ×
(−1, 1) such that ū10 and ū20 satisfy inequality (8.3).

When the object hits the boundary, it then slights there until the end of the process, i.e., t ≥ ts . 
To proceed further, consider the following two situations:
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• Case 2a: ηs = 0, i.e., the normal vector 
ηs√

5
(−1, −2) taken from the normal cone 

N(x(t); C(t)) is not active for t ≥ ts . It then follows from (8.4) that ū1s = −2ū2s . The 
cost functional in this case is

J [x̄, ū] = ts

(
ū2

10

2
+ ū2

20 + ū10 + ū20

)
+ (1 − ts)

(
3ū2

2s − ū2s

)
+ 5

2
,

which achieves the minimum value at ū2s = 1
6 implying in turn that ū1s = − 1

3 and

J [x̄, ū] = ts

(
ū2

10

2
+ ū2

20 + ū10 + ū20

)
+ ts − 1

12
+ 5

2
.

• Case 2b: ηs > 0. Using (8) gives us px
1j + 2px

2j = 0 for all j ≥ s. When the object hits 
the boundary, we do not need to use the maximum energy. That is, ūs should be selected in 
(−1, 1) × (−1, 1), and so ψj = 0 due to (6). It then follows from (4) and (5) that

1

hk
j

ψ1j + 2

hk
j

ψ2j + λ (ū1s + 4ū2s) = 0, (8.5)

which therefore gives us ū1s + 4ū2s = 0, or equivalently

ū1s = −4ū2s

while assuming that λ > 0; otherwise we do not have enough information to proceed. Then

ηs = 2ū2s√
5

≥ 0.

In this case the cost functional is

J [x̄, ū] = ts

(
ū2

10

2
+ ū2

20 + ū10 + ū20

)
+ (1 − ts)

(
9ū2

2s − 9

5
ū2s

)
+ 5

2
,

which achieves the minimum value at ū2s = 1
10 . Thus we get ū1s = − 2

5 and

J [x̄, ū] = ts

(
ū2

10

2
+ ū2

20 + ū10 + ū20

)
+ 9(ts − 1)

100
+ 5

2
.

It is clear that in Case 2b the cost functional has a smaller value than in Case 2a, and thus latter 
case can be ruled out. We then chose ū10 and ū20 in either Case 1a or Case 1b to minimize 
J [x̄, ū]. To simplify the computations, we select ū10 and ū20 as the mesh points of a uniform 

partition of [−1, 1] with the step size h = 2

N
as N is sufficiently large and then compute the 

corresponding hitting time ts from (8.2). Let us present the results of computations that are 
provided by writing a code in Python for the case of N = 20 and hence the step size h = 0.1. 
After running the code in Python, we get the following table:
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ū10 ū20 ts J [x̄, ū] ū10 ū20 ts J [x̄, ū]
−1 −1 0.5 2.205 −1 −0.9 0.5357 2.1421
−1 −0.8 0.5769 2.0812 −1 −0.7 0.625 2.0225
−1 −0.6 0.6818 1.9668 −1 −0.5 0.75 1.915
−1 −0.4 0.8333 1.8683 −1 −0.3 0.9375 1.8288
−0.9 −1 0.5172 2.2005 −0.9 −0.9 0.5556 2.135
−0.9 −0.8 0.6 2.071 −0.9 −0.7 0.6522 2.0089
−0.9 −0.6 0.7143 1.9493 −0.9 −0.5 0.7895 1.8929
−0.9 −0.4 0.8824 1.8409 −0.9 −0.3 1 1.795
−0.8 −1 0.5357 2.2011 −0.8 −0.9 0.5769 2.1331
−0.8 −0.8 0.625 2.0662 −0.8 −0.7 0.6818 2.0009
−0.8 −0.6 0.75 1.9375 −0.8 −0.5 0.8333 1.8767
−0.8 −0.4 0.9375 1.8194 −0.7 −1 0.5556 2.2072
−0.7 −0.9 0.6 2.137 −0.7 −0.8 0.6522 2.0676
−0.7 −0.7 0.7143 1.9993 −0.7 −0.6 0.7895 1.9324
−0.7 −0.5 0.8824 1.8674 −0.7 −0.4 1 1.805
−0.6 −1 0.5769 2.2196 −0.6 −0.9 0.625 2.1475
−0.6 −0.8 0.6818 2.0759 −0.6 −0.7 0.75 2.005
−0.6 −0.6 0.8333 1.935 −0.6 −0.5 0.9375 1.8662
−0.5 −1 0.6 2.239 −0.5 −0.9 0.6522 2.1654
−0.5 −0.8 0.7143 2.0921 −0.5 −0.7 0.7895 2.0192
−0.5 −0.6 0.8824 1.9468 −0.5 −0.5 1 1.875
−0.4 −1 0.625 2.2662 −0.4 −0.9 0.6818 2.1918
−0.4 −0.8 0.75 2.1175 −0.4 −0.7 0.8333 2.0433
−0.4 −0.6 0.9375 1.9694 −0.3 −1 0.6522 2.3024
−0.3 −0.9 0.7143 2.2279 −0.3 −0.8 0.7895 2.1534
−0.3 −0.7 0.8824 2.0791 −0.3 −0.6 1 2.005
−0.2 −1 0.6818 2.3486 −0.2 −0.9 0.75 2.275
−0.2 −0.8 0.8333 2.2017 −0.2 −0.7 0.9375 2.1288
−0.1 −1 0.7143 2.4064 −0.1 −0.9 0.7895 2.335
−0.1 −0.8 0.8824 2.2644 −0.1 −0.7 1 2.195
0 −1 0.75 2.4775 0 −0.9 0.8333 2.41
0 −0.8 0.9375 2.3444 0.1 −1 0.7895 2.5639
0.1 −0.9 0.8824 2.5026 0.1 −0.8 1 2.445
0.2 −1 0.8333 2.6683 0.2 −0.9 0.9375 2.6162
0.3 −1 0.8824 2.7938 0.3 −0.9 1 2.755
0.4 −1 0.9375 2.9444 0.5 −1 1 3.125

The next table collects the values of the optimal control and the corresponding costs with different 
choices of N .

N ū10 ū20 ts J [x̄, ū]
40 −0.85 −0.35 0.9677 1.804
80 −0.825 −0.35 0.9836 1.798
160 −0.825 −0.3375 1 1.7917
320 −0.825 −0.3375 1 1.7917
640 −0.8344 −0.3344 0.99679 1.7924

Keep running the code in Python with N = 2000, it then follows that the optimal control before 

the hitting time is ū10 = −5

6
and ū20 = −1

3
. In this case, the object reaches the boundary at the 

ending time ts = 1 and the minimum cost is 1.79167. Our computation of the optimal control is 
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also supported by an educated guess that it can be done by computing the exact minimum for 
small k, supposing that the hitting time ts = 1.
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