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We show that weak L? dissipativity implies strong L dissipativity and therefore
implies the existence of global attractors for a general class of reaction—diffusion systems.
This generalizes the results of Alikakos and Rothe. The results on positive steady
states (especially for systems of three equations) in our earlier work (J. Differential
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1. INTRODUCTION

Reaction—diffusion systems have been studied extensively in different context
and by various methods. A large part of literature devotes to the study the
asymptotic behavior of the dynamics generated by the systems (see [21]).
Many important and interesting information on the dynamics of solutions
can be obtained if the systems generate dissipative semiflows on appropriate
Banach spaces which are usually the spaces (or products) of non-negative
continuous functions with supremum norms. To establish the dissipativeness
we need a priori estimates on various norms of the solutions. In general, this
problem is by no means trivial. Appropriate a priori estimates guarantee in
turn the global existence of solutions and sometimes even the existence of a
compact set that attracts all solutions eventually (see, for instance, [ 20, 32]).
Such a set is called the global attractor and carries information on the
asymptotic behavior of the solutions.

The problem to be considered in this paper is the system

ou.
ail=42fi(f,X,D)u,-+ﬁ(t,x,u) >0, xe€0, i=1,..m,

1.1
B,(x, D)u;= v} onoQ, >0, (1.1)
uy(0, x) =ud(x) in Q,
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where u = (uy, ..., u,,), 2 is a bounded open set in R with smooth boundary o€,
and .o(t, x, D)’s are linear elliptic operators, and 4,’s are regular elliptic
boundary operators. In this form, (1.1) represents many reaction diffusion
models in ecology, biology, chemistry, etc. Nonlinear diffusion systems
(nondegenerate or degenerate) were studied in [8-10, 16].

Our first results in Sections 2 and 3 concern the strong L *-estimates and
dissipativity of the solutions. We will show that such estimates (or dissipativity
results) can be obtained if L” estimates, with p sufficiently large, are known.
This type of result is quite suitable for reaction diffusion systems encountered
in applications. Because, in many cases, the components u; of the solutions are
usually nonnegative functions, and therefore by a simple integration over
the domain we can obtain an ordinary differential equation (or differential
inequality) for the spatial averages of u; and derive estimates for their L?
norms from this simpler system. In [ 8-10], we deal with nonlinear diffusion
systems, a different technique has been used to obtain results which are similar
to those of this work.

The L* estimates which imply only global existence results had been
derived by using a Moser-type iterative method in the works of Alikakos
(see [1, 2]) for scalar equations with homogeneous Neumann boundary
condition and restricted structure (specifically, he consider equations whose
diffusion terms are Laplacian and reaction terms are linear). In [30],
F. Rothe devised an alternative technique using a “feedback” argument to
obtain similar results. However, their estimates generally depend on the
norms of the initial data and therefore are not sharp enough to give the
dissipativeness and the compactness of the trajectories.

Alikakos’ technique was refined and combined with an induction
argument by Cantrell, Cosner, Hutson, and Schmitt in [6, 23] to establish
the dissipativity of the semiflows generated by some ecological models.
These authors then applied this estimate to systems of Lodka—Volterra
type whose reaction terms satisfy the so-called food pyramid condition or
its related versions so that they can reduce the problem to one equation.

Meanwhile, we should mention here the duality technique which was
originally developed by Hollis, Martin, and Pierre [22] and then general-
ized by Morgan [27]. This entirely different approach has been quite
sucessful in proving the global existence of the solutions. Roughly speaking,
the method works well with systems satisfying some sort of generalized
Lyapunov structure from which one can obtain the L? estimates for certain
Lyapunov functional of the components of the solution. The key idea is
then to show that if the solution does not exist globally then the L? norms
of its components must blow up together and therefore is a contradiction.
This method did not give explicit estimates for the L® norms nor those for
stronger norms of the solutions to obtain the dissipativity and compactness
we need here.
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Here we consider semilinear parabolic systems satisfying a general structure
and boundary conditions (see (i)—(iii) of Section 3). The technique in this
paper works directly with the whole system, and therefore allows us to drop
this food pyramid condition on the nonlinearities. Actually, the use of the
theory of evolution operators makes the proof simpler than those of the
techniques mentioned above. In addition, this also gives us the estimates for
the Holder norms of solutions and thus the compactness of the trajectories,
a crucial factor in the proof of the existence of the global attractor.

In many cases, the dissipativity of the system could not be seen explicitly
from the reaction terms and so the food pyramid condition was unlikely.
More often, there will be some sort of interaction among the reaction terms
of the equations (and even between these terms and the diffusions) that still
gives the dissipativeness. We call this cancellation and growth and formulate
it in condition (F) (see also (Cp) and (Ap) at the end of Section 3).

Estimates which are uniform with respect to the initial data also play an
important role in the study of steady-state solutions (especially when one
uses the technique of index theory, see Theorem 4.3). We address another
issue on the existence of steady-state solutions of (1.1) in the remainder of
our study when the system is autonomous. Although the existence of the
global attractor may guarantee that there is such a solution in that set, the
solution can be the trivial one as it frequently occurs in applications. Therefore
it is more interesting (and more difficult) to find conditions which ensure the
existence of another nontrivial solution for the elliptic system associated
to (1.1) (autonomous case)

{Ozﬂ}(x,D)u,-—i—f,-(x, u) xeQ, i=1,.,m, (12)

Bi(x, D)u;=v? on 0Q.

This problem has been studied extensively in different contexts such as
ecology, biology, etc., because of the interest in finding conditions for
co-existence states of competing species in the models.

Here we use the index theory as in [13] to establish conditions for the
existence of nontrivial solutions for (1.2) under very general structure
conditions. For m >3, this solution may be a semitrivial one (only two
components are nonzero). Sufficient conditions for coexistence when m =3
will be derived without the uniqueness assumptions on semitrivial solutions
asin [13].

We remark here that index theory was also used by Hadeler et al. and
Rothe in [19, 29] to obtain existence results of at least one steady state.
They assumed that there exists a bounded invariant region for the systems
under consideration so that uniform estimates are thus casily obtained. As
we mentioned above, such steady states could be the trivial one as in the
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models considered in this paper. The results of these authors should be
compared with that of Corollary 3.6 of this work, where the existence of at
least one steady state is a by-product of the existence of the global attractor.
Our homotopy arguments to obtain the existence results of nontrivial steady
states are, of course, completely different.

Besides the standard Schauder’s and asymptotic fixed point theories,
there is an interesting theory of permanence of dynamical systems which
can be used to show the existence of nontrivial steady states for some
models (for instance, see [ 6, 23] for models of Kolmogorov type). Having
its own importance in understanding the dynamics, this theory is quite
difficult to be applied in practice. One needs to either understand fairly well
the dynamics of the boundary semiflows to establish their acyclicity or
construct the so-called averaged Lyapunov functions. As far as we know this
method has been used only for systems of two equations (m = 2) for which,
in some special cases, the boundary dynamics can be analyzed by studying
those of scalar equations.

The sub- or super-solution technique as in [26, 28] require monotone
structure on the system and therefore is more restricted. However, in some
cases, this method can give valuable information on the stability of solutions.

We should mention that similar results for a 3-species competition with
a diffusion of Lodka—Volterra type has been obtained in [ 7]. Our homotopy
techniques are different and work for (1.2), which satisfies more general
structures than those considered in [7] and the references therein.

2. L? ESTIMATES

In this section, general conditions are described which ensure that one
can obtain L”-estimates for p arbitrarily large if a priori estimates of certain
L7 norm are assumed. We consider the following general (nonlinear)
reaction—diffusion system

ou.
ai’z’jjlul—i—f‘l(lz X, U, Dul) l>0’ XEQ’ i=1""’ m,

2.1
giuiz U? on 6!2, t> O, ( )
u0, x) = up(x) in Q,

where u=(uy, .., u,,), 2 is a bounded open set in R™ with smooth
boundary 0Q2. The differential operators are given by

v = Dy(a(t, x, v, Dv)), >0, xeQ, i=1,..,m
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We can consider the mixed boundary conditions in (2.1). That is, 0Q
may consist of two parts, 02, and 0Q,, where our boundary conditions are
either the Dirichlet condition

Bui=v=1", onoQ,, t>0,
or the nonlinear Robin condition

0
Bv :Z%Vi+bi(t’ x,0) =17,

0 )
with ﬁza}{(t,x,v,Dv)onk(x) on 0Q,, t>0.

Here n,(x) denotes the cosine of the angle formed by the outward normal
vector n(x) and the x,-axis. We follow the convention that repeated indices
will be summed from 1 to N.

We assume that

(A) The differential operators <f; are uniformly elliptic. That is, there
exist positive constant v, 0 and non-negative measurable function u, pt, such
that for any (t,x,u,p)e R xQxR"x RN and i=1, ..., m,

ap(t, X, u, p) pie = vo | PII? — pa (2, x) |u]® — po(t, x). (22)

(B) For the Robin boundary conditions, b,’s are continuous functions in
their variables. In addition, there exist positive constants vy, v, and =1 such
that

bi(t’ X, u)u> - |u|ﬁ+1_ Va,

for all (t,x)e RT x0Q, and ue R. Note that (A) above implies that 0/0.N;
are regular oblique derivative boundary operators.

Remark 2.1. The boundary operators 0/0.4;’s are not necessarily related
to the operartors .«/’s in the way described above. Other form of 0/0.4;
could be considered, provided that we still have similar estimates for the
boundary integrals occuring from the use of integration by parts in the
proof of Theorem 2.6.

Concerning the boundary and initial conditions, we assume that v?, u?

are bounded continuous functions on R, x 02 and €, respectively. We
also denote uy = (19, ..., u2).

To obtain the L”-estimates we need to impose the following cancellation
and growth conditions on the nonlinearities f; of (2.1).
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(F) There exists positive constants a,c and non-negative measurable
functions k., k,, ks such that 0 <o <2 and

m
z f;(ta X, U, gl) |ui|p_1 ui

i=1

< k(tx) Y |7 kot x) Y 11T |7+ hs( x),  (2.3)

i=1 i=1
Sorallp>1and (1, x,u,{) e R, x Qx R™x RN. Remember that u= (uy, ..., u,,).

An easy consequence of the Young inequality implies that (2.3) holds if
fork=1,..,m

|fk(ta X, U, C)|<Cl(l" X) Z |ui|a+C2(Za X) |C|a+c3(l" x) (24)

i=1

for some non-negative functions ¢, ¢,, c¢5. The functions k,’s are then just
some linear combinations of the ¢;’s.

Concerning the functional spaces of the parameters in (A) and (F) we
assume that

(P) There exist real numbers q,r such that ¢ > N/2 and r > N/(2 —a)
such that for each t =0 the functions

s o, ks ks € LAQ); ke L1(Q),

with respect to the spatial variable x € Q2. Furthermore, we assume that their
corresponding L9, L" norms are uniformly bounded for all t =0. That is, for
some finite constant M,

H)uh/uZa kla k3(ta .)an HkZ(ts .)HrSMa f()}’ all [205

where | |, denotes the L? norm in L?(Q).

Remark 2.2. We could allow all the constants in the hypotheses (A),
(B), and (F) to belong to some weighted Lebesgue spaces. Our proof still
works in this case by using the weighted Sobolev space inequalities developed
in [11]. Fewer smoothness assumptions on a} and f; could be considered.
Moreover, in many applications, special forms of some f;’s may directly give
L= bounds for the corresponding components of the solutions via comparison
principles. This would relax the restrictions on the growth rates of these
components in (2.3).

Our structure assumptions above allow us to apply the standard theory
of quasilinear parabolic systems in divergence form (e.g. see [17, 25]) to
assert the following local existence of solutions.
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PropoSITION 2.3.  Assume (A), (B), and (F). There is a positive number

T(ug) such that there exists a unique solution for (2.1) on the maximal interval
of existence (0, 7(u°)).

In the proof, we will need the following consequence of the Nirenberg—
Gagliardo inequality.

LEmmA 24. Letp>0,0=0, g> N/2, and ¢ is a non-negative measurable
function in LYQ). Suppose that

201
0<p <N q> (2.5)

Let u be a measurable function given on Q. If w:= |u|? e W'*(Q), then,
for any given ¢ > 0, there exists positive constant C depending only on p, g, 0,
l¢ll, such that

&¢WW”WkSsQ;WWP%+1MO+CmmqﬁA¢JIWL
(2.6)

where [=2+ (0(2/N +1))/(p(2/N —1/q) —0).

Proof. Using the Holder inequality we have

1/q
[ omrreac<ipl, ([ wmora) " =1o1, iz, @7

where 1/g+1/¢' =1, s=(2p + 0)/p. Apply the Nirenberg-Gagliardo inequality
to the function w to get

114 11wll3y < Cliglly Wl Iwll 562 (2.8)

where

b+ (5-5) 1=

By simple calculations one can see that (2.5) is equivalent to the fact that
s(1—f5) <2. Therefore, we can apply the Young inequality to (2.8) and get

16114 w5y <& lul 2@+ Cle, pa g, 0. 1) w4 (29)



8 LE DUNG
where /=2sf/(2 —s(1 —f)). Easy calculations show that / is given by the

formula in the lemma. We use the following equivalent norm of W%2(0)
(see [33])

2\ 172
Jul Wl,z(g)=<L2 |Du|2dx+<L)|u| dx> > (2.10)

Then (2.6) follows from (2.7) and (2.9). |

The next lemma will be used to handle the boundary integrals.

LEMMA 2.5. Let B,e>0 A>1 and ue W“2(Q). There exist positive
constants &, C(¢) independent of u such that

j |u|ﬂ+ﬂda<gj |Du|2|u|i—1dx+C(ﬁ,s);ﬁf (Ju]”*+*+ 1) dx,
o2 o Q
(2.11)

where y =max{f, 2 —1}.

Proof. Let {e CHQ, R") be any vector field satisfying {-n=1 on 0Q.
We have

j |u|ﬂ+lda=j div(|ul#*+*¢) dx
0 Q
<C [ {(B+2) 1Dul Jul P31 Jul 4 d,
Q

where C is some positive constant depending on ||, | D{| (and thus, on 0Q).
Using the Young inequality we can majorize the first integrand on the right
as follows.

C(p+7) | |Dul "+~ d

@LZ |Dul? |u*~ " dx + C(e, B) zzj u| P+ .

Q

From these estimates we get

[+t do<e [ 1Dul jul =t dx+ Cle, B) [ (2 [P 4 ul#) d.
o Q Q
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Finally, we can use the Young inequality to combine the powers of |u| in the
last integral into |u|”** with y = max{f, 28 — 1}. The proof is complete. ||

We now ready to prove

THEOREM 2.6. Let p, be such that

Do > max {<12V—61]>_1max{2ﬁ—2, o—1,0-2},(a—1) (2_“_1>_1}.

N r
(2.12)

Suppose that there exists a positive function CPO(UO, u®) such that
i (2, ), < Cp (00, ), for all te(0, o(u®)), (2.13)

then for any p > p, there exists a positive function C,(v°, u°®) such that
lug(t, ), < Cp0% u®),  for all 1€(0, (u)). (2.14)
Alternatively, if there is a number K, independent of initial data such that

tim sup (1, 91, < K- (2.15)
t—t(u")

then there exists a number K, independent of initial data such that

lim sup [lu,(z, o) , <K, (2.16)

P
t— 7(u?)

Proof. We shall prove by induction. Let us assume that (2.14) holds for
some p = p, (it holds for p = p,). Consider the equation for u;. Multiply the
equation by u; |u;/% ~2 and integrate to get

ou;
j u; |”i|2p_27l

= [ o) w22 dx+ [ fe xu, Duy) g g2 dx.
Q 5[ Q Q

(2.17)

Put w; = |u;|? and notice that

Ou;
J u; lu;|#2dx= w? dx.
o

1
ot QEJQ
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Integration by parts and the boundary conditions give
[ty a7 =2
Q

Ou; do
o

13

:J‘ u,-|ui|2p 2 zp_l)j Du |u |2p 2dx
0Q
vo(2p —1) - B
0D o 0 ] S s )
p Q o

FCOL20) [ (742 |27 4 ) do.
(]

Using these estimates in (2.17), summing over i, and taking into account
(2.3) of (F) we find

d U,
—| Y widx<—=2v |Dw;|2dx + | k |u; |2+ dx
dr L? i=1 ° f E‘H J ! E“l

+j kS |Du,.|“|u,.|2p—ldx+j ksdx,  (2.18)
e ;0 Q
where the functions k,, k5 are some linear combinations of s, iy, k., k5.
Here we have used Lemma 2.5 to convert the boundary integrals into the
volume ones, and then the Young inequality to combine the powers of u;
to 2p+ 6, with 0, =max{2f—2,0—2,0—1}.

We are now going to estimate the terms on the R.H.S of (2.18). For the
third term, we have

| dea 1Duyl® =V dx = p | ey | Dw, [ a2
Q Q

<e [ 1Dw P dx+ Clep) [ Ry lu, |+ dx,
“ “ (2.19)
where k, :=k3/*~* e L'®=%(Q) and 0,=2(a—1)/(2—a).

Simple calculations show that the functions k,, k,, the exponents g,
r(2—a)/2, and 0,, 0, satisfy the assumptions of Lemma 2.4 if our condi-
tions (P) and (2.12) are given. Thus, we can apply (2.6) in that lemma to
majorize the integrals of u;’s in (2.18) and (2.19) by

g OQ |Dw, | + OQ W, dx>2> +K(e) <L2 W, dx>l

for some positive constants /, K(¢).
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Putting these estimates together and choosing ¢ small enough we obtain
from (2.18) that

m m m 5
dﬁjg Y wfdx<—voj S |Dw,[2dx+1, Y <L)widx>

a2 Q-1 i=1

m

l
45y <Lw,-dx> A

i=1

where /;’s are positive constants independent of u;. Applying (2.6) again
with p=1, 0=0, and ¢ = o0, we get

JQ w2 dx < <L} |Dw;|? dx + <L2 w; dx>2> +C <Jg w; dx>2

for some C> 0. Finally, we have

d m » m
d 2 v < — 2 4
% L) gl w? dx Vo Lz Y widx

i i=1

SR R S

i=1

The asserted estimates now follow by applying the induction hypotheses,
noting that [, w,= [[u,(z, ¢)|% and [, w} = [lu,(z, »)[ 32, and integrating the
last inequality. ||

One may try to follow an iterative argument similar to those in [2, 30]
to obtain the L*-estimates from the limit induction process above. However,
a direct calculation of the exponents which involve in the recursive relations
reveals that the exponents all diverge as p goes to infinity. More works need
to be done to control these exponents and to derive a better inequality
which is suitable for this process (see [8—10]).

On the other hand, to show the existence of the global attractor, we also
need estimates on certain stronger norms (such as the Holder norms) to
obtain the compactness of the trajectories of bounded sets of initial data.
This does not come from the iterative argument mentioned above. In the
next section, when the system is semilinear, we will make a simple use of
the theory of evolution operator in L? spaces to derive estimates for both
L*- and Holder-norms. For the estimate of Holder norms of solutions of
nonlinear diffusion systems we refer to the works [14-16] where a more
sophisticated technique has been developed to achieve this.
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3. L*-ESTIMATES

In this section, we shall show that L?P-estimates (resp. weak L?-dissipativity)
for large p can be translated into L *-estimates (resp. strong L*°-dissipativity)
Since our primary interest here is to apply our results to the systems frequently
encountered in applications we will restricted ourself to the case of semilinear
systems with nonlinearities not depending on gradients.

On the other hand, we prefer to base our consideration on the easily
accessible and well established theory of nonautonomous evolution equations
with operators having constant domains rather than using more recent results,
e.g., by Amann [4], to allow the boundary conditions depend also on ¢
(but see also [8-10]).

Let us consider the following semilinear parabolic system

ou.
%=&/i(t, X, D)u; +f;(t, x, u) t>0, xeQ, i=1,..m

: 1
A (x, D)u;=0 onofR2, t>0 (31
u(0, x) =uj(x) in Q,

where
A(t, x, D)u= D,(a},(t,x) Dju)+ai(t,x) Deu, (>0, xeQ, i=1,..,.m,
and

0
B :=v, on 0Q,; %U:=%‘/j+ri(x)u, on 092,.

We impose the following smoothness conditions on (3.1).

(1) aueC'UR, xQ), ape CUR_ xQ) for some positive 0; and
ay,’s, r;’s are continuous functions on 0Q,.

(i) (Ellipticity). There are positive constants 4, A4, such that
2P <agft, x) Gl <A LL)?

for all xeQ, (e RY and teR .

(iii) (Growth Condition). There exist positive constant ¢ and nonnegative
measurable functions k,, k, such that

m

St xou) fus |77 u <k (8, x) Y Jug | 74P+ ko2, ), (32)

i=1 i=1
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for all p>1 and for all (7, x, u) e R, x 2 x R™. Assume that k, k, belong
to L9(Q) for some ¢ > N/2 and for some finite constant M

Ik1(2, @)l Iko(t, @)l <M,  forall 1=0.

PROPOSITION 3.1.  Assuming (i)-(iii), and let py> ((2/N)—(1/q)) "' (6 —1),
then the result of Theorem 2.6 hold for the system (3.1).

Proof. We simply set f,(t, x, u, {) =al(t, x) {; +£i(1, x, u) and observe
that the f;’s satisfy the conditions (F) and (P) with r=00,a=1 and f=1.
|

Let us consider bounded continuous initial data u%’s. We can regard our
problem in larger class of measurable functions L?, 1<p<oo. Let
Z =L?(0) and A,(t) be the realization of (.o, %;) in Z. That is,

dom(A4,(2)) = W;;I_P(.Q) ={ve W>2(0): %,(v)=0}
{Ai(t)vzy/.(t, x, D)v.

1

Let u=(uy,..,u,) and uy=(u?, .., u’). We can write abstractly our

system as

ou,
o (Hu (¢, u) nX=%Zx - xZ (mtimes) (33)
u(0) = uy

where A(t)=diag{A4,;(1)} and F(t, u)=(fi(t, x, u), .., f,,(t, x,u)). Under
the smoothness assumptions (i)—(iii) we easily see that A(¢) is a family of
closed linear operators on X and satisfies all the conditions in [17] to
ensure the existence of the evolution operators

Ut e Z(X) 0<t<t<on. (3.4)

So, the solution of (3.3) can be represented in the form
t
u(r) = U1, 0)(utg) + | U(, ) Fls, u(s)) d. (35)
0

We have the following estimate concerning the operator U(t, s): There exist
positive numbers w, C, such that for any 0<y<1 and 0<s<t< oo (see
(16.38) of [17])

—w(t—s)
C,e

[47(2) U(t, )|l ox) < (1—s)

(3.6)
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Remark 3.2. We notice that (3.6) comes from Theorem 14.1 and (13.18),
(13.19) in [ 17] which still hold if the function #(x) in Lemma 13.1 (see (13.9))
in the reference is bounded in u. This is satisfied here because of the uniform
ellipticity conditions in (ii).

We are now ready to show that

THEOREM 3.3. Let py>(2/N—1/q) ="' (6 —1). Suppose that (i)—(iii) hold
and there exists a positive function C, (vo, uy) such that

(2, )l 5 < Cpy(Vos o) 0 <1 <7(ug). (3.7)

then the solution exists for all time (t(uy)=00) and there is a positive
continuous function C., such that

i (2, )l o < Coo(vo, Utp) O T <00, (3.8)

Alternatively, if there is a finite number K, independent of initial data
such that

tim sup (1, #)],, <K, (39)

t— 7(u?)
then there exists a finite number K, independent of initial data such that

lim sup u,(, o), <K, (3.10)

t— oo

Remark 3.4. The fact that (3.7) implies (3.8) has been proved by Alikakos
and Rothe [ 2, 30]. We are interested here the implication of (3.10) from (3.9).

Proof. Apply A’(¢) to both sides of (3.5) to have
A7) u(t)=A"(z) U(t, 0)(uy) +J1AV(Z) U(t, s) F(s, u(s)) ds.
0

From the result of the previous section and the polynomial growth
condition on f;’s we can find a positive continuous function C, such that

(2, u(2)) [, < Cplvo, o), V1€ (0, 7(uo)).
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Then,
[47(2) u(z)|, < [ A7(¢) U(t, 0)(uo)|\p+jot 147(2) U(t, )|l g(xy I1F(s, u(s))ll, ds

t
<Gt e fug |, + | C(1—5) 77 eI | F(s, u(s))
0

[ ,ds

<Gyt e Nugll, + Cplv, uo) J Cy(t—s)"7e "= ds
0

SCot77%e ™ |ug ||, + Cplvg, up) J L 7e T dr. (3.11)
0

Because of the uniform ellipticity condition (ii) of the operator A(z), we
see that

sup  [|A(t) A7(5) ]l gxy < 0.

0<t,s<o0

So, we can obtain from the above estimates that

I47(10) (D), < CCy1 7 g+ CCyfvo, ) [ Cyr=re ™" dr
(3.12)

for some fixed positive constants ¢,, C. Consider the space Y”= D(A4%(t,))
with the graph norm |Jul| y» = | 47(¢,)u|| ,. We choose p such that N/2p <y <1
and note the imbedding

Y- C, 0<v<2y—N/p.
This imbedding and (3.12) show that

[u(2)] v < C (v, Ug)

for t>=1. To bound the uniform norm of u(z) for re[0,1] we note that
1U(t, O)Hﬂ(gm) is uniformly bounded on [0, 1] (%,, =117 C(L2)). The integral
term in (3.5) can be estimated in the space Y” exactly as before. It follows
immediately from this and Theorem 3.3.4 of [21] that u(¢) is defined for all
t>0 and we get (3.8).
To obtain (3.10) assuming (3.9), we see that there is a # =7(u,) and a
positive constant ¢, independent of u,, such that
A
or n<s<t(ug).



16 LE DUNG

Then by splitting the integral term in (3.11) into integrals on (0, #) and
(#, ©(uq)), we obtain similarly the following

|70 u(D)], < Cyt 7= g |, + Cylvg. ttg) Cyt ~7e ="
+cj C,rve™" dr
0

This obviously gives (3.10). Our proof is complete. ||

Remark 3.5. 1Tt is also possible to consider nonhomogeneous boundary
conditions, that is, %,(x, D)u=1v%(x, t) with v? #0. In this case, we consider
the temporal variable 7 as a parameter and let {u%},. o be the family of unique
solution of the BVP

{Dk(a}'d(t, X) Dju)+ aj(t, x) Dyu=0 inQ (313)

B,(x, D)u=102(x, 1) on 0Q.
Let u=(uy, .., u,,) and u’, = (ui,, .., u,,,). Set w=u—u,. By replacing u
by w and u, by u,—u, in the above argument we conclude that (3.10) (or
(3.8)) holds for w. If we assume that the smoothness conditions (i) and (ii)
are uniform with respect to the variable ¢ then, from the Schauder estimates
for elliptic equations (e.g., see [18]), we can see that [u’, |, and |[u’, ||
are bounded uniformly with respect to 7. Therefore, the estimates on w
imply similar estimates on u.

COROLLARY 3.6. Suppose that the hypotheses of Theorem 3.3 hold and
the system (3.1) is autonomous. Then system (3.1) gemnerates a nonlinear
semidynamical system

T(t): €, := ﬁ c(Q)-%,
1

(9, s u2) > (U (1), oy (1)),

where 6, is equiped with the supremum norm.

Moreover, if (3.9) holds then there exists a compact, connected, invariant
global attractor A which attracts every bounded set in 6,,. In addition, A has
finite Hausdorff dimension and contains at least one steady state solution

of (3.1).

Proof. The estimates of Theorem 3.3 imply the global existence of the
solutions of (3.1) and therefore 7(¢) is well defined for all z>0. From the
proof of that theorem, one can see that the uniform norm can be replaced
by the C” norm, for some v >0, in the estimates. On the other hand, the
imbedding C¥(0) — C(0) is compact so that 7(¢) is compact for ¢ > 0.
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Therefore, if (3.9) holds then 7/(¢) satisfies the following:

(a) T(z) is point dissipative;

(b) orbits of bounded sets are bounded, that is, {7(z) B:¢>0} is
bounded for any bounded subset B<%,,.

These facts and the general theory for dissipative dynamical systems
and asymptotic fixed point theorems in [20, Theorem 3.4.7] give the last
assertion. |

We close this section by presenting a slight generalization of a technique
that was used in [13] to obtain a priori L”-estimates. We assume the
following.

(Cp) There exist positive constants h; and real constants k, ¢ such that
for all ue R™+!

Y hau? 7 it x u) <k Y hu? +c (3.14)
i=0 i

i=0

for some p>1.

(Ap) There exist a positive function ¢ in Q and positive constants u, C
such that for i=0, ..., m we have

j %(I,X,D)uf_ltﬁdxé—,uj u?$ dx + C (3.15)
Q

Q

and that a=u—k >0, for p=1 and k given in (Cp).

In practice, the function ¢ in (Ap) can be chosen as the principal eigen-
function of some linear elliptic operator relative to the .o/’s. We refer to
[ 13, 16] for concrete examples.

We have the following L?-estimates.

PrOPOSITION 3.7. Suppose that the system (3.1) satisfies the condition
(Cp) and (Ap). There exist positive constants C,, C, independent of u;y’s
such that

Y it ), < Co(1—e Wm0+ C 3 lugg ||, e 7470 (3.16)
i=0

i=0

So, (3.7) and (3.9) are verified.
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Proof. Multiply the equation for u; by h;u? ~'¢ and integrate over Q to
obtain

1ﬁj hu? ¢ dx = hj (1, %, D) uy(u? ' ) dx+f hau? = §fi(1, x, u) dx.
e (3.17)

Now set H(u)= h;u?, use (3.15) in (3.17), and add the resulting

. o i=0"i"i
inequalities to get
1d

pdtj (u)¢dx<—ﬂfQH(u)¢dx+f ¢Zh P=1r (4 %, u) dx + C

g—aLH(u)qsdechrc

where we have also used (3.14) and the fact that « =u — k > 0. Integrating
the inequality gives

L)H(u)qﬂdxse—patjg H(u) ¢ dx +Ci(1—e—1w),

As ¢(x)>0in Q, (3.16) follows. ||

4. APPLICATION TO THE EXISTENCE OF EQUILIBRIA

In this section we consider the steady-state problem of (3.1). The
equations are

{%%(X,D)u,:f,-(x,u), xeQ, i=0,..,m. 1)

B;(x, D)u;=0 on 0%2.

We assume that the assumptions of Theorem 3.3 hold for (4.1) so that
there exists at least one solution for (4.1) according to Corollary 3.6.
However, in many applications, =0 is usually a trivial solution of (4.1)
and thus the above conclusion is not interesting enough. We want to study
the existence of nontrivial solutions to (4.1) in these cases.

Assume that

(F1). The functions f;: 2 x R"*! - R satisfy:
i + 5]

(1) fi(x, u)=0 whenever u;=0;

(i) for 0 <i<m, there exist constants k;>= 0 such that f,(x, u) + k;u; =0
Sfor ue Rm+1.
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Without lost of generality we may also suppose that (9f;/0u;)(x, 0) +k,; >0
for x € Q, by choosing k; larger if necessary. This condition also guarantees
that the non-negative cone R”*' remains positively invariant under the
dynamics of (3.1) (see e.g. [31]).

Note that certain models in applications may seem not to satisfy the
above condition (F1) at first glance. But we shall see below that they can
be reduced to our case by using a simple change of variables. For example,
there may be a special role played by the first component u, in the model.
In biological applications, u, usually stands for nutrient or prey densities
and u;, 1<i<m, denote the concentrations of bacteria or predators
consuming u,. We may have the following natural assumptions on the
model: (1) If no bacteria u; is present then none can be produced and if no
nutrient is present then no consumption of nutrient occurs; (ii) if all bacteria
are absent from the bio-reactor then no consumption of nutrient takes place;
(ii1) if there is no nutrient, then there can be no growth of bacteria; (iv) the
system is open in the sense that fresh nutrient is supplied from an external
reservoir while growth medium, including unused nutrient and bacteria, is
removed. This interaction with the external environment occurs at the boundary
of the domain.

Mathematically, these facts impose the followings on the model

(F1')  The functions f;: Q@ x R ' — R satisfy:
1) fi
(i) fo(x,u) <O for all ue R"*" and fy(x, ue, 0, ..., 0) =0 for uy>0;
(1) fi(x, 0, uy, oy u,,) <O and fi(x, u) =0 for 1 <i<m;
(v
on 02.

x, u) =0 whenever u;=0;

)
)

)
)

Bo(x, D)u;=v5 on 0Q for some nonnegative functions vy given

Now let u, be the unique solution of

{%(x,D)uzO in Q
Bo(x, D) u=1v} on 0Q.

By the comparison theorem and using (ii) and (iii) of (F1’), it is easy to
see that uy <ug, in Q. We then define w :=u, —uq and fo(x, W, ty, .., U,,) :=
—fo(X, uy, —w, uy, ..., u,,). The system satisfied by w, u; is of the form (4.1) and
has the property (i) of (F1).

Similarly, we could consider nonhomogenuous boundary conditions in
(4.1) but by a simple change of variables as above we can reduce the
problem to homogeneous one.
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4.1. A Fixed Point Problem

We now go back to (4.1) and assume (F1). Observe that u=(0, ..., 0) is
an equilibrium solution of (4.1) by virtue of (F1). We seek solutions of
(4.1) in the positive cone X, of the Banach space €,,,; :=[17""' C(Q).
For 0<i<m, let k, be as in (F1) and let K;: C(Q) —» C(Q) be the bounded
linear operator inverse to —.oZ(x, D) + k;I, together with the corresponding
boundary conditions as in (4.1), where [ is the identity. That is, given
he C(Q), v=K;(h) is the unique solution of the boundary value problem

— oA (x, D)v+k;v=nh, B;(x, D)v=0.

It is well-known (see e.g. [3]) that K, is a strongly positive, compact
operator on C(). System (4.1) is equivalent to the fixed point problem on
X, given by

U=F(U)=K-Z(U) (42)

where & =(f;+ku;)7o: X, - X, (by (i) of (F1)) and K: X, —» X 1is
given by K = diag{K, ..., K,,}. Observe that K is a compact, positive linear
operator on X, and % is continous on X, and satisfies G(0) =0. There-
fore, F: X, — X is a completely continuous (nonlinear) map. Obviously,
U=0 is a trivial fixed point of F. We are interested in finding nontrivial
fixed points of Fin X, .

As the f;’s are continuously differentiable functions it follows that F has
a derivative F", (0) at U=0 in the direction of the cone X, (see [3]) and
F', (0) is a positive, compact linear operator. An easy calculation using
(F1) shows that if 10 is an eigenvalue of

F.,(0)0 =0

for @ =(¢,, ..., 4,,), then 4 is an eigenvalue of

—y(x, D) ¢ —“-124)1% 0, ..., 0),

i=1

and

f
Ou

— A(x, D)+ k=279, | =2 (x, 0, ..., 0) + &, (4.3)

i

for 1 <i<m, with the boundary conditions as in (4.1). Note that we have
used (i) of (F1) to get (0f;/0u;)(x, 0, ..., 0) =0 if i # j.
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4.2. Existence of Semitrivial Steady States

Our principal assumption concerns the eigenvalue problems (4.3). We
assume that

(E;) The largest eigenvalue of (4.3) is greater than 1. We say that (E)
holds if (E;) holds for 1 <i<m.

(E;) is equivalent to the assumption that the largest (principal) eigenvalue
of

_ s
1= (5, DY+ 5 (5,0, . 0)9, )

B(x,D)p=0

is positive. Similarly, the largest eigenvalue of (4.3) is less than one if and
only if the largest eigenvalue of (4.4) is negative. The proofs of these assertions
follow from [3, Theorems 4.3-4.5; and 24, Theorem 2.5, p.67] and are
well-known.

The proof of the following is simple and therefore will be omitted (see
[13, Lemma 3.2]).

Lemma 4.1. If (E) holds, then one is not an eigenvalue of F',(0) corre-
sponding to an eigenvector in X . and F'_(0) has an eigenvalue larger than
one with a corresponding eigenvector in X , .

LEMMA 4.2. There is an R>0 such that
F(U)=AU, A1

has no solution Ue X, satisfying |U| = R.

Proof. The above equation is equivalent to
— i (x, DYu; = 2" (x, u) + k;, (A7 = 1wy, 0<i<m

together with the boundary conditions of (4.1). Define f, for 1>1 by
fo=for s fn) Where fi(x, u) = A" (x, u) + k;(A~'—1)u;, 0<i<m. Then
it is easy to check that if f satisfies (iii) of Section 3 and (F1), which we
are assuming, then f and f, also satisfy these assumptions with a common
set of constants /; and a common set of functions &, ¢ in (Cp) and exponents
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o in (iii) of Section 3, which are independent of 4 > 1. Consequently, we may
take R=K_, where K, is defined by Theorem 3.3. ||

These two lemmas allow us to apply Lemmas 3.2 and 3.3 and Theorem
13.2i and its proof in [3] to conclude that

THEOREM 4.3. For r>0, let P,={ue X : |lu| <r}. If (E) holds, then
there exists rq such that 0 <rq< R and for any re (0, ry ]

ind(F, Px\P,) = +1.

In particular, there is a fixed point of F in Px\P,.

CorOLLARY 4.4. If for some i, 1 <i<m, (E;) holds then there exists a
semitrivial (single-population) equilibrium of (4.1).

Proof. Assume without loss of generality that i=1. We take m=1 in
Theorem 4.3 by dropping the equations for u; for j#0, 1 and setting ;=0
in the appropriate arguments in f;, and f;. Now note that (F1) continues
to hold for this reduced system. Conditions (i) of (F1) assert that the solution
given by Theorem 4.3 must have both components positive. |

4.3. Existence of Positive Steady States

We now turn attention to the case of three equations, that is m=2. It
is assumed that for i=1, 2, the principal eigenvalue of the eigenvalue
problem (4.4) is positive. Corollary 4.4 then implies the existence of at least
one single-population equilibrium for each of the two populations. We then
define Z, (resp. Z,) to be the set of single-population equilibria for which
u; >0 (resp. u,>0). The above results imply these sets are nonempty.
Moreover,

LeMMA 4.5. Assume (E;), i=1, 2, the sets Z,;’s are compact bounded sets
and bounded away from the origin.

Proof. The first assertion comes from the compactness of the operators
(—4(x, D))~! and the boundedness result of Lemma 4.2. We need only to
prove that Z; is isolated from 0. Take i=1 and suppose that there is a
sequence {(uj, u},0)} in Z, converging to (0,0, 0). Set w} :=u’/|u}| and
observe that w satisfies the following equation

19f,
—s(x, D) wi=w] fo 5](71 (x, ug, sut, 0) ds.
1
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Since u?, w7 are bounded, so is the right-hand side of the above equation.
Hence {w/} is compact. Passing to a subsequence we may assume that w} — w
for some positive function w which satisfies

9
— e Dyw=w L (x.0.0,0),
ou,

This contradicts to (E;). ||

Let us denote the elements of Z, by U,, that is, U, = (4, 4, 0) and U, =
(@, 0, 41,). The following assumption roughly says whether Z,’s are repel-
ling (unstable) or attracting (stable) in their complementary directions.

(EL) Fori#j, i, j=1,2, and for any Ujer, the largest eigenvalue of

of;  ~
— A5 D)+ =17 {20 4k s

B(x. D) =0

is greater than 1.

(E_) Otherwise, that is, these eigenvalues are all less than 1.

Remark 4.6. As before, (E_) (resp. (E_)) is equivalent to the fact that
the principal eigenvalue of

of;

1=/ (x. D) 4+ 5

is positive (resp. negatiye). Note also that (4.5) is not the full linearization
of the system (4.1) at U,.

THEOREM 4.7. Let m =2 and assume (E;), i=1, 2 and either (E ) or (E_).
The system (4.1) has at least one nontrivial positive solution.

Proof. For the sake of brevity, we will drop the constants k; from our
equations (otherwise, one can simply replace .7, f; in the argument by
oA+ k;1, f;+k;u;, respectively). Let us consider the following family of
systems with parameter 1[0, 1].

_’%(Xa D)MO :fO(xa Ug, Uy, tu2)
— (X, D)uy =fi(x, ug, uy, tuy)
' ofy

—by(x, D)uy=u, Jo ™ (x, ug, Uy, tsu,) ds.
2

(4.6)
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The equivalent fixed point problem will be denoted by
U=H(1, U).
Because of (i) of (F1) and the fact that for any ¢,

Loty
St ) =ty |22 (g ) s, (47)
2

we see that H(1, U)= F(U). By a positive solution of (4.1), or equivalently,
of F(U)= U, we mean a solution for which u; >0, u, > 0.

For i, j=1, 2, choose a neighborhood E;=V,;x W, of Z,in P \P, where
V, is a neighborhood in C(Q)x C(2) of the projection of Z; onto this
space, and W, is a small neighborhood of 0 in C(Q) such that E, defined
as above does not intersect Z;, j#i (see Lemma4.5). Below, we will
construct a chain of homotopic mappings and the reader should keep in
mind that the domain of each is the neighborhood FE;.

We will show that either

(a) F(U)=U has at least one positive solution in Pz\P,, or
(b) the fixed point indices satisfy ind(F, E,) =ind(F, E,) € {0, 1}.

As ind(F, Px\P,)=1 by Theorem 4.3, it follows from the additivity
property of the fixed point index that (a) holds if (b) holds. Henceforth, we
assume that (a) does not hold.

If there exists ¢ € (0, 1] such that H(¢, U) = U has a solution U = (u,, u;, t,)
on OF, (relative to X _ ), then u, # 0 since otherwise Ue Z, and then U does
not belong to the boundary of E,. Therefore, u, >0 and (u,, u,, tu,) is a
positive fixed point of F (note (4.7)), in contradiction to our assumption that
(a) does not hold. If H(0, U) = U has a solution U = (u,, u;, u,) on 0E,, then
(ug, uy, 0)eZ,. If u, =0, then Ue Z, but the latter does not belong to JF,.
Therefore, u, > 0 by the maximum principle and consequently we have a contra-
diction to our assumption that the principal eigenvalue of (4.5) is not 1 (when
t=0 and A=1, the third equation in (4.6) is exactly (4.5)). We conclude that
H(t, U)= U has no solutions (z, U) with 0<t<1 and Ue 0E,. Consequently,
by the homotopy invariance of the degree

ind(Fa El) = lnd(H(la .)7 El) = lnd(H(Oa .)’ El)
Consider now the system corresponding to U= H(0, U).

{_%(X, D)l/l():f()(x, Ug, Uy, O)a
_‘%(xa D)ul :fl(xa Ug, Uy, O)a
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and

.
—<b(x, D)uzzuzﬁ (x, ug, ty, 0).
2

Note that this system is already decoupled. We consider separately two
cases.

Assume (E_). Consider the following homotopy

—%(X, D)“o=fo(xs Ug, Uy, 0)
_'Q/l(xa D)ul :fl(x9 Ug, Uy, 0)

—ob(x, D)u, = tu, ﬁ (x, ug, uy, 0).
Ou,

In fixed point form, this becomes G(¢, U)=U. If G(¢, U)= U for some
te[0,1] and U= (d,, #,, 4i,) €0E, then obviously (#,, &i;, 0) belongs to
Z, and >0 and 7, > 0. But this means that #, is a positive eigenfunction
to the eigenvalue t~1>1 of (4.5). By the uniqueness of eigenvalue having
positive eigenfunction, !> 1 is the largest eigenvalue and this contradicts
to (E_). Again, by the homotopy invariance of the degree,

ind(F, E,) =ind(H(0, »), E,) = ind(G(1, *), E,) =ind(G(0, o), E,).

However, G(0, ) can be viewed as the product of two maps G, on V;
and G,=0 on W,. Now, ind(G,, V;)=+1 (by applying Theorem 4.3 to
the case m=1 as in Corollary 4.4) and ind(G,, W;)=ind(0, W)= +1. So
that by the product theorem of Leray (Theorem 13.F in [33]),

ind(F, E,) =ind(G,, V,) xind(G,, W,) = +1. (4.8)

Similarly, we also have ind(F, E,) = +1.

Assume (E,). Let @=(—.4(x, D))"'(1)>0 be a fixed function in Q,
we consider the following homotopy U= G(¢, U) associated to the following
family of systems

{_%(st)u0=f0(xs “o:uuo), (49)
_'Q/l(xs D)ul =f1(x9 Ug, Uy, 0)9
and
_ o, 9
Mz—(*%(X,D)) MZE()@ uO’ulao) +t¢7 (410)
2

with the parameter 7 > 0.
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If U= (uqy, u,, u,)€dFE, is a solution of U= G(t, U) then (u,, u,;,0)eZ,
and u, > 0 satisfies

uZZT(uo, ul,()) u2+[¢ (411)
where

o,
Tlttg, 1y, 0)¢ := (— (x, D))~ <¢a£ (X, g, 1, 0))

is a strongly positive compact operator. But (£, ) simply means that the
spectral radius r(7(ug, u;,0)) > 1. Therefore (4.11) contradicts to (ii) of
[3, Theorem 3.2] if 1 =0 and (iv) of that theorem if > 0. Thus, the above
homotopy is well-defined on E, for all > 0.

However, for ¢ very large, obviously (4.11) does not have any solution
in the bounded set E, and therefore ind(G(t, »), E;) must be zero for ¢
large. By the homotopy invariance of the degree ind(F, E;)=0. Similarly,
we have ind(F, E,) =0.

We have shown (b). In either case, the fixed point index of F on Px\P,
is not the sum of the indices on the two sets £, and E, whose union
contains all semitrivial steady states. By the additivity property of the fixed
point index, there must be another fixed point of F which must be a positive
fixed point of F in Pz\P,, a contradiction. ||

Remark 4.8. 1If Z, consist of one element for i=1,2 then a simpler
homotopy can be devised similarly as in [ 13] to obtain (b). We will show
that the uniqueness of single population for the case N=1 in the next
section.

5. UNIQUENESS OF SEMITRIVIAL EQUILIBRIA

We consider the following boundary value problem

S" =2u(x)S" =f(x, S, u),
u" =2B(x)u' = —ug(x, S), 0<x<l,

with boundary conditions

—S87(0) +2a(0) S(0) = ¢y, —u'(0)+26(0) u(0) =0,

S'(1) +2a(1) S(1) = ¢;, w'(1)+28(1) u(1) = 0.
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Here, f:(0,1)xR, xR, —> R, and g:(0,1)x R, — R are increasing
continuously differentiable functions in S and u; a(x), f(x) =0 for x=0, 1;
c;=0.

We assume further that a?(x) —a/(x) >0 for 0 <x < 1.

We will then show that

THEOREM 5.1. There is at most one solution of (5.1) satisfying S(x),
u(x)>0 for 0<x<1.

Put

i :=exp <—r B(s) ds> u(x).
0

By calculation, we see that S and i satisfy the following

S =exp <—r afs) ds> f(x, S, u) + (a3(x) — ' (x)) S=: f(x, S, ),
(5.2)

= —exp (= [ Bls) ds . )~ (F()— 1) = — g, S0,

with boundary conditions

—S5'(0) +«(0) S(0) = ¢y, —u'(0) + B(0) u(0) =0,
§'(1)+3oc(1)§(1)=exp<—f1 oc> ¢, @(1)+3p(1)a(1)=0.

Observe that f(x, S, ) is an increasing function in S and @ (because
o?(x) —a'(x) =0); g(x, S) is an increasing function in S.

We need only to prove the uniqueness of positive solution to (5.2). This
result has been obtained in [13] for the special case when f(x, S, u) =
uF(S) and g(x, S)=G(S) for some increasing functions F, G. However,
inspecting the proof of Proposition 4.1 in [ 13], we can see that it can carry
over to our situation without any change. The essential ingredient in the
proof is the monotonicity of the nonlinearities with respect to the unknown
variables.

Essentially, we consider two positive distinct solutions (S;, u#;) and
(S5, uy) of (5.2) and show that the functions S;(x) and S,(x) can agree at
at most finitely many points of (0, 1). Therefore, there is an n>2 and
points Xx; satisfying 1=x,<x;<--- <x,=1 such that S;(x)—S,(x)
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changes sign at x; for 1 <i<n—1. We then show that in each interval
the following pattern will be formed by the two solutions: if §;=S; on
[Xpm> Xpmi1] and u;(x,)>u;(x,) and if m<n—1, then wu;(x, )=
u;(x,,+1) and, of course, S;>S; on [x,,,, X,,,]. But then in the last
interval [ x,,_,, x,,], this pattern and the boundary condition at 1 will give
a contradiction and complete the proof. We refer to [ 13] for more details.

Finally, we remark that one can prove [12, 16] the following mono-
tonicity result for solutions S, u of (5.1): S(x) is decreasing and u(x) is
increasing on (0, 1). More properties and numerical results on the systems

with three equations can be found in [5].
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