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1. Introduction

In an exterior domain £2 C R" (n = 3) with smooth boundary 952, we study the space-time decay
properties of solutions to the Navier-Stokes initial value problem
ou+u-Vu=Au—-Vp (xe$2, t>0),
V-u=0 (xef2, t=0),
ulpe =0, u—>0 (|x|—> o),
Ule=0 =4, (1.1)
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for unknown velocity u =u(x,t) = (u1, ..., uy), unknown pressure p = p(x, t) and a prescribed initial
velocity a = a(x). The kinematic viscosity is normalized to be one.

There is an extensive literature dealing with decay properties of weak and strong solutions to (1.1)
(see, e.g., [6-8,17,23,24,27,28,30-33,36]). For weak solutions, L? decay properties have been studied
and the algebraic decay rates, similar to those for solutions of the heat equation, are obtained. The
results show that for each a € L(Z, (£2), the space of the L2 solenoidal vector fields, there is a weak
solution u defined for all t > 0 such that ||u(t)|l — 0 as t — oo. Hereafter, |- ||; denotes the norm
of L'(2). Ifa e L(ZJ(.Q) N L"($2) for some 1 <r < 2, then the weak solution satisfies

Ju@®, <ct+075G72), (12)

See [6,7] and [11]. For strong solutions, L9-theory was developed by Iwashita [24] and Chen [11] for
n > 3, and by Dan and Shibata [12] for n =2 (see also [1] and [16]). They proved the estimates

1

n 1
Juo®], <ect™2% " jall, (1 <p<g<oo, 1<p<g<oo), (13)

1 1 1
[Vuo@|, <et 2725 jall, A1<p<qg<n, 1<p<q<n), (14)

on solutions ug of the Stokes problem, i.e., the linearized version of (1.1). These estimates were applied
by [8,11] and [24] to extend results of Kato [25] for the Cauchy problem to the case of (1.1), and we
know that if n > 3, if a is in the space L} (£2) of L" solenoidal vector fields and if ||a|, is sufficiently
small, then (1.1) admits a unique strong solution u defined for all t > 0. Moreover, if a € L' (£2) NLE (£2)
for some 1 <r <n, then

t3G 0w € BC([0, 00); L9(2)) (1 <q<o00), (15)

ncl

3+3G3-h .14
t272"avu € BC([0, 00); L9(£2)) (r<g<n). (1.6)

In [18] we extended (1.5) and (1.6) to the case where r=1 <q.
In this paper we first discuss estimates for the L2-moments of weak solutions of the form:

t

(M) f\x|2“yu(x, t)\zdx+//|x|2“|Vu(x,r)yzdxdrgc.
2 2

0

For the Cauchy problem, the following are known: M.E. Schonbek and T.P. Schonbek [37] proved (M)
with o = 3/2 for smooth solutions on R3 (see also [15]). He and Xin [22] proved (M) for weak solu-
tions, with & = 3/2, assuming a € L'(R3) N L2 (R3) and |x|>/%a € L?(R?). Bae and Jin [3] proved (M)
for weak solutions, with 1 < o < 5/2, assuming a € L2 (R3), (1+ [x)a € L1(R3) and |x|%a € L?(R3).
Brandolese [9] found a local smooth solution u € C([0, T); Zy), with some T > 0, assuming a € Z, for
3/2<a <9/2 (¢ #£5/3,7/2). Here, f € Z, means that

1+ 22 Fel?(®Y), (14X 'VFel®(RY),  (1+ X3 Af e 2(R3).

For problem (1.1), the corresponding results are still incomplete. Farwig and Sohr [14] found a class
of weak solutions u with associated pressures p such that

|x|%8eu, [x|*92u, [X|*Vp € L(0, 00; L9(2)) (n=3),

for 1<q<3/2 and 1 <s <2 with 3/¢+ 2/s —4 <« <min{l1/2,3 — 3/q}. Farwig [13] then gave
another class of weak solutions such that
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t
}||x|%u<t>||§+ca/ Ixi$ vul2dr < [IxSue|? ©<a<1),

t
Jixbuo 3 +2 [ [t vuldr < |ttue [+ cosle =i’

for s=0, a.e. s> 0 and all t > s, where § > 0 is arbitrary. Recently, Bae and Jin have studied decay
rates of L2-moments. When n = 2, they prove in [4] that there is a weak solution u satisfying

}||x|°‘u(t)||p = O(t_%Jr%’L%M) for large t,

forall §>0and 0 <a <1,if aeL"(£2)NL2(2) and |x|a € L2 r(.Q) with 1 <r<2p/(p+2) <2<
p < 0o. Moreover, in case n =3 they prove in [5] that there is a weak solution such that

[ xu@)|, < cs(1+6)i=7+,

for all § >0, if a € L"(£2) N L%(£2) for some 1 <1 < 6/5, |x|a € L5/3(£2) and |x|%a € L2(£2).
This paper improves the above results on L2-moments and gives weak solutions satisfying

H|x|°‘u(t)”§+/|}|x|“Vu(r)}|§dr<c (<a<n/2),

[IxPu@], <c+t

O<B<a<n/2),

for all t > 0. The restriction o <n/2 comes from our estimates on pressures. But, this condition on o
is optimal in the following sense: in Theorem 2.5 (see Section 2), we will show that strong solutions
behave in general as |u(x, t)| & |x| ™" for large |x|. So |x|%u is in L?(£2) only when « <n/2. In a special
case, however, this restriction on « is relaxed. Indeed, we show that one can take o <1+ n/2 if the
associated pressure p satisfies

Gt) = /(yaup — pY)(y.0dS, =0, te(0,00), (17)
082

where v is the unit outward normal to 9S2.
We next discuss the behavior of weighted L9-norms of strong solutions. For the Cauchy problem,

the estimates tz X% ullq +t |||x|°‘Vu||q ¢ are known to be valid if « >0, 8 >0 and

a+2B=n—-n/q or a+28=n+1-n/q, n<q<oo. (1.8)

See [2,3,15,22,34] and [35] for the details. See also [19] for solutions with some symmetries. The
balance relation (1.8) agrees with that for solutions of the linear heat equation on R".

On the other hand, for (1.1) with n = 3, He and Xin [21] gave strong solutions such that
lx1*u®)llqg < ¢ for @« =3/7 —3/q, 7 < q < oo. Recently, Bae and Jin have adapted the ideas of [21]
and proved

[[1x12u(t) “ <cst 123G for large t > 0,
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with an arbitrary 8 > 0, assuming that a € L' (£2) N L3(£2) for some 1 <1 < 6/5, and

IXla, |XPa e L' (2), |xlael(2), |xPacl®).

However, these results are not optimal. In this paper we deduce the optimal decay rates in space and
time and establish a balance relation between these two kinds of decays which is similar to that of
solutions to the Cauchy problem.

It should be noticed that for (1.1), the spatial decay property of a solution is closely connected
with the vanishing of the total net force exerted by the fluid to the body R" \ £2. Indeed, it is shown
in [18] that the following three statements are equivalent:

(a) The total net force vanishes, i.e., we have

F© = [ (Ttu.p1-) .05, =0, (19)
a0
where T[u, p] = (Tjk[u, p])’]?’k=1 = (djuy + duj — 8j,p) is the stress tensor.

(b) The solution u is in C([0, T); L1(£2)).
(c) Assertion (1.7) holds, i.e., G(t) =0.

In this paper we further show that if |x|”<1_%)a € L"(§2) for some 1 <1 < oo, then in general we have
t%(lf%)|x|”(‘*%)u € L2 ([0, 00); LY, (£2)), where L}, is the weak L"-space, and that

(19) holds if and only if t20~ 9 |x"0~Pu € L2.([0, 00); L' (£2)).
See Theorem 2.5 in Section 2.

Finally, we give a class of initial data a such that the corresponding strong solutions satisfy F # 0
(or, equivalently, G # 0). For such data, our moment estimates (Theorem 2.2) and the time-decay rates
(Theorem 2.4) are optimal. But, we do not know if our class is vacuous or not.

Throughout the paper we assume n = 3; but we use the notation n to denote the space dimension.
Indeed, our results on strong solutions are valid for all dimensions n > 3 and, moreover, our notation
(of using n) would be convenient for the reader to understand the nature of assumptions in our main
results (Theorems 2.1-2.6 below).

2. Notation and main results

We always assume that n =3 and that the origin of R" is in R" \ £2. LI(£2), 1 < q < oo, denotes
the Lebesgue space of real-valued functions as well as that of vector functions, with norm |-,
and Cgf’U(Q) the set of smooth solenoidal vector fields with compact support in £2. LI (£2),
1 <q < o0, is the closure of CS?U(Q) in the norm ||-||q. Let H(R") be the Hardy space defined
in [33,39]. Given a Banach space X with norm ||| x, we denote by LP(0,T; X), 1 < p < oo, the
set of strongly measurable functions f : (0, T) — X such that fOT ||f(t)\|f(dt < 0o (obvious modifica-
tion when p = o00). P : L9(§2) — L1 (£2) is the bounded projection as defined in [32], and the Stokes
operator A = —PA is the closed linear operator in L% (£2), with (dense) domain D(A) = D(Ag) =
H29(2) N Hy?(£2) N L% (£2). We know that —A, generates in L% (£2) a bounded analytic semigroup
{e7**}¢>0. Using this we define

1

o0
Dy = {v €L (2): IVl pyi-iss = | vilg + (/ ||t5Ae“‘v|fIdt/t> < +oo},
q
0

with 1 <s < co. We need these spaces for specifying our initial data.
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Definition 2.1. Let a € Lg(.Q). A vector function u on £ x [0, 00) is called a weak solution to prob-
lem (1.1) if:

(1) u e L0, T; L2 (2)) N L2(0, T; Hy* (£2)) for all T > 0.
(2) For every ¢ € Co([0, 00); Hy* (£2)) N C4 (10, 00); L2 (£2)), we have

//(—u-ade-Vu-Vq}—f—(u-V)u~¢)dxdt=[¢(x,0)-a(x)dx.
0 2 2

(3) u satisfies V-u =0 in £ in the sense of distributions.

Definition 2.2. Let a € L] (£2). A vector function u is called a strong solution to problem (1.1) if
u € BC([0, 00); L% (£2)) and if (2) and (3) in Definition 2.1 hold for u.

Our main results are as follows. The first result deals with the existence and estimates of weak
solutions in weighted L2-spaces.

Theorem 2.1. For each a € L§ (£2), there exists a weak solution u such that

t
||u(t)||§+2f IVul3dt < Hu(s)”; fors=0,a.e.s>0andallt>s. (2.1)
S

Moreover, ifa € L' (2)NL2(2)NDy "/**,n+1=2/s+n/p,and 6/5 < p < n/(n—1) and if |x|%a € L*(£2)

forsome 1 < « < n/2, the weak solution given above satisfies

n@—p)
4o

t
Jixiu)| +/ lIxevul2dr <e,  [wfu@], <cd+07 "% ©<p<w,  (22)
0

forall't > 0, with ¢ depending only on e, l|all1, llall y1-1/ss and [[|[x|*a].
q

We note that 6/5 = (2*)' = 2n/(n + 2) with 2* =2n/(n — 2) and n = 3, according to the Sobolev
embedding theorem. As will be seen from the proof, the restriction & < n/2 comes from our estimates
on the pressures. But, condition o < n/2 is optimal, as mentioned in Introduction, since our weak
solutions behave like |x|~™" as |x| — oo. On the other hand, if p satisfies G = 0, where G is the function
defined in (1.7), then u will behave like |x|~"~!. We now discuss the validity of this conjecture.
However, it is now known that condition G = 0 is closely connected with some symmetry conditions
on {u, p}; so we state our result in the following form.

Theorem 2.2. Suppose $2 is invariant under the reflection x — —x. Leta € L1 (£2)N Lf, £2)N D;,fl/s’s, n+1=
2/s+n/p,and 6/5 < p <n/(n—1).Ifa(—x) = —a(x) and |x|%a € L?>(2) forsome 1 <« < 1+n/2, then a
weak solution u exists, satisfying G = 0 and

t
[x“u] + f lxevulZdr <c.  [xPu®],<ca+n & ©0<p<a).  (23)
0
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As shown in [18], G =0 is equivalent to (1.9). The result above is the same as those given in [3]
and [9] for solutions to the Cauchy problem.

We next deal with strong solutions and prove the existence of those solutions which decay more
rapidly than those treated, e.g., in [7,8,11] and [24].
Theorem 2.3. Leta € L'(2) N LL(2) N Dy~ >, 2/s +n/p=n+1,and 6/5 < p <n/(n — 1. There is a
constant 1. > 0 so that ||a||, < A implies the existence of a strong solution u defined for all t > 0 such that

1 1
lully <ct™2@=0 (1< £<minfn,r}, 1<r<oo),
1 1
IVuly <ctm2720@77 a<e<r<mn,

|0%ul], + Noeull + IVpllr <ct'73GT (A<e<r<n/2, r>1) (24)

and
HVu(t)HL,(Qé) <ct 230D 4ot (n<r<o0), (2.5)
forallt > 0, where 25 = {x € £2: dist(x, 3§2) > 8}, § > 0.

(2.4) is given in [18] (see Theorem 1), and (2.5) will be proved in Section 5. The last term in (2.5)
comes from a boundary integral in the representation formula of u, which does not appear in the
case of the Cauchy problem.

The result below deals with the time-decay of weighted norms of strong solutions.

Theorem 24. Let a € L1(2) N LT(2)N D:,_l/s’s, 2/s+n/p=n+1,and 6/5 < p <n/(n — 1). Suppose
|x|%a € L"(§2) with o =n(1 — 1/r) for some 1 < r < oc. Then, there is a number A1 > 0 so that ||a|l, < A1
ensures the existence of a strong solution u satisfying

H|x|°‘u(f)||q < A (max{r,n/(n—1)} <q < oo) forallt > 0. (2.6)

For the Cauchy problem, there are strong solutions u satisfying t? lx|%ullg < ¢, n < q < oo, with
a=n(1-1/r), B=m/2)(1/r—1/q) and 1 <1 < q < 0. See [22]. Our result above is similar to that
of [22] and improves that of [5]. The relation between the space and time decays given above agrees
with that of the Cauchy problem.

We finally discuss the relation between the decay properties of solutions u and the vanishing of
the associated total net force, i.e., the validity of (1.9). Define V (x, t) = (V jk(x,t)) by

Vik(x, 1) = Ee(x)8jk + 30k (N * E) (), (2.7)

where N = cq|x|2™" is the Newtonian potential and E;(x) = (47rt)~"/2e~¥*/4 Moreover, recall the
function F(t) = (.7-"]-(t))’}.:l defined in (1.9). We shall prove

1-1/s,s

Theorem 2.5. Let a € L1(£2) N L(2)N D, ,2/s+n/p=n+1,and 6/5 < p <n/(n — 1). Suppose
|x|“a € L"(£2) with « =n(1 — 1/r) for some 1 <1 < oo. If ||ally < A1, the strong solution obtained in Theo-

rem 2.4 satisfies
t
x| (u(t) —V(,b- /fdr) <c(1 +t—%<1—%>) forallt > 0. (2.8)
0

r
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This implies that t% [X|%u € Li5.([0, 00); LY, (£2)) and that t7 [X|%u € Liy.([0, 00); L™(£2)) if and only if (1.9)
holds.

To see that (2.8) is in general optimal, we need to construct a velocity field a for which the
corresponding solution does not satisfy (1.9). To this end, the following result would be useful. Let
v = (v1, V2, v3) be the unit outward normal to d§2 and consider the functions hy, k =1, 2, 3, satisfying

Ahe=0,  dh/dvlse =—w,  |[@®|=0(x"") (x| = o00).

Now, we know [29] that if a € L'(£2) N D(A), a (unique) strong solution u exists at least locally in
time, satisfying |lu(t) — ally22¢p) — 0 as t — 0. In this situation we prove

Theorem 2.6. A strong solution u and the associated pressure p satisfy (1.9) if and only if

/(avuk+avu,-.a,-hk)dsx+/(u,—uj)afjhkdx=o forallk e {1,2,3}.
082 22

Therefore, ifa € L1 (§2) N D(Ay) satisfies
f(avak + 0ya; - d;hy) dSy + /(aiaj)aizjhk dx#0 forsomeke{l,2,3},
082 Q

then the corresponding {u, p} does not satisfy (1.9). In particular, ifa € Cgf’U (£2) and

/(aiaj)E)izjhkdx;éO forsomek € {1, 2, 3}, (2.9)
2

then {u, p} does not satisfy (1.9).

Let £2 be the exterior to the unit ball, and so h = —cV|x|~!. If a(—x) = —a(x), the correspond-
ing {u, p} satisfies u(—x,t) = —u(x,t), p(—x,t) = p(x, t). Direct calculation then gives

/(avuk+Buui-Bihk)dSX+/(uiuj)3i2jhkdx=0 for all ke {1,2,3}.
a2 2

Hence, (1.9) holds by Theorem 2.6. However, by now we have no examples of a satisfying (2.9).

We prove Theorems 2.1-2.2 by establishing necessary estimates for approximate solutions which
are uniform in approximation parameter and then invoking the fact that our weak solutions become
strong after a finite time. Construction of the approximate solutions will be described in Section 3.
Theorems 2.3-2.6 are obtained by directly estimating the strong solutions whose existence is now
well known. In dealing with strong solutions, we freely make use of the results obtained in our
previous paper [18].

3. Preliminaries

Let 2 be a smooth exterior domain in R", n = 3. We construct approximate solutions u¢, ¢ > 0,
by solving
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du® — Au® + (u® *x ¢;) - Vu® = —Vp® in £2 x (0, 00),
V-u® =0 in £ x [0, 00),

Ulpe =0,  ufl—o=0a° =e*Aa. (3.1)

Here, ¢ (x) =& "¢ (x/¢e) is the standard mollifier on R" and ¢, * u® is the convolution of ¢, and the
extension of u® to R" defined as u® =0 outside £2. As is well known (see [36]), the function u?® is
obtained by solving the integral equation

t
ué(t) = e 4af — / e~ OAP((ge xuf) - Vuf)(v) dr. (3.1)
0

Indeed, we know that if a € L(Zj(.Q) and € > 0, then a unique solution u® to (3.1’) exists for all t >0,
satisfying u® € L2(0, T; D(A2)) N H2(0, T; L2(£2)) for each fixed 0 < T < oo. The standard energy
method yields

t
y|u8(t)}|§+2f | vu? |3de = |a® |2 < llall3 for all £ > 0. (3.2)
0

Moreover, we know by [6] and [11] that if a € L1 (£2) N L2 (£2), then

Juf @], <cA+0780-D (1 <r<2) (3.3)

with ¢ > 0 independent of ¢ and t > 0. The result below is due to [1] and [16].

Lemma 3.1. Leta € L?,(.Q) N D;,_l/s’s withn+1=2/s+n/p,1<p<n/(n—1),1<s < 2. Then, there

exists a number ¢ > 0 independent of ¢ such that

(laeu® [, + logu | + [ Vp¥])}) de < c(llall3 + ||a||D;_1/s.s)5. (3.4)

0\8

The following is proved in [36].
Lemma 3.2. Leta € L(z, (£2) and let u® satisfy (3.1). Then, as € — 0, a subsequence of u® converges to a weak
solution u of (1.1) such that

t
|}u(t)|}§+2/||Vu||§dr < ||u(5)||§ fors=0,a.e.s>0andallt>s. (3.5)
N

Furthermore, there is ty > 0 so that u becomes a strong solution of (1.1) for t > to.

The function u given above is a strong solution for t > tg; so the proof of Theorem 1 in [18] applies
with minor change to show the following
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Lemma 3.3. Leta € Lé (£2) N L'(£2) and let u be the corresponding weak solution satisfying (3.5). Then there
exists tog > 0 such that

loeully + |92ul, + IVl <ct—to)™ 300 (<t <r<n/2)forallt > to. (3.6)

Lemmas 3.1 and 3.3 together imply

Lemma34.letae [2(2)NL1(2)N D},_l/s’s, withn+1=2/s+n/pand1 < p <n/(n—1). Let u be the

weak solution satisfying (3.5). Then there is a constant ¢’ depending on u, so that
o0
/(natuup +[ogul, + IVplp)de <c(llal3 + lallpp-1ss) +¢-
0

We conclude this section with the following, which is needed in the next section in order to
deduce our assertion by applying Gronwall’s inequality to approximate solutions u®.

Lemma 3.5. Let a' = e "Aa, with a € L2(2) N Dy /**, n+1=n/p+2/sand 1 <p <n/(n —1). If
|x|%a € L?(£2) for some 1 < o < n/2, then
li *(a" — =0. 3.7
tim [l — )l 3)

Furthermore, let p* be the pressure associated to the Stokes flow a* and suppose that

/(T[at, p']-v)(y.H)dSy, =0 forae.t>0. (3.8)
bYe)

Then (3.7) holds for 1 < o < 1+n/2, provided that |x|%a € L>(£2).
Proof. We invoke the representation

t
a‘(x) = (E; % @) (%) +//V(x—y,t— 7)-(T[d", p']-v)(y. 1) dSydT = (E¢ % @) (x) + b,
0 92

where V = (V;) is defined in (2.7), and @ =a in £2 and a = 0 outside 2. First we show that

[IxI“(Ecxa—a)|,—0 (t— 0). (3.9)

For simplicity we write a = a. Direct calculation gives

|X|*|E¢ xa —a| = |x|*

/Et(y)[a(x—y)—a(x)]dy
<C/IyI“IEt(y)[a(X—y)—a(X)]}dy

+C/ Ec(y)|x — y|*|a(x — y) —a(x)|dy
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=ct?/? f ly/NO 2B (y/VDa(x = y) —a)|dy
+ct™? / E1(y/VDlx — y*|ax — y) —ax)|dy.
Integrating in x via the change of variables z = y/+/t gives
[1%1%(Ec xa —a) ||, < ct®/? [ ZIE1 () |la(- — Vtz) — al|, dz
+c/E1(z)H|- —Vtz|*(a(- —Vtz) —a)|, dz.
The first term tends to 0 as t — 0. On the other hand,

Ix — Vtz|* (a(x — Vt2) —a(®)) = [x — Vtz|*a(x — V/t2) — [x|*a(x) + a®)[|X]* — |x — Vtz|*].

Hence,
I = VizI*(a(: = Vtz) —a(-)|,
<1 =wez%a(- = Vi) — |- [YaC) |, + Ja(H (1% = |- = Vtz1?) |,
The dominated convergence theorem gives
}grg)/51<z>|||- —VtzI%a(- = Vtz) - |-|%a(-) | ,dz=0.
Furthermore,

1 1
d
[x — Vtz|]% — |x|% = / % [x — 0/tz|%d6 = —a/ X — 0Ez|* 2 (x — O/Z) - V2 dO
0

0

and so
1
|Ix — V2" — x|%| < alzl«/f/ x — 0x/t21%71 dO < calzIVEIXIY T + co (VElZI).
0

Thus,
la(l- = vezl* = 1-1%) ||, < cav/Elzl | IX1*a], + ca (VEl2])“llall2
a=1 1
<cotizl|1X1%a],* Nally + ca (VEIzI)* all2.
We conclude that

/El<z>||a<~>(|- — V2% —|-19) |, dz

<CaffH|x|“aH§_””Ha||§/‘”/|z|El(z)dz+cat“/2||auz/|z|°‘E1(z)dz»0

as t — 0. This proves (3.9).
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Now let £21 = £2 N {|x] > R}. We may assume |x — y| > 1 whenever x € £21 and y € 952. Therefore,
if 1 <o <n/2, then

t

|||x|ab[||L2(Q1)<// |||"|O{V(t_7:)||L2(|)<\>1)|T[at’1:'[]|dsydr
000

¢
+//”V(t—r)||L2(|X|>1)|y|“|T[at,pt]}dsydr
090

t
< [a-re 0T A(aar], + Vo], )0 de
0
t
+c/(t— T+ 1)74(]|92a” Hp + ||fo||p)dr
0

t
<C/(|}83at||p+ ||VPT||p)dt—>O ast— 0.
0

Here we have used estimate (4.5). This, together with (3.9), gives lim;_,q |||x|% (e/4a — D22y =0 if
1 <« <n/2. On the other hand,

A

. _ . _tA _
l”?j(l)lp J1x1 (e~ a_a)HLZ(Q\Ql) <C[1£% |e*a—a],=o0.

So we have proved (3.7) for 1 <o <n/2. The case 1 <o <1+n/2 is treated similarly, by using

1t
o]
00

which follows from (3.8). We have

/(y~VXV)(x —y0,t—1)-(T[d", p']-v)(y, T)dS,dr db,
082

t
[X1b | 2, < C/(t_ T+ DI (o [, +elvetl,)dr
0

t
ve [ame v (aar], + Vo7 ) ar
0

t
<C/(”afat”p"‘ ||VPT||p)dt—>O ast— 0.
0

The estimate in L?(£2 \ £2;) is the same as in the previous case. O



2366 C. He, T. Miyakawa / J. Differential Equations 246 (2009) 2355-2386

4. Moment estimates for weak solutions

This section establishes the estimates (Proposition 4.1 and Lemma 4.2 below) for L2-moments of
weak solutions, thereby proving Theorems 2.1 and 2.2.

Proposition 4.1. Leta € L' (2) N 12 (2) N D, /**, n+1=2/s+n/p,and 6/5< p <n/(n — 1). Let u be

the weak solution satisfying (3.5). If |x|%a € Lz(.Q) and 1 <o <n/2, then forallt > 0,

t
|x1u@|? +/ | ix1Vu2de <c, (41)

[ixPu®], < 0<p<a). (4.2)

Remark. As seen from the proof given below, the restriction o < n/2 comes from estimates on
[1x|*~1p?||,. Indeed, we have to require 2(o — 1 —n+ 1) +n < 0 in estimating I; and I, in (4.4).
However, the condition o <n/2 is in general optimal in the following sense: In Section 6 we show
that in general our solutions u behave like |u(x,t)| = c|x|™" for large |x|. So |x|%u(x,t) is in L2(£2)
only if @ <n/2.

Proof of Proposition 4.1. For brevity we write v =u®, b =u® x ¢, and p = p®. We multiply (3.1) by
2|x|**v and integrate by parts to get

d
a/|x|2“|v|2dx+2/|x|2°‘|v\/|2dx

<C/|v|2|A|x|2“|dx+c/|v||Vv||x|2°‘_ldx+c/|v|2|b||x\2°’_1dx+c/|p||x|2"‘_]|v|dx
2 2 2

=K1+ Ky + K3 + Kg. (4.3)

We estimate each term on the right-hand side of (4.3). Let 2* =2n/(n — 2). By the Holder and Sobolev
inequalities, we have

K<V < el vl, VIS Ke<c ], |

2

Kz<C|||X|°’_1V||z|||X|°‘VV||z<C|||X|°‘V||;%||V||zaHle"WHz —|}|X|"VV||2+CH|X|"VH2 ’ ||V||2’
and

a—1 1
K < c| XV [, | K%V [, V115 1bln

4-n n-2
<c|||x| v, |1x* Vv}lza ||an§||b|| 2| Vb,?

a(4—n) a(n-2)

|||x| Vv +cfixi® vll““ ||Vv||°‘“ Ibl,“* IV, *T .

Here, we have applied the estimate (see [10]) ||[x|*~ ' fll2 < c[||x|*V f]l2 for & — 1> —n/2, to get

[1x*v

<ce([xvv], + X ],) < kv,
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In what follows we estimate |||x|*~!p||,, invoking the representation (see Section 6 in [18]):

1
p(X,t)=*//(y-VN)(X*yﬁ)f)vpdSyde

0 a2

- / auN(X—y)P(y,t)dSy+V2/N(X—y):(b®V)dy
a0 Q2

=hL+1+1s. (4.4)
Here, A/ = cp|x|>" is the Newtonian potential. The term I is deduced from the standard single-
layer potential by the fact that [, 8,pdS = [, Apdx = — [, 3;bdv;dx =0, which is obtained via
Lemma 4.2 below.

Lemma 4.2. (i) If Vp € L9(2), 1 <q <n’ =n/(n — 1), and if Ap € L'(£2), then the normal derivative
d,p =V - Vplae makes sense in W ~1/99(32), satisfying

<aup,f|ag>=pr~Vfdx+/<Ap>fdx forall f € HY (),
2 2

10vpllw-1/00502) < C(”Vp”q + ”APH1)-

(i) If Vp € L" (2) and Ap = g|g for some g € H(RM), then 8,p € W~/ (382) is well defined and
satisfies

<aup,f|m>=/Vp~Vfdx+/(Ap>fdx forall f € H'"(@),
2 2

10Dy 1w 50y < IV DIl + inf{l|gll 31 gny: 8l2 = Ap}).
02)

See Proposition 2.2 and Corollary 2.3 in [20] for the proof of Lemma 4.2. We continue the proof of
Proposition 4.1. Since o < n/2, we have |x|*~1VAN e L?(£2). Thus, Lemma 4.2(i) implies

[1x1*~ 114 ||Lz(95) <clldvpllw-1reae) <c(IVPIp + 1ADPI1) <c(IVPIlp + IVbI2IIVVI2),
where 25 = {x € £2: dist(x, 0§2) > §}. Furthermore, we know that
I flireay <cllVfllp, forall feH"P(£2)and 1<p<n. (4.5)

See Lemma 4.1 in [18] and Lemma 2.1 in [20]. By (4.5), I, is estimated as

[1%1% 7 12| 2 ) < €PNz 2) < CVPIp-

Since —n/2 <a — 1 < n/2, from the weighted estimates on singular integrals [38-40] we get
I1x1%~ 13112 < cllx|*~'bv 2. Therefore,

11217 p |l 20,y < c(IVPIp + VDIV VI + [ Ix1* bV ).
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On the other hand, since 6/5 < p, we have p* > 2. Thus, Holder and Sobolev inequalities yield
X%~ Pl 22\ @;) < clIpllp < cllVpllp. Hence, |||X|°‘_1P||2 <c(IVpllp + IVbI2IVVIi2 + [11X1*~ bV ]2),

and so
K4 <c| IXI"‘V||2HIXI‘)HIJVH2 +c||1x1*v],(IVPlp + Vb2V VI2).
The first term on the right-hand side is estimated as

[ PY Lot PR T PY 1 ‘VIlz*llblln

o Dt 4T n-2
<cflx®v ], | 1x*v IIVIlz*IIbII [Vb] 2

<cfixi®v], Hlxl"‘VvH2 IIVVIIZ“IIbIIZ2 IIVbIIZ

a(4—n) a(n—2)

2
—|| X*Vv]3 +c| |x|“v|| ||Vv||““ b1, 1Vb],* .

We thus obtain

a(n-2)

Ky < —|||x| Vv +cfIxi® v||°‘“ ||Vv||°'“ ||b||2°‘“ Vbl *

+c|[IXI*v ], (IVDllp + IVbI21IVV]12).
Inserting the above estimates in (4.3) gives

d
et L] P [ B

a(4—n) a(n—2)
1 FESY 1 1
c|\|x|‘”v|\z+ ||Vv||°*+ b1, Vb,

+c H|xl°‘VHZ - ||v||2 + | 1x1%v ], (IVpllp + I VBI2IVVI2)).

Here, we define

a(4—n) a(n—2) 2

2 =
Fe©) = IVVI5T b, T VBT 4+ vIis + VPl + IVbI20V V2,

Ye® =1+ | XU @) =14 |Ix%v ).

2(a—1)

2a
Since |||x|°‘v||““ +1xIVIl, ¢ +x|*vil2 < cYe(t) with ¢ > 0 independent of ¢, (4.6) gives

d Ao & |12
3 Ve ® + X VuE O |3 < cFe0Ye ().

Lemma 3.1, (3.2), (3.3) together imply F¢ € L1(0, T) for each fixed 0 < T < oo and

T
/ng‘L'gCT
0

with cr > 0 independent of ¢. Via Gronwall’s lemma and Lemma 3.5, we conclude that

(4.6)
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t
lixvo | +/ |Ix1*Vv|5dT <cr (te(0,T]),
0
with c¢7 > 0 independent of ¢. Passing to the limit as € — 0 yields
t
H|x|°‘u(t)”§+/ |x1*Vu|3dr <er (e (o, TI). (4.7)
0

We next invoke Lemma 3.3 to see that f20t§ IVpllpdt < oco. Since u is a strong solution for t > to,
defining Y () = 1+ |||x|*u(t)||3 and

2+4a(n—2) a(4—n)

2
F@©) =[1Vull, T [lull,*™ +llull§ +1Vplp+ IVul3, t>to,
we obtain dY /dt < cFY and fzotf) Fdt < oco. Hence, the foregoing argument applies to obtain

t
H|x|°‘u(t)||§ +/ |||x|"‘VuH§dr <c forall t > 2tg.

2tg

This, together with (4.7) for t = T = 2ty, gives (4.1). On the other hand, since

B a—p
[Puo], < [k u® |3 Juo],*
we see that (4.2) follows from (3.3). This completes the proof of Proposition 4.1. O

In the proof of (4.1), the restriction o < n/2 results from the estimates on I; and I in (4.4). To
estimate I3, we need only require « — 1 <n(1 —1/2), i.e,, « <1+ n/2. So we can reasonably expect
the improvement of the order of the moments, assuming that the total net force vanishes. In the
result below, we assume that £2 is invariant under the reflection x — —x.

Proposition4.3. Leta € L' (2) N L2 (2) N D}J_l/s’s, n+1=2/s+n/p,and 6/5< p <n/(n— 1). Suppose
further that a(—x) = —a(x) and |x|%a € L%(§2) for some 1 < o < 1+ n/2. Then the weak solution u given in
Proposition 4.1 satisfies

t
[x“u@] + / lxevulZdr <c.  [xPu®],<cd+n"%" ©O<p<a)n  (48)
0

forallt > 0.

Proof. In the proof of Proposition 4.1, we have only to replace the estimates on I; and I, by new
ones. The assumption a(—x) = —a(x) implies u®(—x,t) = —uf(x,t) and p®(—x,t) = pé(x,t). See [20]
for the details. Thus, for each ¢ > 0, we have

Ge(t) = f(yaupg —pv)(y.t)dSy =0,
982
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and this implies that, with p = p?,

11
I1+12=// 0@yp)(Y, )Yk Ye(BdN)(x — yop)dSy dodp
0 090
1

—f/P(y»f)vkw(akaz/\/)(x—yG)dSde.
0 0%

Since 1 <a < 14n/2, we have |x|* 18,8, N'(x) € L>(£2). So, splitting £2 as in the proof of Proposi-
tion 4.1 and applying Lemma 4.2, we get

X1 + 1) [, <c(IVPlp + 1ApI) <c(IVPIp + Vb2V VI2).

The estimate on I3 is the same as before. We thus see that if 1 <o <1+n/2, then

1% p|, <c(IVpllp + IVDI2IVVI2 + || 1XI*bv|,).
Using this, we can prove (4.8). This completes the proof of Proposition 4.3. O
5. Li-estimates for strong solutions

We prove the desired L9-estimates for strong solutions u which imply Theorem 2.3. Let V = (V j)
be the functions defined in (2.7), i.e.,

Vii(x, 1) = Ec(x)8jk + 3jok (N * E)(x),  Er(x) = (47”)7%67%, (5.1)

where N is the Newtonian potential. Furthermore, let v = (v1, ..., vy) be the unit outward normal to
082 and let

Tlu, pl= (dju; + diutj — 8ijp)i j—

denote the stress tensor. We denote by dS the surface element on 952. By (4.5) and Hélder’s inequal-
ity, we have

/\T[u,p](y,t)}dsygc(UazuHr+||Vp||r) (1<r<n). (5.2)
082

By (3.6) and (5.2), the boundary integral

t
// Vix—y,t—1)-(T[u, p]-v)(y, 1)dSydt

0 a2

is well defined. Therefore, the function u = (uq, ..., u,) is represented as
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u(x, t) = / Ee(x—y)a(y)dy

2

¢
—l—//V(x—y,t—T)-(T[u,p]~v)(y,7:)d5ydr
090
t2 ot

—(/—{—/)/V(x—y,t—7:)~(u~Vu)(y,7:)dyd1:

0o 2/ @2
=h+hL+134+14. (5.3)

The result below improves Lemma 3.3.

Lemma5.1.Letae L' (2)NLL(2)N D},_l/s’s with2/s+n/p=n+1 forsome1 < p <n/(n—1). Thereis

A > 0so thatif ||a|lp < A, then

1 1
lully <ct™2@~7 (1< €< minfn, 1} < oo, r>1),
1 1 1
IVull, <ct™273@~ 7 A<e<r<n,

l02u], + lacully + 1Pl <ct™ 73G9 a<e<r<n/2, r>1), (54)
forallt > 0.
The proof of Lemma 5.1 is similar to that of Theorem 1 in [18], so omitted here.

Proposition 5.2. Under the assumptions of Lemma 5.1, we have
_1_n (1— l) _n
HVu(t)HL,(Qs)gct 2720579 p st (n<r < 00), (5.5)
forallt > 0.
Proof. First we observe that

|V (x, 0)] <c(|x|2+t)_@ (m=0,1,2,...), (5.6)

with ¢ > 0 depending only on m. To prove (5.6), note that (5.1) can be rewritten in the form

oo

Vik(x,t) = E¢ ()3 + / 0jokEstc(x)ds
0

as seen via the Fourier transform. It is easy to see that |97 E¢(x)| < cm (x| + t)’HTm; so we need only
prove

n+m

M2 Ees(x)ds| <cm(IxI +1)” 2.

0\8

Direct calculation using the change of variable s = o (t + |x|?) gives
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o0
[ AM2Eg ¢ (x)ds
0

T _nt+m+2 , 2 _ntm
<cm/ (X2 +s+0)" 7 ds=cp(x>+t) 2
0

and this implies (5.6).
Now we can prove (5.5), using (5.3) and (5.6). It is easy to see that

IVIlr <cllallit2730=P (1 <r<oo) for all £ > 0.

We write
t/2 ot
12=( +/> / Vx—y.t =) (T[u, p]-v)(y, 1)dSydt = I + I
0 /2732

By (5.2), (5.4) and Lemma 3.4, we deduce

t/2
1 n 1
VIl < C/(f - T)fff(lf?)HT[“vp]HLP(am dr

o0
<c</(\!32qu + ||Vp||p)dr>t55“”-
0

Applying (5.6) and Lemma 5.1, we get

t

VI lres < ¢

/ |VV(x—y.t—0)||Tu, pl(y, v)|dSy dt
t/209

L7 (£25)

t
c/(t -7 —i—82)_%_%(1_%)(||82u||n/2 +1Vplins2) dr
£/2

N

t
n _1_nq_1
<ct*7/(t—r+82) 2720 r)drécat’
t/2

On the other hand, since @i - Vii € H!(R"), we obtain

t/2
IVIs]l, < /(f—f)"" )”” Vi(T) |1 gy AT

t
<at=50b [ fuco, | vuco ] de
0

. 1 .
Furthermore, since a € L, (§2), we have ||Vu(7)|l, < ct~2. Hence, if n <r < oo, then

(5.7)
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t
IV 1allr gc/(t—r)—%—%<%‘3‘-)Hu(r)IIOOIIVu(r)HndT
t/2
t
gC/(t_T)f%*%w;)f%*%df <ct 330D,
t/2

Collecting terms gives (5.5). The proof is complete. O
6. Weighted L9-estimates for strong solutions

This section establishes the weighted L9-estimates for our strong solutions and proves Theo-
rem 2.4. We begin with

Lemma 6.1. Let 1 <1 < oo, o =n(1 — 1/r) and let V = (V j) be defined by (5.1). Then,
; a_J_neq_1 _J_onaa_1 n n
[1-1=97v e p] <af 200 —q it =01,
q T
The same estimates hold also in case r = q = oo.
Proof. The result follows immediately from (5.6), and the details are omitted. O
The main result in this section is the following

Proposition 6.2. Leta € L' (2) NLL(2) N Dy~ /** with2/s+n/p=n+1and 1 < p <n/(n — 1). Suppose

|x|%a € L"(£2) witha =n(1—1/r) forsome 1 <r < oo. Then there is a constant .1 > 0 such that if ||a|l, < A1,
then there is ¢ > 0 so that

1_1

I \x|°‘u(f)“q <ct 20 (max{r,n/(n—1)} <q < o0) forallt > 0. (6.1)

Proof. First let ||a]|, < A so that we can apply Lemma 5.1 and Proposition 5.2. Obviously,

X <27 (ly[* + [x— yI%). @ >0. (62)

Hereafter I, (k=1, 2, 3, 4) denotes the terms given in (5.3). If ¢ > max{r,n/(n — 1)}, then

Jixn ], <

+c
q

/ Ec(x— y)ly|“a(y)dy
o q

/ X — y|“Ec(x — y)a(y) dy
2

n

1_1 _nq_ly e
<a” TP y1al, + 2T al)

= c([llyra], + Nat)e 27, 63)

Let Ip1 and Iy be defined in (5.7). Since we may assume |x — y| > 1 whenever x € £25 and y € 952,
applying Lemma 3.4, (6.2) and (5.6) with m =0 gives
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t/2
X% 121 [ 10y <cf<t— T4+ D) DT, pl] 1 (DT
0

+C/(t—T+1)%_%(1_%)“”‘“P]HLl(am(T)dT
0

t
$-30-9 2 -5G-
Sctz20T f(Ha ull, +IVpllp)(rrdr <ct 2773
0
for all t > 0. We next apply Lemma 5.1 and (6.2) to estimate I, as

¢
[1%1% 122 ”Lq(m) < C/(t —T+ 1)%(17%)”7"[”’ p]HLl(m)(T)dT
t2

t
+C/(t -7+ 1)%7%(17%)””“7 Pl 1) (M dT
t/2

t
< C/(t —T4+ 1)‘%“‘%)(||32u||n/2 +1Vpllns2) () dT
t/2

t
+cf(t —T+ 1)%‘%“‘5)(”8%““/2 +1Vpllns2)(r)dT
t/2

t
< c/(t — T+ DI (0%, + 1Pl (1) dT
/2

t
_n _E(l_l)
Lct72 [ (t—T4+1) 27 ddr.
t/2

Suppose first —8 —1+n/2 <0 and B < 1, where 8 = (n/2)(1/r — 1/q). Since n/2 > 1, we have

t t
1_1 nel_ 1 n
/(t—r+1)‘%<7‘ﬁ)dr < /(t—r+1)‘7(F‘5)+7‘1dr

t/2 t/2

t
< /(t - T)—%(%—%)—H—% dt < ctBGTDTE
t/2

1_1
-

n
Thus, in this case we get |||x|*I22[19¢2;) < ct 247 @ forall t > 0.

nc1 1
If 8> 1, then ftt/z(t —7+1)"2G~a) dr <c. Therefore, replacing 19%ulln/2 + IV Pllns2 by 182ulle +

1

n 1
IVplle, with a suitable € € (1,n/2], gives ||1x|%I22]l1a¢2;) < ct 277 forall t > 0.
nel 1
If p =1, the foregoing estimate gives |||x|%I22|l1a(2;) < etz log(e +1t) < a2,
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If - —1+4+n/2>0, then 8 <—1+4n/2 < 1. Using this, we get

t
L P S e (LT IR A PIED
t/2

t
b [am s D B0D (0], + 19 Joran
t/2

t
1_1

< [mrn D), + 9 ot
¢/2

t
nel_ 1 nel_ 1
<ct™! /(t—r)ff(?fﬁ)dr Lot 207w

t/2

for some ¢ € (1,n/2]. Here, we have used ||3%u(t)|l¢ + [|Vp()|l¢ < ct~!, which follows from (5.4) by
taking ¢ =r <n/2. We thus obtain, for all possible choices of r and g,

[1%1%122 HLL,(_QS) < ct 277 forallt>0.

Now, integration by parts gives

t
=- [ [va-yi-n @ vomodyd
/2 2
t

= —//(W)(x—y,t— 0):@@u)(y, 1)dydr.

t/2 2

~1/2

Since a € L% (£2), (5.4) with £ =n and r = oo shows |u(7)|l« < cllallnT . Hence,

t
[1x11a] <C/ [vve-olliyru@|,u@] de
t/2

dt

t
we [Ivve =] Jum) Jue)

t/2

qr'/(q+r’)

t
<c||a||n/(r—t)‘%r‘%|||y|“u<r>\|qdr
t/2

t
_1 1 _nd_ 1y
+cf(t—T1) 27 2 27 a'dr
t/2
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t
1 1 _nel_1
<c|\a||n/(t—t)_7r_7|||y|"‘u(t)||th+ct 2(rmg),

t/2
Here, we have used 1/q + 1/r" < 1, which follows from q > r. Finally, we estimate

t/2
I3=—//V(x—y,t—r)~(u~Vu)(y,1')dyd‘L'
0 2

t/2
:—f/(VXV)(x—y,t—T):(u®u)(y,r)dydt,
0 Q

We write

t/2

[y < f/(vxvxx—y,r—r):|y|“<u®u)<y,r>dydr
0 2

q
t/2

//IX—yI“(VxV)(X—y,t—r):(u®u)(y, 7)dydt
0 2

+cC

q
=1+ ]2

By (6.2) and (3.3) with r =2, we have

t/2
ja<e [ revve-ol Jaenm],d

1_n

gf/(t—rﬁ*ﬁ“ ?u@], Ju@],de

t/2

_ﬂ(l_l) _1 _n _E(l_l)
Lcet 2@ f(t—1) 24+ 1) 2dTr Lt 2T @,
0

To estimate Jq, suppose first 8 = (n/2)(1/r — 1/q) < 1. We apply [|u(t)||n < cllalln, as well as Young’s
inequality for convolution, to get

t/2
J<e [ 19V =Dl Ju@], fiyuc ] ar
0

t/2 t/2
<clal [0 fiyrum],dr <clate™ [ Jiyeue] .
0 0

Here, condition g > n/(n — 1) is used to apply Young’s inequality. If r =1, then o =0, and so
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t/2
J1 <c/(t—r)_%_%(l_%)||u(r)|}2||u(r)||2dr <ct_%(%_%).
0
If >1 and r > 1, we take q1 > max{r,n/(n — 1)} so that 81 = (n/2)(1/r —1/q1) < 1. Then

t/2
hi<c / €~ G )| Iy u)]|, de
0

t
—1-n L1y «
<cllaflpt™' 2 q/|||y| u(@|,, de
0

since ||u(t)|ln < cllall. We thus obtain

g E —nl_1,
cllalint 2 @@ folly1“u(T)llg, dT +ct™ 277" (B=1, r>1),
[x“Is], < § e300 r=1), (64)

_nel_ 1
cllalnt™" [ llylPum)lgdt +ct 2070 (B <1),

with q1 > max{r,n/(n — 1)} such that g = (n/2)(1/r —1/q1) < 1.
On the other hand, since 21 = {x € £2: dist(x, 952) < 4} is bounded, we get

MU0 0 g, < cluto], (65)

Since we are assuming O ¢ £2, there is a constant ¢y such that |x| > co for all x € £2. Then a € L"(£2)
because |x|%a € L"(£2). If 1 <r <n, (5.4) with r =q and ¢ =r yields

Jue) Hq < t 3G forallt> 0,

with ¢ independent of &. Consider next the case r > n. Then (5.4) with r = ¢ =n yields |Vu(7)|, <
cllallat=12 and |lu(t)|l» < cllalln. Furthermore, recall that u solves the integral equation

t
u(t) =e ta —[e’([’”AP(u‘Vu)(r)dr
0

t/2 t

=e g — <f+/)e‘(t")AP(u-Vu)(f)dfv

0 /2

By (1.3) and (1.4), we get, for g >n/(n — 1),

1

t
Jue)], <ct 3¢ 5)||a||r+c/(t—r)‘%||u(r>HqHVu(r>||ndf
t/2
t/2
+C/(t— 0 Ju(o) |, |Vu)]), do
0



2378 C. He, T. Miyakawa / J. Differential Equations 246 (2009) 2355-2386

t

1_1 1 1
<36 )||a||r+c||a||n/(r—r> 2772 Ju(o)]  de
t/2

t
+ct_]+2"_q /(1 +r)’% dt

t
<ct” 3G +c||a||n/(t—t)_%r_%Hu(r)”qdr.

z for r > n. By a standard argument, we

find a constant A > 0 so that if [la|l, < A2, then [Ju(®)llq < ct_f("'

with (6.5), gives |[|x|*u(t)llLa(2,) < ctif(fﬁ

Here, we have used fo(l + r)’? dr < Cfo T dr <ct'73
) for all ¢ > 0. This, together

Collecting the above estimates gives

x|, <ce i +c||a||nf(t—r)" 2y uc) | dr
t/2

q_nL_Ly oo _nel_1
clallnt 2@ 9 [yl dr + et 2T (g1, > 1),
+ e G =1, (66)
cllallt™" [ lyIu(@lgde +ct 270 (8 <1),

for some q; > max{r,n/(n— 1)} such that 8y = (n/2)(1/r —1/q1) < 1. Now we deduce (6.1) as in [25]
by taking ||a||, small. Define

Mg(t) = t%(%ié) “ |X|au(t)”q,

so that (6.6) gives

t
Mq(t) < c+c||a||,1/(t—r)’%t’%Mq(t)dr
0
_qgnl_o1 _ml_ 1
claflot™ 207w [FrT2 A My (ydT (B> 1. 1> 1),
+1c =1, (6.7)
nel_ 1 nel_ 1
cllant™ 2070 2T M(nydT (B <1).
Suppose first r = 1. We note that supgc; < Mq(7) is finite for any ¢ > 0, which can be justified rigor-

ously following the arguments given in [22] in the case of the Cauchy problem. By (6.7) we see that
the function

gq(t) = sup Mgy(7)
o<T<t

satisfies

&) <c1+callallnB(1/2,1/2)gq (1),
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where B(p,q) is the beta function. Taking |la|l, small, we obtain gq(t) < c3 for all t > 0 and this
proves (6.1) in case r =1. When B8 < 1, (6.7) gives

8O <c1+callalln(B(1/2,1/2) +1)gq(®),

and so gq(t) < c3 for all £ > 0 if |la|l, is taken small. This implies (6.1). When 8> 1 and r > 1, we
already know that gg, (t) <c for all t > 0 if ||a||; is small. So (6.7) gives

gq(t) <c1+c2llallnB(1/2,1/2)gq(t) + c3.
Hence, gq(t) < c4 for all t > 0 if we take ||a||, small. The proof is complete. O
7. L'-summability of flows and weighted estimates
This section proves Theorem 2.5, i.e., we shall prove

Proposition 7.1. Let a € L' (2) N L.(2) N Dy~ "/*° with 2/s +n/p =n + 1 for some 1 < p < n/(n — 1).

Suppose |x|%a € L™ (£2) with @ =n(1 — 1/r) for some 1 <1 < oo. If ||all, < A1, the strong solution given in
Proposition 6.2 satisfies

t
|x|"(u(t) —V(,t)- /]—'dr)
0

([0, o0); LT, (£2)) and that

<c(1+7307D) forallt>o0. (71)

r

This implies that t3 [X|%u e Ly,

t%x|% e L® (10,00); L'(£2)) ifand onlyif F(t)=0 foralmostallt> 0.

loc

Here, L7, denotes the weak L"-space.

Proof. The strong solution obtained in Proposition 6.2 is written as

t
u(x,t):/E,(x—y)a(y)dy+//V(x—y,t—r)-(T[u,p]~v)(y, 7)dS,dt
2 0 80

t
—//(VV)(x—y,t—r):(u®u)(y,r)dydr
0 2
=K1+ Ky +Ks.

In the same way as in the proof of (6.4), we have

[1xI“K1]|, <c(llali + |[ly|*a],)  for all t > 0.

We estimate K3 as
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t

[1x1K3|, <c f/(VV)(x—y,t—T):IyI“(u®u)(y,r)dydf
0 2 r
t
+c //|x—y|“(VV)(x—y,t—r):(u®u)(y,r)dyd7:
0 r

0

t
<e [I9VCt=D] Ju g iy |, dr
0

t
te [yl Juo fdr.
0

To estimate the last two terms, we invoke Lemma 6.1 and |u(t)|2 < c(1 + t)_%. The first term is
estimated by using

|u®)],, <cA+07 3G @r=n), (7.2)

which is obtained from (5.4), and

u®) |, <c1+6720-2 2 <2r<n). (73)
2r

Using (7.2), (7.3) and the estimate (6.1) for |||x|%u(t)|2r, we get

[1x1%K3]|, <c forall t > 0.

For K, we write

t ¢ 1
Ky —V(x,1)- /]—'dr:—///(y~VXV)(x—y9,t—‘L')(T[u,p]-v)(y,‘l:)dedsydt
0 042 0

|

= K1 + Ka2.

1
/(7: 0 V) (x,t — TO)(T[u, p]-v)(y, T)d0 dSy dt
92 0

We fix § so large that |[VyV(x—y6,t —1)| < c(|x| + /T — 1)~ 1 <c|x|™""!, whenever x € 25, y € 982
and 6 € [0, 1]. We may further assume that |x| > 1, whenever x € £2;. It follows that

t

t
| Ko [ gc// |T(u, p]|dSy dt gc/(||a,3u\|p+||Vp||p)drgc,
0 982 0

by Lemma 3.4. Next, we estimate Ky as
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%1% K22 | Lr(2s)

<c

t 1
///|(r.aTV)(x,t—r9)||y9|“\r[u,p].u\(y,r)dedsydr
002 0

/

Note that |9;V (x, t — 76)| < c(Ix> +t — 1)~ "3". So

L7 (£25)

+c

1
f|x—y9|“|r-8rV|(x,t— 70)|T[u, p]-v|(y, T)d0dS, dt
220

9 L7 (£25)

_nt+2
|(T-3: V)Xt —T0)||yf|* <CT(IX*+VE—T) 7 |yf|* <CA+VE—1)?

when y €982, 7,0 € (0,1) and |x| > § as x € £25. We also note that |x — y0| < 2|x| as y € 952 and
6 € (0,1). So, when x € §25, we have

_nt2
2

|x—y0|%|T -0 V|(x,t — T0) < C|x|"‘(|x|2 + 4/t — ‘L’)
<CRITFTA+VI—D)2<CA+vi—D) 2

Then, applying for (5.2), the two terms at the right-hand side of the estimate of |[|x|* K22 |l1r(0s)
are estimated as

t
< c/(l +t— r)—2(||a§u||p +IVpllp)Tdr
0

1 t
< c/(||a,3u||p +1IVpllp)dt +c/(1 +/t— r)’z(Haqun/z +IVPpllnj2)Tdt
0 1

t

:c+c/(1 +VE=0) (| 5u], o + 1VPIns2) T dT,
1

by Lemma 3.4. Take £ =1 and r =n/2 in (5.4) to have ||83u||n/2 +IVpllns2 < ct~% for all T > 0. Since
1+/f—7>2@¢—1)"/4 and since 172 < t=V2 if r > 1 and n > 3, we obtain

t t
/(1 +t— r)_2(||afu“n/2 +IVpllnj2)Tdt < c/(t — ) V21247 L.
1 1

Hence, |||x|*“K22]l1r(25) < ¢, and so |[|x|* K2 ||res) < ¢ for all t > 0. Collecting terms gives

t
|x|* (u(t) —V(,t)- /&’-’dr)
0

Furthermore, since 2’ = §2 \ £25 is bounded, Lemmas 3.4 and 5.1 together imply

<c (I1<r<oo)forallt>D0.
LT(£25)
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t
|x]* (u(t) —V(,t)- /fdt)
0

t

<c| Juo |, +[ve.ol, [ (8], +1Vply)de
e ol v ol f sl vepn)e)

0

for 1 <r < oco. This proves (7.1).
To complete the proof of Proposition 7.1, we invoke the following, which will be proved below:

X%V (x,t) € LT, (2)\ L"(2) (e =n(1—1/1)). (7.4)

By (7.1), (7.4) and the Fourier transform of V, we see that |x|*u e L> ([0, 00); L"(£2)) if and only if

fot Fdt =0 for a.e. t > 0, which is equivalent to F(t) =0 for a.e. t > 0. This proves Proposition 7.1. O

Proof of (7.4). From (5.6) we easily see that [x|*V € L7, (£2); so we need only show [x|*V ¢ L"(£2).
Recall (5.1):

Vi, ) = Ee (08 + 95 (N * E) (),

where N = c|x|>™" is the Newtonian potential on R". It thus suffices to show that the function
W = VZ(N x E;), which is smooth on R", satisfies

Ix|*W ¢ L"(R"). (7.5)
To prove (7.5), suppose that ||[x|*W ||, g» < occ. Then the result of [10] gives
[1X1% 72N 5 E) | n < c[[IXI“W [ g < 0, (7.6)
since @ —2+n/r=n—2> 0. Now, N and E; are nonnegative; so we have
IX|%72(N % Er)(x) > c|x|¥72 / N(x—y)Ec(y)dy for any fixed R > 0.
VISR

Here we choose x so that |x| > 2R. Then |y| < |x|/2 if |y| <R, and so |x — y| < c|x|, which gives
|x — y|2~" > c|x|>~™. Hence, |x|*2 Sk N &= YEe(y)dy > c|x|~7 whenever |x| > 2R, and so

X172 % E) ||, gn = [1XI% 72N % Ep) |

r{x>2R) = €

1/r
—n
rRN |X] dx) =00,

x|>2R
contradicting (7.6). So we get (7.5); and the proof of (7.4) is complete. O
8. On initial data for flows with non-vanishing net force

This section proves Theorem 2.6. Namely, we give a class of smooth initial data a € L'(£2) N LT (£2)

for which the corresponding (local) strong solutions do not satisfy (1.9).
Let h, (k=1,2,3) be the solution to the exterior Neumann problem

Ag=0,  dhhe=—w.  |[m®|=0(x"") (x| > o). (8.1)

We first prove
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Proposition 8.1. Let u be a strong solution with the associated pressure p. Then

[aporhods,= [ e - puods, - [uudhx «=1.2.3) (82)
a2 FYe) 2
Proof. Observe first that
—Ap = 0ju;joju; =8,~(u,~3ju,~)=8i2j(uiuj) in £2. (8.3)

Choose ¢n (x) = ¢ (x/N) € C5°(R") so that ¢y =1 for |x| <N and ¢y =0 for |x| > 2N. Integrating by
parts gives

/3UP(YI<+hI<)d5y = / Wwp(Yk +h)endSy
bYe! FYe)

= /((Xk + h)dn AP — pA[ (X + hi)pn ]) dx
2

for large N; and this last integral is computed, with the aid of (8.3), as follows:

= /(Xk¢NAIJ —2pdkpn — XkpApN) dx — /(hk¢N3iujajui +hgpAén +2pVhy - Vo) dx
2 2

= /(XI<¢NAP —2pdkpn — XkpApN) dx — /(uiujaé(hlc¢N) + hkp AdN + 2pVhy - V) dx.
2 2

But, since d,¢ny =0 for large N, we get

/(—2P3k¢>N — XkDAPN) dx = /(_P3k¢N +x,Vp-Von)dx
2 2

=/(J/k3up—pvk)d5y —/thﬁwAPdX,
FYe) 2

and so

/ 8P (Ve + hi dSy = / Yedvp — puidS,y
082 082

- /(hlcPA¢N + uitt 37 (hepn) + 2pVhy - V) dx. (8.4)
2

Since fm VdSy =0, a classical result in potential theory [26] shows that
|Vihe )| <clxI™>77 (j=0,1,2,...) for large |x]. (8.5)

So, letting N — oo in (8.4) gives (8.2). The proof is complete. 0O
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Proposition 8.2. Let u be a strong solution given in Theorem 2.3, with associated pressure p. Then
ueC([0,T); L'(£2)) forall T > 0, if and only if

/aup(yk-i—hk)dsy+/uiuj85-hkdx:0 (k=1,2,3). (8.6)
EYos 2
Proof. We know by Theorem 3 of [18] that u is in C([0, T); L'(£2)) if and only if
G() = /(ykavp —pv)dSy =0 fork=1,2,3 and all t >0,
EY)
which is equivalent to (1.9). Thus, (8.6) follows from (8.2). The proof is complete. O
Lemma 8.3.If Au € L' (£2) and Vu € LI(2) for some q € [1, 3/2], then
/ Wp(Yk +h)dSy = /(avuk + dyui-dih)dSy (k=1,2,3). (8.7)
a2 a2

Proof. Let ¢y be the cut-off functions employed above. From (1.1) we get d,p = Au-v on 9£2. Ap-
plying the divergence theorem yields

/ 8P (Vi + i) dSy = / AtV (i + hgn dSy = / V- [(Au)(xe + ho)gn ] dx.
82 082 2

Since V- (Au) = A(V-u) =0, the last term is computed as

= /(Auk “®N + X AU - 9PN + PN Auidihy + h Au; - i) dx
2

= /(3uuk + dyu; - dihe) dS — /(Vuk -VéN + Okt - 0ipn + X VUi - Vi) dx
FYe) 2

— f(¢NVUf -Voihy + Vu; - Vop - 0ihy) dx + / hi Au; - 0N dx.
2 2

Using the assumptions on u and (8.5), we get (8.7) by letting N — oco. This proves Lemma 8.3. O
From Proposition 8.2 and Lemma 8.3, we obtain

Proposition 8.4. Let u be a strong solution. Then u € C([0, T); L1 (£2)) if and only if

/(avuk+avu,»-a,»h,<)d5y+/u,~u,-a,.2jh,<dx=o (k=1,2,3) forae.t>0.
982 2

Now, if a € L1(£2) N D(A»), there exists a unique strong solution u defined on some [0, T) such
that [[u(t) — ally22(g) — 0 as t — 0; see [29]. Thus, if
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/(Bvak + 0ya; - 9ihy)dSy + /(aiaj)aé-hk dx#0 for some k € {1, 2,3},
a0 Q

the strong solution u is not in C([0, T); L'(£2)). For example, suppose a € €5, (£2) satisfies

/(a,-aj)aizjhk dx#0 for some k € {1, 2, 3}. (8.8)
2

Then, the corresponding strong solution is not in C([0, T); L1(£2)). However, we should note that we
do not know if the class of initial data a € C§%, (£2) satisfying (8.8) is vacuous or not.
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