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1. Introduction

Euler-Maxwell equations appear in the modeling of plasmas under conditions on the frequency
collision of particles. One example is the modeling of ionospheric plasmas. For a magnetized plasma
composed of electrons and ions, let n, and u. (respectively, n; and u;) be the density and velocity
vector of the electrons (respectively, ions), E and B’ be respectively the electric field and magnetic
field. Theses variables are functions of a three-dimensional position vector x € R® and of the time
t > 0. The fields E and B’ are coupled to the electron density through the Maxwell equations and act
on electrons via the Lorentz force. In this paper, we consider the periodic case in a torus T = (R/Z)3.

In vacuum, variables (n,, u,, E, B') satisfy a two-fluid Euler-Maxwell equations (see [3,6,24]):
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otny + div(nyuy) =0,
mynyi,

my 3 (yuty) + my divinyy, @ uy) + Vpy () =quny (E +uy x B') — '
v .

00 E — 11y 'V x B/ = —(qeMelle +qinju), €0 divE = gene + qin;,
B +VxE=0, divB =0,

for v=e,i and (t,x) € (0,00) x T, where ® stands for the tensor product and p, = p,(n,) is the
pressure function which is sufficiently smooth and strictly increasing for n, > 0. In (1.1) the physical
parameters are the charges of the electron go = —q and of the ion q; = q > 0, the electron mass
me > 0 and the ion mass m; > 0, the momentum relaxation times 7, > 0 and t; > 0, and the vacuum
permittivity €9 > 0 and the vacuum permeability o > 0. Recall that the speed of light ¢ and the
Debye length A’ are defined by

sOKBTe)”Z

c=(eopo) 2, M= ( 5
nopq

where Kp > 0 is the Boltzmann constant, T, > 0 is the temperature of the electron, and ng > 0 is the
mean density of the plasma [6, p. 350]. Let us define

_ 12 _ 1
)\.—60 N y—v
80 C

Then 2 > 0 is a scaled Debye length since it is proportional to A’. Remark that ¥ — 0 as ¢ — oc.
Let us introduce a scaling for the magnetic field B’ = y B. Then the scaled two-fluid Euler-Maxwell
equations are written as:

otny +div(nyuy) =0,

. mynyuy
my 0 (Nyuy) +my div(nyuy @ uy) + Vpy(ny) =quny(E + yuy x B) — . (12)
v .
YA2E — V x B ==y (qeNelte + qinttj), 2> divE = qene + qin;,
yB+VXxE=0, divB=0, v=e,i.
For smooth solutions with n, > 0, the second equation of (1.2) is equivalent to
myu,
my Oty +my (Uy - V), + Vhy(y) =gy (E + yuy x B) — . (1.3)
v

where - denotes the inner product of R? and the enthalpy function h, is defined by

ny

hv(nu):/p"T(s)ds, v=e,li. (1.4)

1

Since p, is sufficiently smooth and strictly increasing on (0, +00), so is h,.

In the plasma when the ions are non-moving and become a uniform background with a given
stationary density, by letting n; = b, u; = 0 and deleting the Euler equations for ions, a one-fluid
Euler-Maxwell model is formally derived. For simplifying the discussion, in the sequel we take q = 1.
Replacing (1, ue) by (n,u), me by m and 7, by 7, the one-fluid Euler-Maxwell equations read:
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on + div(nu) =0,
mu
moiu +m(u - V)u+ Vh(n)=—E —yu x B — PR

(1.5)
YA2E—V xB=ynu, A*divE=b—n,
yoB+V xE=0, divB=0,
for (t,x) € (0, 00) x T. It is complemented by periodic initial conditions:
t=0: (n,u,E,B)=(nf,uf,Ef,BF). (1.6)

The given function b depends only on x. This is compatible with system (1.5). Indeed, we have

dn=—div(nu) = -3 (A* divE) = dn — &b,

which implies that d;b = 0. Moreover, since we consider periodic smooth solutions, b is supposed to
be sufficiently smooth and periodic.

In (1.2) the physical parameters m,, 7,, ¥ and A% can be chosen independently of each other
according to physical situations. They are very small compared to the physical size of the other quan-
tities. Therefore, it is important to study the limits of system (1.2) or (1.5) as these parameters go
to zero. The formal asymptotic limits of the two-fluid Euler-Maxwell equations (1.2) have been in-
vestigated in [22]. In the one-fluid Euler-Maxwell equations (1.5), the non-relativistic limit y — 0,
the quasi-neutral limit A — 0 and the limit of their combination y =1 — 0 have been rigorously
justified in [19], [20] and [21], respectively. The results show that these limits of (1.5) are respectively
a compressible Euler-Poisson system, an electron magnetohydrodynamics system and incompressible
Euler equations. The justifications are valid for smooth periodic solutions in time intervals indepen-
dent of the parameters y and A. We mention also that in the two-fluid Euler-Maxwell equations the
non-relativistic limit can be justified in a similar way [25], however, the justifications of the quasi-
neutral limit and the combined limit y = A — 0 are still open problems. For the kinetic version of
the above limits in Vlasov—-Maxwell equations, we refer to [5] for the combined limit and to [4] for
the non-relativistic limit.

Another interesting problems rely on the limit of the mass ratio between electrons and ions in
system (1.2). Since the electron mass is much smaller than the ion mass, for fixing the idea we let
m; = 1. Then we may consider the zero-electron mass limit me — 0 and the combined limit m, — 0
with 7e, 7; — 0 in (1.2). The formal equations of limits can be easily derived (see Appendix A), how-
ever, the mathematical justification of these limits is a quite open problem. We leave these problems
for a future investigation. On this topic, we refer to [2] for a rigorous justification of the electron mass
limit in Euler-Poisson equations.

In what follows, we only consider the one-fluid Euler-Maxwell system (1.5), which is symmetriz-
able hyperbolic in the sense of Friedrichs [8]. Its local existence of smooth solutions is a well-known
result due to Kato [12]. The global existence and the long-time stability of smooth solutions have
been recently obtained in [23] when the solutions are close to a constant equilibrium. In a simplified
one-dimensional Euler-Maxwell system, the global existence of entropy solutions has been studied in
[7] by the compensated compactness method.

In this paper, we are interested in the zero-relaxation limit T — 0 of system (1.5) under the condi-
tions m=0(1), y = 0(1) and A = O(1). We assume, throughout this paper, that m =y =1 =1. The
usual time scaling for studying the limit T — 0 is t’ = tt. Since t = 0 if and only if ' = 0, this change
of scaling does not affect the initial condition (1.6). Rewriting still ¢’ by t, system (1.5) becomes (see
[22,23])
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1 .
on + = div(nu) =0,

1 1
du+—u-Vyu+—-Vhn)=—= — —— — —
T T T

>
. o T T (1.7)

&E— -VxB=—, divE=b—n,

T T

1
B+ -V xE=0, divB=0.
T

Remark that the time scaling t' = 7t may reveal the long-time asymptotic behavior of solutions. In-
deed, t =t't~1 = 0(r~1) for fixed t' > 0. Then for a fixed time T; > 0, a local-in-time convergence
for system (1.7) on the time interval [0, T{] means the convergence for system (1.5) on a long-time
interval [0, T;T~!]. On the other hand, as T — 0, a convergence error O(t") with r > 0 implies a rate
O(t™") of the long-time asymptotics (see (4.8) in Remark 4.2).

For m > 1, the authors of [23] proposed an asymptotic expansion to (1.7) of the form:

m
(n7,ul, ET, BT) :th(nf,tuf, E7, B)).
j=0
They established the convergence in Sobolev spaces of the solution (n*,u’, E®,B%) of (1.7) to
(T, uT, ET, BT) with order O(tr™) when the initial data are well-prepared and the initial error has
the same order. Here the well-prepared initial data mean that compatibility conditions hold. Un-
fortunately, this result cannot deal with the case of ill-prepared data and the case m =0 of the
well-prepared initial data in which the error disappears. The goal of this paper is to improve the
above result in two directions.
First, we propose a different asymptotic expansion to (1.7) of the form:

(n7,ul ET BT) = rzf(nf, ud, Ei, 'CBj), (1.8)

m
i=0

where the first order profile (n®, u®, E9) satisfies a drift-diffusion system, as shown in [23]. The mo-
tivation of this expansion is the following consideration. If we replace u by Tu and B by 7B, then
system (1.7) becomes

orn + div(nu) =0,

t2(du+ (u- V)u) + Vh(n) = —E — t*u x B —u,
E—-V xB=nu, divE=b—n,

?%B -V xE=0, divB=0,

in which the only small parameter is 2. With expansion (1.8), for m > 0 we prove the convergence
of the solution (n%, u?, E¥, BY) of (1.7) to (n, u™, E™, B™) with a higher order 0(t2™*V) when the
initial data are well-prepared and the initial error has the same order. This includes the case m = 0. In
the proof of the result, we have to treat the order of the remainder Rg’m for variable B. Indeed, there
is a loss of one order for RE"" in comparison with those for variables n, u and E. This is overcome
by introducing a correction term into ET so that the new remainder for B becomes zero without
changing the order of the other remainders.

Second, for ill-prepared initial data, the above convergence result is not valid because the approx-
imate solution cannot satisfy the prescribed initial conditions. In this case, we construct initial layer
corrections with exponential decay to zero and prove the convergence of the first order asymptotic
expansion. The analysis shows that there are no first order initial layers on variables n, E and B.
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However, we have to consider the second order initial layer corrections to obtain the desired order of
remainders.

The zero-relaxation limit T — 0 in the Euler-Poisson system was extensively studied by many
authors. See [17,10,11,9,15,14,1,26] and the references therein. Remark that the Euler-Maxwell system
and the Euler-Poisson system are essentially different due to the coupling terms and to the difference
between Poisson equation and Maxwell equations. Finally, assuming 7. = t; = 7, so that the change of
scaling of time is possible, the zero-relaxation limit T — 0 in the two-fluid Euler-Maxwell system can
be carried out in a similar way. Indeed, here the essential point in the proof is that the equations for
u, are dissipative. Then we may treat the energy estimates of the Euler equations for both v =e,i in
a similar way to the one-fluid case. In Appendix A, we give a formal description of the zero-relaxation
limit in the two-fluid Euler-Maxwell equations and write down the limit equations. For avoiding the
tedious calculations, the rigorous justification of the limit is omitted.

For later use in this paper, we recall some results on Moser-type calculus inequalities in Sobolev
spaces and the local existence of smooth solutions for symmetrizable hyperbolic equations. For any
s > 0, we denote by | - ||s the norm of the usual Sobolev space H*(T), and by |- || and | - ||oo the norms
of L2(T) and L*(T), respectively. In addition, we denote by C([0, T), X) (respectively, C'([0, T), X))
the space of continuous (respectively, continuously differentiable) functions on [0, T) with values on
a Banach space X. For a multi-index « = (a1, a2, a3) € N3, we denote by

o gletl

0y, = —————— with|a| =01 + o + a3.
Tax{1axg2axg?

Lemma 1.1 (Moser-type calculus inequalities). (See [13,16].) Let s > 1 be an integer. Suppose u € H*(T), Vu €
L®(T) and v € HS~1(T) N L°°(T). Then for all multi-indexes o € N® with 1 < || < s, we have F(uv) —
ud%v e L*(T) and

|9g @v) —udgv] < Cs(IVulloo [ D= v || + | D*u] Ivico),

where

IDul = ¥ Jagul. w5 e,

o |=s
Moreover, if s > 3, then the embedding H~1(T) — L°(T) is continuous and we have
luvils—1 < Csllulls—1llvIils—1, log (uv) —uogv| < Csllullslvils—1. Vlee| <s.
Lemma 1.2. (See [19].) Let s > 0 be an integer and f € H%(T) and g € H(T). Then problem

VxB=f, divB=g, div f =0, m(g)=0 (1.9)

has a unique solution B € HSt1(T) in the class m(B) = 0, where

m(B) = / Bdx.

T

Proposition 1.1 (Local existence of smooth solutions). (See [12,16].) Let s > 3 be an integer and (nf, uj.,
Ef,B{) € H*(T) with nf > k for some given constant k > 0, independent of . Then there exist T{ > 0
and a unique smooth solution (n®, u®, E*, BY) to the periodic problem (1.5)-(1.6) defined in the time interval
[0, TT], with (n", u®, E", BY) € C1([0, TT]; HS~1(T)) N C([0, T ]; HS(T)).
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This paper is organized as follows. In the next section, we derive asymptotic expansions of solu-
tions and state the convergence result to problem (1.6)-(1.7) in the case of well-prepared initial data.
In particular, we add a correction term to derive desired error estimates. In Section 3 we consider the
asymptotic expansions in the case of ill-prepared initial data by constructing initial layer corrections
which exponentially decay to zero. The justification of the both two asymptotic expansions is given in
the last section. For this purpose, we prove a more general convergence theorem which implies the
convergence of the both expansions. Finally, in Appendix A, we consider the formal derivation of the
combined zero-electron mass and zero-relaxation limits.

2. Case of well-prepared initial data
2.1. Formal asymptotic expansions
In this section we consider the zero-relaxation limit 7 — 0 in problem (1.6)-(1.7) with well-

prepared initial data. Based on the discussion on the asymptotic expansion, we make the following
ansatz for both the approximate solution and its initial data:

(¢, ug, Ex, Br)(0,%) =Y _t*(nj, tuj, Ej, TBj)(x), xeT, (21)
>0
(g, ur, Ex, Bo)(t,x) =Y t¥(n/, zul, E/, tBI)(t,x), t>0, xeT, (2.2)
>0

where (nj,uj, Ej, Bj)j>o are given sufficiently smooth data with no > constant > 0 in T. The validity
of expansions (2.1)-(2.2) is discussed in Section 4 (see Theorem 4.1).

Now let us determine the profiles (n/, u/, EJ, BJ) for all j > 0. Putting expression (2.2) into system
(1.7) and identifying the coefficients in powers of 7, we see that (n/,u/, E/, B/)j>¢ are solutions of
the following systems:

dn° +div(n®u®) =0,
Vh(no) = —(E0 + uo),

(2.3)
VxE’=0, divE®=b—-n,
V x BY = atEO — nouo, divB® = 0,
and for j>1,
. j .
oan! + Zdiv(nkuk") =0,
k=0
j—1
o =1+ Y (- V)T 4 v (0 ()0 BT (1))
k=0
(2.4)

Jj—1
=—E/ - Zuk x BIT17k _yJ,
k=0
V x E] = —B[Bj_], le E] = —nj,

j
V x B =9E) — Zn"uf_k, divB’ =0,
k=0
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where h% =0 and hi~! is a function depending only on (nk)ggkgj,] and is defined for j > 2 by

2j.d ) 2
h(Zt n)_Zc]r ,
j=0 j=0
with

co=h(), c=n@)n',  cj=h (") (")), Viz2.

In (2.3), equation V x E9 =0 implies the existence of a potential ¢° such that E® = —V¢°. Then
(n%, ¢°) solves a classical system drift-diffusion equations:

an® — div(n®v (h(n®) — ¢%)) =0,
‘ (v (h(r") %) t>0, xeT, (2.5)
—Ap%=b—n",
with the initial condition:
nO(O, Xx)=ng, xe€T. (2.6)

The existence of smooth solutions to problem (2.5)-(2.6) can be easily established, at least locally in
time. The solution ¢° is unique in the class m(¢®) = 0. See for instance [18]. Then (u°, E®) are given
by

u’=-v(h(n®) —¢°%), E°=-vg° (2.7)

Since (n°, u%, E%) are known, BY solves the linear system of curl-div equations of type (1.9) in the
class m(B%) = 0. More precisely, using V x E9 =0 and formula

V x V x B®=vdivB® — AB°,
we obtain
AB=V x (n°u®) inT and m(Bp)=0.

From (2.7) and the fourth equation of system (2.3) we get the first order compatibility conditions:
up=—V(h(ng) —¢o),  Eo=—Veo,  Bo=B%0,.), (2.8)

where ¢q is determined by
—A¢o=b—ng inT and m(¢py)=0. (2.9)
For j > 1, the profiles (nj,uj,Ej,Bj) are obtained by induction in j. Assume that (n",uk,'
EK, B")o<,<<j_1 are smooth and have already been determined in previous steps. Equations for B/
are of curl-div type and determine a unique smooth B{l in the class m(BJ) = 0. Moreover, from
div B/ =0, we deduce the existence of a given vector v/ such that B/ = —V x /. Then, equation

V x E/ = —3:B/~! in (2.4) becomes V x (E/ — 3:yJ~1) = 0. It follows that there is a potential function
¢J such that
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El=ayi~1 —vel. (2.10)

From (2.4) we also get
w =V (¢! —n'(n°)nf —n'7! ((nk)k<j—1))

j—1
- (atuf—1 oy T+ (W v)u TRk x BH—")). (2.11)

k=0
Therefore, in the class m(¢4) =0, (n/, ¢J) solves a linearized system of drift-diffusion equations:
n! — div(n®v (R’ (n°)n? — ¢7)) + div(n/u®)
= (V¥ aVR, V8, a0 VE, 93V9) g jy) +div(n®aey /), £>0, x€ T, (212)
Ap! =nl + 3 (divy 1),

with the initial condition:
n(0,x) =nj(x), xeT, (213)

where f/ is a given smooth function and V¥ = (n*, uk, y*). Problem (2.12)-(2.13) is linear. It admits
a unique global smooth solution. Then (u’, E/) are given by (2.10)-(2.11). Thus, we get the high-order
compatibility conditions for j > 1:

uj=V(p;—h(non; — i1 ((k<j=1))

j—1
- (atujl‘t:O YT Lo+ D (ke VIujog i+ ue x B7TTR, .))), (2.14)
k=0

Ej=dy/710,)—-V¢;, Bj=BI(0,.), (215)

where ¢; is determined by

Agj=nj+d(divy/")| _, inT and m(¢;) =0. (2.16)
We conclude the above discussion with the following result.

Proposition 2.1. Let s > 3 be an integer. Assume (nj,u;, Ej, Bj) € HS*t(T) for j > 0, with ng > constant > 0
in T, and satisfy the compatibility conditions (2.8)—(2.9) and (2.14)-(2.16) for j > 1. Then there exists a unique
asymptotic expansion up to any order of the form (2.2), i.e. there exist T1 > 0 and a unique smooth solution
(nd,ul, EJ, BY)j>0 in the time interval [0, T1] of problems (2.5)~(2.7) and (2.10)~(2.13) for j > 1. Moreover,
n% > constant > 0in [0, T1] x T and

(n,ul, E7, B7) e C1(0, Ty; HS(T)) N C(0, Ty; HSTI(T)), Vj>o0.

In particular, the formal zero-relaxation limit T — 0 of the Euler-Maxwell system (1.7) is the classical drift-
diffusion system (2.5) and (2.7).
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2.2. Convergence results

Let m > 0 be a fixed integer. We denote by

(™, u™ E™ B™) = "% (n/, Tul, EJ, v B) (217)

m
j=0

an approximate solution of order m, where (n/, u/, EJ, B))o< j<m are constructed in the previous sub-
section. From the construction of the approximate solution, for (t,x) € [0, T;] x T we have

divE™ =b —n™ divB™ = 0. (2.18)

T°

We define the remainders R;™, R;™, Ry'™ and R;™ by

1
an + - div(nTul) =RE™,

1 1 Em u™ oyl x BT
D+ (- V)T 4 S VA(T) = = - o5 - ST L RE

T T T T T

1 mm (2.19)
HET — —V % BT = Tr L+ R,

1 - -
3BT + ZV % ET =Rp™.
It is clear that the convergence rate depends strongly on the order of the remainders with respect

to 7. Since the last equation in (2.19) is linear, for sufficiently smooth profiles (n/, u/, EJ, BY) >0, it is
easy to see that

Rp™ =1?"*t19.B™, (2.20)
Moreover, a further computation gives
RE™=0(c2™), RpM=0(c2MD),  RE™=o0(c*"). (2.21)

In (2.20)-(2.21), there is a loss of one order for the remainders R;;™ and Ry™. For R["™ this loss
will be recovered in the error estimate of convergence due to the dissipation term for u. However,
the situation is different for Rg’m since the equation for B is not dissipative. A simple way to remedy

this is to introduce a correction term into E™ so that

m
ET = ET 4 2D EIHl = 3 " g2 ) 2D g, (2.22)
j=0

In view of (2.18)-(2.20), Ecm“ should be defined by
Vx EMl=—3B"  divEl"' =0, m(EM')=0 (2.23)

so that the new remainder RE‘m of B satisfies
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R™ Y opm 4 —V X ET =0 (2.24)
and we still have

divEM=b—n",  divB™=0. (2.25)

Since the correction term is of order 0(72™M*D), the orders of the remainders R;™, R;™ and R™

are not changed. Moreover, the correction term does not affect assumption (2.28) below.
We conclude the above discussion with the following result.

Proposition 2.2. Let the assumptions of Proposition 2.1 hold. For all integers m > 0 and s > 3 the remainders
Ry™, Ry™, Rp™ and Ry™ satisfy (2.24) and

sup |[(RE™ RE™)(t, )| < Cuz ™D, sup [RT™(t, )| < CmnT®™, (2.26)
0<t<T 0<t<T

where Cp, > 0 is a constant independent of T.
The convergence result of this section is stated as follows of which the proof is given in Section 4.
Theorem 2.1. Let m > 0 and s > 3 be any fixed integers. Let the assumptions of Proposition 2.1 hold. Suppose
divEf =b —ng, divB{=0 inT (2.27)

and

< Cyr2m+D), (2.28)

N

m
T T T T 2j
(n§.uf. E5.BE) — Y 1% (nj. Tuj, Ej, TBj)
j=0

where C1 > 0 is a constant independent of T. Then there exists a constant C, > 0, independent of T, such that
as T — 0 we have T{ > Ty and the solution (n®,u", E¥, BY) to the periodic problem (1.6)-(1.7) satisfies

|(n® u™ E*, BY) () — (7', ul', ET BT (D) |, < C2r2™ D, Ve [0, T4].
Moreover,

T

Jut - U?HLZ(O,Tl;HS(’IF)) < TP,

3. Case of ill-prepared initial data
3.1. Initial layer corrections

In Theorem 2.1, compatibility conditions are made on the initial data. These conditions mean that
the initial profiles (uf, E/, B¥)(0, -) are determined through the resolution of the problems (2.3)-(2.4)
for (n/,u’, EJ, B). Then (uf, EJ, BY) cannot be given explicitly. If these conditions are not satisfied,
the phenomenon of initial layers occurs. In this section, we consider this situation for so-called ill-
prepared initial data. We seek a simplest possible form of an asymptotic expansion with initial layer
corrections such that its remainders are at least of order O (t) for variable u.

Let the initial data of an approximate solution (n;,u., E;, By) have an asymptotic expansion of
the form:
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(N, uzr, Ez, Br)li—o = (no, Tuo, Eo, TBo) + 0(7?), 3.1)
where (ng, ug, Eg, Bg) are given smooth functions. Taking into account the expansion in the case of
well-prepared initial data, a simplest form of an asymptotic expansion including initial layer correc-
tions is

(e, ur, Ex, Bo)(t, %) = (n°, u®, E® + T2EL, TBY)(t, %)
+((n?, zu?, E?, BY) + t*(n], Tu], E}, TB}))(z.x) + 0(t?), (3.2)
where z=1t/12 € R is the fast variable, the subscript I stands for the initial layer variables and Elis
the correction term defined by (2.23) with m = 0. As we will see below, this expansion is enough to
give the remainders at least of order O(t) for variable u, which is the case of well-prepared initial

data for m=0.

Obviously, (n®, u®, E9, BY) still satisfies the drift-diffusion system (2.3). It remains to determine the

initial layer profiles (n?,u9, EY, BY) and (n!, u}, E}, B}). Putting expression (3.2) into system (1.7) and

using (2.3), we obtain
and=0, 9,E%=0, 9B+ VxEV=0 (3.3)
and
du? +u?=o0. (3.4)

Egs. (3.3) imply that there are no first order initial layers for variables n, E and B. Therefore, up to a
constant for variable B, we may take

n%(0,x) =no(x),  E°0,x)=Eo(x) and B°(0,x)=Bo(x). (3.5)
Moreover, expressions (3.1) and (3.2) for u imply that
u%(0, %) + uP(0, X) = up(x), (36)

which determines the initial value of u‘,), where u°(0, -) is given by (2.8)-(2.9). Together with (3.4),
we obtain

uf(z,x) = u(0,xe™% = (up(x) — u°(0,x))e~~. (3.7)

Similarly, the second order initial layers n} and E] satisfy

ul =o, (3.8)
d;n} (z,%) +div(n° (0, x)u (z,x)) =0, (3.9)
3,E} (z,x) =n°(0, x)u¥ (z, x) (3.10)
and
3,B}(z,x) +V x E} (z,x) = 0. (3.11)

Let (n1, E1, B1) be smooth functions such that
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E1(x) = —n°(0, %) (uo (x) — u®(0, %)) (3.12)
and
ny =divE;,  divB; =0. (3.13)
Set
(n},E},B})(0,x) = (n1, E1, B1) ().

Together with (3.7) and (3.9)-(3.12), it is easy to obtain

nj(z,x) =n1(x) — div(n®(0, %) (uo () — u°(0,x))) (1 —e~?), (314)
E}(z,x) = —n°(0, %) (uo(x) — u®(0,x))e™* (3.15)

and
Bl (z,%) =B1(x) + V x [n°(0, %) (uo(x) — u®(0,%)](1 — e ). (3.16)

Finally, from (3.13) we have

divE] +n} =0, divB} =0. (3.17)

Thus, the initial layer profiles (n?, u?, E?, BY) and (n!,u}, E}, B}) are completely determined by (3.3),

(3.7)-(3.8) and (3.14)-(3.16). They are smooth functions of (z, x) and bounded with respect to z.
3.2. Convergence results
According to the asymptotic expansions above, set
nr (6, %) =n(t, x) + tn} (t/7%, %),
ur (6, %) = (W0t %) +ud(t/72, %)),

Eci(t,x) = E%(t, %) + T2(EL (6, %) + E[ (t/7%, %)),
Bri(t,x) =T(B%(t,x) + T2B] (t/7%, x)).

(3.18)

Then we have
t=0: (n¢1,urg, Erp, Br) = (no, Tuo, Eo, TBo) + %(n1,0, E1 + EL(0,), TB1).  (3.19)
Moreover, Egs. (2.3), (2.25) and (3.17) imply that

divEr;=b—nry,  divBr;=0. (3.20)

Define the remainders R, R, RE' and RY' by
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1
: 7,1
one 1 + = div(ng juz ) =Ry,

1 1 E u UrxB

Bz, + —(r - Vg + = Vh(ng ) = ———+ — 5L — “LL= 2Tl 4 R
T T T T
1 ne u

3tEr,1 _ ;V % Br,l _ r,If 7.l + R?lv

B ! E.;=RY!
0 r,I+;VX T, =Rpg .

u

1453

(3.21)

Using Egs. (2.3), (2.23) for (n°, u® E%, BY El) and (3.4), (3.9)-(3.11) for (u%,n}, E}, B}), we obtain

and

R =3 (n® + 72n}) + div((n® + =2n} ) (u® + u?))

= d;n] +div(n®u?) + r?div(n] (u® +u?))

=div((n°(t, x) —n°0,%)ud(z, %) + t2div(n] (u® +u)),

1
+ ;(Vh(no +7°n)) + (E® + T?El + T2E}) + (u® + uf))

7
+ (3’ + (W +ud) - V(u® +uf) + (u® +uf) x B
+7(E} + E}) + 3(n° +n]) x B]

=70’ + (W +u?) - v(u® +uf) + (u® +u?) x B

(B} + B + 2V (h(x® + n]) () + (1 1) x B},

RE! =9 (E® + T2El + T2E]) — v x (B® + 22B]) — (n® + v2n]) (u® + u))
= (8 E° - V x B —n%u®) + 8,E] —n®uf + 2(n] (u® +u) + &E! — V x B])

=0, % —n°(t, ))uf(z,x) + v%(n] (u° +u?) + &El — V x B})

Ry =79 (B° +1%B]) + %v x (E®+ T°E! + TE})

= %v x E®+7(3B°+V x E}) + 7(3,B] +V x E])

=0.

RV =10 +ud) + @ +uf) - v(u® +u?) + (u° +u) x (B + 2B}))

1 1 1
(V{1 + B+ 1) + L @) + ) + L9 (n(e0 + 22n]) ~ n(n0))

Now we establish error estimates for (R%"!, RY, RE‘I, R;*’). For RE! and R;". there is n € [0,t] C
[0, T1] such that

n(t, x) —n®0, x) = ta;n°(n, x) = 228n° (n, x).

Since function z — ze~# is bounded for z > 0 and
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n® = —div(nu®)

it follows from (3.7) that

(n°(t, %) —n°0,%)ul(z,x) = 0(z?).
Then

RE'=0(r?) and RE'=0(7?).
Finally, for R%"!, we have

h(n° +t2n]) — h(n®) = 0(¢?).
Thus
RV =0(1).
From the previous discussions on the remainders, we obtain the following error estimates.

Proposition 3.1. Let s > 3 be an integer. For given smooth data, the remainders RE", R%!, RE’I and R;’I
satisfy

sup | (RET.RE) (e, ], < CT?, sup [Ry(t, )|, <Ct, Ry'=0, (322
0<t<Ty 0<t<Ty

where C > 0 is a constant independent of T.
The convergence result with initial layers can be stated as follows.

Theorem 3.1. Let s > 3 be a fixed integer and (ng, ug, Eg, Bg) € HY1(T) with ng > constant > 0 in T. Sup-
pose

divE] =b —n{, divB{=0 inT (3.23)
and
| (ng. ug, ES. BE) — (no, Tuo, Eo. TBo)||, < C172, (3.24)

where Cq > 0 is a constant independent of T. Then there exists a constant C, > 0, independent of T, such that
as T — 0 we have T > Ty and the solution (n*,u", E¥, BY) to the periodic problem (1.6)-(1.7) satisfies

[(n* u™ E*, B") — (n° ur.1, E°, BY) ()|, < Cot?, Vte[0,Tql.
Moreover,
C2‘L’3.

Ju® —ur; ||L2(0,T1;H5(’JT)) <
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4. Justification of asymptotic expansions
4.1. Statement of the main result

In this section, we justify rigorously the asymptotic expansions of solutions (n*,u’, EY, BY) to
the periodic problem (1.6)-(1.7) developed in Sections 2-3. We prove a more general convergence
result which implies both Theorems 2.1 and 3.1. As a consequence, we obtain the existence of exact
solutions (n*,u®, EY,BY) in a time interval independent of 7. To justify rigorously the asymptotic
expansions (2.2) and (3.18), it suffices to obtain the uniform estimates of the smooth solutions to
(1.7) with respect to the parameter 7.

Let (n™,u", E7, BY) be the exact solution to (1.7) with initial data (n,ug,Ej,Bj) and (n¢,uc,
E;, By) be an approximate periodic solution defined on [0, T1], with

(n,ur, Ez, By) € C([0, T1], H*T(T)) N €' ([0, T1], H¥(T)).

We define the remainders of the approximate solution by

1
R} = 0mr + - div(nzuz),
1 1 E Ur X B u
RE =8tz + —(Ur - VIUr + =Vh(g) + — + ——— + —.,
T T T T T (41)
. 1 Nylg ’
RL =8E; — —V x By — ,
T T
. 1
R =By + —V x Er.
Suppose
divE; =b —nq, divB; =0, (4.2)
sup | (¢, Ev, Bo)(t, )|, < C1, sup [uc(t. )|, <Cit, (43)
0<t<Ty 0<t<Ty
| (g — 120, ), uf —uz(0,), E§ — E-(0,-), By — B (0,9) |, < C1T**1, (44)
sup | (RE.RE)(E )], < Crr*th, sup |RE(t. )|, <Cith,  RE=0,  (45)
o0<t<Ty 0<t<Ty

where A >0 and C; > 0 are constants independent of t.

Theorem 4.1. Let s > 3 be an integer and A > 0. Under the above assumptions, there exists a constant C, > 0,
independent of T, such that as T — 0 we have T{ > Ty and the solution (n*,u", E*, BY) of the periodic
problem (1.6)-(1.7) satisfies

[(n", u®, E7, BY)(t) — (¢, ur, Ex, Bo)(®)|, < Cot™!, Ve e[0, T4]. (4.6)

Moreover,

Ju < Gyt t2, (4.7)

= te] 2.1, m5my)
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Remark 4.1. It is clear that Theorem 4.1 implies Theorems 2.1 and 3.1. In particular, A =2m + 1 with
m >0 in Section 2 and A =1 in Section 3, since

(et Ex.p. Be.)(@®) — (n°, E%, BY) (0], = 0(<?),
uniformly with respect to t.

Remark 4.2. Theorem 4.1 holds in the scaled time variable t' = tt. It can be written down in the
normal time variable t = t’/t. Precisely, since Theorem 4.1 is valid for t’ € [0, T1], it is valid for t €
[0, T17~ 1], so that the periodic problem (1.5)-(1.6) admits a unique solution (ii%, a7, E7, BY) on a
long-time interval [0, T;T~'] as T — 0. This solution satisfies

(A%, 4", E",B") e ([0, T1z '], HS(D)) nC'([0, T1z '], HS~'(D)).
With the notations of Theorem 4.1, we have
(A%, 4", E*, B")(t,x) = (n",u", E*, BY)(tt, X).
Then estimate (4.6) becomes
|(A".a% E*, B™)(t) — (nr,ur, E¢, Bo)(T0) |, < Cot™t!, vee[0, Ty 1) (4.8)

On the other hand, the change of variable t =t'/7 gives

1

Tq Tt~
/ [t (¢) — ue (¢) |2 de’ = = / |70 — ue (o) dt.
0 0
Hence, (4.7) implies that
T1‘L’71
/ |87 @) — ur (z6) |2 de < o243, (4.9)
0

4.2. Proof of the main result

By Proposition 1.1, the exact solution (n®,u?, E¥, BY) is defined in a time interval [0, T] with
T > 0. Since n* € C([0, T{], H*(T)) and the embedding from H*(T) to C(T) is continuous, we have
n® € C([0, T{] x T). From (4.3)-(4.4) and assumption nj > « > 0, we deduce that there exist T} €
(0,T]] and a constant Co > 0, independent of z, such that

% <n'(t,x) < Co Y(t,x) €[0,T5] x T.

Similarly, the function t — [[(n*(t,-),u"(t,-), E*(t,-), B*(t,))|ls is continuous in C([0, T7]). From
(4.3), the sequence (||(n*(0,-),u*(0,-),E*(0,-),B*(0,")ls)r>0 is bounded. Then there exist T] €
(0,771 and a constant, still denoted by Co, such that

| (n e,y u (e, ), E*(t, ), B (t, )|, < Co. Vte(0,T5].
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Then we define T = min(Ty, TJ) > 0 so that the exact solution and the approximate solution are
both defined in the time interval [0, T™]. In this time interval, we denote by

(NT,U",F*,G")=(n" —n¢,u" —u;, E* —E¢, BT — By). (4.10)

Obviously, (N7, UT, F*, G") satisfies the following problem:

*NT + %((U’ +ug)- V)N + %(NT +n¢)divUT"
= —%(N’ divu; + (UT - V)ne) — RE,

®UT + %((Uf +ug) V)UT + %h’(NT +n¢)VNT

1 T / T _H —U—r
= ——[(U - V)ur + (W (N +ne) = (00)) Ve ] = — (411)

- %[Ff—i—(Uf—i-u,) x G"+U" x B:] —R;,

1 1
@ FT — ZVx G* = ;(N’U’ +N%u; +n;U") —RE, divFT =—NT,
1
%G* + TV x F'=0, divG® =0,

t=0: (N,UT,F%,G%) = (n§ —n¢(0,-), uf — u7(0,), E§ — E¢(0,), By — B (0, ).

N7 F? wr
Wf = . Wi= ., W= ’),
: (U) ! <G> <W,§

u? ntet
A!(nt,uf):< ! ’>, i=1,2,3,
h'(n%)e; ull3

Set

" (W’)—( —(U*®-V)ny — Nt divu, > u (W’)—( 0 )
W=\ vyue — e g —waepvng )0 TP T e )

0 RE
H3(Wf) — , RT — n ,
—FT— (U +uy) x GT —UT x By R?

where (e, e, e3) is the canonical basis of R, y; denotes the ith component of y € R? and I3 is the
3 x 3 unit matrix. Then system (4.11) for unknown W/ can be rewritten as

3

1 1 1
IWJ + - D AT uT) W] = ?(H1(W,’) + H3(WT)) + ;HZ(W,T) —R".  (412)
i=1

It is symmetrizable hyperbolic with symmetrizer

Loy (nf)—l 0 )
A"(")_< 0 W)

which is a positive definite matrix when 0 < % <n" =N? +n; < Cy. Moreover,
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Aj(n".u™) = Ag(n")Aj (n", u") = uf Ag(n") + D (413)

is symmetric for all 1 <i < 3, where each D; is a constant matrix

0 et
D= i).
e O

The existence and uniqueness of smooth solutions to (1.6)-(1.7) is equivalent to that of (4.11). Thus,
in order to prove Theorem 4.1, it suffices to establish uniform estimates of WT with respect to 7. In

what follows, we denote by C > 0 various constants independent of t and for o € N3, Wi Wi,)=

oy (W[, W), etc. The main estimates are contained in the following two lemmas for W and W/,
respectively. We first consider the estimate for W[ .

Lemma 4.1. Under the assumptions of Theorem 4.1, for all t € (0, T*], as T — 0 we have

t

t

1

Wi+ 25 [luT@ de <c [(Iw @ |2+ [w @) ds + 0. a1a)
0 0

Proof. For o € N3 with |«| < s, differentiating Eqs. (4.12) with respect to x yields

3
AW+ = D0 AL ) W,
i=1

1 1
= ;[agm(w,f) + 0y H3(W™)] + ﬁa,‘("Hz(W,f) — 39R?

+ [Al(n", u")o, WL, — 8% (Al (n", u")d, WT)]. (4.15)

3
=1

Q=

1

Multiplying (4.15) by A(’)(nf) and taking the inner product of the resulting equations with W[, by
employing the classical energy estimate for symmetrizable hyperbolic equations, we obtain

d 2
7 Ao (M )Wie, W) — =5 (Ag(n) 9y Ha2 (W), Wi,)

dt
2 2
= (Ao (") [ Ha (W) + o Hs(WT)]. Wio) + — (J& Wik
+ (divAL(n", u")W],, WE,) — 2(A5(n") g RT, W), (4.16)

where (-,-) is the inner product of L%(T),
3
Jo==D_ Ap(n")[a5 (Al (" u)a WT) — Al(n" . uT)a (8, W )]
i=1
and

3
. 1 -
divAL(n",u") = 8 A)(n") + = ‘21 I Al(n",u"). (417)
i=
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Let us estimate each term of Egs. (4.16). First, a direct computation gives
—(AGT Yo Ha(WF), W) = (0 (%)) "'Ug uZ) = ¢ ug . (418)
On the other hand, since Aé(nf) is a positive definite matrix, we get:

(AN ()WL, WE) = W [ (419)

Moreover, we use the expression of Hi(W/) to compute:

(Ap(n™)ag Hi (WF). WE,) = —(n") " NG [(UT - V)ne +N" divare]
— (W' (n%)) U -2 [(UT - V)ur + (W (NT +ng) — (7)) Vine .

By Lemma 1.1 and u; = O(t), we get

2 2
(NIl + 2 INTIS + 2 JuT]9)

2 C
?(A{](nf)a;j‘m(w,f), Wi,) < =

& 2 2
< UTls+Cwr (4.20)

Here and hereafter, ¢ denotes a small constant independent of T and C, > 0 denotes a constant
depending only on &.
For the term containing H3, we have

%(Aé("’)affHB(Wf% Wig) = _%((h/("’))flUé» OF[FT + (UT +uc) x GT +UT x By])
<Sluzl? +C5/\8,‘§‘[FT +(UT +ur) x GT +UT x By ]| dx
T

& 2 2 2 2
< slUTlE+cwe s +[uTlslet]s)-
Therefore,

2 £
~(Ap(n™)o Ha(W) W) < S [UT 2+ Co(IWT I+ [w). (421)

Now we consider the estimate for the term containing J7. Let us first point out that a direct
application of Lemma 1.1 to J} does not yield the desired result. We have to develop the terms in
the summation of J to see the appearance of terms U™ or UT + u. By the definition of A{(n’, u®),
we have

o (Af(n™,u™)a W) — Af(n", u") 35 (0 W)
AX((UT +ug)idgNT) — (U 4 u7)id% 9y NT
B <8,‘2‘(h’(Nr +n7)dNTej) —h'(NT +nr)8,?8x,-N’ei>
X ((NT +n7)id U™ - €b) — (N7 +n¢)0% 0y, UT - el
< W (U™ +ur)ioUT) — (UT +ur)iog o U” )

Then,
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(Ao (n™) (8¢ (Af (n™ . u")d, W) — Af(n" u")ag (05, WT)). W)
= () ' [0X((UT +ut), 05 N7) — (UT +ur),0% 9 NN,
+ (W' (n%))" [a"‘((Ur + )0, UT) — (U +ur)0y 0, UT UG
+(n7) T (Y ((NT +ng),0UT - €f) — (N7 + 1) 0% 0y UT - el) NG
+ (W' (n%))” [a;” (W' (NT +n¢)d,NTei) —h'(NT +ng)og 0, N e; UL
=Jian+ Jia+ Jis + Jia.

Noting (4.3) for u; and applying Lemma 1.1 to each term on the right-hand side of the above equation
gives

i+ Jal C(e+ [UT[)IWF |2 < ZJuT 2+ cor (w72 + w3,
[Jiz+ Jial < CU+ [NT ) INT] U], < §HU’H§ +Cr(Jwrg + w7
which imply that
25 W) < S U2+ (w2 + [we ). (422)
Using the expression of Al (n”), we have obviously
—2(Ag(n")agRT, W) =—2((n") "' NE, 0fRE) — 2(('(n7)) ' UE, ¢ RY).
Together with (4.5) this yields
—2(Ay(n")a2R™, W[,) < C|w* H + HU || + CeT20HD), (4.23)

Finally, for i =1, 2, 3, it follows from (4.13) and (4.17) that

3
divAL(n",u") = (A)) (n")an" + % Y [uf Ap(n7)]

i=1

(A{))/(nt)(atnf + %Vn’ ~uT> + %divu’A{)(nf).

Using the first equation of (1.7), we deduce that

divu® .

aiv AL (n° ut) = T A %) () (7).

Noting
K
5 <n*=N'+4+n; <C, u =U"4u;, ur=0(1),

we obtain
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|divu® |, < C|ldiv(UT +uz)],_, <c(JUT], + 7).

S—

Here in the last inequality we have used the continuous embedding H5~1(T) < L°°(T). Therefore,

. 1
Jeiv At ) < < 1+ U, ).
We conclude that

(div Az (n", u") Wiy, W) < %HU’H? (W IS+ W) (4.24)

Thus, together with (4.16) and (4.19)-(4.24), we obtain, for all |«| <s,

d K Ce
AW WE) + S JUEIP < S5 [UT |2+ (w2 + W) + Cer?o,

Integrating this equation over (0, t) with t € (0, T%) C (0, T{) and summing up over all || < s, taking
¢ > 0 sufficiently small such that the term including C—§ |t ||§ can be controlled by the left-hand side,
together with condition (4.4) for the initial data and noting (4.19), we get (4.14). O

Now, let us establish the estimate for W .

Lemma 4.2. Under the assumptions of Theorem 4.1, for all t € (0, T*], as T — 0 we have

t

1
IWiol2< [ (s uT@ |2 +cwi @]+ c|w @] ) ds + 23D, (425)
2T
0

Proof. For a multi-index o € N3 with || <, differentiating the third and fourth equations of (4.11)
with respect to x, we have

1 1
aF, — -V x Gy = ;a;}(NfUT +NTu; +n.U%) — 3¢ RE,
1 (4.26)
#GL + —V % F, =0,

where W, = (F},G) =0y (F*,G").
By the vector analysis formula:

div(f xg)=(Vxf)-g—(Vxg-f,

the singular term appearing in Sobolev energy estimates vanishes, i.e.,
1 T T 1 T T d 1 d T T d
— =V xGg - Fa+ =V x Fg -Gy |dx=— iv(F; x G})dx=0.

Hence, using u; = O(t) and (4.5), a standard energy estimate for (4.26) yields
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d 2
Sl Wil < 2 [ (o (veum) [+ g (V7o) + o (e UT)]) 2 et o RE 1P a
T T
1 7|2 7|2 7|4 2041)
< |07+ (W + we )+ ez, (427)

Integrating (4.27) over (0, t), with t € (0, T%), summing up over « satisfying |a| < s and using (4.4)
we obtain the lemma. O

Proof of Theorem 4.1. Let T — 0 and ¢ > 0 be sufficiently small. By Lemmas 4.1 and 4.2, for t € (0, T7]
we have

t t
1
el + 7 [lor e <c [(w @1+ wie)de +ces.
0 0

Let

t

yo=¢ [(wr@f2 + W[ ds + cr2.
0

Then it follows from (4.28) that

t
1
lweo|? <y, —2/||Uf(s)f|§ds<y<t>, vee (0,77, (4.29)
T
0
and
YO =c(wro|; +w o) <cyo+y o),
with

y(0) = CT2*+D),
A straightforward computation yields
y(t) < CT2H et < 723 DeCT - vr e [0, T7).

Therefore, from (4.29) we obtain
t
W), <v/y® <o, / JUT @) < T2y < T2+, vee[0.T7).
0

In particular, this implies that W7 is bounded in L*°(0, T?; H*(T)), so is (n%,u%, E", B"). By a stan-
dard argument on the time extension of smooth solutions, we obtain T] > Ty, i.e. TT = Ty. This
finishes the proof of Theorem 4.1. O
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Appendix A. Formal derivation of combined limits

We give a formal derivation of the combined zero-relaxation and zero-electron mass limits in
system (1.2). For simplicity, let t; =1. =7, gi=—qe =1, mj =1 and A =y = 1. Then there are only
two parameters T and m, in (1.2). Similarly to the one-fluid equations, we make the time scaling by
replacing t by t/t. We replace also u by tu. With this simplification, system (1.2) is written as:

ny +div(n,u,) =0, v=e,i,
my T2 (deuy + (Uy - V)uy) + Vhy () = qu(E + Tuy x B) —myu,y,

1

otE — ;V X B =neue —njuj, divE =n; —ne, (A1)
1

0B + ;V x E=0, divB=0.

There are several situations of limits in view of the two parameters. First, the formal limit equa-
tions in the zero-electron mass limit me — 0 of (A.1) are

ony, +div(nyu,) =0, v=e,i,
Vhe(ne) = —(E + Tue x B),
% (dui + (ui - V)ui) + Vhi(ni) = E + tu; x B —u,

1 (A.2)
oE — ?V X B =neue —njuj, divE =n; —ne,

1
8tB+;VXE=O, divB =0,

in which only the momentum equations for electrons are changed. Up to our knowledge this limit
system has not been analyzed mathematically. Furthermore, replacing B by tB and letting T — 0 in
(A.2), we obtain the limit equations

oy +div(nyuy) =0, v=e,i,

Vhe(ne) = Vo = —E,

Vhi(nj) = —u; — Vo, (A.3)
—A¢p=n; —ne,

V x B =njuj —netle — V¢, divB =0,

from which we deduce relations
ne=h;'(¢). ui=-V(hi)+¢), E=-V¢ (A4)

and a drift-diffusion type system

(A5)

dni — div(n; V(hi(n;) + ¢)) =0,
—A¢ =n; — he_l(flﬁ),
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where h;l is the inverse function of h.. Hence, we may determine (nj, ¢) by (A.5) and (ne, u;, E)
by (A.4). Note that when n, is given, the first equation in (A.3) for u. is an incompressibility-type
condition, which is not sufficient to determine u,. The determination of u, requires also another
equations which can be derived from a high order asymptotic expansion.

Second, in the zero-relaxation limit 7 — 0 of (A.1), still replacing B by 7B, we obtain the classical
drift-diffusion equations:

{mvatnv _diV(nvv(hv(nv)+QV¢))=0, v=e,li, (A6)
—Ap =n; —ne, '
together with
{mvuv:_(th(nv)‘i‘QUV(f’), v=e,i, E=-V¢, (A7)
V x B =nju; — nette — 8 V¢p, divB =0. ’

Taking the zero-electron mass limit me — 0 in (A.6)-(A.7) we still obtain (A.3), which is also the
combined limit system (A.1) as (me, T) — 0. Therefore, the three limits me — 0 then T — 0, T — 0
then me — 0 and (m,, T) — 0 are formally commutative.

Another interesting limit is m, — 0 and m,z? = 1. Hence, T — 4oc0. Replace B by B/t, the limit
me — 0 and m,72 =1 in (A.1) gives equations

ony +div(nyuy) =0, v=e,i,

Oty + (Uy - VIty + Vhy(ny) = gy (E + Tuy x B),
OtE =neue —nju;, divE =n; —ne,
B+VxE=0, divB=0.

(A.8)

This is still a symmetrizable hyperbolic system for (n,, u,), v =e, i, coupled to a degenerate Maxwell
system. Therefore, it is hopeful to prove a result on the local-in-time smooth solutions to (A.8). How-
ever, the justification of the limit is also an unsolved problem.
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