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1. Introduction

Zero curvature representation of the integrable nonlinear equations is a well-known approach (see
[1,11,21,38] and references in [11]), which was developed soon after seminal Lax pairs appeared
in [19]. Namely, many integrable nonlinear equations admit the representation (zero curvature repre-
sentation)

Gt(x, t, z) − Fx(x, t, z) + [
G(x, t, z), F (x, t, z)

] = 0,

Gt := ∂

∂t
G, [G, F ] := G F − F G, (1.1)

which is the compatibility condition of the auxiliary linear systems

∂

∂x
w(x, t, z) = G(x, t, z)w(x, t, z),

∂

∂t
w(x, t, z) = F (x, t, z)w(x, t, z). (1.2)
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Here G and F are m × m matrix functions, and z is the spectral parameter, which will be omitted
sometimes in our notations.

Solution of the integrable nonlinear equations is closely related to the Lax pairs and zero curvature
representations, which have been mentioned above, and has been a great breakthrough in the second
half of the 20th century. An active study of the cases, which are close to integrable in a certain sense,
followed (see, e.g., some references in [3,16]). Initial–boundary value problems for the integrable non-
linear equations can be considered as an important example, where integrability is “spoiled” by the
boundary conditions. These problems are of great current interest, and the inverse spectral trans-
form (ISpT) method [4,5,14,29,30] is one of the fruitful approaches in this domain. In particular, some
further developments of the results and methods from [29,30] are given in [22,23,25,26,31,32].

Below we assume that x, t belong to a semi-strip

D = {
(x, t): 0 � x < ∞, 0 � t < a

}
. (1.3)

We normalize fundamental solutions of the auxiliary systems by the initial conditions

d

dx
W (x, t, z) = G(x, t, z)W (x, t, z), W (0, t, z) = Im; (1.4)

d

dt
R(x, t, z) = F (x, t, z)R(x, t, z), R(x,0, z) = Im, (1.5)

where Im is the identity matrix of order m. If condition (1.1) holds, the fundamental solution of (1.4)
admits factorization

W (x, t, z) = R(x, t, z)W (x,0, z)R(t, z)−1, R(t, z) := R(0, t, z). (1.6)

Formula (1.6) is one of the basic and actively used formulas in the inverse spectral transform method
(see [22,23,25,26,29–32] and references therein). It was derived in [29,30] under some smoothness
conditions (continuous differentiability of G and F , in particular): see formulas (1.6) in [29, p. 22] and
in [30, p. 39].

Here we prove (1.6) under weaker conditions and in much greater detail, which is important for
applications. Namely, we prove the following theorem.

Theorem 1.1. Let m × m matrix functions G and F and their derivatives Gt and Fx exist on the semi-strip D,
let G, Gt , and F be continuous with respect to x and t on D, and let (1.1) hold. Then the equality

W (x, t, z)R(t, z) = R(x, t, z)W (x,0, z), R(t, z) := R(0, t, z), (1.7)

holds.

Constructions similar to (1.6) appear also in the theory of Knizhnik–Zamolodchikov equation (see
Theorem 3.1 in [34] and see also [33]).

We note that the solvability of system (1.2) in the domain D is of independent interest as one
of the well-posedness and compatibility problems in domains with a boundary. The well-posedness
of initial and initial–boundary value problems is a difficult area, which is actively studied (see, e.g.,
recent works [6,7,18] and references therein). Formula (1.7) implies that the condition (1.1) is, indeed,
the compatibility condition and w(x, t, z) = W (x, t, z)R(t, z) = R(x, t, z)W (x,0, z) satisfies (1.2).

Theorem 1.1 is proved in Section 2. Section 3 is dedicated to applications to initial–boundary
value problems, and Theorem 3.2 on the evolution of the Weyl function for the “focusing” modified
Korteweg–de Vries (mKdV) equation is proved there as an example.

As usual, by N we denote the set of positive integers, by C we denote the complex plane, and
by C

m is denoted the m-dimensional coordinate space over C. By �z is denoted the imaginary part of
z ∈ C, and arg z is the argument of z. By Ck(D) we denote the functions and matrix functions, which
are k times continuously differentiable on D.
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2. Proof of Theorem 1.1

The spectral parameter z is non-essential for the formulation of Theorem 1.1 and for its proof and
we shall omit it in this section. We shall need the proposition below.

Proposition 2.1. Let the m × m matrix function W be given on the semi-strip D by Eq. (1.4), where G(x, t)
and Gt(x, t) are continuous matrix functions in x and t.

(i) Then the derivative Wt exists and matrix functions W and Wt are continuous with respect to x and t
on the semi-strip D.

(ii) Moreover, the mixed derivative Wtx exists and the equality Wtx = W xt holds on D.

Proof. Consider system

d

dx
y = Ĝ(x, y)y, Ĝ(x, y) = Ĝ(x, ym+1) :=

[
G(x, ym+1) 0

0 0

]
, (2.1)

where Ĝ is an (m + 1) × (m + 1) matrix function and ym+1 is the last entry of the column vector
y ∈ C

m+1. Denote by W j and e j the j-th columns of W and Im , respectively (1 � j � m). It easily
follows from (1.4) that the solution of (2.1) with the initial condition

y(0) = g =
[

e j
t

]
(2.2)

has the form

y(x, g) =
[

W j(x, t)
t

]
. (2.3)

Putting G(x, t) = G(0, t) for −ε � x � 0 whereas t � 0, and putting G(x, t) = G(x,0) + tGt(x,0) for
−ε � t � 0 (ε > 0) we extend G so that G and Gt remain continuous on the rectangles

D(a1,a2) = {
(x, t): −ε � x � a1, −ε � t � a2 < a

}
, a1,a2 ∈ R+. (2.4)

Hence, it follows from the definition of Ĝ in (2.1) that Ĝ(x, y) and, as a consequence, the vector
function Ĝ(x, y)y are continuous on D(a1,a2) together with their derivatives with respect to the
entries of y. Thus, according to the classical theory of ordinary differential equations (see, for instance,
theorem on pp. 305–306 in [36]) the partial first derivatives of y(x, g) with respect to the entries of g
exist in the interior Di(a1,a2) of D(a1,a2). Moreover, y and its partial derivatives with respect to the
entries of g are continuous. In particular, since by (2.2) we have gm+1 = t , the functions y and yt

are continuous in all rectangles Di(a1,a2). Taking into account (2.3), we see that W and Wt are
continuous in the rectangles Di(a1,a2), and the statement (i) is proved.

In view of (1.4) and the considerations above the derivatives W x , W xt , and Wt exist and are
continuous in the rectangles Di(a1,a2). Hence, by a stronger formulation (see, e.g., the notes [2,35] or
the book [20, p. 201]) of the well-known theorem on mixed derivatives, Wtx exists in Di(a1,a2) and
Wtx = W xt . Thus, the statement (ii) is valid. �

Now, we can follow the scheme from [30, Chapter 3] (see also [32, Chapter 12]).

Proof of Theorem 1.1. According to statement (i) in Proposition 2.1 the matrix function Wt exists and
is continuous. Introduce U (x, t) by the equality

U := Wt − F W . (2.5)
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By (1.4), (2.5), and statement (ii) in Proposition 2.1 we have

Ux = Wtx − FxW − F W x = W xt − FxW − F GW . (2.6)

It is immediate also from (1.4) that

W xt = (GW )t = Gt W + GWt . (2.7)

Formulas (2.6) and (2.7) imply

Ux = Gt W + GWt − FxW − F GW = (Gt − Fx + G F − F G)W + GWt − G F W . (2.8)

From (1.1), (2.8), and definition (2.5) we see that Ux = GU , that is, U and W satisfy the same equation.
Taking into account W (0, t) = Im , we derive Wt(0, t) = 0, and so by (2.5) we have U (0, t) = −F (0, t).
Finally, as

Ux = GU , W x = GW , U (0, t) = −F (0, t), W (0, t) = Im,

we have U (x, t) = −W (x, t)F (0, t) or, equivalently,

Wt(x, t) − F (x, t)W (x, t) = −W (x, t)F (0, t). (2.9)

Put

Y (x, t) = W (x, t)R(t), Z(x, t) = R(x, t)W (x,0). (2.10)

Recall that R(t) = R(0, t). Therefore (1.5), (2.9), and (2.10) imply that

Yt(x, t) = (
F (x, t)W (x, t) − W (x, t)F (0, t)

)
R(t) + W (x, t)F (0, t)R(t)

= F (x, t)Y (x, t), Y (x,0) = W (x,0). (2.11)

Formulas (1.5) and (2.10) imply that

Zt(x, t) = F (x, t)Z(x, t), Z(x,0) = W (x,0). (2.12)

By (2.11) and (2.12) Y = Z , that is, (1.7) holds. The theorem is proved. �
Remark 2.2. Though the case of continuous F is more convenient for applications, it is immediate
from the proof that the statement of Theorem 1.1 is true, when F is differentiable with respect to x,
and measurable and summable with respect to t on all finite intervals from R+ .

According to the proof of Theorem 1.1 the following remark is also true.

Remark 2.3. Theorem 1.1 holds on the domains more general than D. In particular, it holds if we
consider (x, t) ∈ I1 × I2, where Ik (k = 1,2) is the interval [0,bk) (0 < bk � ∞).

Another interesting case of matrix factorizations related to boundary value problems is treated
in [8,15].
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3. Some applications

The matrix “focusing” mKdV equation has the form

4vt = vxxx + 3
(

vx v∗v + v v∗vx
)
, (3.1)

where v(x, t) is a p × p matrix function. Eq. (3.1) is equivalent (see [9,11,37] and references therein)
to zero curvature equation (1.1), where the m × m (m = 2p) matrix functions G(x, t, z) and F (x, t, z)
are given by the formulas

G = izj + V , j =
[

I p 0
0 −I p

]
, V =

[
0 v

−v∗ 0

]
, (3.2)

F = −iz3 j − z2 V − iz

2

(
V 2 + V x j

) + 1

4

(
V xx − 2V 3 − V x V + V V x

)
. (3.3)

At first we omit the variable t in V and v . The Weyl theory of the skew-self-adjoint Dirac system
(also called Zakharov–Shabat or AKNS system)

d

dx
w(x, z) = (

izj + V (x)
)

w(x, z), x � 0 (3.4)

was treated in [10,12,22,23] (see also preliminaries in [28]).
For the case of measurable matrix function v such that

sup
0<x<∞

∥∥v(x)
∥∥ � M, (3.5)

the Weyl matrix function ϕ of system (3.4) is uniquely defined in the semi-plane �z < −M by the
inequality

∞∫
0

[
ϕ(z)∗ I p

]
W (x, z)∗W (x, z)

[
ϕ(z)

I p

]
dx < ∞, �z < −M < 0, (3.6)

where W is the fundamental solution of (3.4) normalized by W (0, z) = Im . Weyl functions are con-
structed using pairs of meromorphic p × p matrix functions P1(z), P2(z), which are nonsingular and
have property- j, that is,

P(z)∗P(z) > 0, P(z)∗ jP(z) � 0, P :=
[

P1
P2

]
. (3.7)

Theorem 3.1. (See [22].) The above system (3.4) with v satisfying (3.5) has a unique Weyl function. This Weyl
function is holomorphic in the semi-plane �z < −M. It is given by the equality

ϕ(z) = lim
r→∞

(
A11(r, z)P1(r, z) + A12(r, z)P2(r, z)

)
× (

A21(r, z)P1(r, z) + A22(r, z)P2(r, z)
)−1

(�z < −M), (3.8)

A(r, z) = {
Akp(r, z)

}2
k,p=1 := W (r, z)∗, (3.9)

where the pairs {P1, P2} are arbitrary pairs satisfying (3.7) and W is the fundamental solution of (3.4) nor-
malized by W (0, z) = Im.
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Our next theorem on the evolution of the Weyl function in the case of the focusing mKdV follows
from Theorems 1.1 and 3.1. The case of the defocusing mKdV was earlier treated in [29,30,32].

Theorem 3.2. Let a p × p matrix function v ∈ C1(D) have a continuous partial second derivative vxx, and let
vxxx exist. Assume that v satisfies mKdV (3.1) and that the inequalities

sup
(x,t)∈D

∥∥v(x, t)
∥∥ � M, sup

(x,t)∈D

(∥∥vx(x, t)
∥∥ + ∥∥vxx(x, t)

∥∥)
< ∞ (3.10)

hold.
Then the evolution ϕ(t, z) of the Weyl function of the skew-self-adjoint Dirac system (1.4), where G has the

form (3.2), is given by the equality

ϕ(t, z) = (
R11(t, z)ϕ(0, z) + R12(t, z)

)(
R21(t, z)ϕ(0, z) + R22(t, z)

)−1
(3.11)

in the semi-plane �z < −M < 0. Here the block matrix function

R(t, z) = {
Rkn(t, z)

}2
k,n=1 = R(0, t, z) (3.12)

is defined by the boundary values v(0, t), vx(0, t), and vxx(0, t) via formulas (1.5) and (3.3).

Proof. As V ∗ = −V and (V x j)∗ = V x j, it is immediate from (3.3) that F (x, t, z)∗+ F (x, t, z) = 0. Hence,
it follows from (1.5) that

∂

∂t

(
R(x, t, z)∗R(x, t, z)

) = 0.

Therefore, using equalities R(x,0, z) = Im and (3.12), we get

R(x, t, z)∗R(x, t, z) = Im, R(t, z)∗R(t, z) = Im,

or, equivalently,

R(x, t, z)∗ = R(x, t, z)−1, R(t, z)∗ = R(t, z)−1. (3.13)

Because of the smoothness conditions on v , we see that G and F given by (3.2) and (3.3), respectively,
satisfy the requirements of Theorem 1.1, that is, (1.7) holds. In view of (3.13) rewrite (1.7) in the form

A(x, t, z)R(x, t, z) = R(t, z)A(x,0, z), (3.14)

where A(x, t, z) := W (x, t, z)∗ (compare with (3.9)). Let P (x, z) satisfy (3.7) and put

P̃(x, t, z) =
[

P̃1(x, t, z)

P̃2(x, t, z)

]
:= R(x, t, z)P(x, z). (3.15)

By (3.14) and (3.15) we have

A(x, t, z)P̃ (x, t, z) = R(t, z)A(x,0, z)P(x, z). (3.16)

Now, taking into account that P (x, z) is a nonsingular pair with property- j, we show that P̃ (x, t, z)
is a nonsingular pair with property- j too. According to (1.5), (3.3), and (3.10) we get

∂ (
R(x, t, z)∗ jR(x, t, z)

) = R(x, t, z)∗
(
i
(
z3 − z3)Im + O

(
z2))R(x, t, z) (3.17)
∂t
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for z → ∞. Formula (3.17) implies that for some

M1 > M > 0
(

M � sup
(x,t)∈D

∥∥v(x, t)
∥∥)

, (3.18)

and for all z from the domain

D1 = {z: z ∈ C, �z < −M1, 0 > arg z > −π/4} (3.19)

we have

∂

∂t

(
R(x, t, z)∗ jR(x, t, z)

)
� 0,

and so

R(x, t, z)∗ jR(x, t, z) � j. (3.20)

Relations (3.7), (3.15), and (3.20) imply that

P̃(x, t, z)∗P̃(x, t, z) > 0, P̃(x, t, z)∗ jP̃(x, t, z) � 0 (z ∈ D1). (3.21)

Clearly, it suffices to prove (3.11) for values of z from D1. (According to (3.18) and (3.19) the do-
main D1 belongs to the semi-plane �z < −M .)

In a way similar to the proofs of (3.13) and (3.20) we derive

A(x, t, z) = W (x, t, z)−1, W (x, t, z)∗ jW (x, t, z) � j (�z < −M). (3.22)

It is immediate from (3.22) that

A(x, t, z)∗ jA(x, t, z) � j (�z < −M). (3.23)

Hence, inequalities (3.7) and (3.21) imply

det
(

A21(x,0, z)P1(x, z) + A22(x,0, z)P2(x, z)
) �= 0 (�z < −M), (3.24)

det
(

A21(x, t, z) P̃1(x, t, z) + A22(x, t, z) P̃2(x, t, z)
) �= 0 (z ∈ D1). (3.25)

In view of (3.24) rewrite (3.16) as

A(x, t, z)P̃ (x, t, z) = R(t, z)

[
φ(x,0, z)

I p

](
A21(x,0, z)P1(x, z) + A22(x,0, z)P2(x, z)

)
, (3.26)

φ(x,0, z) := (
A11(x,0, z)P1(x, z) + A12(x,0, z)P2(x, z)

)
× (

A21(x,0, z)P1(x, z) + A22(x,0, z)P2(x, z)
)−1

. (3.27)

According to (3.24)–(3.26) we get

(
A11(x, t, z) P̃1(x, t, z) + A12(x, t, z) P̃2(x, t, z)

)
× (

A21(x, t, z) P̃1(x, t, z) + A22(x, t, z) P̃2(x, t, z)
)−1

= (
R11(t, z)φ(x,0, z) + R12(t, z)

)(
R21(t, z)φ(x,0, z) + R22(t, z)

)−1
. (3.28)
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As P̃ (x, t, z) satisfies (3.21) for z ∈ D1, using (3.8) we derive

ϕ(t, z) = lim
x→∞

(
A11(x, t, z) P̃1(x, t, z) + A12(x, t, z) P̃2(x, t, z)

)
× (

A21(x, t, z) P̃1(x, t, z) + A22(x, t, z) P̃2(x, t, z)
)−1

(z ∈ D1). (3.29)

In a similar way we derive from (3.8) and (3.27) that

ϕ(0, z) = lim
x→∞φ(x,0, z) (�z < −M). (3.30)

Let us show that

det
(

R21(t, z)ϕ(0, z) + R22(t, z)
) �= 0 (z ∈ D1). (3.31)

Indeed, it follows from (3.7), (3.23), and (3.27) that

[
φ(x,0, z)∗ I p

]
j

[
φ(x,0, z)

I p

]
� 0. (3.32)

By (3.30) and (3.32) the inequality

[
ϕ(0, z)∗ I p

]
j

[
ϕ(0, z)

I p

]
� 0 (3.33)

is valid. Finally, inequalities (3.20) and (3.33) imply

[
ϕ(0, z)∗ I p

]
R(t, z)∗ jR(t, z)

[
ϕ(0, z)

I p

]
� 0 (z ∈ D1). (3.34)

It is immediate from (3.34) that (3.31) holds. In view of analyticity of both parts of (3.11), relations
(3.28)–(3.31) imply (3.11) in the whole semi-plane �z < −M . �

In a way similar to [17] and the more general constructions for self-adjoint systems in [30,32]
(see also some references therein), one can use structured operators to solve inverse problem for the
skew-self-adjoint system (3.4) too. Namely, to recover v , which satisfies condition (3.5), from the Weyl
function ϕ we use operators Sl (acting in L2

p(0, l), 0 < l < ∞) of the form

Sl f = f (x) + 1

2

l∫
0

x+r∫
|x−r|

s′
(

ζ + x − r

2

)
s′
(

ζ + r − x

2

)∗
dζ f (r)dr. (3.35)

Here s′ := d
dx s. Below we give the procedure from [22] modified in accordance with [12,23].

First, we recover a p × p matrix function s(x) with the entries from L2(0, l) (i.e., s(x) ∈ L2
p×p(0, l))

via the Fourier transform. That is, we put

s(x) = i

2π
e−ηxl.i.m.a→∞

a∫
−a

eiξxz−1ϕ(z/2)dξ (z = ξ + iη, η < −2M), (3.36)

the limit l.i.m. being the limit in L2
p×p(0, l). Formula (3.36) has sense for any l < ∞, and so the matrix

function s(x) is defined on the non-negative real semi-axis x � 0. Moreover, s is absolutely continuous,
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it does not depend on the choice of η < −2M , s′ is bounded on any finite interval, and s(0) = 0. To
define the operator Sl we substitute s′(x) into (3.35).

Next, we denote the p × 2p block rows of W by ω1 and ω2:

ω1(x) = [ I p 0 ] W (x,0), ω2(x) = [ 0 I p ] W (x,0). (3.37)

It follows from (3.2) and (3.4) that W (x,0)∗W (x,0) = Im . Hence, by (3.2), (3.4), and (3.37) we have

v(x) = ω′
1(x)ω2(x)∗, (3.38)

and ω1, ω2 satisfy the equalities

ω1(0) = [ I p 0 ] , ω1ω
∗
1 ≡ I p, ω′

1ω
∗
1 ≡ 0, ω1ω

∗
2 ≡ 0. (3.39)

It is immediate that ω1 is uniquely recovered from ω2 using (3.39).
Finally, we obtain ω2 via the formula

ω2(l) = [ 0 I p ] −
l∫

0

(
S−1

l s′)(x)∗
[
I p s(x)

]
dx (0 < l < ∞), (3.40)

where S−1
l is applied to s′ columnwise.

Theorem 3.3. Assume that ϕ is the Weyl function of system (3.4), where j and V have the form (3.2) and v sat-
isfies (3.5). Then v is recovered from ϕ via formulas (3.38)–(3.40), where s and Sl are given by equalities (3.35)
and (3.36). All the mentioned above relations are well defined and the inequalities Sl � I hold.

Another inverse problem, where condition (3.5) on v is substituted by a condition on ϕ , is also
solved in [12,23,28] using the same procedure.

Remark 3.4. One can apply Theorems 3.2 and 3.3 to recover solutions of mKdV. Theorems on the
evolution of the Weyl functions constitute also the first step in proofs of uniqueness and existence of
the solutions of nonlinear equations via ISpT method (see, for instance, [28]).

The application of Theorem 1.1 to the GBDT version (see [13,24,27] and references therein) of the
Bäcklund–Darboux transformation is of interest and shall be discussed in the next paper.
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