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In this paper we study a system of Schrödinger–Poisson equations

{−�u + λV (x)u + K (x)φu = |u|p−2u, in R
3,

−�φ = K (x)u2, in R
3,

where λ > 0 is a parameter, 2 < p < 6. Under suitable assumptions
on V and K , the existence of nontrivial solution and concentration
results are obtained via variational methods. In particular, the
potential V is allowed to be sign-changing for the case p ∈ (4,6).

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following system of Schrödinger–Poisson equations{
−�u + λV (x)u + K (x)φu = |u|p−2u, in R

3,

−�φ = K (x)u2, in R
3,

(1.1)

where λ > 0 is a parameter, 2 < p < 6. This system has been first introduced in [6] as a physical
model describing a charged wave interacting with its own electrostatic field in quantum mechanic.
The unknowns u and φ represent the wave functions associated to the particle and electric potential,
and functions V and K are respectively an external potential and nonnegative density charge. We refer
to [6] and the references therein for more physical background.

* Corresponding author.
E-mail address: zhaolg@amss.ac.cn (L. Zhao).
0022-0396/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jde.2013.03.005

http://dx.doi.org/10.1016/j.jde.2013.03.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jde
mailto:zhaolg@amss.ac.cn
http://dx.doi.org/10.1016/j.jde.2013.03.005


2 L. Zhao et al. / J. Differential Equations 255 (2013) 1–23
On the potential V , we make the following assumptions:

(V1) V ∈ C(R3,R) and V is bounded from below.
(V2) There exists b > 0 such that the set {x ∈ R3: V (x) < b} is nonempty and has finite measure.
(V3) Ω = int V −1(0) is nonempty and has smooth boundary and Ω = V −1(0).

This kind of hypotheses was first introduced by Bartsch and Wang [4] in the study of a nonlinear
Schrödinger equation and the potential λV (x) with V satisfying (V1)–(V3) is referred as the steep
well potential.

In recent years, system (1.1) has been widely studied under variant assumptions on V and K .
The greatest part of the literature focuses on the study of the system for V and K being constants
or radially symmetric functions, and existence, nonexistence and multiplicity results are obtained in
many papers, see e.g. [1,2,9–11,22,25,27]. Recently, the case of a positive and non-radial potential V
has been studied in [32] for asymptotically linear nonlinearity, in [3] for p ∈ (4,6) and in [36] for
p ∈ (3,4). In [3,36], it was assumed that

(̃V) V∞ = lim|y|→+∞ V (y) � V (x) for a.e. x ∈ R
3, and the strict inequality holds on a positive measure

set.

We note that (̃V) is crucial to use concentration compactness method as in [3,36].
Very recently, under the assumptions (V1)–(V3) and V � 0, Jiang and Zhou [21] considered a

similar problem

{
−�u + (

λV (x) + 1
)
u + μφu = |u|p−2u, in R

3,

−�φ = u2, in R
3,

with λ > 0, μ > 0, and obtained the existence and concentration results for p ∈ (2,3) ∪ [4,6) by
combining domains approximation with priori estimates. In [8], Cerami and Vaira studied system (1.1)
with p ∈ (4,6), λV (x) ≡ 1 and K ∈ L2(R3) satisfying K (x) → 0 as |x| → ∞. They proved the existence
of positive ground state by minimization on Nehari manifold and concentration compactness method.

Moreover, the semiclassical limit of the system (1.1) was also discussed recently. More pre-
cisely, replacing −� by −ε�, Ruiz [28] and D’Aprile and Wei [11] showed that system (1.1) with
λV (x) ≡ K (x) ≡ 1 possesses a family of solutions concentrating around a sphere when ε → 0 for
p ∈ (2,18/7). Their results were generalized in [15,16] for the radial V and K . In [30], Ruiz and Vaira
proved the existence of multi-bump solutions whose bumps concentrated around local minimums of
the potential V . The proofs explored in [15,16,30] are based on a singular perturbation, essentially
a Lyapunov–Schmitt reduction method. For other concentration phenomena for this system, see for
example [1,14,17,23,29,34,35] and the references therein.

Motivated by the above works, in the present paper we consider system (1.1) with more gen-
eral potential V , K and the range of p. The existence and concentration of nontrivial solutions of
system (1.1) are established via variational method. Let H1(R3) and D1,2(R3) be the usual Sobolev
spaces and denote by | · |s the usual norm of Ls(R3) for s ∈ [2,∞]. Our main results are as follows:

Theorem 1.1. Assume that 4 < p < 6, (V1)–(V3) are satisfied and K (x) > 0 for x ∈ R
3 , K (x) ∈ L2(R3) (or

K (x) ∈ L∞(R3)). Then there exist Λ > 0 and k∗
λ > 0, for λ > Λ, such that problem (1.1) has at least a nontrivial

solution (uλ,φλ) in H1(R3) × D1,2(R3) for λ > Λ and |K |2 < k∗
λ (or |K |∞ < k∗

λ).

Remark 1.1. In Theorem 1.1, V is allowed to be sign-changing for p ∈ (4,6). The positivity of the
infimum of the potential Vλ(x) := λV (x) + 1 is important in the arguments of the paper [21], and
it is possible that lim inf|x|→∞ V (x) = 0 in our settings, so our results extend the corresponding one
in [21]. To the best of our knowledge, it seems that the only earlier work on (1.1) with sign-changing
potential is the paper [20], where different assumptions were used and existence result was obtained
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by using sub-supersolution method. The works on nonlinear Schrodinger equation with sign-changing
potential can be found in [12,13] by Ding and Szulkin.

If V � 0, the restriction on the norm of K can be removed and we have the following theorem.

Theorem 1.2. Assume that 4 � p < 6, (V1)–(V3) are satisfied and V (x) � 0, K (x) � 0 for x ∈ R
3 and K (x) ∈

L2(R3) (or K (x) ∈ L∞(R3)), if p = 4, assume moreover K (x) ∈ L2(R3) ∩ L∞
loc(R

3) (or K (x) ∈ L∞(R3)). Then

there exists Λ > 0 such that problem (1.1) has at least a nontrivial solution (uλ,φλ) in H1(R3) × D1,2(R3)

for all λ > Λ.

For the case 3 < p < 4, we need more assumptions on V and K .

Theorem 1.3. Assume that 3 < p < 4, (V1)–(V3) are satisfied and V � 0, K (x) � 0 for x ∈ R
3 and K (x) ∈

L2(R3) ∩ L∞
loc(R

3). Assume moreover

(V4) V (x) is weakly differentiable function such that (∇V (x), x) ∈ Lr1(R3) for some r1 ∈ [3/2,∞], and

2V (x) + (∇V (x), x
)
� 0, for a.e. x ∈R

3.

(K1) K (x) is weakly differentiable function such that (∇K (x), x) ∈ Lr2(R3) for some r2 ∈ [2,∞], and

2(p − 3)

p
K (x) + (∇K (x), x

)
� 0, for a.e. x ∈R

3,

hold, where (·,·) is the usual inner product in R
3 . Then there exists Λ > 0 such that problem (1.1) has at least

a nontrivial solution (uλ,φλ) in H1(R3) × D1,2(R3) for all λ > Λ.

Corollary 1.4. Under the assumptions of Theorem 1.3 with (V4) replaced by

(V′
4) V (x) is weakly differentiable function such that (∇V (x), x) ∈ Lr1(R3) for some r1 ∈ [3/2,∞], and

(∇V (x), x
) ∈ Lp/(p−2)

(
R

3) or 2V (x) + (∇V (x), x
) ∈ Lp/(p−2)

(
R

3).
Then the conclusion of Theorem 1.3 holds.

Remark 1.2. The condition (V4) was introduced in [36] to get a special bounded (PS) sequence by the
monotonicity trick of Jeanjean [18], since it is hard to obtain the boundness of every (PS) sequence
when p ∈ (3,4). Similar method was used in [34]. The condition (V′

4) is a different type one from (V4).

On the concentration of solutions we have the following result.

Theorem 1.5. Let (uλ,φλ) be the solutions obtained in Theorem 1.2 or Theorem 1.3. Then uλ → u in H1(R3),
φλ → φu in D1,2(R3), as λ → ∞, where u ∈ H1

0(Ω) is a nontrivial solution of

⎧⎨⎩ −�u + 1

4π

((
K (x)u2) ∗ 1

|x|
)

K (x)u = |u|p−2u, in Ω,

u = 0, on ∂Ω.

(1.2)
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To obtain our results, we have to overcome several difficulties in using variational method. The
main difficulty consists in the lack of compactness of the Sobolev embedding H1(R3) into L p(R3),
p ∈ (2,6). Since we assume neither that the potential is radially symmetric nor the condition (̃V), we
cannot use the usual way to recover compactness, for example, restricting in the subspace H1

r (R3)

of radially symmetric functions or using concentration compactness methods. To recover the com-
pactness, we borrow some ideas used in [5,13] and establish the parameter dependent compactness
conditions. Let us point out that the adaptation of the ideas to the procedure of our problem is not
trivial at all, because of the presence of the nonlocal term K (x)φu.

On the other hand, the situation is more delicate when dealing with the case p ∈ (3,4). First, it
is known that it is difficult to get the boundedness of a (PS) sequence in this case. To overcome the
difficulty, motivated by [19,22], we use Jeanjean’s monotonicity trick [18] (see also Struwe [31]) to
construct a special (PS) sequence. Moreover, in the process of proving the convergence of a bounded
(PS) sequence, we use the observation that the condition K ∈ L2(R3) makes the less strong influence
of the nonlocal term, see Lemma 2.1.

Throughout the paper, by C we mean a positive constant that may vary from line to line but
remains independent of the relevant quantities. We denote by “ ⇀ ” weak convergence and by “ → ”
strong convergence.

The paper is organized as follows. In Section 2, we give the variational setting for (1.1) and estab-
lish the compactness conditions. In Section 3, we consider the case 4 < p < 6 and prove Theorem 1.1
and Theorem 1.2. Section 4 is devoted to dealing with the case 3 < p < 4 and the proof of Theorem 1.3
and Corollary 1.4. In the last section, we study the concentration of solutions and prove Theorem 1.5.

2. Variational setting and compactness condition

In this section, we give the variational setting for (1.1) following [13] and establish the compactness
conditions.

Let V (x) = V +(x) − V −(x), where V ±(x) = max{±V (x),0}. Let

E =
{

u ∈ H1(
R

3):
∫
R3

V +(x)u2 dx < ∞
}

be equipped with the inner product and norm

〈u, v〉 =
∫
R3

(∇u∇v + V +(x)uv
)

dx, ‖u‖ = 〈u, u〉1/2.

For λ > 0, we also need the following inner product and norm

〈u, v〉λ =
∫
R3

(∇u∇v + λV +(x)uv
)

dx, ‖u‖λ = 〈u, u〉1/2
λ .

It is clear that ‖u‖ � ‖u‖λ for λ � 1. Set Eλ = (E,‖ · ‖λ). It follows from (V1)–(V2) and Poincaré
inequality that the embedding E ↪→ H1(R3) is continuous. Thus for each s ∈ [2,6], there exists ds > 0
(independent of λ � 1) such that

|u|s � ds‖u‖ � ds‖u‖λ, for u ∈ E. (2.1)

Let

F = {
u ∈ E: supp u ⊂ V −1([0,∞)

)}
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and denote the orthogonal complement of F in Eλ by F ⊥
λ . If V � 0, then E = F , otherwise F ⊥

λ �= {0}.
Let Aλ = −� + λV , then Aλ is formally self-adjoint in L2(R3) and the associated bilinear form

aλ(u, v) =
∫
R3

(∇u∇v + λV (x)uv
)

dx

is continuous in Eλ . For fixed λ > 0, consider the eigenvalue problem

−�u + λV +(x)u = αλV −(x)u, u ∈ F ⊥
λ . (2.2)

Since supp V − is of finite measure, we see that the quadratic form u �→ ∫
R3 λV −(x)u2 dx is weakly

continuous. Hence following Theorem 4.45 and Theorem 4.46 in [33], there exists a sequence of pos-
itive eigenvalues {α j(λ)}, which may be characterized by

α j(λ) = inf
dim M� j, M⊂F ⊥

λ

sup

{
‖u‖2

λ: u ∈ M,

∫
R3

λV −(x)u2 dx = 1

}
, j = 1,2,3, . . . .

Moreover, α1(λ) � α2(λ) � · · · � α j(λ) → ∞ as j → ∞, and the corresponding eigenfunctions e j ,
which may be chosen so that 〈ei, e j〉 = δi, j , are a basis for F ⊥

λ . Let

Êλ = span
{

e j: α j(λ) � 1
}

and E+
λ = span

{
e j: α j(λ) > 1

}
.

Then Eλ = Êλ ⊕ E+
λ ⊕ F is an orthogonal decomposition, dim Êλ < ∞, the quadratic form aλ is negative

semidefinite on Êλ , positive definite on E+
λ ⊕ F and it is easy to see that aλ(u, v) = 0 if u, v are in

different subspaces of the above decomposition of Eλ .
It is well known that problem (1.1) can be reduced to a single equation with a nonlocal term.

Actually, for each u ∈ E ⊂ H1(R3), the linear functional Tu in D1,2(R3) defined by

Tu(v) =
∫
R3

K (x)u2 v dx

is continuous. In fact, if K ∈ L∞(R3), Hölder inequality and Sobolev inequality yield that there is a
constant C > 0 such that

∣∣Tu(v)
∣∣ � |K |∞

∣∣u2
∣∣
6/5|v|6 � C |K |∞|u|212/5‖v‖D , (2.3)

while for K ∈ L2(R3), we have

∣∣Tu(v)
∣∣ � |K |2

∣∣u2
∣∣
3|v|6 � C |K |2|u|26‖v‖D . (2.4)

It follows from the Lax–Milgram theorem that there exists a unique φu ∈ D1,2(R3) such that

−�φu = K (x)u2, (2.5)

and φu can be represented by
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φu(x) = 1

4π

∫
R3

K (y)u2(y)

|x − y| dy.

By (2.3), it is easy to see that, if K ∈ L∞(R3),

‖φu‖2
D =

∫
R3

K (x)φuu2 dx � C |K |2∞|u|412/5. (2.6)

Similarly, if K ∈ L2(R3), (2.4) implies that

‖φu‖2
D =

∫
R3

K (x)φuu2 dx � C |K |22|u|46. (2.7)

It can be proved that (u, φ) ∈ E × D1,2(R3) is a solution of (1.1) if and only if u ∈ E is a critical point
of the functional Iλ : E → R defined by

Iλ(u) = 1

2

∫
R3

(|∇u|2 + λV (x)u2)dx + 1

4

∫
R3

K (x)φuu2 dx − 1

p

∫
R3

|u|p dx

and φ = φu . We refer the readers to [10] for the details.
Set

N(u) =
∫
R3

K (x)φuu2 dx = 1

4π

∫ ∫
R3×R3

K (x)K (y)u2(x)u2(y)

|x − y| dx dy. (2.8)

Now we give some properties about the functional N .

Lemma 2.1.

(i) Let K ∈ L∞(R3). If un ⇀ u in H1(R3), then

φun ⇀ φu in D1,2(
R

3),
in particular, N(u) � lim infn→∞ N(un).

(ii) Let K ∈ L2(R3). If un ⇀ u in H1(R3), then up to a subsequence,

φun → φu in D1,2(
R

3),
in particular, N(u) = limn→∞ N(un).

Proof. (i) The proof was given in [10] for K ≡ 1 and it is easy to show the conclusion for K ∈ L∞(R3)

by following the same method in [10].
(ii) We modify the proof in [8]. First, we show that φun ⇀ φu in D1,2(R3). Indeed, for any v ∈

C∞
0 (R3), since un is bounded in H1(R3) and in L6(R3), by Hölder inequality we have
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(φun , v)D1,2 − (φu, v)D1,2 =
∫
R3

(
K (x)u2

n v − K (x)u2 v
)

dx

� |v|∞|K |2|un + u|6|un − u|L3(Ωv)

� C |un − u|L3(Ωv) → 0

where Ωv is the support set of v . This implies that φun ⇀ φu in D1,2(R3) by the density of C∞
0 (R3)

in D1,2(R3).
To complete the proof, it suffices to show that, up to a subsequence,

‖φun‖2
D =

∫
R3

K (x)φun u2
n dx → ‖φu‖2

D =
∫
R3

K (x)φuu2 dx (2.9)

as n → ∞. First, by Sobolev embedding, φun ⇀ φu in D1,2(R3) implies that

φun ⇀ φu in L6(
R

3),
and then ∫

R3

K (x)u2(φun − φu)dx → 0, (2.10)

since K (x)u2 ∈ L6/5(R3) by Hölder inequality and the fact that K ∈ L2(R3). Furthermore, from un ⇀ u
in H1(R3), we can assume that, up to a subsequence,

un ⇀ u in Ls(
R

3), un → u in Ls
loc

(
R

3), for 2 � s < 6.

Thus, by Hölder inequality, we have∫
R3

(
K (x)φun u2

n − K (x)φun u2)dx =
∫
R3

K (x)φun

(
u2

n − u2)dx

� |φun |6|un + u|6
( ∫

R3

∣∣K (x)(un − u)
∣∣3/2

dx

)2/3

� C

( ∫
R3

∣∣K (x)(un − u)
∣∣3/2

dx

)2/3

→ 0 (2.11)

as n → ∞, since the sequence wn := (un −u)3/2 ⇀ 0 in L4(R3) and K (x)3/2 ∈ L4/3(R3). Thus, by (2.10)
and (2.11), we obtain (2.9). The proof is complete. �

In [36], it was shown that the functional N and its derivative N ′ possess BL-splitting property, which
is similar to Brezis–Lieb Lemma [7].

Lemma 2.2. Let K ∈ L∞(R3) ∪ L2(R3). If un ⇀ u in H1(R3) and un → u a.e. in R
3 , then as n → ∞,

(i) N(un − u) = N(un) − N(u) + o(1);
(ii) N ′(un − u) = N ′(un) − N ′(u) + o(1), in H−1(R3).
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Proof. The proof was given in [36] for K ≡ 1 and it is easy to show the conclusion for K ∈ L∞(R3)

by following the same method in [36]. In what follows, we give the proof for K ∈ L2(R3).
(i) It is a straight consequence of Lemma 2.1(ii).
(ii) Let vn = un − u, it suffices to show that

∫
R3

K (x)φvn vnh dx → 0 (2.12)

and ∫
R3

K (x)φun unh − K (x)φuuh dx → 0 (2.13)

uniformly for h ∈ E with ‖h‖ � 1 as n → ∞. In fact, similar to (2.11), we have

∫
R3

K (x)φvn vnh dx � |φvn |6|h|6
( ∫
R3

∣∣K (x)vn
∣∣3/2

dx

)2/3

� C‖h‖
( ∫

R3

∣∣K (x)vn
∣∣3/2

dx

)2/3

→ 0,

which implies (2.12). Analogously,

∫
R3

K (x)φun (un − u)h dx � C‖h‖
( ∫

R3

∣∣K (x)(un − u)
∣∣3/2

dx

)2/3

→ 0. (2.14)

Similar to (2.10), we have

∫
R3

K (x)(φun − φu)uh dx � C‖h‖
( ∫
R3

∣∣K (x)u
∣∣6/5

(φun − φu)6/5 dx

)5/6

→ 0, (2.15)

since the sequence (φun − φu)6/5 ⇀ 0 in L5(R3) and |K (x)u|6/5 ∈ L5/4(R3) by Hölder inequality and
the fact that K ∈ L2(R3). Now (2.14) and (2.15) yield (2.13). The proof is complete. �

Next, we investigate the compactness conditions for the functional Iλ . Recall that a C1 functional
J satisfies Cerami condition at level c ((C)c condition for short) if any sequence {un} ⊂ E such that
J (un) → c and (1+‖un‖) J ′(un) → 0 has a convergent subsequence, and such sequence is called a (C)c

sequence.

Lemma 2.3. Let 4 < p < 6 and (V1)–(V2) be satisfied. Then every (C)c sequence of Iλ is bounded in Eλ for
each c ∈ R.

Proof. Let {un} ⊂ Eλ be a (C)c sequence of Iλ , that is

Iλ(un) → c,
(
1 + ‖un‖λ

)
I ′λ(un) → 0 in E−1

λ . (2.16)

Thus, for n large enough,
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Iλ(un) − 1

p

〈
I ′λ(un), un

〉 = (
1

2
− 1

p

)
‖un‖2

λ −
(

1

2
− 1

p

)∫
R3

λV −(x)u2
n dx +

(
1

4
− 1

p

)
N(un)

� c + 1. (2.17)

Since 4 < p < 6, it follows from (V1) and (2.17) that there exists C > 0 such that

‖un‖2
λ � C

∫
R3

λu2
n dx + (c + 1)

2p

p − 2
.

Thus it suffices to show that {un} is bounded in L2(R3). Assume by contradiction that |un|2 → ∞ as
n → ∞. Let vn = un/|un|2, then |vn|2 = 1. By (2.17), we have

‖vn‖2
λ − λ

∫
R3

V −(x)v2
n dx + N(vn)|un|22 � C

|un|22
, (2.18)

which implies that ‖vn‖λ and N(vn)|un|22 are both bounded. Passing to a subsequence, we can assume
that

vn ⇀ v in Eλ; vn → v a.e. in R
3; vn → v in Ls

loc

(
R

3), for 2 � s < 6.

By (2.18), we have

λ

∫
R3

V (x)v2
n dx � C

|un|22
→ 0 (2.19)

as n → ∞. On the other hand, by (2.18) and Fatou’s Lemma

∫ ∫
R3×R3

K (x)K (y)v2(x)v2(y)

|x − y| dx dy � lim inf
n→∞

∫ ∫
R3×R3

K (x)K (y)v2
n(x)v2

n(y)

|x − y| dx dy

� lim inf
n→∞

C

|un|42
= 0.

Hence v = 0, since K (x) > 0 for x ∈ R
3. By (V2), for any given ε > 0, there exists Rε > 0 such that

meas(Bc
Rε

(0) ∩ {V (x) < b}) < ε, where B Rε (0) = {x ∈ R
3: |x| � Rε}, Bc

Rε
(0) = R

3 \ B Rε (0). Therefore,
for n large ∫

{V (x)<b}
V (x)v2

n dx �
∫

B Rε (0)∩{V (x)<b}
bv2

n dx +
∫

Bc
Rε

(0)∩{V (x)<b}
bv2

n dx

� ε + b|vn|22s meas
(

Bc
Rε

(0) ∩ {
V (x) < b

})(s−1)/s

� Cε, (2.20)

for some s ∈ (1,3). Thus, by (2.20) and the fact that |vn|22 = 1, we have
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∫
R3

V (x)v2
n dx =

∫
{V (x)�b}

V (x)v2
n dx +

∫
{V (x)<b}

V (x)v2
n dx

=
∫

{V (x)�b}
V (x)v2

n dx + o(1)

� b

∫
{V (x)�b}

v2
n dx + o(1)

� b

(
1 −

∫
{V (x)<b}

v2
n dx

)
+ o(1)

= b + o(1) > 0,

which contracts (2.19). The proof is complete. �
With the aid of Lemma 2.2, we obtain the following parameter dependent compactness condition

for 4 � p < 6, V � 0, see Lemma 2.4. However, for the case that V is sign-changing or the case
3 < p < 4, the situation is more delicate. In these cases, we only have weak version of compactness
conditions, applied to a bounded (PS) sequence, see Corollaries 2.5–2.6.

Lemma 2.4. Let 4 � p < 6, (V1)–(V2) and V � 0 be satisfied, K (x) ∈ L2(R3) ∪ L∞(R3). Then for any M > 0,
there exists Λ = Λ(M) > 0 such that Iλ satisfies (C)c condition for all c < M, λ > Λ.

Proof. We give the proof for the case K ∈ L2(R3), and the proof is similar for the case K ∈ L∞(R3).
Let {un} be a (C)c sequence with c � M . By Lemma 2.3, {un} is bounded in Eλ and there exists Cλ

such that ‖un‖λ � Cλ (if p = 4, this follows from (2.17) since V � 0). Therefore, up to a subsequence,
we can assume that

un ⇀ u in Eλ; un → u in Ls
loc

(
R

3), for 2 � s < 6.

Firstly, it is easy to check that I ′λ(u) = 0. In fact, by (2.7), we have

φun ⇀ φu in L6(
R

3).
For any ϕ ∈ C∞

0 (R3), by Hölder inequality and K ∈ L2(R3), we have

∫
R3

∣∣K (x)uϕ
∣∣6/5

dx � |ϕ|6/5∞ |K |6/5
2 |u|6/5

3 ,

that is K (x)uϕ ∈ L6/5(R3). Thus

∫
R3

K (x)(φun − φu)uϕ dx → 0, as n → ∞.

Similarly, by Hölder inequality and (2.7), we have
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∫
R3

K (x)φun (un − u)ϕ dx � |ϕ|∞|K |2|φun |6|un − u|L3(Ωϕ)

� C |ϕ|∞|K |22|un − u|L3(Ωϕ)

→ 0

as n → ∞, where Ωϕ is the support set of ϕ . Consequently,∫
R3

(
K (x)φun unϕ − K (x)φuuϕ

)
dx

=
∫
R3

K (x)φun (un − u)ϕ dx +
∫
R3

K (x)(φun − φu)uϕ dx → 0

as n → ∞, thus we see that I ′λ(u) = 0. Moreover, since V � 0 and 4 � p < 6, we have aλ(u, u) = ‖u‖2
λ

and

Iλ(u) = Iλ(u) − 1

4

〈
I ′λ(u), u

〉 = 1

4
‖u‖2

λ +
(

1

4
− 1

p

)
|u|p

p � 0. (2.21)

Now we show that un → u in Eλ . Let vn := un − u. It follows from (V2) that

|vn|22 =
∫

{V (x)�b}
v2

n dx +
∫

{V (x)<b}
v2

n dx � 1

λb
‖vn‖2

λ + o(1). (2.22)

Then, by Hölder and Sobolev inequalities, we have

|vn|p = |vn|θ2|vn|1−θ
6 � d|vn|θ2|∇vn|1−θ

2 � d(λb)−
θ
2 ‖vn‖λ + o(1), (2.23)

as n → ∞, where θ = 6−p
2p and the constant d is independent of λ. By Lemma 2.2 and Brezis–Lieb

Lemma, we have

Iλ(vn) = Iλ(un) − Iλ(u) + o(1), I ′λ(vn) = I ′λ(un) + o(1). (2.24)

Consequently, this together with (2.21) and 4 < p < 6, we obtain

1

4
‖vn‖2

λ +
(

1

4
− 1

p

)
|vn|p

p = Iλ(vn) − 1

4

〈
I ′λ(vn), vn

〉
= c − Iλ(u) + o(1)

� M + o(1). (2.25)

Thus

|vn|p
p � 4p

p − 4
M + o(1). (2.26)
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(If p = 4, by (2.1) and (2.25), we have

|vn|p
p � dp

p‖vn‖p
λ � (2dp)p M p/2 + o(1),

where the constant dp > 0 is independent of λ � 1.)
Since 〈I ′λ(vn), vn〉 = o(1), it follows from (2.23) and (2.26) that

o(1) = ‖vn‖2
λ + N(vn) − |vn|p

p

� ‖vn‖2
λ − |vn|p−2

p |vn|2p

�
(

1 − max

{
(2dp)p M p/2,

4p

p − 4
M

}(p−2)/p

d2(λb)−θ

)
‖vn‖2

λ + o(1). (2.27)

Therefore, there exists Λ = Λ(M) > 0 such that vn → 0 in Eλ as n → ∞ for λ > Λ. The proof is
complete. �

We remark that the relation (2.21) is important in the proof of Lemma 2.4. However, it seems
difficult to obtain the fact that Iλ(u) � 0 for any critical point u of Iλ , in the case that V is sign-
changing under our assumptions. In fact, we have the following result.

Corollary 2.5. Let 4 < p < 6 and (V1)–(V2) be satisfied, K (x) ∈ L2(R3)∪ L∞(R3). Let {un} be a (C)c sequence
of Iλ with level c > 0. Then for any M > 0, there exists Λ = Λ(M) > 0 such that, up to a subsequence, un ⇀ u
in Eλ with u being a nontrivial critical point of Iλ and satisfying Iλ(u) � c for all c < M, λ > Λ.

Proof. We modify the proof of Lemma 2.4. By Lemma 2.3, {un} is bounded by Cλ in Eλ , un ⇀ u in Eλ

and u is a critical point of Iλ . However, since V is allowed to be sign-changing, from

Iλ(u) = Iλ(u) − 1

4

〈
I ′λ(u), u

〉 = 1

4
‖u‖2

λ − λ

4

∫
R3

V −(x)u2 dx +
(

1

4
− 1

p

)
|u|p

p,

we cannot conclude that Iλ(u) � 0. Now we consider two possibilities:

(i) Iλ(u) < 0,
(ii) Iλ(u) � 0.

If (i) occurs, it is clear that u is nontrivial and the proof is done. If (ii) occurs, following the argument
in the proof of Lemma 2.4 step by step, we can get un → u in Eλ . In fact, by (V2), we have

λ

∫
R3

V −(x)v2
n dx → 0. (2.28)

Thus, similar to (2.25), there holds that

1

4
‖vn‖2

λ +
(

1

4
− 1

p

)
|vn|p

p + o(1) � c − Iλ(u) + o(1) � M + o(1), (2.29)

then we have (2.26) and (2.27). Thus un → u in Eλ and Iλ(u) = c > 0. The proof is complete. �
For the case 3 < p < 4, it is difficult to prove that Iλ(u) � 0 for any critical point u of Iλ . On the

other hand, we cannot obtain the boundness of {|vn|p} by a constant independent of λ from (2.29).
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To overcome this difficulty, we decrease the effect of nonlocal term K (x)φuu by assuming that
K (x) ∈ L2(R3). Moreover, as pointed out in the introduction, it is difficult to get the boundness of
a (PS) (or (C)) sequence. In this case, we have the following result.

Corollary 2.6. Let 3 < p < 4 and (V1)–(V2) be satisfied, K (x) ∈ L2(R3). Let {un} be a bounded (PS)c sequence
of Iλ with level c > 0. Then for any M > 0, there exists Λ = Λ(M) > 0 such that, up to a subsequence, un ⇀ u
in Eλ with u being a nontrivial critical point of Iλ and satisfying Iλ(u) � c for all c < M, λ > Λ.

Proof. We modify the proof of Corollary 2.5. By assumptions, we have that un ⇀ u in Eλ with u being
a critical point of Iλ . It remains to obtain the boundness of {|vn|p} by a constant independent of λ if
(ii) occurs. In fact, by Lemma 2.1(ii), it follows from vn ⇀ 0 in Eλ that

N(vn) =
∫
R3

K (x)φvn v2
n dx → 0, (2.30)

as n → ∞. Similar to (2.25), we have

−1

4
N(vn) +

(
1

2
− 1

p

)
|vn|p

p = Iλ(vn) − 1

2

〈
I ′λ(vn), vn

〉
= c − Iλ(u) + o(1)

� M + o(1). (2.31)

It follows from (2.30) that

|vn|p
p � 2p

p − 2
M + o(1). (2.32)

Together with (2.27) and (2.28), we obtain the conclusion. �
3. Solutions for the case 4 < p < 6

In this section, we study the existence of solutions of (1.1) for the case 4 < p < 6 and give the
proofs of Theorems 1.1–1.2. If V is sign-changing, we verify that the functional have the linking ge-
ometry to apply the following linking theorem [26].

Proposition 3.1. Let E = E1 ⊕ E2 be a Banach space with dim E2 < ∞, Φ ∈ C1(E,R3). If there exist R > ρ >

0, κ > 0 and e0 ∈ E1 such that

κ = inf Φ(E1 ∩ Sρ) > supΦ(∂ Q )

where Sρ = {u ∈ E: ‖u‖ = ρ}, Q = {u = v + te0: v ∈ E2, t � 0, ‖u‖ � R}. Then Φ has a (C)c sequence
with c ∈ [κ, supΦ(Q )].

In our context, we use Proposition 3.1 with E1 = E+
λ ⊕ F and E2 = Êλ . Following Lemma 2.1 in

[13], α j(λ) → 0 as λ → ∞, for every j fixed. Hence there is Λ0 > 0 such that Êλ �= ∅ and is finite
dimensional for λ > Λ0. As a result, there exists Ĉλ > 0 such that

|u|p � Ĉλ‖u‖, for u ∈ Êλ, (3.1)

where the constant Ĉλ is dependent of λ, since the dimension of Êλ is so. Now we investigate the
linking structure of the functional.
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Lemma 3.2. For each λ > Λ0 , there exist ρλ > 0 and κλ > 0 such that

Iλ(u) � κλ,

for all u ∈ E+
λ ⊕ F with ‖u‖λ = ρλ . Moreover, if V � 0, we can choose ρ and κ independent of λ � 1.

Proof. Observe that, from the definition of E+
λ , there exists δλ > 0 such that

aλ(u, u) � δλ‖u‖2
λ, for u ∈ E+

λ ,

and

aλ(u, u) = ‖u‖2
λ, for u ∈ F .

Thus for u = v + w ∈ E+
λ ⊕ F , since 〈v, w〉λ = 0, it holds that

Iλ(u) = 1

2
aλ(v, v) + 1

2
aλ(w, w) + 1

4
N(u) − 1

p
|u|p

p � 1

2
min{δλ,1}‖u‖2

λ − C‖u‖p
λ,

where C is a constant independent of λ � 1 by (2.1). Choosing ρλ > 0 and κλ > 0 small enough,
we have the desired conclusion. If V � 0, since aλ(u, u) = ‖u‖2

λ , we can choose ρ > 0 and κ > 0
independent of λ � 1. �

Next, by (V3), we can choose e0 ∈ C∞
0 (Ω) fixed, then e0 ∈ F .

Lemma 3.3. Under the assumptions of Theorem 1.1, then for each λ > Λ0 , there exist k∗
1(λ) > 0 and Rλ > 0

such that for |K |2 < k∗
1(λ) (or |K |∞ < k∗

1(λ))

sup
u∈∂ Q

Iλ(u) < κλ,

where Q = {u = v + te0: v ∈ Êλ, t � 0, ‖u‖ � Rλ}.

Proof. We give the proof for K ∈ L2(R3), the proof for K ∈ L∞(R3) is similar.
(i) For u = v + w ∈ Êλ ⊕Re0,

aλ(u, u) = aλ(v, v) + aλ(w, w) � |∇w|22 � ‖u‖2.

Since all the norms on finite dimensional space are equivalent, by (2.7), we have

Iλ(u) � 1

2
‖u‖2 + C |K |22|u|46 − 1

p
|u|p

p → −∞,

for u ∈ Êλ ⊕Re0 with ‖u‖λ → ∞. Consequently, there exists Rλ > 0, independent of |K |2 for |K |2 � 1,
such that Iλ(u) � 0 for u ∈ Êλ ⊕Re0 satisfying ‖u‖λ = Rλ .

(ii) For u ∈ Êλ with ‖u‖λ � Rλ , by (2.7), we have

Iλ(u) � 1

4
N(u) � C |K |22|u|46 � C |K |22‖u‖4

λ � C |K |22 R4
λ. (3.2)

Hence, taking k∗
1(λ) = min{1, κ

1/2
λ /(C1/2 R2

λ)}, we obtain the conclusion. The proof is complete. �
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Lemma 3.4. Under the assumptions of Theorem 1.1, then for each λ > Λ0 , there exists k∗
2(λ) > 0 such that for

|K |2 < k∗
2(λ) (or |K |∞ < k∗

2(λ)) the quantity supu∈Q Iλ(u) is bounded from above by a constant independent
of λ.

Proof. Let

Jλ(u) := 1

2
aλ(u, u) − 1

p

∫
Ω

|u|p dx, for u ∈ Eλ.

Following the arguments in [13], we can show that supu∈Q Jλ(u) is bounded above by a constant
independent of λ, then by the continuity of Iλ on K , we have the conclusion. We give the details
here for completeness. Observe that for each η > 0 there is rη > 0 such that 1

p |u|p � 1
2 ηu2 if |u| � rη .

Let u = v + w ∈ Êλ ⊕Re0, then

Jλ(u) = 1

2
aλ(u, u) − 1

p

∫
Ω

|u|p dx

� 1

2
aλ(w, w) − 1

2
η|u|2L2(Ω)

+
∫
Ω

(
1

2
ηu2 − 1

p
|u|p

)
dx

� 1

2
|∇w|22 − 1

2
η|u|2L2(Ω)

+
∫

{x∈Ω: |u(x)|�rη}

(
1

2
ηu2 − 1

p
|u|p

)
dx

� 1

2
|∇w|22 − 1

2
η|u|2L2(Ω)

+ Cη, (3.3)

where Cη is independent of λ. Since e0 ∈ C∞
0 (Ω) and aλ(v, w) = 0,

|∇w|22 = aλ(u, w) =
∫
Ω

(−�w)u dx � |�w|2|u|L2(Ω)

� C0|∇w|2|u|L2(Ω) �
C2

0

2η
|∇w|22 + η

2
|u|2L2(Ω)

where C0 is a constant dependent of e0. Choosing η � C2
0 , we obtain |∇w|22 � η|u|2

L2(Ω)
and it follows

from (3.3) that Jλ(u) � Cη . Moreover, similar to (3.2), we have for u ∈ Q ,

Iλ(u) � Jλ(u) + 1

4
N(u) � Cη + C |K |22 R4

λ � Cη + 1

provided |K |2 < k∗
2(λ) := 1/(C1/2 R2

λ). The proof is complete. �
Proof of Theorem 1.1. Set k∗

λ := min(k∗
1(λ),k∗

2(λ)), then it follows from Proposition 3.1, Lemma 3.2 and
Lemma 3.3 that for any λ > Λ0 and 0 < |K |2 < k∗

λ (or 0 < |K |∞ < k∗
λ), Iλ possesses a (C)c sequence

{un} with c ∈ [κλ, supu∈Q Iλ(u)]. By Lemma 3.4, we set M = supu∈Q Iλ(u), then the conclusion follows
from Lemma 2.3 and Corollary 2.5. The proof is complete. �
Proof of Theorem 1.2. Since we suppose V � 0, the functional Iλ has mountain pass geometry and
the existence of nontrivial solutions can be obtained by mountain pass theorem [26]. In fact, by
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Lemma 3.2 with Êλ = {0}, 0 ∈ E is the local minimum for Iλ and κ is independent of λ. Let e0 ∈
C∞

0 (Ω), then

Iλ(te0) = t2

2

∫
Ω

|∇e0|2 dx + t4

4
N(e0) − t p

p

∫
Ω

|e0|p dx → −∞

as t → ∞, if 4 < p < 6. It is clear that there exists a constant C0 > 0, independent of λ, such that

cλ := inf
γ ∈Γ

max
t∈[0,1] Iλ

(
γ (t)

)
� sup

t�0
Iλ(te0) � C0, (3.4)

where Γ = {γ ∈ C([0,1], Eλ): γ (0) = 0, ‖γ (1)‖λ > ρ, Iλ(γ (1)) < 0}. (If p = 4, (3.4) follows
from (4.2) in the next section.) By mountain pass theorem and Lemma 2.4, we obtain a nontrivial
critical point uλ for Iλ with Iλ(uλ) ∈ [κ, C0] for λ large. The proof is complete. �
4. Solutions for the case 3 < p < 4

In this section, we consider (1.1) for the case 3 < p < 4 and give the proof of Theorem 1.3. We need
the following abstract result which is due to Jeanjean [18].

Proposition 4.1. Let X be a Banach space equipped with a norm ‖ · ‖X and let J ⊂ R
+ be an interval. We

consider a family {Φμ}μ∈ J of C1-functionals on X of the form

Φμ(u) = A(u) − μB(u), ∀μ ∈ J ,

where B(u) � 0 for all u ∈ X and such that either A(u) → +∞ or B(u) → +∞, as ‖u‖X → ∞. We assume
that there are two points v1, v2 in X such that

cμ = inf
γ ∈Γ

max
t∈[0,1]Φμ

(
γ (t)

)
> max

{
Φμ(v1),Φμ(v2)

}
, ∀μ ∈ J ,

where

Γ = {
γ ∈ C

([0,1], X
)
: γ (0) = v1, γ (1) = v2

}
.

Then, for almost every μ ∈ J , there is a bounded (PS)cμ sequence for Φμ , that is, there exists a sequence
{un(μ)} ⊂ X such that

(i) {un(μ)} is bounded in X,
(ii) Φμ(un(μ)) → cμ ,

(iii) Φ ′
μ(un(μ)) → 0 in X∗ , where X∗ is the dual of X .

To apply Proposition 3.1, we introduce a family of functionals defined by

Iλ,μ(u) = 1

2

∫
R3

(|∇u|2 + λV (x)u2)dx + 1

4

∫
R3

K (x)φuu2 dx − μ

p

∫
R3

|u|p dx, (4.1)

for μ ∈ [1/2,1].
The following lemma ensures that Iλ,μ has the mountain pass geometry [26]. The corresponding

mountain pass level is denoted by cλ,μ .
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Lemma 4.2. Let 3 < p < 4, (V1)–(V3) and V � 0 be satisfied, K (x) � 0 for x ∈ R
3 and K (x) ∈ L2(R3) ∩

L∞
loc(R

3). Then:

(i) There exists a v1 ∈ E \ {0} independent of μ such that Iλ,μ(v1) � 0 for all μ ∈ [1/2,1].
(ii) cλ,μ := infγ ∈Γ maxt∈[0,1] Iλ,μ(γ (t)) > max{Iλ,μ(0), Iλ,μ(v1)} for all μ ∈ [1/2,1], where

Γ = {
γ ∈ C

([0,1], E
)
: γ (0) = 0, γ (1) = v1

}
.

(iii) There exists M > 0 independent of μ and λ such that cλ,μ � M.

Proof. (i) Let x0 ∈ Ω and Bε0(x0) ⊂ Ω for some ε0 > 0. Let v ∈ C∞
0 (R3) be such that supp v ⊂ Bε0(0).

Set vt := t2 v(t(x − x0)), then supp vt ⊂ Bε0(x0) for t > 1. Thus, by direct computation, we have∫
R3

|∇vt |2 dx = t3
∫

Bε0 (0)

|∇v|2 dx,

∫
R3

|vt |p dx = t2p−3
∫

Bε0 (0)

|v|p dx,

∫
R3

K (x)φvt v2
t dx = t3

∫
Bε0 (0)

∫
Bε0 (0)

K

(
x

t
+ x0

)
K

(
y

t
+ x0

)
v2(x)v2(y)

|x − y| dx dy

� t3|K |2L∞
loc

∫
Bε0 (0)

φv v2 dx.

Therefore

Iλ,1/2(vt) � t3

2

∫
Bε0 (0)

|∇v|2 dx + t3

4
|K |2L∞

loc

∫
Bε0 (0)

φv v2 dx − t2p−3

2p

∫
Bε0 (0)

|v|p dx. (4.2)

Since 2p − 3 > 3 for p > 3, we see that Iλ,1/2(vt) → −∞ as t → +∞. Taking v1 := vt for t large
enough, we have Iλ,μ(v1) � Iλ,1/2(v1) < 0 for all μ ∈ [1/2,1].

(ii) Since

Iλ,μ(u) � 1

2
‖u‖2

λ − 1

p

∫
R3

|u|p dx � 1

2
‖u‖2

λ − C‖u‖p
λ

and p > 3, we deduce that Iλ has a strict local minimum at 0 and cλ,μ > 0.
(iii) Since cλ,μ � maxt>0 Iλ,μ(vt) � maxt>0 Iλ,1/2(vt) for all μ ∈ [1/2,1], the conclusion follows

from (4.2). �
It follows from Proposition 4.1, Lemma 4.2 and Corollary 2.6 that for almost every μ ∈ [1/2,1], Iλ,μ

has a nontrivial critical point uμ . In general, it is not known whether it is true for μ = 1. However
we have

Lemma 4.3. Under the assumptions of Lemma 4.2, there exists a sequence μn ∈ [1/2,1] and un ∈ Eλ \ {0}
such that

μn → 1, I ′λ,μn
(un) = 0 and Iλ,μn(un) � cλ,μn .
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Next we are to show that the sequence {un} obtained in Lemma 4.3 is a bounded (PS) sequence for
Iλ = Iλ,1. For this purpose, we need the following Pohozaev type identity. The proof is standard and
we omit it here, see e.g. [19,25]. Note that we use here the integrality of (∇V (x), x) and (∇K (x), x).

Lemma 4.4. Let u be a critical point of Iλ,μ in Eλ , then

1

2

∫
R3

|∇u|2 dx + 3

2

∫
R3

λV (x)u2 dx + 1

2

∫
R3

λ
(∇V (x), x

)
u2 dx

+ 5

4

∫
R3

K (x)φuu2 dx + 1

2

∫
R3

(∇K (x), x
)
φuu2 dx − 3μ

p

∫
R3

|u|p dx = 0. (4.3)

Lemma 4.5. Under the assumptions of Theorem 1.3, the sequence {un} obtained in Lemma 4.3 is bounded
in Eλ .

Proof. Denote

an :=
∫
R3

|∇un|2 dx, bn :=
∫
R3

λV (x)u2
n dx, bn :=

∫
R3

λ
(∇V (x), x

)
u2

n dx,

cn :=
∫
R3

K (x)φun u2
n dx, cn :=

∫
R3

(∇K (x), x
)
φun u2

n dx, dn :=
∫
R3

|un|p+1 dx.

Then by Lemma 4.2 and Lemma 4.3, we have

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

2
an + 3

2
bn + 1

2
bn + 5

4
cn + 1

2
cn − 3μn

p
dn = 0,

an + bn + cn − μndn = 0,

1

2
an + 1

2
bn + 1

4
cn − μn

p
dn � cλ,μn .

(4.4)

The first equation comes from the Pohozaev equality (4.3), the second one is 〈I ′λ,μ(un), un〉 = 0, and
the last one is from the definition of Iλ,μ . From these relations, we have

1

4
an + 1

4
bn +

(
1

4
− 1

p

)
μndn � cλ,μn (4.5)

and

bn + 1

2
bn + 1

2
cn + 2(p − 3)

p
μndn � 3cλ,μn . (4.6)

On the other hand, by eliminating the term dn from (4.4), we obtain

2(p − 3)

p
an + 2(p − 3)

p
bn + bn + 1

2
bn + 2(p − 3)

p
cn + 1

2
cn � 3cλ,μn . (4.7)
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It follows from (4.6) and (4.7) that

2(p − 3)

p
an + 2(p − 3)

p
bn + 2bn + bn + 2(p − 3)

p
cn + cn + 2(p − 3)

p
μndn � 6cλ,μn . (4.8)

With this inequality, we show that {un} is bounded in Eλ under our assumptions on V and K . In fact,
if (V4) and (K1) hold, the conclusion is obvious from (4.8) since p > 3 and cλ,μn � cλ,1/2. If (V′

4) and
(K1) hold, by Hölder inequality and Young inequality, for any ε > 0, there exists Cε > 0 such that

|bn| � λ
∣∣(∇V (x), x

)∣∣
p/(p−2)

|un|2p
� λp/(p−2)Cε

∣∣(∇V (x), x
)∣∣p/(p−2)

p/(p−2)
+ ε|un|p

p . (4.9)

Substituting (4.9) into (4.8), together with (K1), we have

2(p − 3)

p
an + 2(p − 3)

p
bn +

(
2(p − 3)

p
− ε

)
μndn

� 6cλ,1/2 + λp/(p−2)Cε

∣∣(∇V (x), x
)∣∣p/(p−2)

p/(p−2)
. (4.10)

Taking ε small enough, we see that ‖un‖2
λ = an + bn is bounded. The proof is complete. �

Proof of Theorem 1.3 and Corollary 1.4. By Lemma 4.3 and Lemma 4.5, we obtain a bounded sequence
of {un} ∈ Eλ \ {0} satisfying

μn → 1, I ′λ,μn
(un) = 0 and Iλ,μn(un) � cλ,μn .

Moreover, recalling the proof of Corollary 2.6, there are two possibilities for the energy of un ,

(i) Iλ,μn (un) < 0,
(ii) Iλ,μn (un) = cλ,μn .

Now we discuss two cases.
Case 1. There exists a subsequence of {un}, still denoted by {un}, such that (ii) occurs. In this case,

we have

lim
n→∞ Iλ(un) = lim

n→∞

(
Iλ,μn(un) + μn − 1

p

∫
R3

|un|p dx

)
= lim

n→∞ cλ,μn = cλ,1.

Here we use the fact that the map μ �−→ cλ,μ is left-continuous, see [18]. Similarly, I ′λ(un) → 0
in E−1

λ . That is, {un} is a bounded (PS)cλ,1 sequence for Iλ . Since cλ,1 > 0, the conclusion follows from
Corollary 2.6.

Case 2. There exists N ∈ N such that (i) occurs for un with n > N . Since 〈I ′λ,μn
(un), un〉 = 0 and

un �= 0, there exists C > 0 such that

‖un‖2
λ � ‖un‖2

λ + N(un) = μn|un|p
p � C‖un‖p

λ,

which implies that

‖un‖λ � C−1/(p−2) > 0. (4.11)
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Let un ⇀ u0 in Eλ , as n → ∞. We claim that u0 �= 0. Otherwise, by Lemma 2.1(ii), we have

N(un) → 0, as n → ∞.

Together with

(
1

2
− 1

p

)
‖un‖2

λ +
(

1

4
− 1

p

)
N(un) = Iλ,μn (un) − 1

p

〈
I ′λ,μn

(un), un
〉
� 0,

we have un → 0 in Eλ , which contracts (4.11). Thus u0 �= 0. For any ϕ ∈ C∞
0 (R3), using the argument

in the proof of Lemma 2.4, it is easy to check that

〈
I ′λ(u0),ϕ

〉 = lim
n→∞

(〈
I ′λ,μn

(un),ϕ
〉 + (μn − 1)

∫
R3

|un|p−2unϕ dx

)
= 0.

Therefore u0 is a nontrivial critical point of Iλ and the proof is complete. �
5. Concentration for solutions

In this section, we investigate the concentration for solutions and give the proof of Theorem 1.5.

Proof of Theorem 1.5. We follows the argument in [5]. For any sequence λn → ∞, let un := uλn be
the critical points of Iλn obtained in Theorem 1.2 or Theorem 1.3. If 4 � p < 6, it follows from (3.4)
and

cλn := Iλn (un) − 1

4

〈
I ′λn

(un)un
〉 = 1

4
‖un‖2

λn
+

(
1

4
− 1

p

)
|un|p

p

that

sup
n�1

‖un‖2
λn

� 4C0, (5.1)

where the constant C0 is independent of λn . If 3 < p < 4, then (V4), (K1), (4.8) and Lemma 4.2(iii)
imply that

2(p − 3)

p
‖un‖2

λn
� 6cλn � 6cλn,1/2 � 6M (5.2)

where the constant M is independent of λn . Therefore, we may assume that un ⇀ u in E and un → u
in Ls

loc(R
3) for 2 � s < 6. By Fatou’s Lemma, we have

∫
R3

V (x)u2 dx � lim inf
n→∞

∫
R3

V (x)u2
n dx � lim inf

n→∞
‖un‖2

λn

λn
= 0,

thus u = 0 a.e. in R
3 \ V −1(0), u ∈ H1

0(Ω) by (V3). Now for any ϕ ∈ C∞
0 (Ω), since 〈I ′λn

(un),ϕ〉 = 0, it
is easy to check that
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∫
R3

∇u∇ϕ dx +
∫
R3

K (x)φuuϕ dx =
∫
R3

|u|p−2uϕ dx,

that is, u is a weak solution of (1.2) by the density of C∞
0 (Ω) in H1

0(Ω).
We show that un → u in Ls(R3) for 2 < s < 6. Otherwise, by Lions vanishing lemma [24] there

exist δ > 0, ρ > 0 and xn ∈R
3 such that∫

Bρ(xn)

(un − u)2 dx � δ.

Moreover, xn → ∞, hence meas(Bρ(xn) ∩ {x ∈ R
3 : V (x) < b}) → 0. Similar to (2.20), by Hölder in-

equality, we have ∫
Bρ(xn)∩{V (x)<b}

(un − u)2 dx → 0.

Consequently

‖un‖2
λn

� λnb

∫
Bρ(xn)∩{V �b}

u2
n dx = λnb

∫
Bρ(xn)∩{V �b}

(un − u)2 dx

= λnb

( ∫
Bρ(xn)

(un − u)2 dx −
∫

Bρ(xn)∩{V <b}
(un − u)2 dx + o(1)

)
→ ∞,

which contradicts (5.1) and (5.2).
To complete the proof, it suffices to show that un → u in E . Since 〈I ′λn

(un), un〉 = 〈I ′λn
(un), u〉 = 0,

we have

‖un‖2
λn

+
∫
R3

K (x)φun u2
n dx =

∫
R3

|un|p dx, (5.3)

〈un, u〉λn +
∫
R3

K (x)φun unu dx =
∫
R3

|un|p−2unu dx. (5.4)

First, we have ∫
R3

(
K (x)φun u2

n − K (x)φun unu
)

dx → 0. (5.5)

Indeed, if K (x) ∈ L∞(R3), then Hölder inequality and un → u in L3(R3) imply that∫
R3

(
K (x)φun u2

n − K (x)φun unu
)

dx � |K |∞|φun |6|un|2|un − u|3 → 0,

while for K (x) ∈ L2(R3), we obtain (5.5) in a similar way to (2.11).
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By (5.3), (5.4) and (5.5), we have

lim
n→∞‖un‖2

λn
= lim

n→∞〈un, u〉λn = lim
n→∞〈un, u〉 = ‖u‖2.

On the other hand, weakly lower semi-continuity of norm yields that

‖u‖2 � lim inf
n→∞ ‖un‖2 � lim

n→∞‖un‖2
λn

,

thus un → u in E . By (5.3) and the fact that un �= 0, we have for n large,

‖un‖2 � ‖un‖2
λn

� |un|p
p � C‖un‖p,

which implies that u �= 0. The proof is complete. �
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