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1. Introduction

In this paper, we consider the following system of Schrodinger-Poisson equations

— AU+ AV XU+ K@)ou = [uP2u, inR3,

—A¢ = Kx)u?, inRR>, (1)
where A > 0 is a parameter, 2 < p < 6. This system has been first introduced in [6] as a physical
model describing a charged wave interacting with its own electrostatic field in quantum mechanic.
The unknowns u and ¢ represent the wave functions associated to the particle and electric potential,
and functions V and K are respectively an external potential and nonnegative density charge. We refer
to [6] and the references therein for more physical background.
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On the potential V, we make the following assumptions:

(V1) V e C(R3 R) and V is bounded from below.
(Vo) There exists b > 0 such that the set {x € R3: V(x) <b} is nonempty and has finite measure.
(V3) £2 =intV~1(0) is nonempty and has smooth boundary and £2 = V~1(0).

This kind of hypotheses was first introduced by Bartsch and Wang [4] in the study of a nonlinear
Schrodinger equation and the potential AV (x) with V satisfying (V1)-(V3) is referred as the steep
well potential.

In recent years, system (1.1) has been widely studied under variant assumptions on V and K.
The greatest part of the literature focuses on the study of the system for V and K being constants
or radially symmetric functions, and existence, nonexistence and multiplicity results are obtained in
many papers, see e.g. [1,2,9-11,22,25,27]. Recently, the case of a positive and non-radial potential V
has been studied in [32] for asymptotically linear nonlinearity, in [3] for p € (4,6) and in [36] for
p € (3,4). In [3,36], it was assumed that

(\7) Voo =limjy 100 V(¥) > V(x) for ae. x e R3, and the strict inequality holds on a positive measure
set.

We note that (\7) is crucial to use concentration compactness method as in [3,36].
Very recently, under the assumptions (V1)-(V3) and V > 0, Jiang and Zhou [21] considered a
similar problem

—Au+ AV @) +1)u+ pou = [u’2u, inR?,
—Ad =u?, in R?,

with L > 0, u > 0, and obtained the existence and concentration results for p € (2,3) U [4,6) by
combining domains approximation with priori estimates. In [8], Cerami and Vaira studied system (1.1)
with p € (4,6), AV(x) =1 and K € L?(R3) satisfying K (x) — 0 as |x| — oo. They proved the existence
of positive ground state by minimization on Nehari manifold and concentration compactness method.

Moreover, the semiclassical limit of the system (1.1) was also discussed recently. More pre-
cisely, replacing —A by —eA, Ruiz [28] and D’Aprile and Wei [11] showed that system (1.1) with
AV (x) = K(x) =1 possesses a family of solutions concentrating around a sphere when ¢ — 0 for
p € (2,18/7). Their results were generalized in [15,16] for the radial V and K. In [30], Ruiz and Vaira
proved the existence of multi-bump solutions whose bumps concentrated around local minimums of
the potential V. The proofs explored in [15,16,30] are based on a singular perturbation, essentially
a Lyapunov-Schmitt reduction method. For other concentration phenomena for this system, see for
example [1,14,17,23,29,34,35] and the references therein.

Motivated by the above works, in the present paper we consider system (1.1) with more gen-
eral potential V, K and the range of p. The existence and concentration of nontrivial solutions of
system (1.1) are established via variational method. Let H!(R3) and D'2(R3) be the usual Sobolev
spaces and denote by |- |5 the usual norm of L¥(R3) for s € [2, co]. Our main results are as follows:

Theorem 1.1. Assume that 4 < p < 6, (V1)-(V3) are satisfied and K (x) > 0 for x € R3, K(x) € L*(R3) (or
K(x) € L®(R3)). Then there exist A > 0 and k3 > 0, for > > A, such that problem (1.1) has at least a nontrivial
solution (uy, ¢) in H'(R3) x D1'2(R3) for & > A and |K|; <k} (or [K|os < k).

Remark 1.1. In Theorem 1.1, V is allowed to be sign-changing for p € (4, 6). The positivity of the
infimum of the potential V,(x) := AV (x) + 1 is important in the arguments of the paper [21], and
it is possible that liminfiy— o V (x) =0 in our settings, so our results extend the corresponding one
in [21]. To the best of our knowledge, it seems that the only earlier work on (1.1) with sign-changing
potential is the paper [20], where different assumptions were used and existence result was obtained
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by using sub-supersolution method. The works on nonlinear Schrodinger equation with sign-changing
potential can be found in [12,13] by Ding and Szulkin.

If V > 0, the restriction on the norm of K can be removed and we have the following theorem.
Theorem 1.2. Assume that 4 < p < 6, (V1)-(V3) are satisfied and V (x) > 0, K (x) > 0 for x € R? and K (x) €
L2(R?) (or K(x) € L°(R?)), if p = 4, assume moreover K (x) € L*(R®) N L2 (R?) (or K (x) € L®(R?)). Then
there exists A > 0 such that problem (1.1) has at least a nontrivial solution (u;., ¢;) in H'(R?) x D1-2(R3)
forall » > A.

For the case 3 < p <4, we need more assumptions on V and K.

Theorem 1.3. Assume that 3 < p < 4, (V1)-(V3) are satisfied and V > 0, K(x) > 0 for x € R? and K (x) €
L2(R3) N L2 (R3). Assume moreover

(V4) V (x) is weakly differentiable function such that (VV (x), x) € L't (R3)for somer; € [3/2, 00], and

2V(x) + (VV(x),x) >0, foraexeR>.
(K1) K(x) is weakly differentiable function such that (VK (x), x) € L"2(R3) for some 1 € [2, o0), and

#m) +(VK(),x) >0, foraexeR?,

hold, where (-,-) is the usual inner product in R3. Then there exists A > 0 such that problem (1.1) has at least
a nontrivial solution (u;, ¢) in H'(R3) x D1-2(R3) for all A > A.

Corollary 1.4. Under the assumptions of Theorem 1.3 with (V4) replaced by

(V}) V(x) is weakly differentiable function such that (VV (x), x) € L" (R3) for some r{ € [3/2, co], and
(VV(x),x) e LP/P=2(R3) or 2V(x)+ (VV(x),x) € LP/P~2(R3).

Then the conclusion of Theorem 1.3 holds.

Remark 1.2. The condition (V4) was introduced in [36] to get a special bounded (PS) sequence by the
monotonicity trick of Jeanjean [18], since it is hard to obtain the boundness of every (PS) sequence
when p € (3, 4). Similar method was used in [34]. The condition (V) is a different type one from (V4).

On the concentration of solutions we have the following result.

Theorem 1.5. Let (uy, ¢,) be the solutions obtained in Theorem 1.2 or Theorem 1.3. Then u; — ii in H' (R3),
#. — ¢ in D1-2(R?), as A — oo, where il € H}(£2) is a nontrivial solution of

1 1
—Au+ —( (K@u?) * — |K@u = [ulP~2u, in 2,
47 x|

u=0, onos2.

(1.2)
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To obtain our results, we have to overcome several difficulties in using variational method. The
main difficulty consists in the lack of compactness of the Sobolev embedding H!(R3) into Lf(R3),
p € (2, 6). Since we assume neither that the potential is radially symmetric nor the condition (V), we
cannot use the usual way to recover compactness, for example, restricting in the subspace H} (R3)
of radially symmetric functions or using concentration compactness methods. To recover the com-
pactness, we borrow some ideas used in [5,13] and establish the parameter dependent compactness
conditions. Let us point out that the adaptation of the ideas to the procedure of our problem is not
trivial at all, because of the presence of the nonlocal term K (x)¢u.

On the other hand, the situation is more delicate when dealing with the case p € (3,4). First, it
is known that it is difficult to get the boundedness of a (PS) sequence in this case. To overcome the
difficulty, motivated by [19,22], we use Jeanjean’s monotonicity trick [18] (see also Struwe [31]) to
construct a special (PS) sequence. Moreover, in the process of proving the convergence of a bounded
(PS) sequence, we use the observation that the condition K e L?(R3) makes the less strong influence
of the nonlocal term, see Lemma 2.1.

Throughout the paper, by C we mean a positive constant that may vary from line to line but
remains independent of the relevant quantities. We denote by “ — " weak convergence and by “ — "
strong convergence.

The paper is organized as follows. In Section 2, we give the variational setting for (1.1) and estab-
lish the compactness conditions. In Section 3, we consider the case 4 < p < 6 and prove Theorem 1.1
and Theorem 1.2. Section 4 is devoted to dealing with the case 3 < p < 4 and the proof of Theorem 1.3
and Corollary 1.4. In the last section, we study the concentration of solutions and prove Theorem 1.5.

2. Variational setting and compactness condition
In this section, we give the variational setting for (1.1) following [13] and establish the compactness

conditions.
Let V(x) = VT (x) — V~(x), where VE(x) = max{xV (x), 0}. Let

E= {u e H'(R3): /V+(x)u2dx < oo}
R3
be equipped with the inner product and norm
(u,v):/(Vqu+V+(x)uv)dx, lull = (u, u)/2.
R3

For A > 0, we also need the following inner product and norm

(u,v),\=/(Vqu+AV+(x)uv)dx, ||u||,\=<u,u>}\/2.
]R3
It is clear that |ju| < |ju|lx for A > 1. Set E; = (E, | - ||). It follows from (V1)-(V,) and Poincaré

inequality that the embedding E < H'(R3) is continuous. Thus for each s € [2, 6], there exists ds > 0
(independent of A > 1) such that

luls <dsllull <dsllullx, foruek. (2.1)

Let

F={ueE: suppucC Vfl([O, 00))}
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and denote the orthogonal complement of F in E, by FAL. If V >0, then E = F, otherwise Ff # {0}.
Let Ay = —A + AV, then A, is formally self-adjoint in L2(R3) and the associated bilinear form

a,(u,v) = /(Vqu + AV (x)uv)dx
]R3
is continuous in E,. For fixed A > 0, consider the eigenvalue problem
—Au+AVT@u=arV " (0u, ueF;. (2.2)

Since supp V~ is of finite measure, we see that the quadratic form u /ﬁ@ AV (x)u?dx is weakly
continuous. Hence following Theorem 4.45 and Theorem 4.46 in [33], there exists a sequence of pos-
itive eigenvalues {a ()}, which may be characterized by

aj(d) = inf sup{||u||i: ueM, /AV_(x)uzdx=1}, j=1,2,3,....
dimM>j, MCF- ,
R

Moreover, a1(1) < az(A) < --- < aj(l) - 0o as j— oo, and the corresponding eigenfunctions e;,
which may be chosen so that (e;, e;) =§; j, are a basis for Ff. Let

E, =spanfe;: aj(A) <1} and E =spanfe;: aj(1) > 1}.
Then E; = E;, & Ef @ F is an orthogonal decomposition, dimE, < oo, the quadratic form a; is negative
semidefinite on EA, positive definite on Er @ F and it is easy to see that a,(u,v) =0 if u, v are in
different subspaces of the above decomposition of E;.

It is well known that problem (1.1) can be reduced to a single equation with a nonlocal term.
Actually, for each u € E ¢ H'(R3), the linear functional T, in D12(R3) defined by

Ty(v) = / K(x)u?vdx

R3

is continuous. In fact, if K € L°°(R3), Hélder inequality and Sobolev inequality yield that there is a
constant C > 0 such that

[Tu(W)| < IKloo|t?[g 51VI6 < CIKoclulTy sl vIp, (2.3)
while for K € L2(R?), we have
[ Tu(W)| < IK|2|u?[51v]e < CIK 2 ulg]I v (2.4)
It follows from the Lax-Milgram theorem that there exists a unique ¢, € D>(R3?) such that

—Ady = Kx)u?, (2.5)

and ¢, can be represented by
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1 [ Kyuiy)
du(x) = —/—dy-
4 [x —y|
]R3
By (2.3), it is easy to see that, if K € L>(R3),
lpullp = / K(x)puu® dx < CIK |2, |ul3y 5. (2.6)
]R3
Similarly, if K € L2(R?), (2.4) implies that
lpulld = / K®) ¢y dx < CIK[3|ulg. 2.7)

R3

It can be proved that (u, ¢) € E x DV2(R3) is a solution of (1.1) if and only if u € E is a critical point
of the functional I, : E — R defined by

1 1 1
Li(u) = E/(|Vu|2 + AV (0u?) dx + Z/I((x)cpuuzdx— —/|u|p dx
R3 R3 p]R3

and ¢ = ¢,. We refer the readers to [10] for the details.
Set

2 (37,2
N(u):/K(x)q)uuzdx: % // K@Ky (xu7(y) dxdy. (2.8)

|x =yl
R3 R3xR3

Now we give some properties about the functional N.

Lemma 2.1.

(i) Let K € L®(R3). If up — u in H'(R3), then

Gu, — du  in DT3(R?),

in particular, N(u) < liminf,_, oo N(up).
(ii) Let K € L2(R3). Ifu, — u in H'(R3), then up to a subsequence,

bu, — ¢u in DVE(R3),
in particular, N(u) = limy_, o0 N(up).

Proof. (i) The proof was given in [10] for K =1 and it is easy to show the conclusion for K € L®(R?)
by following the same method in [10].

(ii) We modify the proof in [8]. First, we show that ¢, — ¢, in D1>(R3). Indeed, for any v €
C°(R3), since uy, is bounded in H'(R®) and in L®(R3), by Holder inequality we have
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(bun» V)p12 — (du, V)pr2 = /(K(x)u,%v — Kxu?v)dx
R3
< VleolKl2lun + ulglun — tl3 0y
g Clun - u|L3(_QV) — 0
where Qv is the support set of v. This implies that ¢, — ¢, in D'2(R3) by the density of C8°(R3)

in D1-2(R3).
To complete the proof, it suffices to show that, up to a subsequence,

Ipu, 1D = / K @u,updx — [pull} = / K (x)pyu® dx (2.9)
R3 R3
as n — oo. First, by Sobolev embedding, ¢y, — ¢, in D12(R3) implies that
buy — u in L°(R?),
and then
/ K (x)u?(pu, — du) dx — 0, (2.10)
]R3

since K (x)u? e L5/5(R3) by Hélder inequality and the fact that K € L2(R?). Furthermore, from u, — u
in H'(R3?), we can assume that, up to a subsequence,

Up—u ian(R3), Up— U inL,SOC(]R3), for2 <s<®6.

Thus, by Holder inequality, we have

/ (K () u, i — K(X)pu,u?) dx = / K (X)¢u, (u — u?) dx

R3 R3

3 2/3
< |¢un|e|un+u|e(f|1<(x)(un—u)| / dx)
R3

2/3
<C</|K(x)(un—u)|3/2dx> -0 (211)
R3

as n — oo, since the sequence wy, := (up —u)3%2 — 0 in L*(R3) and K (x)3/2 € L*/3(R3). Thus, by (2.10)
and (2.11), we obtain (2.9). The proof is complete. O

In [36], it was shown that the functional N and its derivative N’ possess BL-splitting property, which
is similar to Brezis-Lieb Lemma [7].

Lemma 2.2. Let K € L°(R*) U L2(R3). Ifu, — u in H'(R?) and u, — u a.e. in R3, then as n — oo,

(i) N(up —u) = N(un) — N(u) +o(1);
(ii) N'(up —u) = N'(u) — N'(u) +o(1), in H-1(R3).
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Proof. The proof was given in [36] for K =1 and it is easy to show the conclusion for K € L*(R3)
by following the same method in [36]. In what follows, we give the proof for K e L?(R3).

(i) It is a straight consequence of Lemma 2.1(ii).

(ii) Let v, = up — u, it suffices to show that

fl((x)qbvn vphdx — 0 (2.12)
R3
and
/ K (x)py, unh — K(x)¢yuhdx — 0 (213)

R3

uniformly for h € E with ||h|| <1 as n — oo. In fact, similar to (2.11), we have

32 2/3 32 2/3
fK(X)¢vnvnth< |¢vn|6|h|6</|1<(x)vn| dX> <C||h||<f|1<(X)vn| dX> -0,
R3 R3

R3

which implies (2.12). Analogously,

2/3
[K(x)% (tn — whdx < C||h||< /|K(x)(un —u)? dx) =o0. (2.14)

R3 R3

Similar to (2.10), we have

6/5

5/6
/K(x)(qﬁu" — ¢y)uhdx < C|h| ( /’K(X)u‘ (B, _¢u)6/5 dX) — 0, (215)

R3 R3

since the sequence (¢y, — ¢,)%° — 0 in L3(R?) and |K(x)u|®> € L3/4(R3) by Hélder inequality and
the fact that K € L%(R3). Now (2.14) and (2.15) yield (2.13). The proof is complete. O

Next, we investigate the compactness conditions for the functional I;. Recall that a C! functional
J satisfies Cerami condition at level ¢ ((C). condition for short) if any sequence {u,} C E such that
J(up) — c and (1+|junl) J'(uy) — 0 has a convergent subsequence, and such sequence is called a (C)¢
sequence.

Lemma 2.3. Let 4 < p < 6 and (V1)-(V>) be satisfied. Then every (C). sequence of I, is bounded in E, for
eachc e R.

Proof. Let {u,} C E, be a (C). sequence of I,, that is
Liun) > ¢, (14 llunll) 5 un) =0 inE;". (2.16)

Thus, for n large enough,
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I (u )—1(1/ (up), u )—<1—1>||u ||2—(1—l>/AV*(x)u2dx+(l—l>N(u)
rlUn D A\Un), Un) = 2 D nliy 2 D n 4 P n
R3

<c+1. (217)
Since 4 < p < 6, it follows from (V1) and (2.17) that there exists C > 0 such that

2
unll? SC/Auﬁdx—i—(c—i-l)p—_pz_
R3

Thus it suffices to show that {u,} is bounded in L#(R3). Assume by contradiction that |u,|, — oo as
n — oo. Let v, =uy/|upl2, then |vy|; = 1. By (2.17), we have

Ivall? —AfV‘(X)Vﬁdx+N(vn)|un|§ <— (2.18)

.
J un 3

which implies that ||v,||, and N(vn)|un|§ are both bounded. Passing to a subsequence, we can assume
that

Vp— Vv inEy; vp— v ae inR3; Vp—V ianOC(R3), for2<s<®6.

By (2.18), we have

c
x/ V(x)vidx < Wi -0 (219)
u

R3 "2

as n — oo. On the other hand, by (2.18) and Fatou’s Lemma

K(X)K(y)vZ(x)v2 K(X)K(y)vZ(x)v2
/ / Ky)v-x)va(y) dxdy < liminf / / KW)v; v (y) dxdy
Ix =yl n—>00 Ix—=yI
R3xR3 R3xR3
< liminf 4=0.
n—oo |un|2

Hence v =0, since K(x) > 0 for x € R3. By (V,), for any given & > 0, there exists R, > 0 such that
meas(szg (0) N {V(x) < b)) <&, where Bg, (0) = (x e R3: |x| < R}, szg (0) = R3\ Bg, (0). Therefore,
for n large

/ V(x)vidx < / bv2dx + / bv2 dx
{V(x)<b} BR (O)N{V (x)<b} B, (0)N{V (x)<b}

< & + blvy[3, meas(B_ (0) N [V (x) <b))* "7
< Ce, (2.20)

for some s € (1, 3). Thus, by (2.20) and the fact that |vn|§ =1, we have
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29, 2 2
/V(x)vndx_ / V(x)v;, dx+ / V(x)vy dx
R3 {V(x)=b} {V(x)<b}

= / V(x)vZidx+o(1)

{V(x)=b}

>b / v2dx4o(1)
{V(x)>b}

> b<1 - / vﬁdx) +0(1)

{V (x)<b}
=b+o0(1) >0,
which contracts (2.19). The proof is complete. O
With the aid of Lemma 2.2, we obtain the following parameter dependent compactness condition
for 4<p <6, V>0, see Lemma 2.4. However, for the case that V is sign-changing or the case
3 < p <4, the situation is more delicate. In these cases, we only have weak version of compactness

conditions, applied to a bounded (PS) sequence, see Corollaries 2.5-2.6.

Lemma 2.4. et 4 < p <6, (V1)-(V2) and V > 0 be satisfied, K (x) € L?(R3) U L°(R3). Then for any M > 0,
there exists A = A(M) > 0 such that I, satisfies (C). condition for allc < M, A > A.

Proof. We give the proof for the case K € L%(R3), and the proof is similar for the case K e L®(R3).
Let {u,} be a (C). sequence with ¢ < M. By Lemma 2.3, {u,} is bounded in E; and there exists Cj
such that |jup|l; < Cy (if p =4, this follows from (2.17) since V > 0). Therefore, up to a subsequence,
we can assume that

Up—1u inEy; Up— U inL,SOC(IR3), for2<s<®6.

Firstly, it is easy to check that I} (u) = 0. In fact, by (2.7), we have

bu, — ¢u  in L°(R?).
For any ¢ € C5°(R?), by Holder inequality and K € L?(R3), we have

6/5 6/5,,,,6/5 6/5
/\K(x)ugo\ P dx < 191 1K1 ul>,
R3
that is K(x)up e L%°(R3?). Thus
/K(x)(qﬁun —¢yupdx— 0, asn— oo.

R3

Similarly, by Hélder inequality and (2.7), we have
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/ K (0, (ttn — W) A < [@loc K 216, lsltin — 3
]R3

< ClploolKI5lun — 3,

-0
as n — oo, where £2,, is the support set of ¢. Consequently,
/ (K ()bu,ung — K (0)puue) dx
R3

=f1((x)¢un(un —u)<pdx+/1<(x)(¢un — ¢y)updx — 0

R3 R3

as n — oo, thus we see that I} (u) = 0. Moreover, since V >0 and 4 < p <6, we have a; (u, u) = |\u||§
and

1 1 1 1
1) = @) = {15 @), u) = 2 ull? + (Z - E)'”'g >0. (221)

Now we show that u, — u in E;. Let v, :=u, — u. It follows from (V) that

1
[Val3 = / v2dx + f v,%dxgﬁuvnn,z\—l—o(l). (2.22)
{V(x)=b} {V(x)<b}

Then, by Holder and Sobolev inequalities, we have

_ _ _0
Valp = val3Ivalg™® <dval§IVvaly™ <dOb) 2 [|vallx +0(1), (2.23)
as n — oo, where 6 = 62_—pp and the constant d is independent of A. By Lemma 2.2 and Brezis-Lieb
Lemma, we have
Li(vp) = L.(up) — L.(u) +0(1), L5 (vp) = I} (up) +0(1). (2.24)

Consequently, this together with (2.21) and 4 < p < 6, we obtain

1 1 1 1
Z”Vn ”% + <Z - E>|Vn|g =1I(vn) — Z(I;L(Vn), Vn>
=c— L) +o(1)
<M +o(1). (2.25)

Thus

4
ValB < —P—M +o(1). (2.26)
p—4
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(If p=4, by (2.1) and (2.25), we have

valh < dplivallf < (2dp)PMP +o0(1),
where the constant dj, > 0 is independent of A > 1.)
Since (I} (vy), vn) = 0(1), it follows from (2.23) and (2.26) that
_ 2 p
o)) = lvally + N(vn) — valp
-2
> Vallf = [valy "IVl

4p

(p=2)/p
> (1 — max[(2dp)pMp/2, M’
p—4

dz(xb)-e)nvnn%o(l). (2.27)

Therefore, there exists A = A(M) > 0 such that v, — 0 in E, as n — oo for A > A. The proof is
complete. O

We remark that the relation (2.21) is important in the proof of Lemma 2.4. However, it seems
difficult to obtain the fact that I, (u) > 0 for any critical point u of I,, in the case that V is sign-
changing under our assumptions. In fact, we have the following result.

Corollary 2.5. Let 4 < p < 6 and (V1)-(V>) be satisfied, K (x) € L2(R3) UL (R3). Let {uy,} be a (C). sequence
of I, with level ¢ > 0. Then for any M > 0, there exists A = A(M) > 0 such that, up to a subsequence, u, — u
in E; with u being a nontrivial critical point of I, and satisfying I, (u) < c forallc < M, A > A.

Proof. We modify the proof of Lemma 2.4. By Lemma 2.3, {uy} is bounded by C, in E;, u, — u in E;,
and u is a critical point of I,. However, since V is allowed to be sign-changing, from

1 1 A 1 1
I (u) = I (u) — Z(&(U), u)= leullﬁ -2 f V™ (ou?dx + (Z - E)Iulﬁ,

]R3
we cannot conclude that I; (u) > 0. Now we consider two possibilities:

(i) () <0,
(ii) Ir(w) = 0.

If (i) occurs, it is clear that u is nontrivial and the proof is done. If (ii) occurs, following the argument
in the proof of Lemma 2.4 step by step, we can get u, — u in E,. In fact, by (V,), we have

A/V‘(x)v%dx—>0. (2.28)
R3

Thus, similar to (2.25), there holds that

1 1 1
2llve I7 + (Z - E>|Vn|g +o() <c— L +o()<M+o(1), (2.29)

then we have (2.26) and (2.27). Thus u, — u in E, and I, (u) =c > 0. The proof is complete. O

For the case 3 < p <4, it is difficult to prove that I, (u) > 0 for any critical point u of I;. On the
other hand, we cannot obtain the boundness of {|v,|p} by a constant independent of A from (2.29).
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To overcome this difficulty, we decrease the effect of nonlocal term K(x)¢,u by assuming that
K(x) € L*(R3). Moreover, as pointed out in the introduction, it is difficult to get the boundness of
a (PS) (or (C)) sequence. In this case, we have the following result.

Corollary 2.6. Let 3 < p < 4 and (V1)-(V>) be satisfied, K (x) € L%(R3). Let {u,} be a bounded (PS). sequence
of I, with level ¢ > 0. Then for any M > 0, there exists A = A(M) > 0 such that, up to a subsequence, u, — u
in E, with u being a nontrivial critical point of I, and satisfying I, (u) < c forallc <M, A > A.

Proof. We modify the proof of Corollary 2.5. By assumptions, we have that u, — u in E; with u being
a critical point of I;. It remains to obtain the boundness of {|vy|y} by a constant independent of X if
(ii) occurs. In fact, by Lemma 2.1(ii), it follows from v, — 0 in E; that

N(vy) = f K(X)py, v2dx — 0, (2.30)

R3

as n — oo. Similar to (2.25), we have

N+ (5 = ) Vel = V) = 2 {15 ). vi)
4 n 2 p nip = 1aVn 2 AWn), Vn
=c—I)(u) +o(1)

<M+o0(Q1). (2.31)
It follows from (2.30) that

2
lvalh < p—_p2M+o(1). (2.32)

Together with (2.27) and (2.28), we obtain the conclusion. O
3. Solutions for the case4 < p <6

In this section, we study the existence of solutions of (1.1) for the case 4 < p < 6 and give the
proofs of Theorems 1.1-1.2. If V is sign-changing, we verify that the functional have the linking ge-

ometry to apply the following linking theorem [26].

Proposition 3.1. Let E = E| @ E be a Banach space with dim E; < oo, @ € C1(E, R3). If there exist R > p >
0, k > 0and eg € E1 such that

Kk =inf@(E1NSy) >supP(Q)

where S, ={u € E: |lu|| =p}, Q ={u=v+teg: vekEy t >0, ||lul| <R}. Then @ has a (C). sequence
with ¢ € [k, sup®@(Q)].

In our context, we use Proposition 3.1 with E; = Ej{ @ F and E; =f,\. Follgwing Lemma 2.1 in

[13], erj(A) — 0 as o — oo, for every j fixed. Hence there is A¢ > 0 such that E; # & and is finite
dimensional for A > Ag. As a result, there exists C; > 0 such that

lulp = Callull, forueE;, (3.1)

where the constant 'C\;\ is dependent of A, since the dimension of EA is so. Now we investigate the
linking structure of the functional.
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Lemma 3.2. For each A > Ay, there exist p, > 0 and k; > 0 such that
L) = k.,
forallu e Ef @ F with |[u||, = px. Moreover, if V > 0, we can choose p and k independent of A > 1.
Proof. Observe that, from the definition of E;r, there exists §; > 0 such that
a(u,u) =& lull, forueE],

and

@, (u,u) = ul?, forueF.

Thus foru=v+4+we Er @ F, since (v, w), =0, it holds that
1 1 1 1,1 2 p
L) = Eax(\/, v) + Eax(w, w) + ZN(U) - E|u|p Z3 min{8;, Hlully — Cllull;.

where C is a constant independent of A > 1 by (2.1). Choosing p; > 0 and k; > 0 small enough,
we have the desired conclusion. If V > 0, since a,(u,u) = ||u||f\, we can choose p >0 and « >0
independent of A >1. O

Next, by (V3), we can choose e € C3°(£2) fixed, then eg € F.

Lemma 3.3. Under the assumptions of Theorem 1.1, then for each 1 > Ay, there exist kj(A) > 0 and R;, > 0
such that for |[K|2 < kj(A) (or |K|eo < k7(1))

sup I, (u) <k;,
uedQ

where Q = {u =v +tegp: ve'l':"], t>0, ||lu| <R}

Proof. We give the proof for K € L?(R?), the proof for K € L°(R?) is similar.
(i) Foru=v+w € E, & Rey,

G (1, u) = (v, V) + @ (w, w) < [Vwl3 < Jluf)?.
Since all the norms on finite dimensional space are equivalent, by (2.7), we have

1 1
L) < 5||u||2 +CIK 3|ulg - 5|u|,‘; — —o0,

for u € E, ®Req with lull;, > co. Consequently, there exists R; > 0, independent of |K| for [K|> <1,
such that I (u) <0 for u € E; @ Reg satisfying |lul = R;.
(i) For u € E, with |lu]lx < Ry, by (2.7), we have

1
Li(w) < N < CIKI3lulg < CIKZllull} < CIKI3RS. (32)

Hence, taking k¥ (1) = min{1, K;/Z/(Cl/zRi)}, we obtain the conclusion. The proof is complete. O
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Lemma 3.4. Under the assumptions of Theorem 1.1, then for each A > Ao, there exists k(i) > 0 such that for
[Kl2 < k5(A) (or |K | < k5(1)) the quantity supycq Iy (u) is bounded from above by a constant independent
of A.

Proof. Let

1 1
@) = Eax(U,u)—E/WI”dx, foru € E,.

Following the arguments in [13], we can show that sup,cq Ji(u) is bounded above by a constant
independent of A, then by the continuity of I, on K, we have the conclusion. We give the details
here for completeness. Observe that for each n > 0 there is r; > 0 such that %lulp > %r}uz if |u] >ry.

Letu:v—l—wef,\@Reo,then
1 1 »
L) =-a,(u,u) — — | |ulPdx
2 p
Q
1 p
< 5o (w, w) = nIuILz(Q)Jr nu ——Iul dx
Q
1 5 1 2 1 5, 1 b
\E|VW|2_§’7|H|L2(Q)+ / (577” —E|U| dx
{xef2: [ux)|<ry}
1 ) 1 2
<§|Vw|2—5n|ule(Q)+C,,, (3.3)

where C;; is independent of . Since eg € C§°(£2) and a; (v, w) =0,

VW3 =a, (u, w) = /(—Aw)udx < AWz lulz g

2

<ColV < 0wz 4 D2
< Col W|2|U|L2(Q)\2n| W|2+2|u|L2(Q)

where Cy is a constant dependent of eg. Choosing 1 > C5, we obtain |Vw|2 n|u|L2(Q) and it follows
from (3.3) that J; (u) < C;. Moreover, similar to (3.2), we have forueq,

1
L) < Jaw) + ZN@) <Gy + CIKI2R} < Cy+1

provided |K |, <k3(1) := 1/(C/2R?). The proof is complete. O

Proof of Theorem 1.1. Set kj := min(kj (%), k5(1)), then it follows from Proposition 3.1, Lemma 3.2 and
Lemma 3.3 that for any A > Ag and 0 < [K|; <k} (or 0 < [K|e < ki), I, possesses a (C); sequence
{un} with ¢ € [k, supycq I, (w)]. By Lemma 3.4, we set M = sup,cq I, (1), then the conclusion follows
from Lemma 2.3 and Corollary 2.5. The proof is complete. O

Proof of Theorem 1.2. Since we suppose V > 0, the functional I, has mountain pass geometry and
the existence of nontrivial solutions can be obtained by mountain pass theorem [26]. In fact, by
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Lemma 3.2 with EA = {0}, 0 € E is the local minimum for I, and « is independent of A. Let eg €
C5°(£2), then

t2 ) t4 tP
Ik(teo):3/|V€0| dx + ZN(EQ)—E/|€0|de—>—OO
Q2 Q2

as t — oo, if 4 < p <6. It is clear that there exists a constant Cp > 0, independent of A, such that

¢, := inf max I t)) <supl,(teg) < Co, 3.4
»i= inf max »(y () t}lg a(teg) < Co (3.4)

where I' = {y € C([0,1],E»): y(©0) =0, [[y(MDlr > p, L{y(1)) <0} (If p =4, (3.4) follows
from (4.2) in the next section.) By mountain pass theorem and Lemma 2.4, we obtain a nontrivial
critical point uy for I, with I, (u;) € [«, Co] for A large. The proof is complete. O

4. Solutions for the case 3 < p <4

In this section, we consider (1.1) for the case 3 < p < 4 and give the proof of Theorem 1.3. We need
the following abstract result which is due to Jeanjean [18].

Proposition 4.1. Let X be a Banach space equipped with a norm || - |x and let ] C R be an interval. We
consider a family {®,} ;e of C!-functionals on X of the form

Dy (u)=A) —puB), Vue],

where B(u) > 0 for all u € X and such that either A(u) — 400 or B(u) — +o0, as ||u||x — oc. We assume
that there are two points v1, v, in X such that

= inf ] t ] ] v
¢y = inf max w(y(©) > max{®,(v1), Pu(v2)}, Vue],

where

r={yec([0,1],X): y(0)=vi, y(1) =va}.

Then, for almost every j € ], there is a bounded (PS), sequence for ®,, that is, there exists a sequence
{un (@)} C X such that

(i) {un(w)}is bounded in X,
(i) @y un(W)) — cp,
(iii) @;L(un(p,)) — 0in X*, where X* is the dual of X.

To apply Proposition 3.1, we introduce a family of functionals defined by

1 1

Iw(u):5/(|Vu|2+AV(x)u2)dx+Z/K(x)@,uzdx—E/|u|de, (4.1)
R3 R3 p]R3

for we(1/2,1].

The following lemma ensures that I; , has the mountain pass geometry [26]. The corresponding
mountain pass level is denoted by c;, .
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Lemma 4.2. et 3 < p < 4, (V1)-(V3) and V > 0 be satisfied, K(x) > 0 for x € R? and K(x) € L*(R%) N
L (R3). Then:

(i) There exists a v1 € E \ {0} independent of w such that I ,(v1) <0 forall u e [1/2,1].
(ii) cx,p r=infyer maxeeo,1) In, 0 (¥ () > max{ly, ,(0), I n (v1)} forall p € [1/2, 1], where

r'={y eC([0,1],E): y(0)=0, y(1) =v1}.
(iii) There exists M > 0 independent of (¢ and A such that ¢, ;, < M.

Proof. (i) Let xo € £2 and Bg,(xo) C £2 for some &9 > 0. Let v € CSO(R3) be such that supp v C B, (0).
Set v; :=t2v(t(x — xo)), then supp v, C B, (x0) for t > 1. Thus, by direct computation, we have

/|Vvt|2dx:t3 f |Vv[*dx, /lvtlpdx:tzl”3 f [v|P dx,
R3 R3

By (0) Bey (0)

2 2
/K(x)%vfdx:ﬁ/ /1<<§+xo>K<X+xo>dedy
R3

t |x =yl
Bey (0) Bey (0)

<K P / Py v dx.
loc
Bey (0)

Therefore

3

I 12v) < - /|Vv|2dx+t3|1<|2 fgbvzdx e / vIP dx (42)
2,1720Vt) X 2 4 Li)oc v 2p . g

By (0) By (0) By (0)

Since 2p — 3 > 3 for p > 3, we see that I, 1/2(v¢) - —o0 as t — 4o0. Taking vy := v, for ¢ large
enough, we have I ;, (v1) <Iy1,2(v1) <O for all e [1/2,1].
(ii) Since

1 , 1 1 5 p
o > st} = - [ e Zjui = Cu?
R3

and p > 3, we deduce that I, has a strict local minimum at 0 and c; , > 0.
(iii) Since cy,u < MaxXeso I (ve) < maxesoly 1/2(ve) for all w € [1/2,1], the conclusion follows
from (4.2). O

It follows from Proposition 4.1, Lemma 4.2 and Corollary 2.6 that for almost every u € [1/2,1], I
has a nontrivial critical point u,,. In general, it is not known whether it is true for u = 1. However
we have

Lemma 4.3. Under the assumptions of Lemma 4.2, there exists a sequence y, € [1/2,1] and u, € E; \ {0}
such that

Un — 1, Ij\’#” (un) =0 and I pu,(Un) <Cipy-
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Next we are to show that the sequence {u} obtained in Lemma 4.3 is a bounded (PS) sequence for
I,, = I, 1. For this purpose, we need the following Pohozaev type identity. The proof is standard and
we omit it here, see e.g. [19,25]. Note that we use here the integrality of (VV (x),x) and (VK (x), X).

Lemma 4.4. Let u be a critical point of I, ;, in Ej, then
1 2 3 2 1 2
5 [Vu| dx+§ AV (xX)u dx-i—i A(VV (), x)u® dx
R3 R3 R3

+%/1<(x)¢uu2dx+%f(wqx),x)%uzdx—%“/m#’dx:o. (4.3)

R3 R3 R3

Lemma 4.5. Under the assumptions of Theorem 1.3, the sequence {u,} obtained in Lemma 4.3 is bounded
in E;.

Proof. Denote
an ::/|Vun|2dx, by ::/kV(x)uﬁdx, by ::/A(VV(X),x)u%dx,
R3 R3 R3

Cn ::/K(x)%uﬁdx, Cn ::/(VK(x),x)qsunuﬁdx, dn :=/|un|1’“ dx.

R3 R3 R3

Then by Lemma 4.2 and Lemma 4.3, we have

1 3 1- 5 1._ 3

Ean+§bn+§bn+zcn+zcn_ l;ndn:O’

an +bp +cn — undn =0, (4.4)
1 1 1

Ean + Ebn + ZCn — %dn < Co,pin -

The first equation comes from the Pohozaev equality (4.3), the second one is (I;’M(un), uy) =0, and
the last one is from the definition of I ,. From these relations, we have

1 1 1 1
Za" + an + (4_1 - E)N«ndn < Ca,pn (4.5)
and
1- 1_ 2(p—3
bn + Ebn + ECn + %Mndn <36, - (4.6)

On the other hand, by eliminating the term d, from (4.4), we obtain

2p—3)  2p-3 1. 20-3) 1.
P 2=y e 2P e e (47)
p p 2 p 2
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It follows from (4.6) and (4.7) that

2p-3), n 2(p—-3)
p

C 2p-3) . 2p-3
by + 2by + by + %cn tént %undn <6Cu.  (48)

With this inequality, we show that {u,} is bounded in E; under our assumptions on V and K. In fact,
if (V4) and (K7) hold, the conclusion is obvious from (4.8) since p > 3 and c; g, <y 1/2. If (Vﬁt) and
(K1) hold, by Hoélder inequality and Young inequality, for any ¢ > 0, there exists C; > 0 such that

bl < A[(VV @0, X)[) sy linl

SAPIP=DC (VY (%), %) g%j; +&luglB. (4.9)

Substituting (4.9) into (4.8), together with (Ki), we have

2(p —3)an + 2(p —3)bn " (Z(P -3) —E)Mndn
p p p

<6C3,172 + AP/ PTAC| (VV (), %)

p/(p—2)

p/(p—2)" (4.10)

Taking ¢ small enough, we see that ||ur,||§ =day + by, is bounded. The proof is complete. O

Proof of Theorem 1.3 and Corollary 1.4. By Lemma 4.3 and Lemma 4.5, we obtain a bounded sequence
of {u,} € E; \ {0} satisfying

mn— 1, 13\,”” (up) =0 and IA.//.H (up) < Chan -
Moreover, recalling the proof of Corollary 2.6, there are two possibilities for the energy of uj,

(i) I, (up) <0,
(ii) Ly i (Un) = Ca -

Now we discuss two cases.
Case 1. There exists a subsequence of {uy}, still denoted by {uy}, such that (ii) occurs. In this case,
we have

Mn—1
p

lim I, (up) = lim (IA,;L,.(Un) + |un|pdx> = lim ¢y, =Ca1-
n—o0 n—oo n—o00
3

R

Here we use the fact that the map pu+— c; , is left-continuous, see [18]. Similarly, I (u;) — 0

in E;]. That is, {un} is a bounded (PS), ; sequence for I;. Since c; 1 > 0, the conclusion follows from
Corollary 2.6.

Case 2. There exists N € N such that (i) occurs for u, with n > N. Since “/A,un(u")’ uy) =0 and
up # 0, there exists C > 0 such that

2 2
lunll5 < lluplly + N(up) = Mn|un|g < C”un”f,

which implies that

uplly = Cc~V@0=2 5 0. (411)
llunll
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Let up, — up in E;, as n — oco. We claim that ug # 0. Otherwise, by Lemma 2.1(ii), we have

N(uy) — 0, asn— oo.

Together with

1 1 2 1 1 1,,
E_E lunlly + Z_E N(un)=lx,un(un)_E(I)\,Mn(un)aun><0,

we have up — 0 in Ej, which contracts (4.11). Thus ug # 0. For any ¢ € C§° (R3), using the argument
in the proof of Lemma 2.4, it is easy to check that

Uﬂwxwﬁﬂﬂ&ﬁﬂﬂgwxwhwum—n/ﬁmwﬂw¢w>=0
]R3

Therefore ug is a nontrivial critical point of I;, and the proof is complete. O
5. Concentration for solutions
In this section, we investigate the concentration for solutions and give the proof of Theorem 1.5.

Proof of Theorem 1.5. We follows the argument in [5]. For any sequence A, — oo, let u, :=u,, be
the critical points of I, obtained in Theorem 1.2 or Theorem 1.3. If 4 < p <6, it follows from (3.4)
and

1,, 1 2 1 1 p
Crp = I, (up) — Z<1An(”")u">= Z”un”)m + 1 E [tunlp

that

sup [|un|I3, < 4Co, (5.1)
n>1

where the constant Cp is independent of A,. If 3 < p <4, then (Vy), (Ky), (4.8) and Lemma 4.2(iii)
imply that

2(p—3)
" unl3, <6cs, <6Cs,.1/2 < 6M (5.2)

where the constant M is independent of A;,. Therefore, we may assume that u, —~ u in E and u, — u

in LISOC(JR3) for 2 < s < 6. By Fatou’s Lemma, we have

L S 2,
V(x)u®dx <liminf | V(x)u;dx <liminf —= =0,
n—oo n—-oo n
R3 R3

thus =0 a.e. in R*\ V~1(0), & € H}(£2) by (V3). Now for any ¢ € C3°(£2), since (I} (un), ) =0, it
is easy to check that
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fVﬂVgodx+/I<(x)¢gﬂgodx= / |ii|P 21 dx,
R3 R3 R3
that is, u is a weak solution of (1.2) by the density of C5°(£2) in HE,(.Q).

We show that u, — i1 in LS(R3) for 2 < s < 6. Otherwise, by Lions vanishing lemma [24] there
exist § >0, p >0 and x, € R® such that

(up — )% dx > 5.
B (xn)

Moreover, x, — oo, hence meas(B,(x) N {x € R3: V(x) < b}) — 0. Similar to (2.20), by Hoélder in-
equality, we have

(up — )% dx — 0.

By (xn)N{V (x)<b}

Consequently

lunll?, = Anb / u2 dx = apb / (Un — )% dx

B (x){V b} By (xa)N{V b}
=knb< / (up — )% dx — f (un—ﬁ)zdx—i—o(l))
Bp(xn) Bp(xn)ﬂ{V<b}

— 00,

which contradicts (5.1) and (5.2).
To complete the proof, it suffices to show that u, — u in E. Since (I;x,. (Up), up) = (Iﬁ\rl (up), u)y =0,
we have

lunll?, + / K (x)¢pu, up dx = f |t P dx, (5.3)
R3 R3
(un, )3, + / K (X) ¢y, Unil dx = / [un|P~2upil dx. (5.4)
R3 R3
First, we have
/ (K (X)u, u2 — K (X)¢py, tnit) dx — 0. (5.5)
R3

Indeed, if K(x) € L°(R?), then Holder inequality and u, — i1 in L3(R?) imply that

/(K(X)%,.U,% — K(X)¢pu, tnil) dx < | K |oo |¢u, 6] tn2|un — i3 — O,
R3

while for K(x) € L>(R3), we obtain (5.5) in a similar way to (2.11).
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By (5.3), (5.4) and (5.5), we have
lim fuglf, = lim (up, @), = lim (un, @) = 7|,
n— 00 o p—soo " nsoo
On the other hand, weakly lower semi-continuity of norm yields that
I&1% < liminfl|un||* < lim fJunl3,,
n—-oo n—oo
thus u, — u in E. By (5.3) and the fact that u, # 0, we have for n large,

2 2
lunlI® < llunll}, < lunlp < Cllug|P,
which implies that u # 0. The proof is complete. O
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