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Abstract

This paper studies the low Mach number limit of the full compressible Navier—Stokes equations in a
three-dimensional bounded domain where the velocity field and the temperature satisfy the slip boundary
conditions and the Neumann boundary condition, respectively. The uniform estimates in the Mach number
for the strong solutions are derived in a short time interval, provided that the initial density and temperature
are close to the constant states and satisfy the “bounded derivative conditions”. Thus the solutions of the full
compressible Navier—Stokes equations converge to the one of the isentropic incompressible Navier—Stokes
equations, as the Mach number vanishes.
© 2014 Published by Elsevier Inc.
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1. Introduction

This paper is concerned with the low Mach number limit of compressible fluid flows which
are described by the following non-dimensional Navier—Stokes equations in R3:
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pr +div(pu) =0, (1)
(pu); + div(pu @ u) — div(2uD(u) + ¢ divul) + %VP =0, (2)
€
(pe); +div(pue) + Pdivu —div(kVT) = 62(2//,|D(u)|2 + ¢(div u)z), 3)

where p, u = (ul, uz, u3), P, e, T stand for the density, velocity, pressure, internal energy and
temperature, respectively. The constants p, ¢ are viscosity coefficients satisfying 1 > 0 and p +
3¢/2 >0, € > 0 is the Mach number, « > 0 is the heat conductivity coefficient, and D(u) =
(Vu + Vu') /2. Moreover, we assume that the fluid is a polytropic ideal gas, that is,

e=c,T, P =RpT €]

with ¢, > 0 and R being the specific heat at constant volume and the generic gas constant,
respectively. The ratio of specific heats is denoted by y =1+ R/cy.

By a formal derivation, see [18], for instance, as € tends to zero, the solutions of (1)—(4)
converge to the solution (p, u, i) of the following problem:

pr +div(pu) =0,
(pu); +div(pu @ u) — div(2/LD(u) + ¢ div uI) + V=0,

1
y divu =div[fv<—)].
R \p

This procedure is a singular limit, namely, the low Mach number limit, which is a physically
interesting problem. Due to the large parameter 1/€ in the momentum equations (2), mathemat-
ically, it is difficult to obtain uniform estimates (of higher derivatives) in Mach number, which
are necessary for the strong convergence to the background incompressible flows.

One of the major physical factors concerning the low Mach number limit is that the fluid is
isentropic or non-isentropic. When the flows are isentropic, the limit velocity u is divergence-free
and the limit equations are the incompressible Navier—Stokes equations in the usual sense. In
this situation, the singular limit reduces to the incompressible limit, which was well investigated
in the past decades. The readers may refer to [3,6-8,14,17,19,20,25,26], for instance, and the
references therein for details.

In the non-isentropic case, the large pressure gradient of O(1/€2) in the momentum equa-
tions is closely related to the behavior of both density and temperature. Thus, the low Mach
number analysis is much more complicated. One may refer to [1,21,22] for the literature on the
non-isentropic Euler equations (u = ¢ = 0).

The analysis for the non-isentropic Navier—Stokes equations is more difficult, due to the com-
plexity of the system structure. Bresch, Desjardins, Grenier and Lin [5] analyzed the acoustic
waves by a method of characteristic expansions and gave a formal asymptotics as € — 0 in
T" under the assumption that the viscous heating and thermal diffusion are negligible. As an
improvement of [5], Feireisl and Novotny [10] considered the low Mach number limit for the
periodic “variational solutions” to the full Navier—Stokes—Fourier equations of certain radiative
gases for “ill-prepared” initial data. Alazard [2] studied this singular limit for local H*® solutions
(s > 2+ n/2) in R” for general initial data by employing the technique of pseudo-differential
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operators, and Jiang, Ju, Li and Xin in [15] by careful a priori (energy) estimates only. Unfor-
tunately, the arguments in [2,15] do not apply to the cases with boundary. Recent progress for
the situations of initial boundary value problems for the full Navier—Stokes—Fourier equations
can be found, for example, in [9,12]. More recently, an interesting result on the inviscid and low
Mach number limits of the Navier—Stokes—Fourier equations in R3 was obtained in [11].

To our best knowledge, the low Mach number limit for the full Navier—Stokes equations of
perfect gases in bounded domains is not yet proved so far. One of the difficulties is to deal with
the boundary effect due to the acoustic waves. In a recent work [16], the authors studied the low
Mach number limit of the non-isentropic Navier—Stokes equations with zero thermal conductiv-
ity in a three-dimensional bounded domain, provided that the initial data are “well-prepared” and
the velocity satisfies the “non-slip” boundary condition. The situation in 2D with Navier’s slip
boundary condition was considered in [23]. The aim of the current paper is to extend the result
in [16,23] to the three-dimensional full Navier—Stokes equations, that is, to verify the low Mach
number limit for (1)—(4) with positive heat conductivity in a bounded domain in R3. It should
be noted that our result is not included in the cases considered in [9,12]. Uniform estimates for
the full compressible Navier—Stokes equations are shown by careful energy estimates, thus the
strong solutions converge to the one of the isentropic incompressible Navier—Stokes equations
as the Mach number vanishes. The result in this paper is a nontrivial generalization since the
structure of the penalty operator of order ¢! is essentially different from the ones in [16,23],
which leads to the difficulties in controlling the high-order spatial derivatives of the velocity and
the temperature. We shall overcome these difficulties by changing variables for both density and
temperature, and showing some new energy estimates. It is worthy to note that all the second-
order spatial derivatives of the velocity are uniformly bounded in this paper, while in [16] the
normal component of the second order derivatives near the boundary is not uniformly bounded
with respect to the Mach number. Moreover, here the boundary estimates are simplified in the
sense that only the derivatives of the vorticity are needed to be evaluated near the boundary. Fur-
thermore, compared with [23], the time derivatives of second order of the solutions are no longer
required to be bounded initially in the current paper.

To state the main result of this paper, we denote the density and temperature variations by o
and 6:

p=1+¢€o, T=1+¢€6.

Then we can rewrite the non-dimensional system (1)—(3) as follows

1
o; +diviou) + —divu =0, 5)
€
R .
p(u;+u-Vu)+ —(Vo +V6O)+ RV(00) = uAu + AVdivu, (6)
€

R
cop B +u-VO)+ R(p6 +0o)divu + —divu
€

= kA0 +e(2u|DW)|* + ¢(divu)?), (7)

where A := u + ¢. We impose the following initial and boundary conditions:
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(0, u,0)|1=0 = (00, uo,6p) in L2, ®)
a0

u-n=0, n xcurlu =0, 8_:0 on 452, 9)
n

where £2 C R3 is a bounded domain with smooth boundary 92, n is the unit outer normal to 952,
and the vorticity curlu = (dou3 — d3u2, d3u1 — d1u3z, duy — du)’.

Definition 1.1.

J
Meelle = D 107wl i o

i=0
j .
el ) = D137 u(O) | yii gy
i=0

where HO(2) = L2(2).

Remark 1.2. To simplify the statement, we have used “u;(0)” to signify the quantity u;|;—o :=
—ug - Vug + (—§(Voo + V6y) — RV (c6y) + tAug + vV divug)/po obtained through Eqs. (6),
and “u;;(0)” is given recursively by 9;(6) in the same manner. Similarly, we can define p;(0),
01(0), u;(0), p1:(0), 07:(0) and uy (0).

A local existence result for (5)—(9) in the following sense is indeed already shown in [28],
where (5)—(7) are written equivalently in the form of (1)—(3). Thus, we omit the details of the
proof and only describe the result as follows.

Theorem 1.3 (Local existence). Let € € (0,1] and §2 C R? be a simply connected, bounded

domain with smooth boundary 952. Suppose that the initial datum (o5, ug, 65) satisfies 1 +eo; >
m > 0 for some constant m, and

(9F € (0), 3 uc(0), 3f0°(0)) € H**(2), k=0,1,2.
Assume the following compatibility conditions are satisfied:
ug-n=u;(0)-n=0, nxcurlug=n xcurlu;(0)=0 onds$ (10)

and

% _ 265 (0)
on on

=0 ondsf2. (11)

Then there exists a positive constant T = T (o5, ug, 05, m, €), such that the initial-boundary
problem (5)—(9) admits a unique solution (o€, u¢, 0), satisfying 1 + €o€ > 0in 2 x (0, T¢) and

(3Fa€, df0°) e C([0, 7], H*F),
ofuc ec([0,T¢], H**)nL*(0. T H>*), k=0,1,2.
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Then, the main result of this paper is the following, which gives a uniform estimate for strong
solutions of (5)—(9), and the corresponding low Mach number limit.

Theorem 1.4. Assume that (o€, u€, 6¢) is the solution obtained in Theorem 1.3, where the initial
datum (05 , uf), 95 ) satisfies

(e w6 ||, © + e (o5 s 05) O 12 + | (1 +€05) ™[ < Do

for some given constant Dy > 0 independent of € € (0, 1], and the compatibility conditions (10)
and (11). Then there exist positive constants To = To(Do, §2) and D = D(Dy, §2), independent
of € € (0, 1], such that (o€, u€, 0°) satisfies the uniform estimate:

sup (||| (06’ us, 96) |||2,1 + e” (Utet’ iy, Gft)HLz + ”(1 + ‘76)_1 ||L°°)(t)
0<t<Ty
To 1/2
| J6o et <o 1
0

Furthermore, (o€, u€, 0¢) converges to (o, u,0) in certain Sobolev spaces as € — 0, and there
exists a function w(x,t), such that (u, ) € C([0, Tp], H 2y solves the following initial-boundary
value problem for the isentropic incompressible Navier—Stokes equations:

ur+u-Vu+ Vo = pAu, divu =0 in 2 x [0, Ty]
u-n=0, nxcurlu =0 onads2,

uly—o=ug ins2, (13)
where uq is the weak limit ofuf) in HZ(Q) with divug =0 in £2.
Definition 1.5.

M0 = swp ([[(o% 10 o+ 0 w08 2+ 104097 )0

t 172
| [0 ettt
0
Mg =M (t=0).
Similar as in [2,21], it suffices to show the following theorem to get the uniform estimate (12):

Theorem 1.6. Let T, be the maximal time of existence of the solution to the initial-boundary
problem (5)—(9) established in Theorem 1.3. Then for any t € [0, T¢), we have

ME(1) < Co(M§) exp[t'/*C (M 1))].

for some given positive nondecreasing continuous functions Co(-) and C(-).
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This article is organized as follows. In Section 2, we state some elementary lemmas and cal-
culus inequalities for the convenience of the reader. In Section 3, uniform estimates with respect
to the Mach number are shown by employing a careful analysis on both temporal and spatial
derivatives. To this end, we first estimate the density p = p(eo) to simplify the forthcoming cal-
culations. Then we show the LZ-estimate of (o, u,0), next the estimate of low-order derivatives
and finally the high-order derivatives. Integration by parts is usually invalid in the boundary case,
particularly in estimating high-order spatial derivatives. Thus, during the process of a priori es-
timates, we take the strategy of operator decomposition, so that one can control the divergence
and vorticity of the velocity, respectively. When estimating each derivative, we carefully balance
the singular differential operators of order € !, which leads to the uniform estimates for the full
norm. In Section 4 we give the proof of Theorems 1.4 and 1.6.

We end this section by introducing the notation used throughout this paper. By W*7(£2) and
H¥(§2) we denote the usual Sobolev spaces with the norms || - |y, and || - || g«, respectively.
By C, and Cy(-), C(-), C;i(-),i =1,2,---, we denote a generic positive constant, and positive
non-decreasing continuous functions of their argument respectively, which are independent of €.
And we shall use the following abbreviations:

LY(HY)=Lr(0,1; H*(2)), G (HY)=c(10,11, H (2)),
Il- ||Lf’(Hk) =|- ||Lp(o,t;1-1k)1 - ||c,(1-1k) =|- ||C([0,t],Hk)-

Furthermore, we denote the components of a vector by superscripts, for example, u/ means the
Jj-th component of a vector u.

2. Preliminaries
In this section, we list some lemmas which will be frequently used throughout this paper.

Lemma 2.1. (See [4].) Let 2 be a bounded domain in RN with smooth boundary 3$2 and
outward normal n. Then there exists a constant C > 0 independent of u, such that

lull s 2y < C (I divull gs1g) + curlul gs—1(q) + 1 - nll gs-12a0) + Nl gs-1(2))
foranyu € H*(2)N, s > 1.

Lemma 2.2. (See [27].) Let 2 be a bounded domain in RN with smooth boundary 32 and
outward normal n. Then there exists a constant C > 0 independent of u, such that

||M||HA(_Q) < C(” diVl/l”Hs—l(_Q) + || Curlu||Hs71(_Q) + ||M X l’l”Hs—l/Z(a_Q) + ”M”Hs—l(g)),
foranyu e H ()N, s > 1.
Lemma 2.3. (See [13, Part 1, Theorem 10.1].) Let 2 C RN be a bounded domain with

C*-boundary and u a function in W5 (2) N L9(2) with 1 < r, q < oc. For any integer j with
0 < j <k, and for any number a in the interval [j/k, 1], set
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1—j-l- : k+(1 )1
p N “\FTN aq'

If k — j — N/r is not a nonnegative integer, then

. -~
1D7u]l oy < Cltlyir g 1t i (14)

Ifk— j — N/r is a nonnegative integer, then (14) only holds for a = j/ k. The constant C depends
onlyon $2,1,q,k, j,a.

For the reader’s convenience, we give some special cases of (14) for £2 C R3 which will be
frequently applied throughout this paper:

2 1 1 1
2 3 3 2 2 2
|V2ul 2 < Cllull i slel s |92 2 < Cllull 21 Vull .
b o
7
lull s < Cllull 2y ullge < Cllully lull .

Moreover, by the Sobolev embedding theorem, we have

3 1 1 1
lullzoe < Cllullyra < Cllull o llull gy < Cllull o llull; .

3. Uniform estimates

During deriving the uniform energy estimates, we drop the superscript “e” of p€, o€, u¢, 6¢,
etc. for the sake of simplicity; moreover, we write M€(t), MS as M, My, respectively, for short.

3.1. Estimate of p(eo)

Note that p(eo) and its derivatives always appear as a coefficient of (o, u, ) and their deriva-
tives. Thus, for the convenience of computation, we estimate p(€o) in terms of the initial data
and u, by using the conservation of mass, namely Eq. (1). This can be done by the standard
energy method (see, e.g. [23]), thus we only sketch the proof here. For any integer k > 2, we
multiply (1) by —p ¥ to derive

1
=1 (8,p17k+u-V,olfk)dx—/‘plfkdivudx:o,
2 9}

which gives, by integrating by parts, that
d, _ k . -
o™ e = Co—lidivullie [ o7 e,

for some constant C > 0 independent of k. Then by Gronwall’s inequality and letting k — oo,
we obtain
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[o7 O = g | e exp(CVENUN 213
< Co(Mo) exp(C/tM).
Applying D%, 0 < || <2, to (1) yields
(D%p), +u-V(D*p) + D*(pdivu) = [u, D*] - Vp,

where D¢ is the spatial derivative with multi-index « and the commutator [a, b] is defined by
[a, b] := ab — ba. Then the standard energy method and the commutator estimates give

t
le®] 42 < IIPOIIHzeXp<C/ IIMIIHadS)
0

< Co(Mp) exp(C/tM).

Differentiating (1) in temporal variable and calculating as above, we obtain

t t
lor®)] 2 < <||pl<0)|\L2+ / ||u,||H1||p||szs> exp(c / ||u||Hsds>
0 0

< (Co(Mo) + M9l ¢, 112)) exp(CVTM).

On account of the lower order estimates, one finds that

” V(1) “ 2t H/Ott(t) ” 12
<exp(CvtM) [Co(Mo) + «/;M(“Pz e, cany + ||P||c,(H2))]~

Collecting all the estimates above and applying Gronwall’s inequality, we obtain

Lemma 3.1. For any 0 <t < min(7, 1),

(llotea) |l + [ o)™ o) (1) < Co(Mo) exp(v/7C (M)
3.2. Basic estimates

Multiplying (5), (6) and (7) by Ro, u and 6, respectively, and integrating over £2, we obtain
1d ) ' )
5] (VRo, /pu, Jeupd) ;> + | (Vi cutlu, i+ Adivu, Ve Vo)
1
N / (diV” (7“2 Fob - Rp92> +€%0 (2| D[ + é(divu)2)>dx
2

< IVallzoe (14 Iollee) (| (0, 0) | 32) + IVuell 121611 2).

Then from Gronwall’s inequality and Lemmas 2.1 and 3.1, we get
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Lemma 3.2. For any 0 <t < min(7¢, 1),

@1, 0)®| 2 + @ )] 241, = CoMo) exp(v/rC(M)).
3.3. Estimates for lower-order derivatives

Note that

/(MAM +AVdiva) - Vdivudx = (u+ 1) Vdivul?,
2

and
. 1d .2 1 .2 .
pu; - Vdivudx = 37 p(divu)“dx + Ept(dlvu) —Vp-usdivu |dx.
2 2 2

Thus, we integrate the product of V divu and (6) to obtain
t
Ly vz 2 Vv, — X Vo +V6) - Vdivudxd
EH\/,(_) 1vu(t)||L2+(/L+A)|| 1vu||L72L2—? (Vo +V0) - ivudxdt
0 £

t
1
= //<§pt(divu)2 —Vp-udivu + (,ou -Vu + V(o@)) . Vdivu)dxdt
0 £

< Co(My) + +/tC(M).

To balance the singular term on the left-hand side of the above inequality, we apply V to (5) and
multiply the resulting equality by RV over L2(£2) x (0, 1) to get

t
g”Va(t)”Lz+§//Vdivu~Vadxdt
0 2

t
R
= EHVUO”LZ — R//Vdiv(au) -Vodxdt
0 2

< Co(Mo) + CV/tlull 23, 10 170 112,

< Co(Mp) +1C(M).

Similarly, by (7)-(9) we can deduce
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t
c 2 K R .
S IVPVOO |2+ 18015 ) + z-//VG-levudxdt
0 £

1

C
< S IVeoVollz +c/(||p,||Lz||ve||§,l + 1ol 21011 211V0 | 1
0

+ (Lol g2 101 g2 + llo | g2) el g2 1 VOl g1 +6||VMII§,1 VO]l g1)dt
< Co(Mp) +tC(M).

Putting the estimates in the above three inequalities together and applying Lemma 3.1, we
obtain

Lemma 3.3. For any 0 <t < min(T¢, 1),
|(Vo.divu, VO)(©)| 2 + | (V divu, AD) | 2,2) < Co(Mo) exp(VIC(M)).

In view of Lemma 2.1, we have to bound w = curlu. From (6), we easily derive the following
equation for w = (wy, wy, w3)’.

p(wr 4+ u-Vw) — uAw = 9; pujs — 0 pu ji) + (3 (pui) du; — d; (pui)dycu )
= RHS. (15)

Due to the slip boundary condition (9), we see that

t

[Vow |2 + ullcurwi?, o = IVpocurluol2, + | [ (RHS)wdxd
L L2(L?) L
0 2

< Co(Mp) +/1C(M). (16)
Hence, we have

Lemma 3.4. For any 0 <t <min(T¢, 1), it holds that
||cur1 u(t) || 2t ||curl curl u || L2(12) < Co(Myp) exp(\/ZC(M)).
Next, we control the first-order time derivatives oy, u;, 6;, which satisfy
o+ édiv u; = —div(pu)y, 17)

R
,o(u,, +u- Vut) + :(VO} + VG,) — /,LAM; + AV diVMt

= —pius — (pu); - Vu — RV (a0), (18)
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R
Cv,O(en “+u- V@,) + — diVI/t[ — KAQ;
€

= e(2u|D@[* + ¢ (diva)?),
— cy(p:6; + (pu); - VO) — R((06 + o) divu),. (19)

Multiplying (17), (18) and (19) by o7, u; and 6, respectively, we reach
1 2 . 2
SN Row Sous, eupt) @2 + [ (Vieurlug, i+ divae, Ve V0) [ 22,
< Co(Mp) + ~/tC(M).
With the help of Lemma 3.1, we obtain
Lemma 3.5. For any 0 <t <min(T, 1), we have
| @1 ur 0@ 2 + |(curlus, divaey, VO) | 12,2 < Co(Mo) exp(v/1C(M)).
3.4. Estimates for higher-order derivatives

Multiplying (18) by V divu in L?(£2 x (0, 1)), we find that
t
A R
% |V divu(r) ||i2 -= / /(Vat +V0,) - Vdivudxdt
€
0 2

t
A
:‘M—; IIVdivuoHiz_/,/P(Mtt"’“'V“’)'Vdivudxm
02

t
+ / / (pus — (pu); - V) - Vdivudxdt, (20)
0 2

where the last two terms, which are denoted by /] and I, respectively, can be bounded as follows.

t
1] < / lollzoe (Netrell 2+ el g2 [Vl 2) 1V divuel| 2de
0

= f||p||L,°°(L°°)(||utt||L?°(L2) + ||M||L,°°(H2)||Vut||L,°°(L2))||VdiV”||L,°°(L2)

<tC(M),

and similarly,
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t

|12] S/(Ilpzllyllluzllyl + llull g2 Mol o e 1
0

+ Nl g2 ol g el o) IV divaell 2d
<tC(M).

To eliminate the singular term on the left-hand side of (20), we apply V to (5) and (7), multiply
then the resulting equations by RVo; and V6, in L2(2) respectively, to arrive at

LA(L?)

t
:—R/deiv(au)Vat
0 £

<J1C(M), 21)

t
R
RV +—/deivu~Vatdxdt
€
0 2

and

1
K 2 R .
SI00NS: + el VBV o+ ¢ [ [ 9 eive Vodxar
0 2

< Co(My) + V1C(M). (22)
Therefore, we summarize (20), (21) and (22) to conclude that

Lemma 3.6. For any 0 <t < min(T, 1), we have
[(Vdivu, A0)D) | 2 + | (Vor, VO | 12,2, = Co(Mo) exp(v/1C (M)).
7 (L)

Next, we will estimate the spatial derivatives of (oy, u;, 6;). Testing (18) and (19) by V div u;,
and A6, in L2(R2) respectively, we obtain

1
SIVadv @[22 + (a0 [V diva 72,2,

t
R
_— / / Vdivu, - (V(Tt —+ V@t)dxdt
€
0 2

'
< Co(My) + //(%at(divu,)z — €uyr - Vo divuy
0 2

— (,o,u, + (pou - Vu),) - Vdiv ut>dxdt

< Co(My) + v/1C(M)
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and

n | X

©NVAIB O + 186 )~

t
//dlvutAQtdxdt
0 £

t
< Co(Mo)+cv//(§a,|ve,|2+eenw-ve,>dxdz
0 2

t
+ / / A6, (cv (,o,@t + (pu - VG),) + R((p& + O’)diVM)t - e(S : D(u))t)dxdt
0 2

< Co(Mp) + /1C(M).

Similarly, we can establish the estimate for Vo, as follows.

t
R R
E” Vor (0|7, + —//Vdivul - V6dxdt < Co(Mo) + 1,
€
0 £
where

1
I :/deiv(,ou)t -Vodxdt
0 2
t
= / /(V div(pus) + V(or divu)) -Vo,dxdt
0 2

t
—l—ef/((Vo,)’VuVo, —divu|V6,|2)dxdt
0 2

<Vicm).
As a consequence, we obtain
Lemma 3.7. For any 0 <t <min(T, 1), we have
|(Vor, divu;, VO)D)|| 2 + [ (V divuy, AG)|| 12012 < Co(Mo) exp(v/1C(M)).

Next, we derive the crucial estimates for ||V div u () || 1212 and || V2o (1) 2. Integrating the
inner product of 9;(6) and 8; Vdivu in L>(£2 x (0, 1)), we obtain
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t

1 ) R .

§||8,~levu||it2(L2) - ;//&levu-(3,~V6+3,-V9)dxdt
0 2

t
= C//(W(P(uz +u-Vu)[* + |V2(00)[*)dxdt

0 2
< C1(I101 oo g2y (N0 10 g1y + Nl 0gg2)) + 101 0 412 10117 012
<tC(M).

To cancel the singular term in the above inequality, we multiply 9; V(5) by R(9; Vo + 9; VO) and
integrate to infer that

n | >

R 2
E(”&Vo(t)”Lz +2f 3 Vo - a,-vedx) +

t
ffainivu-(8iV0+8iV9)dxdt
2 0 2

R
= E(llaivaolliz +2/ 9; Voo - 35V90dx) + 11+ Iy,

2
where
t
I 2//3,'V0’ -0;V(odivu + Vo - u)dxdt
0 2
t
= [ / o;Vo - (8,-V(o divu) + 0;VoVu + Vzaaiu + VaaiVu)dxdt
0 2
¢
—//divu|8,~VU|2dxdt
0 2
<V o 42y VUl 2112
<Jic(M)
and

'
Izz//al-ve~8,-V(crdivu+Vo~u)dxdl
0 Q
t

=//8,-V9~(8iV(odivu)+8,-Vchu
0 2

+ Vzaaiu + Voo;Vu — Bivzau)dxdt
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2
< ViV Oll oo 2y ol Loe ) VUl 22

'
/fBiVQ-BiVU divudxdt
0 2

<Vicm).

+

Therefore, we obtain

Lemma 3.8. For any 0 <t < min(T, 1), we have

V2o @], + | V2 divul 12012 < Co(Mo) exp(V1C(M)).

Thanks to Lemma 2.1, it suffices to bound derivatives of curl # to close the uniform estimates.
Observing that n x (pw;)|se = 0, we multiply (16) by Aw in L2(2 x (0,1)) to get

|7 curlw®) 2 + uldwl}s o

t
= ||4/pocurlcurlu0||i2 —//(8j,0w,~, — 0ipwj) curlwdxdt
0 £

t
+ [ / Aw(3jpu,'t — 0ipuj; + 0 (oug)oku; — 3,'(puk)3kuj)dxdt
0 2

2
< Co(Mp) + \/;”/)”L?O(HZ)(”M||L?0(H1) ” v2””L,2(H1) + ”u”i;’O(HZ) ||“”L,2(H3))

< Co(Mp) + ~/tC(M).

In the same manner, we apply 9; to (16) and multiply the resulting equations by w, in L?(£2 x
(0, 1)) to deduce that

[Vow @2 + plcurlw s )
t

< [vAeutu |3+ [ [ w1+ |, - vul)axar
0 2

t

+ C// |wel(lewirndjo| + leuirdjor| + |(3; (pur)dhu;), |)dxdt
0 2

< Co(My) + +/tC(M).
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Thus, we conclude
Lemma 3.9. For any 0 <t < min(T, 1), we have

|| (curlcurl u, curlut)(t)H 2+ ||Acurlu||Ltz(L2) =+ || curl curlut||Ltz(H1)
< Co(Mo) exp(V1C(M)).
Due to (5) and (7), we have
KAO =cyp (O +u-VO)+ R(pb +o)divu
— e(2u|D(u)|2 + ¢ (div u)z) + R(a, + div(au)),

which gives

”AGHL,Z(HI) =< C\/;(”P”LfC(HZ)(”Ot||L;>°(H1) + ||M||L$O(H2)||9||Lf0(y2)))

+ CVi(llotl ooy + ol o oy el oo 12y )

3/2
L (H?)

1/2

1/4
t .
+ 114 lu] Lo

flucl]
Hence, we obtain the estimate for the first-order derivatives of A6 as follows.
Lemma 3.10. For any 0 <t <min(T¢, 1) it holds that
1AB1 241y < Co(Mo) exp(t'/*C (MD).
Finally, we estimate €oy;, €uy; and €6y, in order to close the energy estimates. Multiplying
9;(5), 9;4;(6) and 9;,(7) by Re2oy,, €2uyy and €26, respectively, and integrating over £2 x (0, t),

we use Lemma 2.1 to get

Lemma 3.11. For any 0 <t <min(T¢, 1), we have
€ ” (0115 Urr, O ) (2) ”Lz + G” (ure, Gtt)HL?(HI) < Co(Mo) eXp(t1/4C(M)).
The proof is similar to that of Lemma 3.2, since oy, u;; and 6;; are indeed the tangen-
tial derivatives of o, u and 6, respectively. Hence, we omit the details here. The algebraic

growth rate t1/4 on the left-hand side of the above inequality arises from the estimate of
fé fo €26,,8,,(6)dxdt, e.g.,

t
//63(2M|D(u)|2+C(divu)2)tt9t,dxdt
0 £

t
< / / (1€Vitse [Vl + [Vity ) €6 |
0 £
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S/(IleVutz||L2||VMIIHI F IVl 2 IV ur | g1 ) I €6sell 3t
2

172

1/2
=< t1/4(||€utt||Lt2(H1)||M||L;>°(H2) + ”MIHL?O(H')HMI ||Lt2(H2))||€9tt||L/too(L2)||€9n||Ltz(H1)-

4. Proof of the main theorems

Proof of Theorem 1.6. Collecting the estimates obtained in Lemmas 3.2-3.11, we easily obtain

[, u.0)®)| 2 + | (Vo divu)(0) | ;1 + || (curlu, VO, curl curlu, AO) (1) |, »
+ |01, ur 6@ || ;1 + €] (010, 11, 6:) D) 12
+ [0 u. 0] L2y | (Vdiva, AQ)HL%(HI)
+ | Ccurleurlu, Acurlu)] a2, + [ (Vor., divay, curluy, VO 122,

+ H (Vdivuy, curlcurl u;, Aef)“L,z(Lz) +€|| (uyy, 9”)||L,2(H1)

< Co(Mp)exp(t'/*C(M)), Y0 <t <min(T.,1), 0<e<1. (23)

In view of the boundary conditions (9), we make use of Lemmas 2.1-2.2 to get

lull s < C(lull -1 + 1 diveell gs—1 + [ curlull gs1),  s=1,2,3, (24)
[|curlu|| g1 < C(|| curlcurlu|| ;2 + || curlulle), 25)
| curlul| g2 < C(|| curlcurlu || g1 + |lull 2 + || curlcurlu ~n||H1/2(89))
< C(lAcurlull;2 + llull g2 + || curlcurlu - nll g1250))- (26)
Therefore, to obtain the boundedness of ||u|| ;2 (H3) it remains to estimate || curlcurlu -n| g1/2(50)
t
(see also [24]).

We construct the local coordinates by using the isothermal coordinates A (Y, ¢) to derive an
estimate near the boundary (see [16] for instance), where A (¥, ¢) satisfies

)\1//')‘1//>0’ )\.w')\.(p>0 and )»1/,-)»(/720.

We cover the boundary 952 by a finite number of bounded open sets WkcR3, k=1,2,...,L,
such that for any x € W¥ N £2,

x =2, o) +rn(WX (L ) = AL 0, 1),

where AX (17, @) is the isothermal coordinate and 7 is the unit outer normal to 3£2. For simplicity,
in what follows we will omit the superscript k in each W*. Then we construct the orthonormal
system corresponding to the local coordinates by

A A
2y ez:_‘/’, e3=n(A) =e| X en.

€1 = )
1Ay 1Al
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By a straightforward calculation, we see that J = detJacA € C? and
J =detJacA = (Ay X Ay) - e3
= Ay Al +7(Ihylng - 2+ Aglny - 1)
+r2[(ny - e)(ng - 2) — (ny - €2)(ny - e1)] > 0,

for sufficiently small » > 0. Obviously, Jac(A™Y = (JacA)~L. Set yi=01,y2, ) =W, e,r),
ajj = ((JacA)_l)ij. Then

n = (az1, as, as3), 27
and the tangential directions t; = (a;1, a2, a;3) (i = 1, 2) with

3
Y aijaz; =0 fori=1,2.
j=1

Then we denote by D; the partial derivative with respect to y; in the local coordinates. To be
precise, D3 is the normal derivative and D; for i = 1,2 are the tangential derivatives in the
original coordinates. Moreover, we have

3
0y =Y ayD, j=1,2,3.
k=1

Next, we denote the vorticity w = curl u near the boundary by w := (wy, W2, w3)" := w(t, A(Y)),
thus

curlw(z, A(y)) = (ak2 Di W3 — ags Dy, ax3 Dy by — axy Dx 3, axy Dy — agy Dy by ).
By (27) and the above identity we get
(curlw - n)(r, A(y)) = [(az2a13 — azzai2) D1 + (a3a23 — azzazn) D2 |,

+ [(azza1 — az1a13) Dy + (azzaz — azjaz3) D2 |,

+ [(az1a12 — aznai) D1 + (az1ax — aznazi) D |3

2
Z(n x 7;) - D;
i=1

(Di((n x ) - W) — Di(n x ;) - W)

Il
.MN

I
-

I
.MN

(—D,’((n X w) . ‘L'l') — D,'(n X ‘E,') . w)

—
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Recalling n x w|ye =0 and D; (i =1, 2) are the tangential derivatives, we find that

curlw - nllgi2pe) < Cllwllgirge) < lullge. (28)
Therefore, with (23), (24), (25), (26) and (28), Theorem 1.6 is shown. O

Proof of Theorem 1.4. The proof is in the spirit of [2,21]. Assume that Theorem 1.6 holds and
T¢ < +o0 is the maximal life time of existence for the solution obtained in Theorem 1.3. Then
for any 0 <¢ < min{T¢, 1}, we have

M€ (1) < Co(M§) exp(t'/*C (M (1)), (29)
where MS < Dy for 0 < € < 1. In the sequel, we choose D > C(Dyg) and next 77 < 1 such that
C (Do) exp(T1'/*C (D)) < D. (30)

Let t+ < min{T*¢, T1}. By combining the inequalities (29) and (30) with the hypothesis
ME(0) = Mg , we have that M€(¢) # D. Besides, we can assume without restriction that Dy < D,
so that M€(0) < D. Since the function M (¢) is continuous, we obtain

M@) <D fort <min{T¢ T1}and0<e <1. 31)

Consequently, 7€ > T} for 0 < € < 1, otherwise, by using the uniform estimates in (31) and
applying Theorem 1.3 repeatedly, one can extend the time interval of existence to [0, 7], which
contradicts to the maximality of 7¢. Therefore, M (t) < D for any ¢ € [0, T1] where T} is inde-
pendent of € € (0, 1]. Clearly, the conclusion is also true for 7€ = 400 by applying the same
argument. This completes the proof of Theorem 1.4. O
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