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Abstract

In this paper, motivated by the chemotaxis—Navier—Stokes system arising from mathematical biol-
ogy [43], a modified shallow water type chemotactic model is derived. For large initial data allowing
vacuum, the local existence of strong solutions together with the blow-up criterion is established.
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1. Introduction and main results

A mathematical model was proposed in [43] for bacteria cells living in a viscous fluid, where
the process is under the influence of convective fluid transportation, the gravitational force and the
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chemotactic movement driven by biological signals. In this paper, we consider the chemotaxis—
shallow water system

ny +div(nu) = D,An—V - (nx(c)Vc),

¢t +div(cu) = D.Ac — nf(c),

hy + div(hu) =0,

hu, + hu - Vu + h>Vn + %(1 +n)Vh? = pAu + (u+ A V(diva),

(1.1

which is derived from the chemotaxis—Navier—Stokes equations in [43]. Here, the unknowns are
n, ¢, h, u presenting bacterial density, substrate concentration, the fluid height and the fluid ve-
locity field, respectively.  C R? is the physical domain where the cells and fluid move and
interact. Constants D,, and D, are the corresponding diffusion coefficients for the cells and sub-
strate. The chemotactic sensitivity x (c) and the consumption rate of the substrate by the cells
f(c) are supposed to be given smooth functions. The constants i and A are the shear viscosity
and the bulk viscosity coefficients respectively with the following physical restrictions:

uw>0, u+r>0.

Before getting into details on the derivation and mathematical analysis of (1.1), related math-
ematical results on chemotactic models in biomathematics and shallow water system in fluid
dynamics will be outlined.

Chemotaxis is a well-known biological phenomenon describing the collective motion of cells
or the evolution of density of bacteria driven by chemicals, such as cell migration, formation
of organs, cancer progress (and etc.). In the last few decades, scientists developed mathemati-
cal models for chemotaxis, among which the best-studied one is the Patlak—Keller—Segel system
[27,28,38]. After the first existence and blow-up results in [25], mathematical analysis on chemo-
tactic models attracted many mathematicians to work in this field. The reason why this type of
system is interesting is that it induced two different mechanisms, namely diffusion and aggrega-
tion. A large series of results have been obtained for a phenomenon called chemotactic collapse,
which was originally conjectured in [11,37], i.e., there exists a threshold of critical mass for
global existence and finite-time blow-up. One may refer to [5,21,39,41,44] for more details. For
multi-dimensional Patlak—Keller—Segel system with degenerate diffusion, the threshold was es-
tablished in [1,7,8,24,45]. For the parabolic—parabolic Keller—Segel model and kinetic models
for chemotaxis, interested readers can refer to [2,6,10] and the references therein.

The evolution of an incompressible fluid in three space dimensions in response to gravitational
and rotational accelerations can be simulated by the non-linear shallow water equations. The
solutions were studied in [20,40,42] with the initial data close to a constant equilibrium state
away from vacuum. The local solutions for general initial data and global solutions for small
initial data in various spaces are achieved in [14,46]. For arbitrary large initial data and the case
that the height of fluid surface may vanish, the global weak entropy solution was obtained in
[3,4,19,29]. Later on, for initial data allowing vacuum, the local existence of classical solution
was obtained in [15], and the case of the degenerate viscosity was treated in [30].

The shallow water system is also regarded as an important extension of the two dimensional
isentropic compressible Navier—Stokes equations with rotating force. There are numerous liter-
atures on the existence and behavior of solutions to compressible Navier—Stokes equations with
constant viscosity. For initial data close to a non-vacuum equilibrium, the existence of classical
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solutions is known in [36]. For arbitrary data, under suitable compatibility condition, a local the-
ory was established successfully, see [12,13,35]. The major breakthrough is due to Lions [32]
where global existence theory of global-in-time weak solutions is achieved, see also the general-
izations in [17,26]. However, little is known on the structure of such weak solutions, in particular,
the regularity and the uniqueness of such weak solutions remain open. Recently, for the case that
the initial density is allowed to vanish and even has compact support, the quite surprising global
existence and uniqueness of classical solutions are established; one may refer to [23,31] and the
references therein for more details.

Recently, a coupled system of chemotaxis and viscous incompressible fluid proposed in [43]
has been investigated by many mathematicians. In [34], local-in-time weak solutions were con-
structed. In [9,16], some existence results and blowup criteria of classical solutions to Cauchy
problem were obtained. In [33], global existence of a weak solution was obtained in two dimen-
sions, see also [18]. For initial boundary value problem, the global existence of two dimensional
regular solutions and three dimensional weak solution were obtained in [47,48].

Motivated by the experiment report [43] and the fact that the surface of the fluid is a free
boundary, we propose the following two hypotheses for a modified model. Firstly, the cells and
substrate both stay at the surface of the fluid. Secondly, the vertical acceleration of the fluid can
be neglected comparing to the horizontal scales of the fluid. Both of the assumptions are based on
the observation in [43], and the rationality of them will be discussed in the next section. With the
aid of these two hypotheses, the idea of deriving shallow water system from three-dimensional
incompressible Navier—Stokes equations will be implemented in order to obtain (1.1) in sec-
tion 2. Therefore, compared to the model that has been studied in [9,47], the shallow water type
chemotactic model has its own advantages since it keeps the essential ingredients of the three di-
mensional fluid mechanics with free surface. The derivation of this modified system stems from
physical backgrounds: conservation laws and diffusion mechanism.

For simplicity, let

D,=D.=1, x(=1, f(o)=c,

and the results obtained in the current paper can be easily modified for general x and f, as the
choices in [47,48]. As usual, the system will be studied with initial conditions

(n,c,h,u)(x,0) = (ng, co, ho, ug)(x), (1.2)

where ng > 0, co > 0, hog > 0 satisfying the compatibility conditions

1
—pAug — (i +2)V @ivag) +hgVno + 5 (1+no) Vi = Vhog (1.3)

for some g € L2(2). We look for solutions in the following two cases for (1.1):
Cauchy problem: Q =R?, and

(n,c,u)(x,t) > (0,0,0), h(x,t) —> h> 0, as|x| — oo, (1.4)

where A is a positive constant;
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initial boundary value problem: €2 is a bounded domain in R? with smooth boundary, and

on dc

(—,—,u)=1(0,0,0) on (0,T) x 0%2, (1.5)
v dv

where v is the outer unit normal to the boundary.

For 1 < r < 0o, we denote the standard homogeneous and inhomogeneous Sobolev spaces as
follows:

L'=L"(Q), DY =D (Q)={uclL],

Wk,r — Wk’r(Q) Hk Wk 2 Dk Dk 2 Dk {
k 2 k
H§ = L*N Dy, ffdx:fgfdx.

Q) |VFue L7}, llulprr == || VFul

b

L’

Moreover, the material derivative is denoted by

f=fi+u-Vf.

The aim of this paper is to establish strong solutions without restriction on the smallness of the
initial data, which allows the vacuum for both the density of the bacteria cells and the fluid, i.e.,
the concentration of bacteria cells and the height of the fluid are allowed to vanish if necessary.
Furthermore, a blow-up criterion is obtained.

Theorem 1. Assume that the initial data (1.2) satisfy that ng, co, ho are nonnegative and
2 3 1 2 = 1 g
noe Hy, coeHy, uoeDyND”, ho—heL NW" 9, (1.6)

for some q > 2. Furthermore, the compatibility conditions (1.3) hold. Then there exist a T* > 0
and a unique strong solution (n, c, h,u) to the initial boundary value problem (1.1)—(1.2) to-
gether with (1.4) or (1.5) such that

neC(0,T*; HY), ceC(0,T*]; Hy),

n,€ L0, T*; L2 N L20, T*; HY), ¢, € L0, T* HY)NL%*0, T*; H),
(h—h)eC(0,T*]; Wh), h, e C(0,T*; L?), (1.7)
u e C([0,T*]; D, N D*) NL*0, T*; D>9),

u; € L2, T*; LN L2, T*; DY), hu, € L0, T*; L?),

where h =0 in the case of 2 being a bounded domain in R2. Furthermore, the following blow- -up
criterion holds: if T is the maximal time of existence of the strong solution (n, c, h,u) and T <
~+00 then

T

tim ([ ID@)l=dr + sup nfix) = os, (1.8)
T—>T 0 0<t<T

where D(u) is the deformation tensor with D(u) = %(Vu + Vul!).
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Remark 1. For chemotaxis—Navier—Stokes system, some known results concerning the existence
of local-in-time solutions and blow-up criteria were obtained in the case of positive bacterial
density, or in the case of absence of fluid, or to Cauchy problem. In this paper, we consider the
chemotaxis—shallow water system containing vacuum states, that is, the bacterial density and the
fluid surface height are allowed to vanish.

Remark 2. The higher order estimates of the unique strong solution obtained in Theorem 1
can be easily obtained if ng € H3, co € Hg, ug € Dé N D3, ho — he H3, and thus the unique
strong solution becomes a classical one for positive time, please refer to [12,15] for details.
Our result for the chemotaxis—shallow water system (1.1) is the very first step by using a
chemotaxis—compressible fluid model to investigate the dynamics of swimming bacteria. Based
on the blow-up criterion (1.8), the next expected work is on the global existence of classical
solutions.

Remark 3. Notice that the chemotaxis term in the equation for n (1.1); leads to a cross-diffusion
term n (c) Ac, thus it is reasonable to have higher regularity of ¢ than that the regularity of n
in (1.7).

Remark 4. We remark here that our model is a chemotaxis—compressible fluid model, and thus
the fluid velocity field is not divergence free. As a consequence, some estimates in the existence
theory for the chemotaxis—incompressible fluid model cannot be applied here. Moreover, com-
pared with the compressible fluid models, there are strong non-linear terms (1 +n)VA?* and h>Vn
in the conservation of momentum, which are new ingredients in the model of chemotaxis—fluid.
One of the main technical difficulties in this paper is to deal with the two terms for arbitrary large
initial data allowing vacuum.

The rest of this paper is organized as follows. In section 2, two general hypotheses are stated
based on the experimental observations in [43] and then a chemotaxis—shallow water model is de-
rived coupling with the chemotaxis equations and the viscous incompressible fluid. In section 3,
the existence and uniqueness of a local strong solution are proved based on the corresponding
a priori estimates obtained for the linearized system. Finally, section 4 is dedicated to derive a
blow-up criterion.

2. Derivation of chemotaxis—shallow water system
2.1. Background and hypotheses

Idan Tuval and collaborators reported a detailed experimental and theoretical study of an inter-
esting mechanism called the chemotactic Boycott effect in [43], where the following chemotaxis—
Navier—Stokes system was proposed

n+U-Vn=D,An—V-(nx(c)Vc),
¢t+U-Ve=D.Ac—nf(c),

divU =0,
oU;+U-VU)+Vp=AU —nVe,
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where p is the constant density of the incompressible fluid, U is the vector field in three di-
mension, p is the pressure and ¢ represents the gravitational potential. Recalling the original
experiment in [43], we notice the following facts. Very tiny amount of cells is slowly dropped
into the steady fluid by a syringe. Compared to the diffusion effect, the advection in the Boycott-
like flows dominates the mechanism. Therefore, the buoyant force is significant until the cells
move to the surface of the fluid. As a consequence, after the bacteria cells have been injected into
the fluid, they move vertically to the surface of the fluid in a short time. Afterwards, they stay on
the surface. Furthermore, the horizontal scales of the fluid are much larger than the vertical scale.
Based on the above concerns and mathematical interests we propose two fundamental hypothe-
ses for the modified model, motivated by the experiment report [43] and the fact that the surface
of the fluid is a free boundary, namely,

1. the cells and substrate both stay at the surface of the fluid, which was observed in the exper-
iment;

2. the vertical acceleration of the fluid can be neglected comparing to the horizontal scales of
the fluid.

2.2. Formulation

This subsection is devoted to derive chemotaxis—shallow water system (1.1). Denote h =
h(t,x,y) the height of the flow at time ¢ and position (x,y) € 2. Under the first hypothe-
sis, the cell density and substrate concentration are independent of the vertical variable z, i.e.,
n=n(t,x,y) and c = c(¢, x, y). Moreover, from the second hypothesis we have the following
equations for the velocity field U = (u, v, w)(t, x, y, z), for (x,y) € Q and z € (0, h), where
(4, v) and w are the horizontal velocity and the vertical velocity respectively.

dw

E::w,+uwx+va+ww1=0,

du dv _ dw 2.1)
dz 9z 9z

u(t,x,y,z)=u(t,x,y),v(t,x,y,z) =v(t, x,y).

We first derive the equation for n(¢, x, y). Let D C Q be any bounded domain with smooth
boundary, u(t, x) = (4, v)(t, x) with x := (x, y) € D and v be the outer unit normal to dD. The
change of total cells in D from time #; to #; (1 < tp) comes from the transportation flux nu, the
diffusion flux J, = —D,Vn and the chemotactic flux nx (c)Vc across the boundary dD. The
mass conservation of the bacteria cells in D is

/n(tz, X) —n(t, x)dx

D
//nu vdSdr — // - vdSdr — //(nx(c)Vc) vdSdr
0D
th 153 )
—[/div(nu)dxdt+/fDnAndxdt—//V-(n)((c)Vc)dxdt.
ty D n D n D
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It leads to the differential equation for n,
n; +div(nu) = D,An —V - (nx(c)Vc).
As to the substrate distribution c(%, x, y), one can follow the same argument to arrive at
¢; +div(cu) = D.Ac — nf (c).

Next, the differential equation for the height of the fluid (¢, x) will be derived. Suppose z €
[0, h(t,x)], thus

h(t,x)
0= / divUdz
0

h(t,x) h(t,x)
0

ad
:a f udz+@ / vdz~|—(—uhx(t,x)—vhy(t,x)—l—w)|zzh(,,x)—w|z:0.
0

Note that w|,—¢ = 0, and on the surface z = h(z, X), the normal velocity

dh(t,%)
T A

w = h(t,X) +uhy(t,X) +vhy(2,X).

Therefore, the equation for A(z, X) is given by
hy + div(hu) = 0.

Finally we turn to the equations for the conservation of momentum. As to the general three
dimensional inviscid fluid, the equations for momentum are given by
0 (ut + uuy + vuy + wuz) = —Du,
o (v, + uvy +vvy + wvz) =—py,
1Y (wt +uwy +vwy + wwz) =-—p;— (p+n)g,

where g is the gravity constant. With the aid of (2.1), the system is thus reduced to
1Y (ul +uuy + Uuy) = —Dx>
p (v +uvy +vvy) = —p,, 2.2)
(p+mg=p2 =0
_ —_ n = _——=
pz—(p §=p a

Integrating the third equation in (2.2) along z direction from the surface z = h(z, x) to the bottom
z=_0yields
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0

p(t,x,0)= / p:(t,x,2)dz + p(t, x, h(z, X))
h(t,x)
0

= / —(p +n(t,x)gdz + pa
h(t,x)

=g(p +n(t, x))h(t, X) + pa,
where p, = 1 Pa is the unit pressure of the air. Therefore, the gradient of p is
px =gnch+g(p+n)hy, py=gnyh+g(p+nhy. (2.3)
Substitute (2.3) into (2.2), the momentum equations can be rewritten as
o, +u-Vu)+ghVn+g(p+n)Vh =0.

In the end, we integrate the above equation from z =0 to z = h(¢, x) to discover

1
phu; + phu - Vu + gh’>Vn + 2500+ n)Vh>=0.

By adding the viscosity term as in [15], taking the physical constants p and g to be one for
simplicity, the chemotaxis—shallow water system (1.1) is established.

3. Local existence of a strong solution

In this section, we aim to prove the local existence of strong solutions to the initial boundary
value problem (1.1)—(1.2) together with (1.4) or (1.5). In order to do this, we first focus on the
following linearized system

¢; +div(cv) = Ac — mc,
n; +div(nv) = An—V - (nVc),
h; + div(hv) =0,

B 1 ) 3.1
hu, +hv-Vu+ Lu+h“Vn+ 5(1+n)Vh= =0,
(C,l’l,h, u)|t=0=(nO,C0,h0,u0) inQv
(1.4)or (1.5)
and intend to obtain a priori estimates for the linearized system. Here L := —uA — (A 4 ) Vdiv
is a strongly elliptic operator and v is a given vector satisfying
ve C([0,T1; HL N HH N L2([0, T]; W*9),v, € L*([0, T1; HY) (3.2)

for g > 2. Moreover, m is nonnegative and
m e C([0,T]; H}) N L*([0,T]; H?), m, € C([0, T); LH N L*([0, T]; HY).  (3.3)

Throughout this section we suppose that # < 1.
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Lemma 1. Assume that the initial data (ng, co, ho, uo) satisfy (1.3), (1.6) and ho > 8 for some
constant § > 0. h and q are as in the assumption of Theorem 1. v and m are given functions
which satisfy (3.2) and (3.3). Then there exists a unique strong solution (n, c, h,u) to (3.1) such
that for any T > 0,

neC(0,T*]; HY), ceC(0,T*]; HY),

n, € L0, T*; L) NL20, T*; HY, ¢, € L, T*; H')YN L%, T*; H?),

(h—h) e C([0, T*]; W4), h, e C(0,T*; LY), (3.4)
u e C([0,T*]; D, N D*) NL*0, T*; D>9),

u; € L0, T*; L>) N L%, T*; DY), hu, € L>(0,T*; L?).

Proof. It is well known (see Lemma 1 and Lemma 9 in [12]) that the existence and regularity

of unique solution to the equation (3.1); can be obtained by the characteristic method and the
solution is represented as

t

h(x, 1) = ho(U(O; X, t)) exp{ - /divv(U(s; ) s)ds}, (3.5)

0

where U € C([0, T']; [0, T] x 2) is the solution of the following backward ordinary differential
equation

d

—U(S; X, t) - v(U(S; X, t),S),
ds

U(t;x,t)=Xx.

Next, with (3.2)—(3.3), the unique solution (c, n) satisfying the regularities in (3.4) can be
achieved by solving the linear parabolic equation (3.1);, and then (3.1),.

Finally, recall that L £ —u A — (u + ) Vdiv is a strongly elliptic operator (see [12] for in-
stance). With the regularity properties of & and n, the existence and regularity results on solutions
to the linear parabolic equation (3.1)4 can be obtained. We omit the details. O

Now, we are devoting to establish a priori estimates on the solutions obtained in Lemma 1,
uniformly in igf ho = §. Before giving a priori estimates, we define

S, m,t):=1+ sup {[IVoll3, + Iml3,, + Iml7.}

0<s<t

t

+/ (||vt||3,. HIVold., +1Vml3, + ||Vm,||iz)ds, (3.6)
0

and
2 2 2 2
Co= 1+ lleoll + Inolfz + Ivhowol 2 + ol

+ IVhollZa + llho — A2 50,00 + 181175 3.7)
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A priori estimates for the linearized system are obtained in a specific order: starting from the
equation for mass conservation to have a priori estimate for 4, we then investigate the equation

of c. Based on these estimates, the equation for » is the next and eventually the estimate for u is
able to be obtained. The results will be listed in the following subsection.

3.1. A priori estimates

Lemma 2. Suppose that hg — he L2(Q) nwla(Q) for h >0, where h =0 in the case of Q
being a bounded domain in R%. With v given in (3.2), the solution of the following linearized
equation

hy +div(hv) =0, in (0, T) x Q,

(3.8)
hli=0 =ho, (1.4)or(1.5)

yields the estimates

sup (I (h =k, h2 = B2)125, 0 < CCooxp {cq>(v, m, e’ } (3.9)

0<s<t

1
sup (IVAIZ, + IVA2I2, + [h12,) < CCo® (v, m, ) exp {cq>(v, m, 0t } (3.10)

0<s<t
forall p €2, ql, where ® and Cy are defined in (3.6) and (3.7).

Proof. In view of the formula (3.5), it is evident that

N2
sup ”h - h”LZﬂLoo
0<s<t

t
=2 sup (Iho(UO:x,00) = Al + i) exp { / divo(U (s;x,1), ) o=ds |
0<s<t o
gccoexp{ch(u,m,z)z%}. 3.11)
And we further observe from (3.11) that

~ ~ ~ 1
sup [|h* —h*|75, o < sup ||h+h||iw~||h—h||iwosccoexp{w(v,m,z)zz}.
(3.12)

O<s=<t 0<s<t

Hence the first estimate (3.9) is obtained from (3.11)—(3.12). Next we will prove the second
estimate (3.10). For any p € [2, ¢], operating V on each term of the equation (3.8), multiplying
the resulting equation by p|VA|?~%>Vh and integrating over Q give

1d
EZ/|Vh|f”dx=—/pwl-V(Vh.v)|Vh|P*2dx—/pv11-V(h divv)|Vh|P~2dx

-1
< CIIVoll= VAL, + Clkl e V20l Lo IVRIT,
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We thus deduce from Gronwall’s inequality that

sup [V, < CCoexp {CO@,m 0], Vpel2.ql. (3.13)

0<s<t

which implies for any p € [2, q],

sup [[Vh*|7, = sup [12hVh]|7,

0<s<t O<s<t

<C sup [h)3xlVRI3, < Ccoexp[ch(v,m,t)r%}. (3.14)

0<s<t

Finally, the equation (3.8) together with (3.13) guarantees for all p € [2, q],

sup 1], = sup || —div(hv)||2, <cc0q>(u,m,t)exp{c<1>(v,m,t)t%}. (3.15)

0<s<t 0<s<t

Therefore the second estimate (3.10) holds from (3.13)—(3.15). O

Lemma 3. Let ¢ be a solution of the following linearized equation

{ct +div(cv) = Ac —mc in (0,T) x €, (3.16)

cli=o=co inQ, (1.4 or(l.5).

Then we have

t
2 2 2 2 .02 2 1
sup (lell2s +||cz||L2)+/(||Vc,||L2+||v ¢l )ds = CCoexp{CO (v, m, 1y |,
0

0<s<t
(3.17)
t
sup (I V2l + Ve l7,) + / (IV2erlI32 + lewll - )ds
0<s<t
0
< CCy®2 (v, m, 1) exp |Cc1>2(u,m, r)t%}. (3.18)

Proof. Multiplying the equation (3.16) by ¢ and integrating the resulting equation over 2 yield
that

1d 2 2 - 2 Lo 2
Sdr le|?dx + [ [Ve|"dx = — [ cdiv(cv)dx — [ mcdx < E(”lel’”LDC +limllz=)lell;.-

Gronwall’s inequality leads to

t
sup llc)?, +f IVell?,ds < ccoexp{cq>(u,m,t)t%}. (3.19)
0

0<s<t
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In order to estimate supg, ||Vc||iz, we then multiply the equation (3.16) by ¢;, integrate by

parts, and apply Gagliardo—Nirenberg’s inequality to get

1d
EE/Wdzdx—l—/|c,|2dx:—/Vc~vc,dx—/divv~c~c,dx—/mc-c,dx

<ellerll3, + C@LvlIT IVelZs + el 21 Voll7e + llmli licll7> + 1Vel75 1.

By choosing ¢ = 1/2 and using Gronwall’s inequality, we have

t
sup | Vell?, +/ leg[1? ,ds < ccoexp{cqﬂ(v,m,t)t%}. (3.20)
0<s<t
0
For the estimate of supy, <, Ilc; ||iz, we differentiate the equation (3.16) with respect to ¢,
¢t + Ve v+ Ve - vy + e dive + edive; = Ac; — myc — mcy, (3.21)

multiply the resulting equation by ¢; and integrate the resulting equation to obtain

li 2 29¢ i _ 2 4.
27 lci|“dx 4+ [ |V |7dx = c; Ve - vdx c;Ve - vdx ¢; divvdx
6
— /cctdivvldx — /m,cctdx — /mctzdx = Z I;.
i=1
A straightforward computation shows that
1 5. | )
Ih=— | ¢ V¢, -vdx = 3 c;divudx < §||d1vv||Loo||c,||L2,
_ 2q: 2
13——/C,d1vvdxs IV olleller ..
Is=— / mycedx < 2,172 + 2llel 2 Vel 2 lme 2 Ve 2.
16=—fmc3dxs bl ool 1.

Additionally, by applying Holder’s inequality, Gagliardo—Nirenberg’s inequality and Young’s
inequality, we observe

1 1 1 1
I2=_/Ctvc'vtdxfC”VCHLZHCI||zz||Vct”zznvl”zzuvvt”zz
<e||[Ver |2, + C@)|[ Vel || Ve )2 2 4+ C)|V
<ellVerl2s + C@IVEl2 IV 2alle 125 + C@ Vel vl 2.

1 1 1 1
ILi=- / cerdivo,dx < dive, [l 2 llel 5 1Vel 2 lledl 2, Vel

3
<ellVell7, + C@ IVl 2lle7 . + C@IVvl L Vel2liella.
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Then combining all the estimates [;,i =1, - -- , 6 and Gronwall’s inequality leads to
t
sup [leell3 +/ IVerll7,ds < CCoexp {Cq>2(v, m, 1) } (3.22)
O<s<t
T 0

Moreover, the classical LP-theory asserts
2 .
192l 2 = € (llerll2 + Idivew)l 2 + Imell 2)

1 1 1 1
< C(IIC:IILZ + vl IVellz + el Vel Vol g + el Vel IImI|H1>,

(3.23)
which together with (3.19), (3.20) and (3.22) implies that
t
f IV2¢] ;2ds < CCoexp {cq>2(v,m, NE: }
0
2 12 2 2 1
sup |V c||L2 <CCpd“(v,m,t)expiCO“(v,m,t)t% .
0<s<t
The same argument shows that
1
/ 1V2¢]l%,ds < CCoexp [C<I>2(v, m, O } (3.24)
0
2 12 2 2 1
sup ||V C||H1 <CCyd“(v,m,t)exp{CO (v, m,t)t4}. (3.25)

0<s<t

Therefore the first estimate (3.17) holds by virtue of (3.19)—(3.22) and (3.24). Now we turn our

attention to prove (3.18). Starting from the estimate for sup |[V¢; ||i2 , we multiply the equation
0<r<T
(3.21) by ¢4 and integrate the resulting equation to discover

1d
EE/|ch|dx+/ctztdxz_/vcf‘vcltdx_/vc'szndX—/ctcndivvdx

6
—/cc,tdivv,dx—/m,cc,,dx—/mc,c,,dx =:ZJ,-.
i=1

We readily check that

2 2 2
h=—/va%@sumwy+awwmmwmm,

2 2
Jz=—/VC~szndX§8IICnIILz +C@ Vel 20Vl llvell g2 Vel g2,
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J=— /a%mww<ﬂmmﬁ+cwmmmuamhb
Jy=— dive,dx < 2. +cC 2 2
= cepdivordx < ellelly 2 + C@)llellpoollvell s
Js=— fmw%&<dmwm+C@MhMme
b et 1va
Jo= /mctcttdx < Clles|l 2 ||m|| AVml Slledl Vel
< 2 C 2 Ve |12 C(e) 2
<éllcul2, + C@lmlllel 2 1Ve 12 + C@llmli3 el 2.
Consequently, we conclude from the estimates J;, i =1, --- , 6 and Gronwall’s inequality that

t
sup 1Ve,12, +/ lewl)? 2ds < cc0¢2(v,m,t)exp{cqaz(v,m,t)t%}. (3.26)

0<s<t

Furthermore, we proceed the similar argument as in (3.23) to find

IV2el7

<c(fenl? v 2 2 di 2 divoll2 2 2
< C(lleullZs +1Ver - vl + Ve - v 112, + lledivo 12, + llerdivol?s + llem 2, + lme; |2
< CCy®2 (v, m, 1) exp [cq>2(v, m, i }

which along with (3.25) and (3.26) gives the second estimate (3.18). O

Lemma 4. Suppose that n satisfies the following linearized equation

{nl +div(nv) = An— V- (nVe) in (0,T) x €, (3.27)

nli=o=ng in, (1.4)or(l.5),

where v is given in (3.2). Then,

1
sup (||n||1%,l + ||n,||§2) +/ V]2 ,ds 5ccoexp{ccgexp{cqﬁ(v,m,t);z}], (3.28)

O<s<t

/ 192012 ,ds < CCJexp {ch exp{C D (v, m, 1)t }}, (3.29)
202 242 2 3 1

sup [|[Vn|l;, < CCyP“(v,m,t)exp  CCyexp{CP (v, m, 1)14} . (3.30)

0<s<t

Proof. To prove the estimate (3.28), we can follow the argument in Lemma 3 step by step and it
remains to check the terms [V - (nVe)ndx, [V - (nVe)ngdx and [(nVe), - Vn,dx. A straight-
forward computation leads that
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/ V- (nVendx < | Vall 2llnll Vel o < 2elVal?, + C@)linl2, Vel 2, 1Vl

/v - (nVOndx < ellnll3, + C@E) (1Al + I1Vel 7o) (1VRl7, + lInll7).,

/ (nVe), - Ingdx < [V |2,
+C@(IVell 21Vl 2175 + lInll 2 (VR 211 Vel 2 Vel 2).-

The above estimates and (3.17)—(3.18) imply the first estimate (3.28). Eventually, the standard
L? theory guarantees

192013 = € (JInel12, + Idivr) 12, + 1V - (1Y) 12, )
<Clnll32 + ClvllzIVal7, +ellV2nl7, + C@Vall3 [ Vell7 [V 3el?,
+ Clinll 2 1Vall 2 (Idivoll 2 [Vl 2 + 1 Vel 50),

which provides us the last two estimates (3.29), (3.30) in view of (3.17), (3.18), (3.28) together
with the assumptions on v. O

Lemma 5 is devoted to obtain a priori estimate for # in Lemma 6.

Lemma 5 (/15]). Ifﬁ > 0 is a constant, h(x) and w(x) are two functions satisfying h — hel?
w e D', h'/2w e L2. Then there exists some constant C(h) > 0 such that the following estimate
holds

lwll7, <C (f hlw|?dx + ||k — h||’iz||Vw||iz) :
Remark 5. For the case of Q = R?, this lemma is used to control [u|| Lo0(0.7:L2(R2)) and
” (uta u) ||L2(0,T;L2(R2))~
Lemma 6. Let u be the solution of the following linearized equation

hu;+hv-Vu+Lu+h*Vn+11+n)Vh =0  in(0,T) x L,

(3.31)
Ul;—o=ug, (1.4)or(l.5),

where L := —u A — (M + ) Vdiv is a strongly elliptic operator and v, m are given in (3.2), (3.3).
Then,

t
sup (IVhul?, + [ Vull3,) +/ IVhi|?,ds < ccoexp{ccgexp{cqﬂ(v,m,r);%}},
0

0<s<t
(3.32)
t
Sup Va2, +/ IVi]|7,ds < ccoexp{ccgexP{c¢3(.,,m,;);a}}, (3.33)
<s<t
0
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0<s<t

t
sup V2ul2, +/ 1V2u||2,ds < ccoexp{ccg exp{CD3 (v, m, t)to‘}}, (3.34)
0

where the material derivative t = u; + v - Vu and « = min { 43(3—:‘1‘), }T}

Proof. We multiply the equation (3.31) by # and integrate the resulting equation to discover
d 2 2 o2
o [Vhu|?dx +2u | [VulPdx + 2@ + 1) [ |diva|*dx

=—/(1+n)Vh2~udx—/2h2Vn~udx
< C(IR3 | + IVAI2) V)2, + Clihll e + C Va2,
+eldivu]|7, + C@)[lh* | < [In]7,.

An application of Gronwall’s inequality yields

0<s<t

t
sup ||Jﬁu||iz+/ V|3 ,ds gccoexp[chexp{cqﬂ(v,m,t);%}]. (3.35)
0

Additionally, we multiply the equation (3.31) by & and integrate the resulting equation
1 3
/h|1'4|2dx= —/hZVn adx — 5 /(1 +n)Vh? - adx — / Lu - udx =: ZM,-.
i=1
Now we will estimate M; for each i = 1,2, 3. It follows from Lemma 2-Lemma 4, Holder’s
inequality and Gagliardo—Nirenberg’s inequality that

M, =—/h2Vn-itdx§s||x/Eit||Lz +C(8)||h||3Loo||Vn||Lz,

1
Mz:—E/(l +n)Vh2~ﬁdx:—f(1 +n)hVh - udx

q=2 2

< eVl + C@lhll (IVAIR: + IVhlalnl 2 19011, ).

Ms = f [,uAu F O+ ,u)Vdivu]itdx

A+ud
2 dt

wd .
S_EE”VM'%Z - ||dlvu||iz+C||Vv||L°°||Vu”iz-

Combining the estimates of M;, i =1, 2, 3 with Lemma 2-Lemma 4 and Gronwall’s inequality,
we derive
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0<s<t

t
sup ||V, +/ Vi || ,ds < ccoexp{ccgexp{cqﬂ(v,m,t);%}}.
0

This together with (3.35) gives the first estimate (3.32). Next we intend to prove the second

estimate (3.33). Let vX be the k-th component of a vector v and denote the operator % =

d; + 9 (v*-). By taking the operator % on the equation (3.31), we get
1
0 = hit; + hvVie + hdivv it + h>Vn, + Ethnt — (14 n)V(h3divv)

1 1 1
- 5(1 +n)Vh>Vo + E(l +n)dive VA + v VaVh® +h*v - V(Vn)
— hdive Vi + A, + p[d; (v 8u) — 3; (30 deu) — 3 (3;v*9im) ]
+ (e + V[ Vdivie + V(divediva) — V(3 v* 8ku’) — 8 (Vo diva) ].

Multiplying the equation above by & and integrating over 2 give
1 d 19
e / IWhi[Pdx + u/ Vi Pdx + (1 + /\)/ |divie|*dx =: ) " Ni.
2dt P

Then we will estimate Ny for each k. From Holder’s inequality and Gagliardo—Nirenberg’s in-
equality, it follows that

N :/hdivv i?dx < ||divo| o ||VAa |3,

o1 . 1
N = —/Wn, Sidx < Euwtuuu\/ﬁuniz 5 IRz Va2,

2g-2) 4

1 . ! . ! s
N3 = E/thnt cidx < Clhl ;o IVRE(T, + ClRI I VR Il " 1V R,

3 .
Ny = / —(1+n)V(h*divv) - iedx < 2e||divic ||, + [|h2divo| L (Vi |, + | Vall2,)

+ Cllhl| 7 Idivel 7, (Inll7, + 1),

1 . 1 . 1
Ns=—2 /(1 +m)Vh*V - itdx < C||Vl| o |kl 2o IV, + CIIVV ol F oo I VA7
2(g—2) 4

1
+ CIVollLx B3 VAT lInll o VRIS,

I o . - . !
Ne = Efwﬂ(l+n)chvv-udxscndwvnm||h||zoo||dﬁu||iz+cudwvnmnhnzw||Vh||iz

2¢-2) 4

1
: 2 2
+ Clidivo|l < |7l o IVRIZg Il " VR,

1 1
N7=E/v-vwh2~udx52||v||Loo||h||im||¢Eu||iz
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2(q 2) 4

+ CllvlleIIhllLooIIVhlqu IVal,." 1Vl

L%’

. .. 5 3 . .
Ng =/h2vV(Vn) audx < elldivall 3 +2( Il 1l + 13 o ldivollo ) IRl

3 .
+Ce) (Il + 103 ||Loo||d1vv||Loc)||Vn||iz

2q=2)

1
+C||v||Loo||h||zm||Vh||%q||Vn||L2“ ||v2n||

L2

N R2divoV d<—d B3| 1o |V Lid B3 || Lo | Va2
9 = ivoVn - dx ldivo|l poe |h2 || Loe || u||L2+ ldivo||zee||h2 || L[|Vl .

Since all the remaining integrals can be handled in the same way, we shall only evaluate Njq for
an instance

Nigp=(u+A) / V (divo divar) - iedx < el|divie|2, + C (&) [[divoll o ||diva|3,.

We thus achieve the second estimate (3.33) by collecting all the estimates N;,i =1,---,19 and
applying Gronwall’s inequality,

sup II\/El'tIIiz—i—/||Vl'4||izds§CC()exp{CCgexp{Cqﬂ(v,m,t)ta}}

0<s<t

with ¢ = min [ , % ], where the inequality

1 1 7 1 q 3g=4)
/||Vv||Loods§t2( sup ||Vv| 2 /||V2v|| ) &2 3G ¢ 3D

O<s<t

has been used. It remains to prove the last estimate (3.34). The standard L? estimate for elliptic
equation guarantees

. 1
1Vl = C(Ihitll 2 + 102 Vlly2 + 15 (1 +m) VA2 )

. 1
< Cllhll e lIVRit) g2 + 1B || L |Vl 12 + Enwﬁan WAl 1 Vhlzslnl 2 .
2

(3.36)
q=2 2
Note that [n]l 2 < Cllnll,5 IIVnl},.So
La—2
sup [|V2u];> < CCoexp {ccg exp(CD3 (v, m, z)r“}}. (3.37)

0<s<t

Moreover, we proceed as previously in (3.36) to obtain
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t t
212 2 o2 4 T
/IIv uIIquSSC/(IIh Lo lIVally, + 1A e IVRll L IIVonll, ,
0 0

1 1
+ 5 IVR g + 5 Il [ VA )ds
< CCyexp {cco exp{CD3 (v, m, t)t“}}, (3.38)

where « is the same as in (3.33) and the estimates (3.11), (3.14), (3.28), (3.29), (3.33) have been
used. Consequently, the last estimate (3.34) is thus proved from (3.37) and (3.38). O

Lemma 7. There exists T* € (0, 1) depending on Cy, u, A, such that
Du,n, T<M
provided ®(v,m,T*) < M for some M > 1 depending on Cy, i, A.
Proof. According to Lemma 2-Lemma 4, Lemma 6, we conclude that
®(u,n,1) < CCoexp {ccg exp{CD3 (v, m, t)t“}},
which yields
O, n, T<M

by choosing

M= CCoexp{CCgexp{C}}, T* =min{M_3/°‘, 1}

with the same « as in (3.33), « = min { 43(3:‘11), %} O

3.2. Compact mapping fixed point theory

In this subsection, based on the uniform estimates for the solutions of the linearized sys-
tem (3.1), we apply the Schauder’s fixed point theory to show that the chemotaxis—shallow water
system (1.1)—(1.2) together with (1.4) or (1.5) has a unique local strong solution (n, ¢, h, u). The
proof is analogous to the discussion in [13,15], we only sketch the proof for completeness.

Proposition 1. Assume that the initial data (ng, co, hg > 0, ug) satisfy the conditions in Theo-
rem 1. Then there exists a unique strong solution (n, c, h, u) to the initial boundary value problem
(1.1)—(1.2) together with (1.4) or (1.5) on Q x [0, T*] with T* obtained in Lemma 7, such that

Please cite this article in press as: J. Che et al., On the existence of local strong solutions to chemotaxis—shallow water
system with large data and vacuum, J. Differential Equations (2016), http://dx.doi.org/10.1016/j.jde.2016.09.005




YJDEQ:8505
20 J. Che et al. / J. Differential Equations eee (eeee) eee—eee
neC(0,T*]; H3), n,eL>®(0,T* LHNL>0,T* H),
ceC(0,T*]; Hy), ¢ €L>®0,T* H)YNL?0,T* H?),
(h—h) e C(0, T*]; WhP), h, € C(0, T*; LP), (3.39)
u € C([0,T*]; D, N D*) NL*0, T*; D>9),
u, € L0, T* LHNL20,T*; DY, hu, € L0, T*; L?)

forq, h defined as in Theorem I and all p € [2, q]. Moreover, the following estimate holds:

sup (||Vc||i,2(g) + el gy + 17 150q) + 110172 gy + ||v2u||iz(m)

0<t<T*

N L e L e / h(lul® + Jie|*)dx

0<t<T*
Q
T*
+ f (VeI gy + 19722 g + IVl ) + V20l g )
0
< C(u, 1, Co).

Proof. Step 1 In this step, we assume /g > 6 > 0. For a bounded domain Q2 C R2, with the same
T* and M as in Lemma 7, we denote B = L2(0, T*; Hol) x L%(0, T*; Hé) and

R :={(n,u)| (n,u) € L0, T*; H}) N L*(0, T*; D?)
x L>®(0, T*; Hy N D*) N L*(0, T*; D*9),
(e, ur) € L0, T%; L) N L*(0, T*; HY) x L*(0, T*; Hy), ®(u,n, T*) < M}.

It is easily seen that R is a convex and compact subset of Banach space B. For any (v, m) € R,
there exists a unique solution 42 = h(v) of the linearized equation (3.8) on 2 x [0, T*] with
heC0,T*); H' nwWh49), h, e C([0, T*]; L9). Besides, the linearized equation (3.16) admits
a unique solution ¢ = ¢(v, m) on Q x [0, T*] as well. Moreover, a unique n = 71 (v, c(v, m))
solves the linearized equation (3.27) on 2 x [0, T*] and thus the linearized equation (3.31)
has a unique solution u = T, (v, h(v), T1(v, c(v, m))) on Q x [0, T*]. Therefore, we may write
(n,u) := T (m,v) = (71, T2) with 7 mapping from R to R. Next we will show that T is a
continuous operator from /5 into itself. First of all, according to Lemma 2, we have

sup (1A llyrp + 1R @)llLr) < C(w, A, Co).

0<s<T*
Suppose {vk},fil € R and vy — v, in LZ(O, T*; Hol), as k — oo. This implies that
v — v, w¥in L®(0, T*; Hy N D*) N L*(0, T*; D*9), as k — oo.

Then it follows from Aubin-Lions Lemma that there exists a convergent subsequence, denoted

by {vy; )32, such that
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h(vkj) —h, in C([0,T*] x Rz), as k; — oo.

We replace i and v with hkj and Vg, in (3.8) and pass the limit to obtain that 4 = h(v) is a weak
solution of (3.8). The uniqueness of the strong solution yields

h(vy) — h,in C([0, T*] x Q), h(vg) — h,in L=, T*: WH9), as k — oo.

Secondly, let {(mg, vi)};2, € R and (v, my) — (v, m) in (L%(0, T*; Hol))2 as k — oo. By

Aubin-Lions lemma, we have
ek, mi;) = ¢,in C([0, T*1; H') N L*0, T*; HY),
mg —m,in L0, T*; H') N L*(0, T*; D%)
as k — oo. Taking the limit in the equation (3.16), where m, c, v are replaced by m kjs c(m kj» Vk; ),

vk;, we obtain that ¢ = c(m, v) is a weak solution of (3.16). In analogy with the previous argu-
ment, we have

c(mp, vi) = ¢, in C([0, T*]; HY N L2(0, T*; HY),
c(my, vg) — c,in L0, T*; HYN L*(0, T*; H?)

as k — oo. After that, let ny; = ﬂ(vkj,c(mkj, Vi) = ﬂ(vkj,ckj). In view of Aubin—Lions
lemma, we obtain up to a subsequence,

ng; — n,in C([0, T*]; Hy) N L*(0, T*; H?), as kj — oo.

Passing the limit in (3.27), where v, c, n are replaced by Vk;, Ck;» Nkj» W obtain that n = 71 (v, ¢)
is a weak solution of (3.27) with

Ti vk, c(my, ) — n,in C([0, T*]; H)) N L*(0, T*; H?) as k — o0.
Ti vk, c(mg, ) — n,in L0, T*; H}) N L*(0, T*; H?) as k — oo.

At last, let up = Tr(vi, h(vy), ng) = To(vg, h(vi), T1 (vk, c(my, vr))). It follows from Aubin—
Lions lemma that

ug, — u,in C([0, T*]; H?), uy, = u,in L0, T*; Hy N D*) N L*(0, T*; D*9) as k; — oo.

Taking the limit in (3.31), where h, u, n, v are replaced by h(vkj), Uk, N, Vk;s WE obtain that
u="T(v,h(u),n)="T(v,h(),Ti(v,c(v,m))) is a weak solution of (3.31) with

up — u,in C([0, T*]; H).

Therefore (u,n) = T (v, n) is a continuous operator in 5 = (L2(0, T*; HO1 ))2. By Schauder fixed
point theorem, there exists (u, n) € R such that

(T2(u, h(u), Ty (u, c(u, m)), Ti(u, c(u,n))) = (u,n).
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Moreover, for all p € [2, q],

sup (ucu?{l Flleell 3o + 1Al 2 00 + IVRIL, + T + 0150 + lIne 12

0<s<T*
+ IVhul3, + Va3, + Wﬁuniz)
T*
+ f (||Vc||%,2 HIVelZs + IVal, + 1Vad3, + 11V2ull7, + ||vu||iz)dt (3.40)
0
< C(u, x, Co).

And by (3.18) and (3.30), we have the higher regularity for n, ¢

T*
sup (V20 + Vel + 1V2n12,) + f (Hewls + V260112, )de = €, 1, Co).
0<s<T*
- 0

(3.41)

Step 2 For general hg > 0, for each § € (0, 1), choose hg = ho + 8, and let ug € Dé N D? be
the unique solution to the problem

1
—pAu — (u+20)Vdivad) + (h))>Vno + S0+ no)V(h)* = /hig.

We denote by (n3 ,c‘s,hs,u‘s) the unique local strong solution in [0, T*] to the problems
(1.1)—(1.2) with the initial data replaced by (ng, co, hg, ug). Obviously, (n%, 8, né, ud) satisfy
the uniformly bounds (3.40)—(3.41) and T* is independent of §. Then letting § — 0™, we obtain
a strong solution (n, ¢, h, u) to problem (1.1)—(1.2) satisfying the estimates (3.40)—(3.41). Please
refer to [12] for details.

Step 3 Finally, the uniqueness of the strong solution follows directly from the above two

estimates (3.40)—(3.41). For the case Q = R? and i > 0, we can bound lull oo o, 7+, 12 (R2y) and
| (s, @)l 20,7+, 12(m2y) according to Lemma 5. As similar in [13], it is easy to get the unique
strong solution (n, ¢, h, u) satisfying (3.39). The proof of Proposition 1 is thus completed. O

4. Blow up criterion and proof of Theorem 1

In this section, we aim to complete the proof of Theorem 1. It remains to show the blow-up
criterion. We use the idea in [22] and argue by contradiction. Let (n, c, h, u) be a strong solutiog
of the chemotaxis—shallow water system (1.1)—(1.2) together with (1.4) or (1.5). And suppose T
is the maximal time so that the strong solution exists. Assume further that

T
limN< D) peds + sup ||n||Loo> <M < 400, (4.1
T—>T

0<t<T

0
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where D(u) is the deformation tensor with D(u) = %(Vu + Vu'). First, (3.5) and (4.1) yield
immediately

sup |lhllpe<C, 0<T <T. 4.2)

0<t<T

Here and hereafter, C denotes a generic constant depending only on Cp, M, T, the initial data
and the domain 2. Then the standard energy estimate and (4.1), (4.2) lead to

Lemma 8. Ler (n, c, h,u) be a strong solution in Proposition 1. Under the condition (4.1), it
holds that

0<t<T

T
wpQmﬁrﬂwﬁer%m;+Wh—M;)+f/(wm?+Wd%vaﬁmmsc,
0

forO0<T < T. Moreover, for all p € [2, +00),

sup (Il +llel},) <€, 0<T <T.
0<t<T

Proof. We multiply the equation (1.1), by ¢ and integrate the resulting equation to get

1d 2 2 - 2
7g; [ leldx+ [ IVeldx < (Ildlvulle+ |In||L°c>||C||Lz, (4.3)

which together with Gronwall’s inequality and (4.1) gives

T
sup ||C||i2 +//|Vc|2dxdt <C. (4.4)
0<t<T J

The same procedure as in (4.3) leads to
ld 2 2 : 2 2 2 2
3 g; [ InPdx [ Valdx < f[divelLx linli7z + el Valzz + C@)linlie Vel

Thus,

T

sup ||”||iz +//|Vn|2dxdt§C. (4.5)
0<t<T 0

In order to get the estimate for (4, u), recalling that % satisfies the equation
(h—h), +u-V(h—h)=—h divu, (4.6)

we multiply (4.6) and (1.1), by h — h and u respectively, add them up, integrate over & and
apply Gronwall’s inequality together with (4.1), (4.2) and (4.5) to deduce that
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T
sup (W — B2, + IWAul:) + / / |ValPdxdr < C. @.7)
0<t<T ,

Hence the first estimate is proved by virtue of (4.4), (4.5) and (4.7). Our next task is to show the
second estimate. It follows from (4.1), (4.5) and the interpolation theorem that

sup |In||7, < C, forany p €[2, +00). (4.8)
0§t§T

In addition, multiplying (1.1); by ¢?~!, p € (2, +00) and integrating over Q yield
1d p p=2 2 p—1 p
0 c’dx+ | (p— D)7 Ve|"dx = ((p—l)c Ve-u—nc )dx
p
p—1 .
< (% Nl + lnllooe el .

which leads to

T
14
sup [lclly, +/ Ve |2,dt < C(p).
0

0<t<T

This along with (4.8) gives us the second estimate. O
The higher regularity estimates for (n, c, k, u) will be given in the following lemma.

Lemma 9. Let (n, c, h, il) be a strong solution in Proposition 1. Under the condition (4.1), it
holds that for0 <T < T,

sup (||Vn||§2 +IVelz, + 1 Val?, + ||Vh||iz)

0<t<T

T
+//(|V2n|2+|V2c|2+|V2u|2+|n,|2+|c,|2>dxdt§C.
0

Proof. First of all, we evaluate the integrals involving (%, u). We operate V to each term of
equation (1.1);, multiply the resulting equation by 2Vh and integrate over €2 to find

i 29y — 2 23 2 .
|[Vh|“dx = V(|IVh|?) -u+2|Vh|*divu + Vh~ - Vdivu )dx
dt
(4.9)
< C@IVRIZ, (ID@ = + 1713 + el V2ul2,.

With the boundary condition (1.4) or (1.5), the last term of the inequality above is controlled
from standard L2-theory of elliptic system by
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2
| V2|, = Clludu+ (u+ 0 Vdival, + CVal?,

<C [ h w2 Veivalax+ CIValR,
for ||h||z§o > C~! > 0. Furthermore, multiplying (1.1), by 2~! [uAu + (1 4+ A)Vdiva] and in-
tegrating over €2, we have

d A
- (%qulz + %(divuf) dx + / A=Y wAu + (u + 1)V (diva) |2dx

= —u/(u -Vu -V x curlu)dx + Qu + A) / u - Vu - V(divu)dx

+ / l#vaﬂ) A+ (4 )V (diva) T dx

+ / hVn - (uAu + (. + )V (diva))dx

4
= 1. (4.10)
i=1

where Au = V(divu) — V x curlu has been used. The estimates for I, I, are similar as in [22],
we only sketch them here. Since u x curlu = IVQu) —u-Vuand V x (a x b) = (b - V)a —
(a - V)b + (divb)a — (diva)b, we observe that

L= ‘M/(u-Vu-V x curlu)dx

1
=y,’5/|curlu|2divudx—/curlu-D(u)curludx

< ClIVu|3,ID@)ll =,

L= Qu+21) ‘/u - Vu - V(divu)dx

1
=Q2u+Ar) / Vu:Vu’divuc1x+5 / (dive)3dx

< C||\Vul3, D@l .

l+n . 212 2 2
3] = T(Vh) uAu+ (n+2)Vdive)Jdx| <e[[Voull;, + C@) 1 +nlli< VAl .,

2
L] = ‘/(hvn) (et (u+ V@] <e | Va4 C@IAR VAl

We add (4.9), (4.10) up and combine all the estimates /;,i =1, ---,4 to find

A
(%Wulz n %(cﬁvu)2 n ||Vh||i2> dx + Co Hv%‘

dt L2

2 2 2 2
= CIVAIZ, (1+Inlf) +& | V2u|

+ ClIVul2 D@ 1 + Clla 2Vl
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An application of Lemma 8 and Gronwall’s inequality gives

T
2
sup |Val2, + sup ||Vh||%2+//‘vzu‘ dxdt < C. 4.11)
0<t<T 0<t<T
0
This implies the following bound
T T
/ w7 oods < f (lull3 > + 1 V2ull3)de < C (4.12)
0 0

due to Lemma 5. Next, we aim to deduce the higher regularity of (n, ¢). Operating V to (1.1),,
multiplying the resulting equation by V¢ and integrating over 2 lead to

1d

2 _ _
EE/|vc|2dx+/‘v2c‘ dx=—/div(V(cu))-Vcdx—/V(nc)~Vcdx =1 +1,.

Direct computation shows that
Ll <[ V2| , avellues + el val )
<e ||, + o (IVellZalule + el 1VellZ: + 1VulVul2.).
i< ||, +Ce el

Thus, one sees that

0<t<T

T
2
sup ||Vc||iz+/ HV%HLZ dr <C. (4.13)
0

For the regularity of n, we proceed as previously in (4.13) and we only need to check the term
[ Vdiv(nVc) - Vndx. It is verified that

: 2 2 2 2 2 2 .12
Vdiv(nVe) - Vndx <& | V| +C (IValZilIVel}s + InlF< 1 V2el
2 2
<e|Vin| , +Clnids | V2|, + CUVaIZ Vel 1921

This, together with Lemma 8, (4.12) and (4.13), implies

0<t<T

T
2
sup IIanliz+/ HVanLZ dr < C. (4.14)
0

Moreover, we observe that
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el 2 < |=diveu)ll 2 + | Anll 2 + |divVe) |
2 2
< 9l 2l + Wallew Va2 + [ 92 |+ IVl Vel s+ Inlles 9%l 2,

2
lerllz2 < 19l 2l e + el 1 Vall s + | 92

2T InllLeellcllz2-

These two inequalities give us the bound

T
/ (Ilntlliz + IICzIIiz)dt <C. (4.15)
0

Consequently the conclusion follows from (4.11) and (4.13)—-(4.15). O
We next improve the regularity of ¢ and n.

Lemma 10. Let (n, c, h’,vu) be a strong solution in Proposition 1. Under the condition (4.1), it
holds that for0<T < T,

T
sup (1V2l2, + 192113, ) + / (VeI + IV, + IV I3 + Ve 2, ) dr < C.
0<t<T

- 0

Proof. Operating 9;0; to the equation (1.1),, multiplying the resulting equation by 9;d;c and
integrating over 2 give

d 2 .02 2 2/3: 2 2
= [ 1V2ePax+ Vel = [—v (div(cu)) — V (nc)]V cdx =: K, + K.
Straightforward computation shows that
2
K| < ellVel%, + Cle) (Hv%ﬂy lul2e + IV Va2, + llel3o ||V2u||iz)

2
(Nl + 19el2 + 19%u)2,)

< elVel + @) ||

+CEIVul7ell7, + 1Val3,),
Ka| <ellVell3, + C@) [V mo)ll3, < el Vellz,, + Ce)linll 7l Vell3

+C@IVnlzalell2 | Vie| -
We thus conclude that
T
2 2 2
sup || +/||Vc||H2dt§C,
0<t<T L2
0

Then we proceed the same argument with respect to the equation (1.1);,
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d 2
= / ‘Vzn‘ dx + Va3, = / [—Vz(div(nu)) — V2div(n - VC)] V2ndx
<ellVnl%, + C@)Vnl?, (||u||%oo +1Vall3, + ||Vc||iz||v2c||iz)
+C@IVul7(IVull3, + nll<) + C@NIVel3, 1Vl + )7,

and deduce that

sup H v2n ‘
0<t<T

T
2
L +f IVn|?,de < C.
0

Finally, operating V to the equation (1.1);, multiplying the resulting equation by Vr, and inte-
grating over €2, we find that

d 2
[ roniaxs £ [ 1snPax < elvm, + o [V i<

2
n

2
+ @IV Vel + C@lnlid (| Vu] |, +17el?).

+CEIVAIL(1ValZ, + [ V3]

Therefore, Gronwall’s inequality yields [y |Vn|2,dr < C. Similarly, [ [[Ve/[)?,dr < C.

These two estimates along with (4.11), (4.13), (4.14) give us the desired inequality. O
We next improve the regularity of 4 and u.

Lemma 11. Let (n, c, h’,vu) be a strong solution in Proposition 1. Under the condition (4.1), it
holds that for 0 <T < T and q € [2, +00),

0<t<T

T
sup (Il + IVPul, + 1913 ) + [ (190 + 1971, ) ar < c.
0

Proof. We first differentiate the equation (1.1), with respect to ¢, multiply the resulting equation
by u; and integrate over €2 to discover

ld 2 2 L2
VT hlug|“dx 4+ | (u|Vu,|” 4+ (u + 2)|diva, |7)dx

1 2 1+n 2
_ / [ = hwe - Vo) = hu V(@ Vuu) - (V) -y = == (VW) -y

6
_ (hz)tu, -Vn — hz(Vnt) . u[:ldx = ZLi'
i=1

It is verified that
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1
ILil= ’/h(uz V) - wdx| < [Vhu |27 oo | Vet sl | s

= ell Va3, + ClIVhugl3 (1013 V03 + I — B12 09003 )

2 2 2
3 3 2 3
+ ClIRl oo VRl IVl

|ILo| = ’/hu -V((u - Vu)u,;)dx

< ClIVhug |l 2 11Vu | 2wl oo + Cllugll o lw? | IV ull 2 + ] Vag |13
+ C@Nhl Tl 4Vl

<ellVall3, + C@IVhu |2, ull i~ + C@) I Vul?, | Va7,

2 4 4 4
3 3 3 2 3 2 3 2
+ C@)lluell ) llull; IVall L IIV-ull 7, + C@)llully I Vall; Va2,

1 3
IL3| = ‘—5 / ne(VhHu,dx| < Vi, |3, 11h | 2o

+ ClIVhug 35 + C@)llnel1 25 17l e + &l Va3,

1 1
L4l = ‘_/ ;nv(/’lz)tutdx /#(kz)zvmdx

=<

+

/ Vn(h?),u,dx

= IVAul3 1900 +C @) (InlF o+ 1) 113 (IVAIZ Nl + 101 [ Vul,)

2
+ el Va2,

ILs| = ‘— / (h?);u, Vndx

< ClIvhu | 2 |Vhll oo (VR g2 llall Lo + 2] Lo l[divael|2) (| V| oo

< CIWhu, |2, 1Vn2, + ClIVR I~ (Whuiz llZoo + 111700 ||divu||iz) :

3
ILg| = Vh%w,) cugdx| < C\Vag |12, + ClIVhug |12 177 |7 oo

Combining all the estimates of L;, i =1, - - - , 6, we conclude that
T
sup [|vhul|3, +/ Va7 ,dt < C. (4.16)
0<t<T 0

Moreover, according to the equation (1.1)4, we observe that

1
|2 , = € (builyo + - Vall o 4+ 0V i)l 2 + | V)|

)

1 1 1
5 2
< C (Il 2 + Nl 2,192 2, A o Va2

Please cite this article in press as: J. Che et al., On the existence of local strong solutions to chemotaxis—shallow water
system with large data and vacuum, J. Differential Equations (2016), http://dx.doi.org/10.1016/j.jde.2016.09.005




YJDEQ:8505

30 J. Che et al. / J. Differential Equations eee (eeee) eee—see

Il VRl 2l + I Va2 + | V6r2)

L2>’

which implies from Lemma 9 that

sup H vZuHL2 <cC. 4.17)

0<r<T -

This, together with the estimate for supy—, <, |||/ .2, gives us the boundedness of supy ., <, ||| Lo~.
Thus,

[v2u |, = € (Ul ludlizs + - Vals + 109Gl + |[VaD)| )

2 q=2

< Cllug| o 1Vael, 3+ Claellzoe | Val o 1Al o~ “4.18)

q—2

q
+ CII VAl Lo (1+ Ikl Lollnl| L) + CllI 7 [ VRl 2, 1920, 4
<C(IVurll 2 +IVR)La +1)  forg >2,

where Lemma 5, Lemma 810 and (4.16)—(4.17) have been used. Finally, operating V on equa-
tion (1.1)5, multiplying the resulting equation by ¢|V/|?~2>Vh and integrating over 2 lead to

d
E”Vh”L‘I <CUD@) |z~ + 1) IVhlLe + [V?ullLe < C (ID@)l|z + 1) | VA Lo

due to (4.18). Therefore, sup ||Vh| s < C. The conclusion is thus obtained from this estimate
and (4.16)=(4.18). o O0=/=T

It suffices from Lemma 8 to Lemma 11 to extend the strong solutions (n,c,h,u) in
Proposition 1 beyond ¢t > T. Indeed, in view of the estimates in Lemma 8 to Lemma 11,
(n,c,h,u)|,_7 =lim,_ 5(n, c, h, u) satisfies the initial condition (1.6) at the time t = T'. More-
over,

1
— uwAu — (u+A)Vdiva + h*Vn + S+ n\Vh?| _z = lim (hu; + hu - Vu) =: Vhg|,_7,

t—T

with g|,_7 in L2. Thus (n, ¢, h, u)| .7 satisfies the compatibility condition (1.3) as well. There-
fore, we may take (n, c, h, u)|,_7 as the initial data and apply Proposition 1 to extend the local
strong solution beyond 7. This contradicts the assumption on 7.
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