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Abstract

The coupled chemotaxis fluid system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nt = �n − ∇ · (nS(x,n, c) · ∇c) − u · ∇n, (x, t) ∈ � × (0, T ),

ct = �c − nc − u · ∇c, (x, t) ∈ � × (0, T ),

ut = �u − κ(u · ∇)u + ∇P + n∇φ, (x, t) ∈ � × (0, T ),

∇ · u = 0, (x, t) ∈ � × (0, T ),

(�)

is considered under the no-flux boundary conditions for n, c and the Dirichlet boundary condition for u on 
a bounded smooth domain � ⊂ R

N (N = 2, 3), κ ∈ {0, 1}. We assume that S(x, n, c) is a matrix-valued 
sensitivity under a mild assumption such that |S(x, n, c)| < S0(c0) with some non-decreasing function 
S0 ∈ C2((0, ∞)). It contrasts with the related scalar sensitivity case that (�) does not possess the natural 
gradient-like functional structure. Associated estimates based on the natural functional seem no longer 
available. In the present work, a global classical solution is constructed under a smallness assumption on 
‖c0‖L∞(�) and moreover we obtain boundedness and large time convergence for the solution, meaning that 
small initial concentration of chemical forces stabilization.
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1. Introduction

In this paper, we study the chemotaxis-Navier–Stokes system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

nt = �n − ∇ · (nS(x,n, c) · ∇c) − u · ∇n, (x, t) ∈ � × (0, T ),

ct = �c − nc − u · ∇c, (x, t) ∈ � × (0, T ),

ut = �u − κ(u · ∇)u + ∇P + n∇φ, (x, t) ∈ � × (0, T ),

∇ · u = 0, (x, t) ∈ � × (0, T ),

∇c · ν = (∇n − S(x,n, c)∇c) · ν = 0, u = 0, (x, t) ∈ ∂� × (0, T ),

n(x,0) = n0(x), v(x,0) = v0(x), u(x,0) = u0(x), x ∈ �,

(1.1)

where T ∈ (0, ∞], κ ∈ {0, 1}, � ⊂ R
N (N = 2, 3) is a bounded domain with smooth boundary 

and ν denotes the outward normal vector on ∂�. Here S(x, n, c) = (sij (x, n, c))i,j∈{1,2} is a 
matrix-valued function and φ ∈ W 1,∞(�).

The PDE system of type (1.1) has been proposed by Tuval [28] to describe the motion of 
oxygen consumed by bacteria in a drop of water. Here n and c denote the density of Bacteria and 
concentration of oxygen, respectively. We also write the fluid velocity by u and the associated 
pressure by P . In addition to random diffusion, the bacteria bias their movement to the favorable 
direction which is determined by the environment and distribution of oxygen consumed by the 
bacteria themselves. Meanwhile, both the oxygen and bacteria are supposed to be transported by 
the surrounding fluid. Let φ be a potential function; the fluid motion is described by incompress-
ible Navier–Stokes equation and also influenced by external force n∇φ, which can be understood 
as buoyant, electric or magnetic force of bacterial mass. This mechanism is an important varia-
tion of chemotaxis model, which has been extensively studied in the past 40 years; we refer to 
surveys [10,11,1] for a broad view.

In the paper [28], S = χ · I with χ ∈ R, thus the cross diffusion term reduces to ∇ · (nχ∇c), 
which indicates that the bacteria always move towards the higher concentration of oxygen. There-
fore, a coupled chemotaxis fluid model reads as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nt = �n − ∇ · (χ(c)n∇c) − u · ∇n,

ct = �c − nf (c) − u · ∇c,

ut = �u − (u · ∇)u + ∇P + n∇φ,

∇ · u = 0.

(1.2)

Now let us mention some work [4,6,18,17,7,26,25,23] on the above system. Actually, under suit-
able assumptions on χ and f , which are mild enough such that the prototypical choice χ(c) ≡ 1
and f (c) ≡ c is allowed, and a natural gradient-like functional for (1.2) is expressed as

d

dt

⎛
⎝∫

�

n lnn + 1

2

∫
�

|∇c|2
c

⎞
⎠ +

∫
�

( |∇n|2
n

+ c|D2 ln c|2
)

≤ C

∫
�

|u|4 (1.3)
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with some constant C > 0. A crucial point to identify the above functional is that the term ∫
�

χ(c)∇n · ∇c from a natural Lyapunov functional for the first equation can be canceled by 
a suitable testing procedure on the second equation. Starting from (1.3), a large number of 
articles have gained considerable results. Global classical solutions are demonstrated for two-
dimensional bounded domains [33]. Beyond this, a deeper understanding of the functional leads 
to boundedness of solutions for large initial data, and furthermore the solutions approach the 
spatially homogeneous equilibrium [34]:

(n, c,u) → (n̄0,0,0) as t → ∞,

where n̄0 = 1
|�|

∫
�

n0. The convergence rates are studied later in [42] for the convergent so-
lutions. Concerning the case N = 3, (1.3) is still crucial, [33] asserts the existence of global 
weak solutions for the Stokes-governed system based on it. Recently, a global weak solution was
constructed for the full Navier–Stokes system for large initial data [36]. More recently, with a 
concept of eventual energy solution, [37] showed that such solutions become smooth after finite 
time and uniformly converge to the constant steady state in the large time limit. For more results 
depending on the natural functional like (1.3), see, e.g., [18,17,6,5,27,36,33] and the references 
therein.

However, in [41], the authors suggest a wider choice of S due to some complicated interaction 
neighborhood environment around cells. A kind of interactions between the cell motion speed 
and directional effects stemming from the action of gravity may result in abnormal mechanism – 
they do not move directly to the direction of higher density of oxygen but with some rotation; so 
this requires S to be a general matrix. Apart from the complexity as it stands, this tensor-valued 
chemotactic sensitivity also gives rise to some difficulty in mathematical analysis. Upon the 
aforementioned reasoning of (1.3), we may see that it heavily relies on the structure of the cross 
diffusion term. Here the term from the Lyapunov functional reads as 

∫
�

χ(c)nS · ∇c · ∇n and 
it is no longer cancelable for arbitrary choices of S. Thus when (1.3) is absent, it is much more 
difficult to study (1.1) from a mathematical point of view.

Generally, stronger assumptions seem necessary for the existence of classical solutions. For 
instance, considering the two-dimensional fluid-free system, that is, u ≡ 0, it is shown that the 
system admits global classical solutions which converge to the constant steady state if ‖c0‖L∞(�)

is sufficiently small [15]. This is in sharp contrast to the case that S is a scalar-valued sensitivity 
[25], where (1.3) is still applicable, and finally it leads to boundedness of solutions and large 
time convergence without any smallness condition on the initial data. On the other hand, the 
same problem for large data are studied in [39,38] with or without fluid effect. In this case, it is 
shown that a certain generalized solution exists, and converges to the constant steady state in the 
large time limit. However, the results do not exclude singularity on intermediate time scales.

Considering porous medium type cell diffusion, that is, when the first equation in (1.1) is 
replaced by nt = �nm − ∇ · (nS · ∇c) with m > 1, the existence of global weak solution is 
derived for any reasonable regular initial data, moreover, the solution is actually bounded [2]. 
Taking the fluid into account, the coupled Stokes and Navier–Stokes counterpart to the same 
problem is studied in [26] and [12], where the authors prove boundedness and global existence 
of weak solutions.

Due to the difficulty arising from the three-dimensional Navier–Stokes equation, only until 
very recently, the full chemotaxis-Navier–Stokes system (1.1) with scalar sensitivity is known 
to admit considerably weak solutions. Accordingly, many works have focused on the simpli-
fied Stokes coupled system and shown more progress. Assume that |S| ≤ C(1 + n)−α with 
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C > 0 and α > 1
6 , the global existence of locally bounded classical solution is constructed 

in [29]. Considering porous medium variant of (1.1), that is, when the first equation becomes 
nt = �nm − ∇ · (n∇c) − u · ∇n, it is proved that locally bounded solutions exist and are locally 
bounded under the hypothesis that m > 8

7 [27]. If we assume in addition that m > 7
6 , upon a 

more robust approach, the solutions become globally bounded and converge to (n0, 0, 0) [40]. 
Without assuming superlinear diffusion, the question of boundedness of classical solution is ac-
tually more delicate and solved recently in [3] that even matrix-valued sensitivity is allowed. It 
is shown that if ‖n − n̄0‖Lp(�), ‖∇c0‖Lq(�) and ‖u0‖LN(�) (with any p > N

2 and q > N ) are 
small, the system admits a unique global classical solution which converges to the homogeneous
equilibrium. Also there have been a few works considering the classical Keller–Segel coupled 
fluid system where the second equation in (1.1) is replaced by ct = �c− c+n −u ·∇c. Progress 
in this direction can be seen in [13,30] and the references therein.

The purpose of the present work is to study the full chemotaxis-Navier–Stokes system with 
tensor-valued sensitivity in dimension 2 and the corresponding chemotaxis-Stokes system in di-
mension 3. When the natural Lyapunov functional is lacking, we impose a smallness assumption 
on the initial data to get some uniform bound for the solution. Using this tool, we can prove global 
existence of classical solution and its large time behavior. Compared with [3], the smallness con-
dition here is only on ‖c0‖L∞(�), meaning that small concentration of oxygen can force stability. 
This result coincides with the fluid-free system in [15]. The convexity of the physical domain is 
unnecessary in this paper since we use a different approach from many previous works [33].

Before stating our main result, let us briefly introduce some elementary background of func-
tional spaces, Stokes operator as well as their applications and some notations.

Let Lp
σ (�) (1 < p < ∞) denote solenoidal space equipped with ‖ · ‖Lp(�) norm:

Lp
σ (�) := {ϕ ∈ C∞

0 (�;RN)|∇ · ϕ = 0}

The so-called Helmholtz-projection is defined as P : Lp(�, RN) → L
p
σ (�), which is a bounded 

operator. Let Ap = −P� denote the Stokes operator in D(Ap) = L
p
σ (�) ∩W 2,p(�) ∩W

1,p

0 (�). 
From [8], we know that A is sectorial and generates analytical semigroup (e−tA)t>0 in Lp

σ (�). 
We refer to [31, Chapter 6] and [3, Lemma 2.3] for fundamental Lp-Lq estimates for the semi-
group. Moreover, since Reσ(A) > 0, we can define A−α with α > 0 and easily check that it is 
one-to-one. Thus Aα is defined as the inverse of A−α and D(Aα) = R(A−α) [19, Chapter 2.6]. 
The following estimate is fundamental:

‖AαetA‖ ≤ Cαt−αe−μt for t > 0 and for some μ > 0. (1.4)

Throughout the paper, we denote the first eigenvalue of A by λ′
1, and by λ1 the first nonzero 

eigenvalue of −� on � under Neumann boundary conditions. Moreover, we assume that

sij ∈ C2(� × [0,∞) × [0,∞)), (1.5)

|S(x,n, c)| := max
i,j∈{1,2}

{sij (x, n, c)} ≤ S0(c) for all (x,n, c) ∈ � × [0,∞) × [0,∞), (1.6)

where S0 is a non-decreasing function on [0, ∞). The initial data are chosen as
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⎧⎪⎨
⎪⎩

n0 ∈ L∞(�),

c0 ∈ W 1,q (�), q > N,

u0 ∈ D(Aα), α ∈ (N
4 ,1),

(1.7)

and particularly

n0 ≥ 0, c0 ≥ 0 on �. (1.8)

Under the above assumptions and notations, our main result is as follows:

Theorem 1. Let N ∈ {2, 3}, � ⊂ R
N be a bounded domain with smooth boundary. Assume that 

S fulfills (1.5)–(1.6). Either of the following conditions holds,

(i) N = 2, κ = 1;
(ii) N = 3, κ = 0.

There is δ0 > 0 with the following property: If the initial data fulfill (1.7)–(1.8), and

‖c0‖L∞(�) < δ0, (1.9)

then (1.1) admits a global classical solution (n, c, u, P) which is bounded, and satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n ∈ C2,1(� × (0,∞)) ∩ C0
loc(� × (0,∞)),

c ∈ C2,1(� × (0,∞)) ∩ C0
loc(� × (0,∞)) ∩ L∞((0,∞);W 1,q (�)),

u ∈ C2,1(� × (0,∞)) ∩ L∞((0,∞);D(Aα)) ∩ C0
loc([0,∞);L2(�)),

P ∈ L1((0,∞);W 1,2(�)).

(1.10)

Remark 1.1. The uniqueness of classical solutions in the indicated class can be proved similarly 
as in [33].

Apart from boundedness and global existence, we can also show each component converges 
to the homogeneous equilibrium with optimal rates.

Corollary 1.1. Under the assumptions of Theorem 1, let 0 < α < min{n̄0, λ1} and 0 < α′ <

min{α, λ′
1}. The solution of (1.1) has the property that there is C > 0 fulfilling

‖n(·, t) − n̄0‖L∞(�) ≤ Ce−αt , ‖c(·, t)‖W 1,q0 (�) ≤ Ce−αt ,

‖u(·, t)‖L∞(�) ≤ Ce−α′t for all t > 0.

We note that compared with the result in [34], Theorem 1 furthermore has restrictions on the 
size of initial data (1.9), which seems necessary for the existence of classical solutions. As a sub-
case of (1.1), results on the corresponding fluid-free version are not yet rich: Without assuming 
small data, the global generalized solutions constructed in [39] still possibly become unbounded 
in the intermediate time; Only additionally assuming ‖c0‖L∞(�) small, global classical solutions 
are known to exist and blow-up is entirely ruled out [15]. When the system is coupled with fluid 
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component, our results give the same condition which guarantee the global existence of smooth 
solution.

The plan of the paper is as follows:
In Section 2, we approximate the problem by a well-posed system (see (2.4) later). Sec-

tions 3–5 are devoted to study the boundedness of regularized problem, we will see the bounds 
are independent of the way we regularize the problem. Thus upon appropriate estimates, we can 
let ε → 0 to obtain limit functions of the regularized solutions. This procedure is done in Sec-
tion 6, and also these limit functions are shown to be smooth enough and solve (1.1) classically 
for any positive time. In Section 7, we prove stabilization of the solution by applying the result 
from [3].

2. Approximation

Since it is convenient to deal with the Neumann boundary conditions for both n and c, we 
follow the same approximation procedure as in [15]. Let ε ∈ (0, 1), we find a family of functions 
{ρε}ε∈(0,1) satisfying

ρε ∈ C∞
0 (�) with 0 ≤ ρε ≤ 1 in � and ρε ↗ 1 in � as ε ↘ 0, (2.1)

and define

Sε(x,nε, cε) = ρε(x)S(x,n, c), x ∈ �̄. (2.2)

Then we have Sε(x, n, c) = 0 on ∂� and

|Sε(x,nε, cε)| ≤ S0(‖c0‖L∞(�)) for all x ∈ �, nε > 0, cε > 0. (2.3)

Now we consider the following regularized problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

nεt = �nε − ∇ · (nεSε(x,nε, cε) · ∇cε) + uε · ∇nε, (x, t) ∈ � × (0, T ),

cεt = �cε − nεcε + uε · ∇cε, (x, t) ∈ � × (0, T ),

uεt = �uε − κ(uε · ∇)uε + ∇Pε + nε∇φ, ∇ · uε = 0, (x, t) ∈ � × (0, T ),

∇nε · ν = ∇cε · ν = 0, uε = 0, (x, t) ∈ ∂� × (0, T ),

nε(x,0) = n0(x), cε(x,0) = c0(x), uε(x,0) = u0(x), x ∈ �.

(2.4)

Without essential difficulty, the above system is locally solvable in the classical sense by an 
adaption of well-established fixed point argument [33, Lemma 2.1]. We give the following lemma 
without proof.

Lemma 2.1. Let N ∈ {2, 3}, � ⊂ R
N be a bounded domain with smooth boundary, and κ ∈ R. 

Assume initial data (n0, c0, u0) satisfy (1.7) and (1.8), and S fulfills (1.5)–(1.6). Then there exist 
Tmax ∈ (0, ∞] and a unique classical solution (nε, cε, uε, Pε) to (2.4) in � × [0, Tmax) with 
nε, cε > 0. Moreover, if Tmax < ∞, then

‖nε(·, t)‖L∞(�) + ‖cε(·, t)‖W 1,q (�) + ‖Aαuε(·, t)‖L2(�) → ∞ as t ↗ Tmax.
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In order to see the global existence and qualitative behavior of the regularized problem, it is 
sufficient to show boundedness for each criterion in the above lemma. The following lemma is 
immediately obtained upon observation.

Lemma 2.2. Let (nε, cε, uε, Pε) be a classical solution of (2.4). It follows that

‖nε(·, t)‖L1(�) = ‖n0‖L1(�), (2.5)

‖cε(·, t)‖L∞(�) ≤ ‖c0‖L∞(�) for all t ∈ (0, Tmax). (2.6)

Proof. The mass conservation (2.5) is obtained by integrating the first equation of (1.1) on �
and using the Neumann boundary condition. Since nε and cε are nonnegative, an application of 
the maximum principle to the second equation yields (2.6). �

We then obtain boundedness and global existence for the regularized problem (2.4).

Proposition 2.1. Let N ∈ {2, 3}, � ⊂ R
N be a bounded domain with smooth boundary. Assume 

that S fulfills (1.5)–(1.6). Either of the following conditions holds

(i) N = 2, κ = 1;
(ii) N = 3, κ = 0.

Then there exists δ0 > 0 with the following property: If the initial data fulfill (1.7)–(1.8), and

‖c0‖L∞(�) < δ0, (2.7)

then (2.4) admits a global classical solution (nε, cε, uε). And there is C > 0 such that

‖nε(·, t)‖L∞(�) ≤ C, ‖cε(·, t)‖W 1,q (�) ≤ C, ‖Aαuε(·, t)‖L2(�) ≤ C (2.8)

for all t ∈ (0, ∞) and all ε ∈ (0, 1).

We will prove boundedness for the 2-dimensional and 3-dimensional cases in Section 4 and 
Section 5, respectively. However, the Lp(�) estimate for nε derived in the next section will be 
applied to both.

3. A priori estimate for nε

In this section, we obtain boundedness of nε in Lp(�) under the assumption that ‖c0‖L∞(�)

is suitably small. The approach is based on the weighted estimate of 
∫
�

n
p
ε ϕ(cε) with appropriate 

choice of ϕ which has been developed in [35] and adapted to the consumed type signal in [24,34].

Lemma 3.1. Let p > 1, there are δ0 := δ0(p) > 0 and C > 0 with the property: If the initial data 
satisfy (1.7)–(1.8) and

‖c0‖L∞(�) < δ0, (3.1)

then for all ε ∈ (0, 1), we have
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‖nε(·, t)‖Lp(�) ≤ C for all t ∈ (0, Tmax), (3.2)

and

Tmax∫
0

∫
�

np−2
ε |∇nε|2 ≤ C. (3.3)

Remark 3.2. The argument does not depend on dimension N or the value of κ .

Proof. Let p > 1, 0 < h < 1
48 . We can find δ0 satisfying

3p(p − 1)δ2
0S2

0(δ0) ≤ h(h + 1), (3.4)

3pδ0S0(δ0) ≤ h + 1, (3.5)

where S0 is non-decreasing function as introduced in (1.6). Under the assumption of (3.1), we 
can define ϕ(cε) = (δ0 − cε)

−h according to (2.6), thus ϕ(cε) > 0. Elementary calculus shows 
that

ϕ′(cε) = h(δ0 − cε)
−h−1 > 0, (3.6)

ϕ′′(cε) = h(h + 1)(δ0 − cε)
−h−2 > 0. (3.7)

Using the first two equations in (2.4), upon integrating by part we obtain

d

dt

∫
�

np
ε ϕ(cε)

=
∫
�

pnp−1
ε ϕ(cε)(�nε − ∇ · (nεSε · ∇cε) − uε · ∇nε) +

∫
�

np
ε ϕ′(cε)(�cε − nεcε − uε · ∇cε)

= −
∫
�

∇nε · (p(p − 1)np−2
ε ϕ(cε)∇nε + pnp−1

ε ϕ′(cε)∇cε)

+
∫
�

nεSε(x,nε, cε) · ∇cε ·
(
p(p − 1)ϕ(cε)n

p−2
ε ∇nε + pnp−1

ε ϕ′(cε)∇cε

)

−
∫
�

pnp−1
ε ϕ(cε)uε · ∇nε −

∫
�

∇cε · (pnp−1
ε ϕ′(cε)∇nε + np

ε ϕ′′(cε)∇cε)

−
∫
�

np
ε ϕ′(cε)uε · ∇cε −

∫
�

np+1
ε cεϕ

′(cε)

= −p(p − 1)

∫
�

np−2
ε ϕ(cε)|∇nε|2 − p

∫
�

np−1
ε ϕ′(cε)∇nε · ∇cε

+ p(p − 1)

∫
np−1

ε ϕ(cε)Sε(x,nε, cε) · ∇cε · ∇nε + p

∫
np

ε ϕ′(cε)Sε(x,nε, cε) · ∇cε · ∇cε
� �
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− p

∫
�

np−1
ε ϕ′(cε)∇nε · ∇cε −

∫
�

np
ε ϕ′′(cε)|∇cε|2 −

∫
�

np+1
ε ϕ′(cε)c (3.8)

for all t ∈ (0, Tmax), where we have used the identity

−p

∫
�

np−1
ε ϕ(cε)uε · ∇nε −

∫
�

np
ε ϕ′(cε)uε · ∇cε = −

∫
�

ϕ(cε)uε · ∇np
ε −

∫
�

np
ε uε · ∇ϕ(cε)

=
∫
�

np
ε ϕ(cε)(∇ · uε) = 0.

In light of (2.3), we find that

d

dt

∫
�

np
ε ϕ(cε) + p(p − 1)

∫
�

ϕ(cε)n
p−2
ε |∇nε|2 +

∫
�

np
ε ϕ′′(cε)|∇cε|2

= p(p − 1)S0(‖c0‖L∞(�))

∫
�

np−1
ε ϕ(cε)|∇nε||∇cε| + 2p

∫
�

np−1
ε ϕ′(cε)|∇nε||∇cε|

+ pS0(‖c0‖L∞(�))

∫
�

np
ε ϕ′(cε)|∇cε|2 (3.9)

for all t ∈ (0, Tmax). Here Young’s inequality yields that

p(p − 1)S0(‖c0‖L∞(�))

∫
�

np−1
ε ϕ(cε)|∇nε||∇cε|

≤ p(p − 1)

4

∫
�

np−2
ε ϕ(cε)|∇nε|2 + p(p − 1)S2

0(‖c0‖L∞(�))

∫
�

np
ε ϕ(cε)|∇cε|2, (3.10)

2p

∫
�

np−1
ε ϕ′(cε)|∇nε||∇cε| ≤ p(p − 1)

4

∫
�

np−2
ε ϕ(cε)|∇nε|2 + 16

∫
�

np
ε

ϕ′ 2(cε)

ϕ(cε)
|∇cε|2.

(3.11)

We see that (3.9)–(3.10) imply

d

dt

∫
�

np
ε ϕ(cε) + p(p − 1)

2

∫
�

np−2
ε ϕ(cε)|∇nε|2

+
∫
�

np
ε |∇cε|2

(
ϕ′′(cε) − 16

ϕ′ 2(cε)

ϕ(cε)
− p(p − 1)S2

0(‖c0‖L∞(�))ϕ(cε)

− pS0(‖c0‖L∞(�))ϕ
′(cε)

)
≤ 0 (3.12)
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for all t ∈ (0, Tmax). Now using (3.4)–(3.5), and in view of the fact that S0(δ) is non-decreasing, 
we see that

16
ϕ′ 2(cε)

ϕ(cε)
= 16h2(δ0 − cε)

−h−2 ≤ 1

3
ϕ′′(cε),

p(p − 1)S2
0(δ0)ϕ(cε) = p(p − 1)S2

0(δ0)(δ0 − cε)
−h ≤ 1

3
ϕ′′(cε),

pS0(δ0)ϕ
′(cε) = hpS0(δ0)(δ0 − cε)

−h−1 ≤ 1

3
ϕ′′(cε).

Thus the term 
∫
�

np
ε |∇cε|2

(
ϕ′′(cε) − 16

ϕ′ 2(cε)

ϕ(cε)
− p(p − 1)S2

0(δ0)ϕ(cε) − pS0(δ0)ϕ
′(cε)

)
on 

the right hand side of (3.12) is nonnegative, we immediately deduce that

d

dt

∫
�

np
ε ϕ(cε) + p(p − 1)

2

∫
�

np−2
ε ϕ(cε)|∇nε|2 ≤ 0, for all t ∈ (0, Tmax). (3.13)

Since ϕ(cε) is bounded from above and below, (3.2) and (3.3) result from the above inequality 
upon integrating on (0, Tmax). �
4. Boundedness in two-dimensional case (N = 2, κ = 1)

We expect that the Lp(�) estimate obtained in the last section guarantees boundedness of nε

in L∞(�) as in the fluid-free system. However, the iteration procedure is much more delicate 
due to the appearance of the transport terms in the current case. Since the regularity of ∇cε is 
crucial, which is also associated to the regularity of uε, we will first get the suitable regularity 
of uε . More precisely, the L2(�) norm of ∇uε implies boundedness of ‖u(·, t)‖Lp(�) for any 
p > 1. This is sufficient to prove boundedness of ‖∇cε(·, t)‖L∞(�).

4.1. Boundedness of ‖∇uε(·, t)‖L2(�)

Lemma 4.1. Let N ∈ {2, 3}. Suppose that

sup
t∈(0,Tmax)

‖nε(·, t)‖L2(�) < ∞. (4.1)

Then there exists C > 0 such that for any ε > 0

‖uε(·, t)‖L2(�) < C for all t ∈ (0, Tmax), (4.2)

min{k+1,Tmax}∫
k

∫
�

|∇uε|2 < C for all k ∈ T := {s ∈N, s ≤ [Tmax]}. (4.3)

Proof. Testing the third equation with uε, integrating by parts and Young’s inequality yield that
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1

2

d

dt

∫
�

|uε|2 +
∫
�

|∇uε|2 =
∫
�

nε∇φ · uε

≤ λ′
1

2

∫
�

|uε|2 + 1

2λ′
1
‖∇φ‖2

L∞(�)

∫
�

n2
ε (4.4)

for all t ∈ (0, Tmax). The Poincaré inequality combined with (4.1) implies the existence of c1 > 0
such that

d

dt

∫
�

|uε|2 + λ′
1

∫
�

|uε|2 ≤ c1 (4.5)

for all t ∈ (0, Tmax). Thus (4.2) is obtained by the comparison theorem. Now we integrate (4.4)
on (k, k + 1) (k ∈ T) to find that (4.3) holds due to (4.2). �
Remark 4.2. We note that the lemma does not depend on the dimensions, thus we are able to use 
the same reasoning in other situations, e.g. Lemma 7.5.

Based on (4.17) in [33], we can prove ‖∇uε(·, t)‖L2(�) is bounded with the aid of (4.3). The 
assumption N = 2 is crucial here.

Lemma 4.3. Let N = 2. Suppose that

sup
t∈(0,Tmax)

‖nε(·, t)‖L2(�) < ∞. (4.6)

There is C > 0 fulfilling for any ε > 0

‖∇uε(·, t)‖L2(�) ≤ C for all t ∈ (0, Tmax). (4.7)

Proof. First we apply Lemma 4.1 to obtain (4.2) and (4.3). Let A = −P� and hence 
‖A 1

2 uε‖L2(�) = ‖∇uε‖L2(�). Testing the third equation by Auε implies

1

2

d

dt

∫
�

|A 1
2 uε|2 +

∫
�

|Auε|2 =
∫
�

Auε(uε · ∇)uε +
∫
�

nε∇φAuε

≤ 1

4

∫
�

|Auε|2 +
∫
�

|uε|2|∇uε|2 + 1

4

∫
�

|Auε|2 + ‖∇φ‖2
L∞(�)

∫
�

n2
ε

≤
∫
�

|uε|2|∇uε|2 + 1

2

∫
�

|Auε|2 + ‖∇φ‖2
L∞(�)

∫
�

n2
ε (4.8)

for all t ∈ (0, Tmax). By Young’s inequality, an interpolation inequality for ‖uε‖L4(�) and 
‖∇uε‖L4(�) (see also in [33, Proof of Theorem 1.1]), and the equivalence between the norms 
‖A(·)‖L2(�) and ‖ · ‖W 2,2(�)
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∫
�

|uε|2|∇uε|2 ≤ (

∫
�

|uε|4) 1
2 (

∫
�

|∇uε|4) 1
2

≤ (

∫
�

|∇uε|2) 1
2 (

∫
�

|uε|2) 1
2 (

∫
�

|Auε|2) 1
2 (

∫
�

|∇uε|2) 1
2

≤ 1

2

∫
�

|Auε|2 + 1

2
(

∫
�

|uε|2)(
∫
�

|∇uε|2)2. (4.9)

We see that (4.8) and (4.9) in conjunction with our assumption and (4.2) imply that there is c1 > 0
fulfilling

d

dt

∫
�

|∇uε|2 +
∫
�

|Auε|2 ≤ c1

⎛
⎝∫

�

|∇uε|2 + 1

⎞
⎠

2

(4.10)

for all t ∈ (0, Tmax). Let y(t) := ∫
�

|∇uε(·, t)|2 + 1, thus y(t) satisfies

y′(t) ≤ c1y
2(t) (4.11)

for all t ∈ [k, min{k + 1, Tmax}).
If Tmax > 1, for all k ∈ T, Lemma 4.1 warrants the existences of c2 > 0 and sk ∈ [k, k + 1]

such that

y(sk) ≤ c2,

k+1∫
k

y(s)ds ≤ c2. (4.12)

We deduce from (4.11)–(4.12) that

y(t) ≤ e
c1

∫ t
sk

y(s)ds
y(sk) ≤ ec1

∫ min{k+2,Tmax}
k y(s)dsy(sk) ≤ e2c1c2c2 (4.13)

for all t ∈ [k + 1, min{k + 2, Tmax}] ⊂ [sk, min{k + 2, Tmax}) (k ∈ T). Thus (4.13) holds for all 
t ∈ [1, Tmax). A similar reasoning gives

y(t) ≤ ec1
∫ 1

0 y(s)dsy(0) ≤ ec1c2y(0) for all t ∈ [0,1]. (4.14)

If Tmax < 1, it is easy to see the above estimate still holds for t ∈ [0, Tmax). Thus the proof is 
complete by letting C := max{e2c1c2c2, ec1c2‖∇u0‖L2(�)}. �

The following lemma is an immediate consequence of Sobolev embedding theorem for di-
mension 2.

Lemma 4.4. Let N = 2. Suppose that

sup
t∈(0,Tmax)

‖nε(·, t)‖L2(�) < ∞. (4.15)
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Then for any 1 < p < ∞, there is C > 0 such that for any ε > 0

‖uε(·, t)‖Lp(�) ≤ C for all t ∈ (0, Tmax). (4.16)

4.2. Boundedness of ‖∇cε(·, t)‖L∞(�)

Now we are in a position to get higher regularity of ∇cε, the approach is carried out by 
fixed-point argument involving Lp-Lq estimates for semigroups combined with a typical integral 
estimate, which is borrowed from [32,3].

Lemma 4.5. For all η > 0 there is C = C(η) > 0 such that for all α, β ∈ [0, 1 − η), and γ, δ ∈R

satisfying 1
η

≥ γ − δ ≥ η, we have

t∫
0

(1 + s−α)(1 + (t − s)−β)e−γ se−δ(t−s)ds ≤ C(η)e− min{γ,δ}t (1 + tmin{0,1−α−β}) for all t > 0.

Lemma 4.6. Let N = 2, p0 > 2. Suppose that

sup
t∈(0,Tmax)

‖nε(·, t)‖Lp0 (�) < ∞.

Then there is C > 0 such that for any ε > 0

‖∇cε(·, t)‖L∞(�) ≤ C for all t ∈ (0, Tmax). (4.17)

Proof. The variation of constants formula associated to cε implies

‖∇cε(·, t)‖L∞(�) ≤ ‖∇et�c0‖L∞(�) +
t∫

0

‖∇e(t−s)�nε(·, s)cε(·, s)‖L∞(�)ds

+
t∫

0

‖∇e(t−s)�(uε(·, s) · ∇cε(·, s))‖L∞(�)ds (4.18)

for all t ∈ (0, Tmax). Recall that by the classical Lp-Lq estimates for Neumann semigroup, there 
is c1 > 0 such that

‖∇et�c0‖L∞(�) ≤ c1‖∇c0‖L∞(�) (4.19)

for all t ∈ (0, Tmax) and for all c0 ∈ W 1,∞(�). Since p0 > 2, Lp-Lq estimates yield that

t∫
‖∇e(t−s)�nε(·, s)cε(·, s)‖L∞(�)ds
0
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≤
t∫

0

c1(1 + (t − s)
− 1

2 − 1
p0 )e−λ1(t−s)‖nε(·, s)cε(·, s)‖Lp0 (�)ds

≤
t∫

0

c1(1 + (t − s)
− 1

2 − 1
p0 )e−λ1(t−s)‖nε(·, s)‖Lp0 (�)‖cε(·, s)‖L∞(�)ds, (4.20)

for all t ∈ (0, Tmax), which is bounded by (4.1) and (2.6). Next we fix p > 2 and moreover 
p1, p2 ∈ (p, ∞) satisfying 1

p
= 1

p1
+ 1

p2
. Let θ = 1 − 2

p2
∈ (0, 1), we thereby obtain

t∫
0

‖∇e(t−s)�(uε(·, t) · ∇cε(·, t))‖L∞(�)ds

≤
t∫

0

c1(1 + (t − s)
− 1

2 − 1
p )e−λ1(t−s)‖uε(·, t) · ∇cε(·, t)‖Lp(�)ds

≤
t∫

0

c1(1 + (t − s)
− 1

2 − 1
p )e−λ1(t−s)‖uε(·, t)‖Lp1 (�)‖∇cε(·, t)‖Lp2 (�)ds

≤
t∫

0

c1(1 + (t − s)
− 1

2 − 1
p )e−λ1(t−s)‖uε(·, t)‖Lp1 (�)(‖∇cε(·, t)‖θ

L∞(�)‖cε(·, t)‖1−θ
L∞(�)

+ ‖cε(·, s)‖L∞(�))ds (4.21)

for all t ∈ (0, Tmax). Let T ∈ (0, Tmax), and M := sup
t∈(0,T )

‖∇cε(·, t)‖L∞(�). We see from 

(4.18)–(4.21) that

M ≤ c2 + c2M
θ,

with some c2 > 0. Since θ < 1, (4.17) is obtained by Young’s inequality. �
4.3. Boundedness of nε

Lemma 4.7. Let N = 2, p0 > 2. Suppose that

sup
t∈(0,Tmax)

‖nε(·, t)‖Lp0 (�) < ∞.

Then there is C > 0 such that for any ε > 0

‖nε(·, t)‖L∞(�) ≤ C for all t ∈ (0, Tmax). (4.22)
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Proof. Following the variation-of-constants formula, we see that

‖nε(·, t)‖L∞(�) ≤ ‖et�n0‖L∞(�) +
t∫

0

‖e(t−s)�∇ · (nεSε(·, nε, cε) · ∇cε)(·, s)‖L∞(�)ds

+
t∫

0

‖e(t−s)�uε(·, s) · ∇nε(·, s)‖L∞(�)ds (4.23)

for all t ∈ (0, Tmax). The first term can be estimated as

‖et�n0‖L∞(�) ≤ c1‖n0‖L∞(�) for all t ∈ (0, Tmax) (4.24)

with some c1 > 0. Moreover, applying Lp-Lq for Neumann semigroup, we obtain c2 > 0 such 
that

t∫
0

‖e(t−s)�∇ · (nεSε(·, nε, cε) · ∇cε)(·, s)‖L∞(�)ds

≤ c2

t∫
0

(1 + (t − s)
− 1

2 − 1
p0 )e−λ1(t−s)‖(nεSε(·, nε, cε) · ∇cε)(·, s)‖Lp0 (�)ds

≤ c2S0(‖c0‖L∞(�))

t∫
0

(1 + (t − s)
− 1

2 − 1
p0 )e−λ1(t−s)‖nε(·, s)‖Lp0 (�)‖∇cε(·, s)‖L∞(�)ds

(4.25)

for all t ∈ (0, Tmax). By (4.1) and (4.17), we know the right hand side of (4.25) is bounded. 
Noting that uε · ∇nε = ∇ · (nεuε), we pick p > 2 and p′ > p such that 1

p
= 1

p0
+ 1

p′ , a similar 
reasoning as the above inequality shows that

t∫
0

‖e(t−s)�uε(·, s) · ∇nε(·, s)‖L∞(�)ds

=
t∫

0

‖e(t−s)�∇ · (nε(·, s)uε(·, s))‖L∞(�)ds

≤ c2

t∫
0

(1 + (t − s)
− 1

2 − 1
p )e−λ1(t−s)‖nε(·, s)uε(·, s)‖Lp(�)ds

≤ c2

t∫
0

(1 + (t − s)
− 1

2 − 1
p )e−λ1(t−s)‖nε(·, s)‖Lp0 (�)‖u(·, s)‖

Lp′
(�)

ds
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for all t ∈ (0, Tmax) due to (4.1) and (4.16), is bounded by Lemma 4.5. Thus we complete the 
proof by collecting the above estimates. �
4.4. Proof of (i) in Proposition 2.1

In order to prove global existence of the solution, it is left to show boundedness of 
‖Aαuε(·, t)‖L2(�) due to the extensive criterion.

Lemma 4.8. Suppose that

sup
t∈(0,Tmax)

‖nε(·, t)‖L2(�) < ∞, sup
t∈(0,Tmax)

‖uε(·, t)‖L2(�) < ∞, sup
t∈(0,Tmax)

‖∇uε(·, t)‖L2(�) < ∞.

Then there is C > 0 such that for every ε > 0

‖Aαuε(·, t)‖L2(�) ≤ C for all t ∈ (0, Tmax). (4.26)

Proof. Let T > 0, we first define M(t) := ‖Aαuε(·, t)‖L2(�) for t ∈ (0, T ). Let a = N
4α

, from the 
Gagliardo–Nirenberg inequality and [3, Lemma 2.3(iv)] we know that there is constant c1 > 0
such that

‖uε‖L∞(�) ≤ c1‖Aαuε‖a
L2(�)

‖uε‖1−a

L2(�)
. (4.27)

We apply Aα to both sides of the third equation in (2.4), a triangle-inequality implies that

‖Aαuε(·, t)‖L2(�) ≤ ‖Aαe−tAu0‖L2(�) +
t∫

0

‖Aαe−(t−s)AP(uε · ∇)uε(·, s)‖L2(�)ds

+
t∫

0

‖Aαe−(t−s)APnε(·, s)∇φ‖L2(�)ds. (4.28)

First we have

‖Aαe−tAu0‖L2(�) ≤ cα‖e−(t−1)Au0‖L2(�) ≤ c2e
−λ′

1(t−1)‖u0‖L2(�) for all t > 0. (4.29)

Thanks to Lemma 4.3, we know that ‖∇uε(·, t)‖L2(�) ≤ c2 with some c2 > 0, which together 
with (1.4), (4.27) and Lemma 4.5 yields the existence of cα > 0 and c3 > 0 such that

t∫
0

‖Aαe−(t−s)AP(uε · ∇)uε(·, s)‖L2(�)ds

≤
t∫
Cα(t − s)−αe−λ′

1(t−s)‖(uε · ∇)uε(·, s)‖L2(�)ds
0
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≤
t∫

0

Cα(t − s)−αe−λ′
1(t−s)‖uε(·, s)‖L∞(�)‖∇uε(·, s)‖L2(�)ds

≤
t∫

0

Cαc1c2(t − s)−αe−λ′
1(t−s)‖Aαuε(·, s)‖a

L2(�)
‖uε(·, s)‖1−a

L2(�)
ds

≤ sup
t∈(0,Tmax)

‖uε(·, t)‖1−a

L2(�)

t∫
0

Cαc1c2(t − s)−αe−λ′
1(t−s)Ma(s)ds

≤ Cαc1c2c3 sup
t∈(0,Tmax)

‖uε(·, t)‖1−a

L2(�)
sup

t∈(0,T )

Ma(t) (4.30)

for all t ∈ (0, Tmax). Furthermore, by (1.4) and Lemma 4.5 we can find and c4 > 0 such that

t∫
0

‖Aαe−(t−s)APnε(·, s)∇φ‖L2(�)ds

≤
t∫

0

Cα‖∇φ‖L∞(�)(t − s)−αe−λ′
1(t−s)‖nε(·, s)‖L2(�)ds

≤ Cα‖∇φ‖L∞(�) sup
t∈(0,Tmax)

‖nε(·, t)‖L2(�)

t∫
0

(t − s)−αe−λ′
1(t−s)ds

≤ Cαc4‖∇φ‖L∞(�) sup
t∈(0,Tmax)

‖nε(·, t)‖L2(�) (4.31)

for all t ∈ (0, Tmax). Taking supremum on both sides of (4.28) on (0, T ) with T ∈ (0, Tmax), we 
use (4.30) and (4.31) to find c5 > 0 such that

M̃ ≤ c5 + c5M̃
a, (4.32)

where we have used the notation M̃ := sup
t∈(0,T )

M(t). An application of Young’s inequality to the 

above inequality leads to the assertion. �
Proof of Proposition 2.1 (i). Let p0 > 2 and let δ0 := δ(p0) as defined in Lemma 3.1. We 
immediately see from Lemmata 4.1, 4.3–4.7 that ‖nε(·, t)‖L∞(�) is bounded. The boundedness 
of ‖cε(·, t)‖W 1,q (�) is obvious from Lemma 2.2 and Lemma 4.6. Also Lemma 4.26 implies that 
‖Aαuε(·, t)‖L2(�) is bounded. According to Lemma 2.1, we deduce Tmax = ∞, thus the solution 
is global. �
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5. Boundedness in three-dimensional case (N = 3, κ = 0)

In this section, we deal with the chemotaxis-Stokes system in the three-dimensional setting. 
Since for the Navier–Stokes system, it is impossible to have global classical solutions without 
any restrictions on u0, we only consider the case κ = 0 and only assume ‖c0‖L∞(�) to be small.

We first give a sufficient condition for boundedness which in conjunction with Lemma 2.1
proves Theorem 1. In fact, since Lemma 3.1 provides Lp estimate for any p > 1, we can of 
course choose p sufficiently large to get boundedness in L∞(�). However, we would like to 
give an optimal condition in the following for our own interest.

Proposition 5.1. Let N = 3, p > N
2 , suppose that

sup
t∈(0,Tmax)

‖nε(·, t)‖Lp(�) < ∞ for all t ∈ (0, Tmax). (5.1)

Then we have for any ε > 0

sup
t∈(0,Tmax)

‖nε(·, t)‖L∞(�) < ∞ for all t ∈ (0, Tmax). (5.2)

We will prove the proposition by several lemmata, which improve regularity for uε and ∇cε

in suitable way.

Lemma 5.1. Let p > N
2 , suppose that

sup
t∈(0,Tmax)

‖nε(·, t)‖Lp(�) < ∞. (5.3)

There are α ∈ (N
4 , 1) and C > 0 such that

‖Aαuε(·, t)‖L2(�) ≤ C,

‖uε(·, t)‖L∞(�) ≤ C for all t ∈ (0, Tmax).

Proof. The proof is very similar to Lemma 4.3, we only need to deal with the term with less 
regularity of nε , say, the case p < 2. For p ∈ (N

2 , 2) given in Lemma 5.1, we can find α ∈
(N

4 , min{1 − N
2p

+ N
4 , 1}). We apply Lemma 4.5 to obtain some c2 > 0 such that

t∫
0

‖Aαe(t−s)Anε∇φ‖L2(�)ds

≤
t∫

0

‖Aαe
(t−s)

2 A(e
(t−s)

2 Anε(·, s)∇φ)‖L2(�)ds

≤
t∫
Cα(

t − s

2
)−αe− λ′

1
2 (t−s)‖e (t−s)

2 Anε(·, s)∇φ‖L2(�)ds
0
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≤
t∫

0

Cα(
t − s

2
)−αe− λ′

1
2 (t−s)(

t − s

2
)
− N

2 ( 1
p

− 1
2 )‖nε(·, s)‖Lp(�)‖∇φ‖L∞(�)ds

≤ Cα

t∫
0

(t − s)
−α− N

2p
+ N

4 e− λ′
1
2 (t−s)‖nε(·, s)‖Lp(�)‖∇φ‖L∞(�)ds

≤ Cα‖∇φ‖L∞(�) sup
t∈(0,Tmax)

‖nε(·, t)‖Lp(�)

t∫
0

(t − s)
−α− N

2p
+ N

4 e− λ′
1
2 (t−s)ds

≤ Cαc2‖∇φ‖L∞(�) sup
t∈(0,Tmax)

‖nε(·, t)‖Lp(�),

for all t ∈ (0, Tmax). Combine this fact with the proof of Lemma 4.8 we see that ‖Aαuε(·, t)‖L2(�)

is bounded for all t ∈ (0, Tmax). Since α > N
4 , embedding theorem implies the boundedness of 

‖uε(·, t)‖L∞(�). Thus the proof is complete. �
Lemma 5.2. Let p > N

2 , suppose that

sup
t∈(0,Tmax)

‖nε(·, t)‖Lp(�) < ∞. (5.4)

For N < q0 <
Np

N−p
, there is C > 0 such that for any ε > 0,

‖∇cε(·, t)‖Lq0 (�) ≤ C for all t ∈ (0, Tmax). (5.5)

Proof. Let t ∈ (0, Tmax) and M := sup
t∈(0,T )

‖∇cε(·, t)‖Lq0 (�). The variation of constants formula 

implies

‖∇cε(·, t)‖Lq0 (�) ≤ ‖∇et�c0‖Lq0 (�) +
t∫

0

‖∇e(t−s)�(nεcε)(·, s)‖Lq0 (�)ds

+
t∫

0

‖∇e(t−s)�(uε · ∇cε)(·, s)‖Lq0 (�)ds

for all t ∈ (0, Tmax). By the Lp-Lq estimates we see that

‖∇et�c0‖Lq0 (�) ≤ c1t
− 1

2 ‖c0‖Lq0 (�)

for some c1 > 0 and for all t > 0. Since 1 < q0 <
Np

N−p
, we know that − 1

2 − N
2 ( 1

p
− 1

q0
) > −1, 

thus we estimate the second term by Lp-Lq estimate for Neumann semigroup with c2 > 0 such 
that
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t∫
0

‖∇e(t−s)�nε(·, s)cε(·, s)‖Lq0 (�)ds

≤
t∫

0

c2(1 + (t − s)
− 1

2 − N
2 ( 1

p
− 1

q0
)
)e−λ1(t−s)‖nε(·, s)cε(·, s)‖Lp(�)ds

≤
t∫

0

c2(1 + (t − s)
− 1

2 − N
2 ( 1

p
− 1

q0
)
)e−λ1(t−s)‖nε(·, s)‖Lp(�)‖cε(·, s)‖L∞(�)ds

for all t ∈ (0, Tmax). It is bounded due to the choice of q0 and our assumption on ‖nε(·, t)‖Lp(�). 

Now we fix q < q0 satisfying 1
q

− 1
q0

< 1
N

, and let a = 1− N
q

1− N
q0

∈ (0, 1). Hölder’s inequality as well 

as interpolation inequality yield the existence of c3 > 0,

t∫
0

‖∇e(t−s)�uε(·, s) · ∇cε(·, s)‖Lq0 (�)ds

≤
t∫

0

c2(1 + (t − s)
− 1

2 − N
2 ( 1

q
− 1

q0
)
)e−λ1(t−s)‖uε(·, s)∇cε(·, s)‖Lq(�)ds

≤
t∫

0

c2(1 + (t − s)
− 1

2 − N
2 ( 1

q
− 1

q0
)
)e−λ1(t−s)‖∇cε(·, s)‖Lq(�)‖uε(·, s)‖L∞(�)ds

≤
t∫

0

c2(1 + (t − s)
− 1

2 − N
2 ( 1

q
− 1

q0
)
)e−λ1(t−s)‖uε(·, s)‖L∞(�)(c3‖∇cε(·, s)‖a

Lq0 (�)‖cε(·, s)‖1−a
L∞(�)

+ c3‖cε(·, s)‖L∞(�))ds

≤ c4M
a + c4

for all t ∈ (0, Tmax) with some c4 > 0. The assertion can be seen by combining the above esti-
mates and the fact that a < 1. �

Having enough regularity for both uε and ∇cε , we are ready to prove boundedness for nε.

Proof of Proposition 5.1. Let T ∈ (0, Tmax) and M := sup
t∈(0,T )

‖nε(·, t)‖L∞(�). The representa-

tion formula for nε yields that

‖nε(·, t)‖L∞(�) ≤ ‖et�n0‖L∞(�) +
t∫
‖e(t−s)�∇ · (nεSε(·, nε, cε)∇cε)(·, s)‖L∞(�)ds (5.6)
0
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+
t∫

0

‖e(t−s)�∇ · (nε(·, s)uε(·, s))‖L∞(�)ds

for all t ∈ (0, Tmax). Since q0 > N , we can find N < p0 < q0 and q1 > 1 such that 1
p0

= 1
q0

+ 1
q1

. 

Let a = 1 − 1
q1

. The Lp-Lq estimates for the Neumann heat semigroup and Hölder inequality 
imply c1 > 0 and c2 > 0

t∫
0

‖e(t−s)�∇ · (nεSε(·, nε, cε) · ∇cε)(·, s)‖L∞(�)ds

≤
t∫

0

c1(1 + (t − s)
− 1

2 − N
2p0 )e−λ1(t−s)‖(nεSε(·, nε, cε) · ∇cε)(·, s)‖Lp0 (�)ds

≤
t∫

0

c1S0(1 + (t − s)
− 1

2 − N
2p0 )e−λ1(t−s)‖∇cε(·, s)‖Lq0 (�)‖nε(·, s)‖Lq1 (�)ds

≤
t∫

0

c1S0(1 + (t − s)
− 1

2 − N
2p0 )e−λ1(t−s)‖∇cε(·, s)‖Lq0 (�)‖nε(·, s)‖a

L∞(�)‖nε(·, s)‖L1(�)ds

≤ c2 + c2M
a, for all t ∈ (0, Tmax).

Now we pick p1 > N , and let b = 1 − 1
p1

. The Lp −Lq estimates and the interpolation inequality 
imply

t∫
0

‖e(t−s)�∇ · (nε(·, s)uε(·, s))‖L∞(�)ds (5.7)

≤
t∫

0

c1(1 + (t − s)
− 1

2 − N
2p1 )e−λ1(t−s)‖nε(·, s)uε(·, s)‖Lp1 (�)ds

≤
t∫

0

c1(1 + (t − s)
− 1

2 − N
2p1 )e−λ1(t−s)‖nε(·, s)‖Lp1 (�)‖uε(·, s)‖L∞(�)ds

≤
t∫

0

c1(1 + (t − s)
− 1

2 − N
2p1 )e−λ1(t−s)‖uε(·, s)‖L∞(�)‖nε(·, s)‖b

L∞(�)‖nε(·, s)‖1−b

L1(�)
ds.

Finally, collecting the above estimates, we conclude the assertion by a similar reasoning as in 
Lemma 5.2. �
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5.1. Proof of Proposition 2.1 (ii)

Combining Proposition 5.1 and Lemma 3.1 proves Proposition 2.1.

Proof of Proposition 2.1 (ii). Let p > 2 and let δ0 := δ0(p) as defined in Lemma 3.1. We 
see that (2.7) implies ‖n(·, t)‖Lp(�) is bounded, which combined with Proposition 5.1 yields 
the boundedness of ‖nε(·, t)‖L∞(�). The boundedness of ‖∇cε(·, t)‖L∞(�) has been shown in 
Lemma 5.2. Together with Lemma 5.1, we see that the solution is global by Lemma 2.1. �
6. Passing to the limit

We now wish to obtain the solution of (1.1) by sending ε → 0 for the approximated solution. 
In order to achieve this, we shall first prepare some estimates for (nε, cε, uε) which are indepen-
dent of ε. Since we cannot expect the regularity in C2+α,1+ α

2 (� × (0, ∞)) to be uniform in ε
due to the presence of Sε , we will first show the triple of limit functions solves (1.1) in the sense 
of distributions, then apply standard parabolic regularity to show that it is actually a classical 
solution. The procedure is quite similar to that in [3].

Let us first define a weak solution.

Definition 6.1. We say that (n, c, u, P) is a global weak solution of (1.1) associated to initial data 
(n0, c0, u0) if

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n ∈ L∞((0,∞) × �) ∩ L2
loc((0,∞);W 1,2(�)),

c ∈ L∞((0,∞) × �) ∩ L2
loc((0,∞);W 1,2(�)),

u ∈ L∞((0,∞) × �) ∩ L2
loc((0,∞);W 1,2

0,σ (�)),

P ∈ L2((0, T );W 1,2(�)),

(6.1)

and for all ψ ∈ C∞
0 (� × [0, ∞); R) and all ζ ∈ C∞

0,σ (� × [0, ∞); RN) the following identities 
hold:

−
∞∫

0

∫
�

nψt −
∫
�

n0ψ(·,0) = −
∞∫

0

∫
�

∇n · ∇ψ

+
∞∫

0

∫
�

nS(x,n, c) · ∇c · ∇ψ +
∞∫

0

∫
�

nu · ∇ψ, (6.2)

−
∞∫

0

∫
�

cψt −
∫
�

c0ψ(·,0) = −
∞∫

0

∫
�

∇c · ∇ψ −
∞∫

0

∫
�

ncψ +
∞∫

0

∫
�

cu · ∇ψ, (6.3)

−
∞∫

0

∫
�

u · ζt −
∫
�

u0 · ζ(·,0) = −
∞∫

0

∫
�

∇u · ∇ζ +
∞∫

0

∫
�

(u · ∇)u · ζ +
∞∫

0

∫
�

n∇φ · ζ. (6.4)
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The required estimates are very close to those in [3]. We will state the results here and only 
give a sketch of the proofs.

Lemma 6.1. There exists C > 0 such that for all ε ∈ (0, 1)

∞∫
0

∫
�

|∇cε|2 < C, (6.5)

∞∫
0

∫
�

|∇nε|2 < C. (6.6)

Proof. Multiply the second equation by cε , using the fact ∇ · uε = 0, we obtain that

1

2

d

dt

∫
�

c2
ε +

∫
�

|∇cε|2 ≤ 0, (6.7)

this implies (6.5) by direct integration. Since Tmax = ∞, letting p = 2 in (3.3), we see that (6.6)
holds. �
Lemma 6.2. All bounded solutions (nε, cε, uε, Pε) of (2.4) satisfy

nε ∈ C
γ,

γ
2

loc (� × (0,∞)), cε ∈ C
γ,

γ
2

loc (� × (0,∞)), uε ∈ C
1+γ,γ

loc (� × (0,∞)). (6.8)

More precisely, there is C > 0 such that for all ε ∈ (0, 1), and all s ∈ [1, ∞) we have

‖nε‖
C

γ,
γ
2 (�×[s,s+1]) ≤ C, (6.9)

‖cε‖
C

γ,
γ
2 (�×[s,s+1]) ≤ C, (6.10)

‖uε‖C1+γ,γ (�×[s,s+1]) ≤ C. (6.11)

Proof. Let s ≥ 1. We define ñε(·, t) = nε(·, t + s − 1), c̃ε(·, t) = cε(·, t + s − 1) and ũε(·, t) =
uε(·, t + s − 1). Let ξ ∈ C∞((0, ∞)) satisfy ξ = 0 on (0, 12 ) ∪ ( 5

2 , ∞) and ξ = 1 on [1, 2]. We 
see that ξ ñε is a weak solution of

(ξ ñε)t − ∇ · (∇(ξ ñε) − ξ ñεSε(x, ñε, c̃ε)∇ c̃ε) = ξ ′ñε, t ∈ [0,∞),

associated with Neumann boundary condition and ξ ñε(·, 12 ) = 0. Since (∇(ξ ñε) − ξ ñεSε(x, ñε,

c̃ε)∇ c̃ε − ñεũε) · ∇(ξ ñε) > 1
2 |∇(ξ ñε)|2 − ñ2

ε|Sε|2|∇ c̃ε|2 − ñ2
ε |ũε|2, we see together with the fact 

guaranteed in Lemma 4.6 and Lemma 5.2, that the norms of ñ2
ε|Sε|2|∇ c̃ε|2 + ñ2

ε|ũε|2 and ξ ′ñε are 
bounded in Lp(( 1

2 , 52 ); Lq(�)) for suitably large p or q and independent of s, thus Theorem 1.3 
in [20] implies there are γ1 ∈ (0, 1) and c1 > 0 such that

‖nε‖ γ1,
γ1
2

= ‖ñε‖ γ1,
γ1
2

≤ ‖ξ ñε‖ γ1,
γ1
2 1 5

≤ c1,

C (�×[s,s+1]) C (�×[1,2]) C (�×[ 2 , 2 ])
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and c1 depends on ‖ξ ñε‖L∞(�×( 1
2 , 2

5 ))
and the norms of ñ2

ε|Sε|2|∇ c̃ε|2 + ñ2
ε|ũε|2 in appropriate 

spaces only. A similar reasoning yields some γ2 ∈ (0, 1) and c2 > 0 such that

‖cε‖
C

γ2,
γ2
2 (�×[s,s+1]) ≤ c2.

The derivation of the regularity of uε is similar to [3, Lemma 5.3]. Let s ≥ 1, and ξs be a smooth 
function: (0, ∞) → [0, 1] satisfying ξs(t) = 0 on (0, s − 1

2 ) ∪ (s + 3
2 , ∞) and ξs(t) = 1 on 

[s, s + 1]. We consider ξ · uε , it satisfies

(ξuε)t = ξtuε + ξuεt = �(ξuε) − ξ(uε · ∇)uε + ξnε∇φ + ξ ′uε, on (s − 1

2
, s + 3

2
),

with ξuε(·, 0) = 0 and ξuε = 0 on ∂�. Thus by an application of [9, Thm. 2.8], for any r ∈
(1, ∞), we deduce the existence of constant Cr > 0 fulfilling

∞∫
0

‖(ξuε)t‖r
Lr (�) +

∞∫
0

‖D2(ξuε)‖r
Lr (�)

≤ Cr

⎛
⎝0 +

∞∫
0

‖P ((ξuε · ∇)uε) + P (ξnε∇φ) + P
(
ξ ′uε

)‖r
Lr (�)ds

⎞
⎠ ,

which, due to the definition of ξ and boundedness of uε , nε , ξ ′ reads as

s+ 3
2∫

s− 1
2

‖(ξuε)t‖r
Lr (�) +

s+ 3
2∫

s− 1
2

‖D2(ξuε)‖r
Lr (�) ≤ C1

s+ 3
2∫

s− 1
2

‖∇(ξuε)‖r
Lr (�) + C2

for all s ∈ (1, ∞) and for some C1 > 0, C2 > 0. Let a = 1− N
r

2− N
r

∈ (0, 1), the Gargliardo–Nirenberg 

inequality shows

‖∇(ξuε)‖r
Lr (�) ≤ C3‖D2(ξuε)‖ar

Lr (�)‖(ξuε)‖(1−a)r
L∞(�)

for some C3 > 0. Integrating the above inequality on (s − 1
2 , s + 3

2 ) and using Young’s inequality 
yields that

s+ 3
2∫

s− 1
2

‖∇(ξuε)‖r
Lr (�) ≤ C4

s+ 3
2∫

s− 1
2

‖D2(ξuε)‖ar
Lr (�) ≤

s+ 3
2∫

s− 1
2

(
1

2
‖D2(ξuε)‖r

Lr (�) + C5

)

with some C4 > 0, C5 > 0 and for all s ∈ [1, ∞). Combining the above estimates we see that 
there is C6 > 0 such that for all s ≥ 1 and all ε ∈ (0, 1),
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s+1∫
s

‖(uε)t‖r
Lr (�) +

s+1∫
s

‖D2uε‖r
Lr (�) ≤ C6.

Let r ∈ (1, ∞) be sufficiently large, the embedding theorem implies the existence of γ3 ∈ (0, 1), 
C > 0 such that

‖uε‖C1+γ3,γ3 (�×[s,s+1]) ≤ C.

Choosing γ = min{γ1, γ2, γ3} we have proved (6.9)–(6.11). For all τ > 0, we can choose 
ξτ ∈ C∞

0 ((0, ∞)) in such way that ξτ = 0 on (0, τ) and (max{3τ, 1}, ∞), and ξτ = 1 on 
[τ, max{2τ, 1}]. We consider the equations for ξτnε , ξτ cε and ξτuε , respectively. Then (6.8)
is obtained by the same reasoning as above. Actually, the way of γi (i = 1, 2) depend-
ing on τ is through the non-decreasing dependence of the norms ‖ξnε‖L∞(�×[τ,max{3τ,1}]), 
‖ξcε‖L∞(�×[τ,max{3τ,1}]) [20, Theorem 1.3], which are independent of τ , thus we can choose 
the same γi (i = 1, 2) as before. Moreover, γ3 can be chosen in the same manner upon choosing 
the same r . �
Lemma 6.3. Let γ ∈ (0, 1) be chosen as in Lemma 6.2. There exists (εj )j∈N ⊂ (0, 1) such that 
εj ↘ 0 as j → ∞, and that as ε = εj ↘ 0, it holds that

nε → n in C
γ

loc(� × (0,∞)), (6.12)

∇nε ⇀ ∇n in L2(� × (0,∞)), (6.13)

cε → c in C
γ

loc(� × (0,∞)), (6.14)

∇cε ⇀ ∇c in L2(� × (0,∞)), (6.15)

uε → u in C
γ

loc(� × (0,∞)), (6.16)

∇uε → ∇u in C
γ

loc(� × (0,∞)), (6.17)

uε
�

⇀ u in L∞((0,∞);D(Aα)), (6.18)

Sε(x,nε(x, t), cε(x, t)) → S(x,n(x, t), c(x, t)) a.e. in � × (0,∞). (6.19)

Proof. First (6.12), (6.14) and (6.16), (6.17) are obtained from Lemma 6.2. Lemma 6.1 implies 
(6.13) and (6.15). Due to the obtained convergence (6.12) and (6.14) and the continuity of S, we 
conclude that (6.19) holds. �
Lemma 6.4. The functions n, c, u from Lemma 6.3 form a weak solution to (1.1) in the sense of 
Definition 6.1.

Proof. Take ψ and ζ as specified in Definition 6.1 and test them to (2.4). Lemma 6.3 allows us 
to take limit in each integral, thus we obtain the weak formulation. �
Lemma 6.5. The functions n, c, u from the previous lemma satisfy
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n ∈ C
2+γ,1+ γ

2
loc (� × (0,∞)), c ∈ C

2+γ,1+ γ
2

loc (� × (0,∞)),

u ∈ C
2+γ,1+ γ

2
loc (� × (0,∞)) (6.20)

for some γ ∈ (0, 1). Moreover, let s ≥ 1. There is a constant C > 0 such that

‖n‖
C

2+γ,1+ γ
2 (�×[s,s+1]) ≤ C, ‖c‖

C
2+γ,1+ γ

2 (�×[s,s+1]) ≤ C,

‖u‖
C

2+γ,1+ γ
2 (�×[s,s+1]) ≤ C (6.21)

for all t ≥ 1.

Proof. First taking ξs as chosen in Lemma 6.2, we see that ξ · c is a weak solution of (ξc)t −
�(ξc) + n(ξc) + u · ∇(ξc) − ξ ′c = 0 on t ∈ (s − 1

2 , s + 3
2 ) associated with Neumann boundary 

condition and ξc(·, s − 1
2 ) = 0. First [14, Thm. 5.3] guarantees that ξc ∈ C2+γ,1+ γ

2 (� × [s −
1
2 , s+ 3

2 ]), therefore, [16, Thm. 4.9] shows that the norm ‖ξc‖
C

2+γ,1+ γ
2 (�×[s− 1

2 ,s+ 3
2 ]) is controlled 

by the corresponding Hölder norms of n and u, which is bounded by Lemma 6.2 and Lemma 6.3.
For the regularity of n, we improve it similarly as c but more carefully since its boundary 

condition also involves c. We first estimate its C1+γ,
1+γ

2 norm, then its C2+γ,1+ γ
2 norm, by 

[16, Thm. 4.8] and [16, Thm. 4.9], respectively.
For the regularity of u, we again consider ξ · u, which satisfies (ξu)t = �(ξu) − ξ(u ·

∇)u + ξn∇φ + ξ ′u, with Dirichlet boundary condition. Lemma 6.1 already ensures the Cγ,
γ
2

bound on the right hand side. Thus [22, Thm. 1.1] together with the uniqueness guaranteed in 
[21, Thm. V.1.5.1] implies the (6.21).

For any fixed τ > 0, by choosing ξτ ∈ C∞
0 ((0, ∞)) such that ξτ = 0 on (0, τ) and (3τ, ∞), 

and ξτ = 1 on [τ, 2τ ], we can see (6.20) holds by the same reasoning as introduced above. �
Having in hand the regularity for the weak solution (n, c, u) of (1.1), we have shown that it is 

actually classical solution.

7. Stabilization

In this section, we prove large time convergence for each component of the solution but not 
the approximated one. Since we have already derived that the solution is globally bounded, then 
it has uniform in time regularity in Hölder space. In order to make the convergence property from 
the previous section applicable, we have to gain some uniform smooth regularity.

The first obtained convergence of n is crucial, it will imply convergence for c and u later.

Lemma 7.1. Let (n, c, u, P) be the classical bounded solution of (1.1). We have

∞∫
0

∫
�

|∇n|2 < ∞.

Proof. The statement holds due to (6.6) and (6.13). �
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Lemma 7.2. Let (n, c, u, P) be the classical solution of (1.1), we have

‖(n(·, t) − n̄0)‖L∞(�) → 0, as t → ∞. (7.1)

Proof. Suppose on contrary that there are c1 > 0 and a sequence tk → ∞ such that

‖n(·, tk) − n̄0‖L∞(�) > c1 for k ∈N. (7.2)

Now we define

gk(x, s) = n(x, s + tk), (x, s) ∈ � × [0,1].

By the regularity guaranteed in Lemma 6.5, we see that for all k ∈ N, there is c2 > 0 such that

‖gk‖
C

2+α,1+ α
2 (�×[0,1]) ≤ c2.

The Arzelá–Ascoli theorem implies that gk is relatively compact in C1(�×[0, 1]). Thus we can 
find a subsequence {gkj

}j and n∞ ∈ C1(� × [s, s + 1]) such that

gkj
→ n∞ ∈ C1(� × [0,1]), as j → ∞. (7.3)

It is left to show n∞ = n̄0. We see from Lemma 7.1 that

1∫
0

∫
�

|∇gkj
|2 → 0 as j → ∞,

which combined with (7.3) implies

1∫
0

∫
�

|∇n∞|2 = 0.

Since n∞ ∈ C1(� × [0, 1]), we deduce that n∞ ≡ L with L ∈R. Moreover, we have

|�| · L =
1∫

0

∫
�

n∞ = lim
j→∞

1∫
0

∫
�

fkj
=

1∫
0

∫
�

n0.

Thus we conclude n∞ ≡ n̄0. This contradicts (7.2) by the definition of n∞. �
Lemma 7.3. Let (n, c, u, P) be the classical bounded solution of (1.1). For any 0 < η < n̄0, there 
is C > 0 such that

‖c(·, t)‖L∞(�) ≤ Ce−ηt for all t ≥ 0. (7.4)
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Proof. For all 0 < η < n̄0, we can find T > 0 such that

n ≥ η for all t ≥ T .

Thus the second equation of (1.1) can be written as

ct ≤ �c − ηc − u · ∇c for all t ≥ T .

The maximum principle yields that

‖c(·, t)‖L∞(�) ≤ ‖c(·, T )‖L∞(�)e
−ηt for all t ≥ T .

An obvious choice of C completes the proof. �
Lemma 7.4. Let (n, c, u, P) be the classical bounded solution of (1.1), and let 0 < η <

min{n̄0, λ1}, then we can find some C > 0 such that

‖∇c(·, t)‖L∞(�) ≤ Ce−ηt for all t ≥ 0. (7.5)

Proof. The proof is based on the constants variation formula, Lp − Lq estimates as well as 
Lemma 4.5. Recall (4.18), the first term can be estimated easily

‖∇et�c0‖L∞(�) ≤ c1t
− 1

2 e−λ1t‖c0‖L∞(�)

≤ c1‖c0‖L∞(�)e
−λ1t

for all t ≥ 1. With local existence theory, ‖∇et�c0‖L∞(�) is bounded for t > 0. Similarly
to (4.20), with ‖n‖Lp(�) ≤ c2 and ‖c‖L∞(�) ≤ c3, if we choose p > 1

N
, Lemma 4.5 implies 

the existence of c4 > 0 such that

t∫
0

‖∇e(t−s)�n(·, s)c(·, s)‖L∞(�)ds

≤
t∫

0

c1(1 + (t − s)
− 1

2 − N
2p )e−λ1(t−s)‖n(·, s)‖Lp(�)‖c(·, s)‖L∞(�)ds

≤
t∫

0

c1(1 + (t − s)
− 1

2 − N
2p )e−λ1(t−s)c2c3e

−ηsds

≤ c1c2c3c4e
−ηt

for all t > 0. Moreover, let θ = 1 − N ∈ (0, 1) and M(t) = eηt‖∇cε(·, t)‖L∞(�),
p
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t∫
0

‖∇e(t−s)�(u(·, t) · ∇c(·, t))‖L∞(�)ds

≤
t∫

0

c1(1 + (t − s)
− 1

2 − N
2p )e−λ1(t−s)‖u(·, s) · ∇c‖Lp(�)ds

≤
t∫

0

c1(1 + (t − s)
− 1

2 − N
2p )e−λ1(t−s)‖u(·, s)‖L∞(�)(‖∇c(·, t)‖θ

L∞(�)‖c(·, t)‖1−θ
L∞(�)

+ ‖c(·, s)‖L∞(�))ds

≤ c1

t∫
0

(1 + (t − s)
− 1

2 − N
2p )e−λ1(t−s)c2M

θ(s)e−θηs‖c0‖1−θ
L∞(�)e

−(1−θ)ηsds

+ c1

t∫
0

(1 + (t − s)
− 1

2 − N
2p )e−λ1(t−s)c2‖c0‖L∞(�)e

−ηsds

for all t > 0. If we multiply eηt on both sides of (4.18) and let M̃ := sup
t∈(0,T )

M(t) for any T ∈
(0, ∞), we find that

M̃ ≤ c5M̃
θ + c6,

for some c5, c6 > 0, thus M̃ is bounded, which leads to the assertion. �
Lemma 7.5. Let (n, c, u, P) be the classical bounded solution of (1.1). There is C > 0, such that

‖u(·, t)‖L2(�) ≤ C, (7.6)

‖Aαu(·, t)‖L2(�) ≤ C for all t > 0, (7.7)

‖u(·, t)‖L2(�) → 0, as t → ∞, (7.8)

‖u(·, t)‖L∞(�) → 0, as t → ∞. (7.9)

Proof. First, (7.6) and (7.7) are immediately obtained by (6.16) and (6.18), respectively. Since 
(4.27) together with (7.7) and (7.8) immediately implies (7.9), it is left to prove (7.8). Testing the 
third equation in (1.1) with u and integrating by part, we obtain

1

2

d

dt

∫
�

|u|2 +
∫
�

|∇u|2 =
∫
�

n∇φ · u =
∫
�

(n − n̄0)∇φ · u

≤ λ′
1

2

∫
�

|u|2 + 1

2λ′
1
‖∇φ‖2

L∞(�)

∫
�

|n − n̄0|2
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for all t ∈ (0, ∞). Using the Poincaré inequality

d

dt

∫
�

|u|2 + λ′
1

∫
�

|u|2 ≤ 1

λ′
1
‖∇φ‖L∞(�)‖n − n̄0‖L2(�) for all t > 0. (7.10)

By the boundedness of ‖n(·, t)‖L∞(�) and ODE comparison lemma, we conclude that
‖u(·, t)‖L2(�) < c1 for some c1 > 0 and for all t > 0. If we apply Lemma 7.2, for any ε > 0, we 
can find t0 > 0 large enough satisfying

‖n(·, t) − n̄0‖L∞(�) <
λ′

1ε√
2‖∇φ‖L∞(�)|�| for all t > t0.

Again, (7.10) with Gronwall’s inequality implies that

∫
�

|u(·, t)|2 ≤ e−λ′
1(t−t0)

∫
|u(·, t0)|2 +

t∫
t0

e−λ′
1(t−s) 1

λ′
1
‖∇φ‖L∞(�)|�|‖n(·, t) − n0‖2

L∞(�)ds

≤ e−λ′
1(t−t0)c2

1 + 1

(λ′
1)

2
‖∇φ‖L∞(�)|�|‖n(·, t) − n0‖2

L∞(�)

≤ ε2

for all t > max{t0, 1
λ′

1
ln e

t0
λ′

1
2c2

1
ε2 }. Thus we have shown (7.8). �

Now we are ready to prove the main result.

Proof of Theorem 1. The function (n, c, u) obtained as the limit of (nε, cε, uε) is a weak so-
lution of (1.1) by Lemma 6.4. Moreover, its smooth regularity is guaranteed by Lemma 6.5. 
Hence we know that it solves (1.1) classically. The boundedness of ‖n(·, t)‖L∞(�) can be seen 
from Proposition 5.1 and Lemma 6.12. Lemmata 2.2, 7.4 imply that ‖c(·, t)‖W 1,q (�) is bounded. 
Moreover, u ∈ L∞((0, T ); D(Aβ)) is asserted by (7.7). The continuity up to the initial time 
can be proven similarly as in [3, Lemma 5.8]; first we prove that for T > 0, nt , ct and ut

are in L2((0, T ); (W 1,2(�))∗) and L2((0, T ); (W 1,2
0,σ (�))∗), respectively. Then we can conclude 

the assertions for c and u by embedding. Using the continuity of nε and the uniform conver-
gence (6.12), the continuity of n can be done similarly as in [3, Lemma 5.8]. Hence we have 
proved Theorem 1. �

Now we have already shown the convergence of the solution (see Lemma 7.2, Lemma 7.4
and Lemma 7.5). In order to show the convergence rates are exponential, we only need to apply 
known result from [3], where the Navier–Stokes is considered. However, the arguments there 
obviously work for the Stokes case which can be seen by dropping the convective term.

Proof of Corollary 1.1. From [3, Thm. 1], we know that for all m > 0, and α, α′ > 0 as chosen 
in Corollary 1.1, there are p0, q0 and ε0 such that if initial data satisfies
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ñ0 = 1

|�|
∫
�

ñ0 = m, ‖ñ0 − ñ0‖Lp0 (�) ≤ ε0, ‖c̃0‖L∞(�) ≤ ε0, ‖ũ0‖LN(�) ≤ ε0,

(7.11)

the solution fulfilling

‖n(·, t) − n̄0‖L∞(�) ≤ Ce−αt , ‖c(·, t)‖Lq0 (�) ≤ Ce−αt ,

‖u(·, t)‖L∞(�) ≤ Ce−α′t for all t > 0.

According to Lemmata 7.2 7.4 and 7.5, for the aforementioned ε0 > 0, there is T > 0 such that

‖n(·, t) − n̄0‖Lp0 (�) ≤ ε0, ‖c(·, t)‖L∞(�) ≤ ε0, ‖u(·, t)‖LN(�) ≤ ε0 for all t ≥ T .

Let ñ(·, t) = n(·, t + T ), c̃(·, t) = c(·, t + T ), ũ(·, t) = u(·, t + T ), it is easy to see that 
(ñ0, c̃0, ũ0) = (ñ(·, 0), c̃(·, 0), ũ(·, 0)) fulfills (7.11), we immediately obtain the convergence rate 
by substituting (ñ0, c̃0, ũ0) into (7.11) and uniqueness of solution for (1.1). �
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