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Abstract

In this paper we study a general 2 x 2 non-Abelian Chern—Simons—Higgs system of the form

2

2 2 N;
1 ) . .
Au; + ") E K e — E E KijKjie"ie" | =4 E Spij(X), i=12
i=1 j=lk=1 j=1

over a flat 2-torus ’H‘z, where ¢ > 0, §p is the Dirac measure at p, N; € N (i = 1, 2), K is a non-degenerate
14a —a
-b 1+b
a Cartan matrix (of a rank 2 semisimple Lie algebra). Concerning the existence results of this type system
over T2, usually in the literature there is a requirement that a, b > 0. However, it is an open problem so far
for the solvability about such system with a, b < 0, which naturally appears in several Chern—Simons—Higgs
models with some specific gauge groups. We partially solve this problem by showing that there exists a
constant gy > 0 such that this system admits a solution over the torus if 0 < ¢ < g provided |a|, |b| are
suitably small. Furthermore, if ab > 0 in addition, with suitable condition on a, b, N1, N>, this system

2 x 2 matrix of the form K = < ), which may cover the physically interesting case when K is
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admits a mountain-pass solution. Our argument is based on a perturbation approach and the mountain-pass
lemma.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Since 1980’s the Chern—Simons terms [12,13] have been used in 2 4+ 1 dimensional gauge
field models for the characterization of dually charged vortices [16—19,46], which have applica-
tions in many branches of modern physics such as high-temperature superconductivity [39,44],
integer and fractional quantum Hall effects [23,48,49], and anyon physics [25,56,57]. For the
full Chern—Simons—Higgs models usually it is hard to study the equations of motion due to their
complicated structures, even for the radially symmetric case, which was just solved not long
ago in [9]. Thanks to the seminal works [32,36], self-dual equations [5,47] have been found in
various Abelian and non-Abelian Chern—Simons—-Higgs models, relativistic or non-relativistic
[20-22,35-37,40-42], which lead to considerable progress for understanding of these equations
both physically and mathematically. See [33] for a recent review about Chern—Simons models.

For the Abelian Chern—Simons—Higgs model, the self-dual equations found in [32,36] can be
formulated into

N
1
A —e“(1—e")=4n E 8y, 1.1
M+82 ( ) Ds (1.1)

s=1

where ¢ > 0 is a coupling parameter, 5, denotes the Dirac measure concentrated at point p,
and N e N. Finite-energy condition implies two kinds of admissible boundary conditions on R?:
u — 0 and u — —oo at infinity, which are separately called topological and non-topological [59].
The existence of topological solutions for (1.1) was established in [55] by a variational argu-
ment, and in [50] via a monotone iteration approach, respectively. For non-topological solutions
of (1.1), the first result is due to [51], dealing with the radially symmetric solutions by a shooting
argument, which was refined in [11] to tackle more general problems. Concerning the existence
of non-radially non-topological solutions, [7] established the first existence result by a perturba-
tion argument, which was extended by [8] and [15] to get more general existence results. Another
type physically interesting solutions for (1.1) is called vortex condensates [ 1] modelling the lat-
tice structure, that is, to construct solutions for (1.1) over a doubly periodic domain (a flat torus),
which were first constructed by [6] and later generalized by [52] to get a multiple existence result.
More complete existence results concerning (1.1) can be found in the monographs [54,59].

As for the non-Abelian Chern—Simons—Higgs model, the self-dual equations in [20-22] can
be reduced into the following nonlinear elliptic system [58,59]

1 r r r N;
Aui+ — Y Kjie =Y Y KijKjiee | =4x Y8, i=1-.r (12)
j=1 j=1k=1 j=1
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where K = (K;;) is the Cartan matrix of a finite-dimensional semisimple Lie algebra L, r the
rank of L, ¢ > 0 the coupling parameter, and N; e N (i = 1,...,r). Formally the equation (1.1)
can be viewed as a limiting case of (1.2) with the matrix K reducing to the number 1. In view
of finite-energy condition, it is interesting to study the system (1.2) in R? [20-22,58,59] with the
topological boundary conditions

,
ui—>mY (KN, |x|—>o0, i=1--.r
Jj=1

or the non-topological conditions
uj — —00, |x|—oo, i=1,---,r.

Based on a Cholesky decomposition technique for the positive definite matrices, Yang [58] used
a variational approach to establish the first existence result concerning topological solutions for
system (1.2) with K being a general matrix such that the Cartan matrices [38] are included.

Due to the well-known constraints’ difficulty, as witnessed by [6,52], it is difficult to solve
(1.2) when r > 2 over a doubly periodic domain. In this context the first existence result was
established by Nolasco and Tarantello [45] when K is the Cartan matrix of SU (3), i.e.

2 -1
k= (—1 2 )

by refining the constrained minimization approach in [6,52]. Subsequently, Han and Tanratello
[30] extended the results [45] to a general case when K is a non-degenerate matrix of the form
K = (_ay —(;8) with o, 8,6,y > 0 and a6 — By > 0 such that Cartan matrix of a rank 2
semisimple Lie algebra is contained. The case with K being the Cartan matrix of SU (n + 1)
of (1.2) was solved by [31], where the constraints’ difficulty was overcome by an iteration trick
with the help of implicit function theorem. The most recent progress on this issue is due to [29],
where a new approach based on a degree-theory argument has been developed to resolve the
constraints, and the existence results for (1.2) are established when K assumes a very general
form such that the Cartan matrices of all semisimple Lie algebras are included.

On the other hand, in the works [29-31,45], for dealing with the solutions over a torus, the
common feature shared by the corresponding matrix K is that its off-diagonal entries are non-
positive. In fact, this feature is crucial for resolution of the constraints’ difficulty involved in these
studies. A natural question is whether there are any solutions of system (1.2) with K having non-
negative off-diagonal entries, or more general, no sign assumption of signs being imposed on
them. This motivates us to study the solvability of (1.2) over a flat 2-torus when K is a general
2 x 2 non-degenerate matrix with no restrictions on signs of the off-diagonal entries.

For this purpose, we first make a transformation of system (1.2) with a general matrix K =

(oe p ), o, 8 >0, ad — By > 0. In order to guarantee the existence of topological solution, one

s—p a—y

, > 0.
ad— By od— By

2
Z(K_l)ji >0, fori=1,2, ie.
j=1
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Define a transformation as follows:

o up) — w1+ —=—F oy p1n 2=
Ui, U u n———, u n————|.
1, U2 1 w5 — By 2 w5 — By

Then system (1.2) can be changed to

Auy = 812 {ae"(1 — (1 + b)e"® + be"1)
Ny
— (L4 a)e"' (1 - (1+a)e" +ae")} +47 ) 5),
| i=I in T? (1.3)
Auy = 2 {be“‘ (1—(>1+a)e"! +ae"?)
Ny
— (14 b)e(1 — (14 b)e + be" )} +47 Y "5,
i=1

l4+4a —a -
jb L+ b ,wherea:’z{?’_ﬂ? a8 ﬂ
[29-31,45], one always has a, b > 0, which is crucial for the constrained minimization prob-
lems involved in these studies. However, some corresponding systems with a,b < 0 in (1.3)
arise naturally from specific field-theoretical models.

A first example is the following system, which originates in the Gudnason model [26,27]
whose gauge groups are SO(2M) and U Sp(2M):

with K = b = . In all the cases considered in

M
AU = M2 |:Z(GU+V, +CU Vi 2):| Z(eU+V/+eU—\/_,')

i=1 j=1

IB I M n;
+ aﬁ g(euw“ UM pany Y sy,

i=ls=1 in T2, (14
AV; = |:Z(6U+V’+e —2)}(eU+Vf—eU—Vf)

nj
+,32(62U+2Vj —62U72Vj)+4ﬂ28pjss j=1,---,M
s=1

where «, 8 > 0 are coupling constants. The derivation and more physical motivation of this
system can be found in [26,27]. For M =1, by setting u; =U + Vi, up, =U — V1, We see that
system (1.4) can be reduced to a specific case system (1.3) witha =b = ,32&06, e= 2 . We refer
readers to [28] for the details of the transformation. Therefore when < « it is necessary to
study system (1.3) with a, b < 0.

Another typical example comes from a non-Abelian Chern—Simons—Higgs model with gauge

group SU(N) x U (1) and flavor SU(N):
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Aulzi N-1+4« eul_N_1+K62u1+K_leu1+uz
g2 N N N
Ny
—1 1+(N -1 N-Dk-1
n KN (euz . %ehz + *euﬁ-uz)} + 47 Z(Sl’“
i=1
Ay = L[N=DC =D (o N=THK oy =1
g2 N N N
_ I+ W=D (euz _ 1N =D, (W= Dl l)eu1+u2>}
N N N
N>
+47TZ:81,1.2
i=1

(1.5)

in T2, where N > 2, k is a coupling constant. System (1.5) was first derived by Lozano, Mar-
qués, Moreno and Schaposnik in [43]. In fact, we can see that system (1.5) is a special case of
system (1.3) witha = "—;,1, b= W Then as k < 1 we need to consider system (1.3) with
a,b<0.

Due to the difficulty of the constraints, system (1.4) and system (1.5) are solved by [28]
and [10] respectively for the case a,b > 0 (i.e. B > « in (1.4) and « > 1 in (1.5)) in T2.
The existence of solutions over T2 for system (1.4) and (1.5) remains open for a,b < 0 (i.e.
B <ain (1.4) and « < 1 in (1.5)). This unsolved case for the above two systems concerning
the specific models provides us more physical motivation to study the solvability of the gen-
eral system (1.3) without the requirement a, b > 0. We will establish the existence results for
system (1.3) over T2 when |al, |b| are small enough, which partially solves this open prob-
lem. Specifically, we have the following existence theorem on solutions of (1.3) over a flat
2-torus T2.

Theorem 1.1. Consider system (1.3) over a flat 2-torus T2, Let D11, DIN;s P21, » P2N, €
T2 be given. Then, there exist two constants, 8o = o(N1, N2), €0 = €o(pij, a, b) such that for
lal, |b] < 80, 0 < & < &o, system (1.3) admits a solution (uye,uz) which has the following
property:

i eyl + Vi e(x)| =0, i=1,2, as &—0, (1.6)

locally uniformly in T?\ Uij pij, for any fixed k € NT U {0}.
Moreover, system (1.3) admits at least two solutions, provided one of the following case hap-
pens in addition:

(1) a,b>0;

(2) a,b <0, 1 < % < A, for some constant A > 1, |a|, |b| < 8o(N1, N2, 1) and [(1 + b)N1 +
aN2][(1 +a)N2 + bN1] #0;

(3) a=0, N2#00rb=0, Ny #0.
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On the other hand, for the solutions obtained, there hold the following quantized integrals

1
—2/{(1+a)e”1(1—(1+a)e”1 +ae"?) —ae" (1 — (1 +b)e" + be"')} dx =47 Ny,
&€

T2

1
—2/{(1 +b)e"2(1 — (1 + b)e" + be"') — be" (1 — (1 4 a)e"! +ae"?)} dx =47 N,.
&

T2

Remark 1.1. By our theorem, in particular, we obtain the existence of solutions of system (1.4)
and (1.5) over a flat 2-torus T? for (corresponding) a, b < 0 and |a|, |b| are small enough.

Since a, b are not necessarily positive, the constrained minimization for dealing with the solu-
tion of (1.2) over T? does not apply for (1.3). We need to seek other ideas to tackle this problem.
Observe that for a, b = 0 system (1.3) decouples into two Abelian Chern—Simons—Higgs equa-
tions of the form (1.1), which are well understood as we mentioned previously. This sheds some
light on the possibility to solve (1.3) when |a/, |b| is small. In fact, to get the existence a first so-
lution, we use a perturbation approach which is inspired by the work of [14] and a generalization
of [34].

To this end, we need to investigate the existence of topological solutions of the system

Auy =ae"2(1 — (1 4+ b)e"? + be"')

— (A +a)e" (1 —(1+a)e" +ae'?) + 4w N 8
Auy =be" (1 — (1 +a)e”! + ae"?)

— (1 +b)e"2(1 — (1 + b)e"2 + be"1) + 4w Ny

in R (1.7)

Formally, system (1.7) can be seen as a perturbation of the following decoupled system of two
Abelian Chern—Simons—Higgs equations

Auyp +e“1(1 —e") =4r NSy

R?, (1.8)
Aus +e*2(1 —e"?) =4 N»dy

which corresponds to (1.7) with a = b = 0. For simplicity, throughout this paper we use the
following notation

flur,up) £e1(1— (1 +a)e" +ae"?), guy,uz) =e"2(1— (1 +b)e" +be'). (1.9)

Then the linearized operator L(u1, u3) £ (Li(uy,u3), Lo(uy, uz)) of (1.7) at a solution (u1, u3)
is as follows:

Li(ui,u2)(h1, h) = Ahy 4 (14 @) fu, — agu)ht + (14 @) fu, — agu, a2,

(1.10)
Lo(uy, u2)(hy, ha) & Ahy + (1 + b)guy — bfu)ha + (1 + b)gu, — bfu)hi.

Thanks to the uniqueness and strictly stable property of the topological solution of (1.8) which
is proved in [14], we have the following result concerning the existence of topological solutions
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of (1.7) and the invertibility of the corresponding linearized operator, which is important for the
proof of Theorem 1.1.

Theorem 1.2. For any Ny, N> > 0, system (1.7) admits a topological solution (u1, uz), whose
linearized operator defined by (1.10) is a one to one map from H*(R?) to L*(R?), and there is a
constant co = co(Ny1, N2) > 0 such that

Il L(ui, uz)(hi, hZ)”LZ(RZ)XLZ(RZ) > coll(h1, h2) ||H2(]R2)><H2(R2)

provided a|, |b| < 6o(N1, N2) for some constant §o(N1, N2) > 0. Moreover, this topological
solution satisfies the following properties:

(1). There exists R;(N1, N2) > 0 such that |u; (x)| + |Vu;(x)| < Cle*%(]*s)lx‘, i =1,2 for any
|x| > Re (N1, N2);
(2). The following estimate holds:

lur — @il g2z + lluz — G2l 22y < C2(V/ lal +V/1b1), (1.11)

where (¢1, ¢2) is the unique topological solution of (1.8);

(3). If a, b is non-negative, this topological solution is the unique topological solution of (1.7)
and it is radial symmetric;

(4). For the solutions obtained, there hold the following quantized integrals:

/ [(1+a)e" (1 — (1 + a)e"t +ae'?) — ae">(1 — (1 +b)e"? + be"!) fdx = 4 Ny,

R2

/ {(14b)e"2(1 — (1 4 b)e" + bet) — be"1 (1 — (1 + a)e"! + ae"?)}dx = 47 N».

R2

The rest of our paper is organized as follows. In Section 2, we prove the existence part of
Theorem 1.2 via a perturbation argument and the uniqueness part by a Pohozaev’s type identity.
Section 3 is devoted to the proof of Theorem 1.1. We establish the existence of a first solution
of (1.3) by a contradiction argument and contraction mapping principle which borrows the idea
from [14]. And the existence of a second solution of (1.3) is proved with the help of mountain-
pass lemma [2].

2. Topological solution in R?

This section is mainly devoted to proving Theorem 1.2. Our proof is based on a perturbation
argument and Pohozaev’s identity.

2.1. Preliminaries
In this subsection we present some preliminaries for our later use. To this end, we need to

analyze system (1.7) with |a|, |b| being small constants. Let (¢1, ¢2) be the unique topological
solution of the decoupled system (1.8).
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Before starting our proof, we first recall some facts without proof.
Consider the following equation,

Au+e“(1—e*)=4xNsy, in R (2.1)
If we consider the radial symmetric solutions of (2.1), then
ruY +re"(1—e")=0,r>0; u@r)=2NInr+s9, r — 0. (2.2)
(D). For N =0, after a translation of coordinate, both topological solution and non-topological
solutions are radial symmetric and unique. Set B(sq) £ fooo re“(1 —e")dr. Then B(sg) is
strictly increasing on (—oo, 0) and

lim B(so) =4; lim B(sp) = +oo. 2.3)
so—> —00 so—0

We refer the readers to [8] for the details of the proof.
(II). For N > 0, all the topological solutions of (2.1) are radial symmetric. Its linearized operator
L: H*(R?) — L2(R?):
L(h) = Ah+e"(1 —2e")h
is a one to one map and there is a constant ¢(N) > 0 such that
1L 22y = N A 2 g2 2.4)
for all 1 € H*(R?). The details of the proof can be found in [14].
We also recall the following form of Harnack type inequality from [4].
Lemma 2.1. Let Q@ C R? be a smooth bounded domain and u satisfy:
—Au=f in Q,

with f € LP(R), p > 1. For any subdomain Q' CC Q, there exist two positive constants T €
(0,1) and M > 0, depending only on ', such that

(1). ifsupyqu < C, then supgy u < tinfou + M| fllrr + 1 —1)C;
(2). ifinfyou > —C, then tsupg u <info u + M| fllLr) + (1 —1)C.

We first derive a decay estimate of the topological solutions for system (1.7) which will be
used later. Although the proof is standard as in [58], we present it here for completeness.

Lemma 2.2. Suppose (u1, uz) is a topological solution of system (1.7). Then there exists Ry > 0
such that

i ()] + Vi ()] < Cee 2070 i =12 for |x| > R,. (2.5)

provided that |a|, |b| < §q for some 69 > 0 small enough.
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Proof. Denote

_(l14a —a _(w (e 0 (e (1
K_<—b 1+b)’u_<u2)’U_<0 eu2>,U—<eu2>,1—<1>.
Then system (1.7) in R?\ Bg (0) is equivalent to

Au=KUK(U—-1)=KUKUzu (2.6)

esl
0
a perturbation of the identity matrix /, we can choose |a|, |b| small enough such that %(K 24

where Uz = < 622) for some &; between O and u;, i = 1,2. Since K can be regarded as

(K T)Z) > %I . From the theory of linear algebra, we can find an orthogonal matrix O such that
%O(K2 + (KT)2)0T = diag(kl, )»2) =A, A, > % Set w = Ou. Then we have

Aw? =wl o(K* + (KD oTw+wl ok — (K1) 0Tw+wl O(KUKU: — K0 'w
> 2min(hi, A)W> — o(D)W? > (1 — e2)w?. 2.7

Since u1, up — 0 as x — oo, we can choose R, > 0 large enough to guarantee the last inequality
in (2.7). Now by a standard barrier function argument, we can deduce from (2.7) that

[W[? < Coe ™72,
which proves the present lemma. O

With the help of the decay estimate as above, we can derive a Pohozaev’s identity for sys-
tem (1.7).

Lemma 2.3. Suppose (u1, uz) is a topological solution of system (1.7) with 1 +a + b # 0. Then
there hold the following identities:

4 ((1 +Db)N1 +aNr)
1+a+b

/e’“(l — (1 +a)e"! +ae"?) = ,
RZ
4w ((1 +a)N, +bNy)

l1+a+b

R2

4 (14 b)b 4 (1
b/(l—e”‘)—i—a/(l—e“Z): (1 +b) N12+ 77 ( +a)aN22
R2 R2

/6”2(1 — (1 + b)e'2 + be'l) =

’

2.8)

1+a+b l+a+b

8mrab 47b((1 +b)N1 +aN>) 4dmwa((1 +a)N2+ bNy)
——F NNV + .
l+a+b l+a+b 14+a+b
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Proof. In fact, by a straightforward computation, we can change system (1.7) to

in R2\{0}. (2.9)

A((1+Duy+au)+ A +a+b)e" (1 —(1+a)e" +ae"2) =0
A1+ a)us +buy) + (1 +a+b)e"2(1 — (1 4+ b)e*2 + be') =0

A direct integration of (2.9) on R? will yield that

47 ((1 4+ b)N; + aN,)

/e’“(l — (1 +a)e"t +ae"?) =

’

l+a+b
R2
47 ((1 +a)N2 + bNy) (210)
41 a)N2 1
21 — (1 4+ b)e"2 + be"') = .
/e( (14 b)e"* + be") T Tath
R2
Multiplying the first equation of (2.9) with x - Vi and integrating on R?\ B5(0), one gets
- / x-Vul[(l—i-b)Aul—i-aAuz]
R2\B5(0)
(2.11)
u l+a 2u u u
={+a+b) x~V(e‘—1)—Tx~V(e '—1)+ae"x - Vel |.
R2\B5(0)
Now we estimate the left-hand side term of (2.11). Integrating by parts, we have
/ x-VuiAuy
R2\B;5(0)
» 1 2
= 0; (xj0ju0juy) — [Vuq| _E x - V|Vuy|
R2\B5(0) R2\B5 (0) R2\B; (0) (2.12)
1
- — f (Vay - v)(x - Vi) + 5 / (x - v)|Vuy |2
3B5(0) 9Bs5(0)
= — 4N+ 0@9).
By (2.11) and (2.12), we get
2/(1 —e'y —(1 +a)/(1 —e?y 4 g / e'2x . Vel
R2 R2 R\ Bs(0)
(2.13)

_477(1+b) 2 a
" l4+a+b ' 14+a+b

/ (x -Vuy) - Auz + 0(9).
R2\Bs(0)
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A similar argument also yields that

2/(1—e”z)—(1+b)/(1—62”2)+b / e'lx - Ve'?
R2 R2

R2\ B5(0)
(2.14)
dr(1+a) , b / (- Vi) - Aup + O(8)
= — x-Vup) - Au .
l+a+b 2 1+a+b 2 !
RR2\B;5(0)
Combining (2.13) and (2.14), we have
Zb/(l—e”1)+2a/(l—e”z)—b(1+a)/(l—62”1)—(1+b)a/(1—e2”2)
R2 R2 R2 R2
4 (1 + b)b 8mwab 4 (1 4+ a)a
2ab | (1 —e1t2) = 2_ NiNy + —————N2. (215
ea f( ) = s U Trag s e g M )
R2

By (2.15) and (2.10), we get the last equality of (2.8). O

Lemma 2.4. Suppose (u1,uz) is a topological solution of (1.7) with a,b > 0. Then we have
up,ur) <0in R2.

Proof. Suppose not, without loss of generality, we may assume 0 < maxg2 u] = u1(xp) >
maxp2 u2. At xg, one has

0< —Aui(xg) =1 +a)""(1 — (1 +a)e" +ae"?)(xg) —ae”?(1 — (1 + b)e"? + be"1)(xg)
< (I+a)e" (1 —e")(xo) —ae"(1 —e"?)(xp) <a(e" —e"?)(1 —e"? —e"")(xo) <0.
This yields a contradiction and proves the present lemma. 0O
Lemma 2.5. Suppose (u1,,,u2.,) is a sequence of topological solutions of system (1.7) with
(a,b) = (an, bp) and a,, b, > 0. Then by taking a subsequence, one can get (uy ,,us ) con-
verges to (i1, uUy) in Clzoc(Rz\{O}) such that (i1, u7) is a topological solution of system (1.7)
with (a,b) = ( lim a,, lim b,) = (a,b).
n—0o0 n—oo
Proof. We distinguish into two cases:

1. @, b> 0. In this case, by Lemma 2.4, we see that

/(1—e”'v”)+/(1—e”2v”)§C<+oo (2.16)
R2 R2

uniformly in n. By Lemma 2.4, uy ,,, u3 , < 0. This allows us to apply the Harnack inequality
of Lemma 2.1 to show that uj , either goes —oo locally uniformly in R?\{0} or remains
locally uniformly bounded in R?\{0}. Due to (2.16), we can conclude that U1, remains
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locally uniformly bounded in R?\{0}. Hence, by a subsequence, we may assume Uin, U2n
converge to i, up <0in Clzoc (RZ\{O}), respectively. By Fatou’s Lemma and (2.16), we also
have

/(1—eﬁl)+/(1—eﬁ2)SC<+oo, (2.17)
R2 R2

which implies (i1, i#72) is a topological solution. Since if not, we may find x,, — oo such
that 11 (x,) + 2 (x,) < —ypp < 0 for some constant yp > 0. Then by intermediate value the-
orem, we can find y, — oo such that u(y,) + u2(y,) = —yo. By the equation for u + 17
and Harnack inequality, there exists My > O such that i) + iy < —% in B, (y,) which
contradicts (2.17).

. ab = 0. Without loss of generality, we may assume 0 < a,, b, — 0 as n — 00, otherwise it

is the trivial case. By (2.8) in Lemma 2.3, we have

/(1 —e'2n) < C < o0. (2.18)
RZ

As in Case 1, we can apply Harnack inequality in Lemma 2.1 to u1, to get u; , either goes
to —oo or remains bounded locally uniformly in R?\{0}. In fact, we have the following three
different situations:

(2.2) (u1,n, u2,) converges to (i, i) with [pa(1 —e“) + [po(1 —€2) < C < +o00. This
is just the Case 1 and proves the present lemma.

(2.b) (u1,n, u,n) converges to (iiy, i) with [po(1 —e“) = +00, [p2(1 — ") < C < +o0.
In fact, this implies (i1, i2) is not a topological solution of (1.7). In other words, there
exists 9 < 0 and x,, — oo such that i1 (x,) < yp.

(2.c) ui, goesto —oo locally uniformly in R2\{0}.

We need to show that Case (2.b) and (2.c) will never happen. In fact, if Case (2.b) or (2.c)

happens, by u;,(x) = 0 as |x| — 400 and intermediate value theorem, we can find

yn — oo such that u1 ,(y,) = so < 0 and B(sp) >> 1 with B(s) asin (2.3). Set

i1 (X) Z Ut p(x + yn), G2,0(X) 2 w25 (x + yn). (2.19)

Then by the Harnack inequality of Lemma 2.1, we know that i, is locally uniformly
bounded and iy, either goes to —oo or remains uniformly bounded locally in R2.
From (2.18), we know iiz , is locally uniformly bounded. By standard elliptic estimates,
we may assume i ,, il , converge to i, itg in C 120 . (Rz) which solve the following system

Aiip + (1+a@)e" (1 — (1 4+ a)e™ + ae™) — ae™(1 —e2) =0,
Aiiy +e2(1 —e®) =0, in RZ

/(1 —e2)y < C <00, ii1(0)=so.
R2

(2.20)

By the first and third equality in (2.8), one can get (1 + @)? f]RZ eln(l —etn) < Cp < 00
uniformly. Since i, is a topological solution, we know i = 0. In fact, (2.20) is reduced
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to (2.1) with N = 0. By our choice of 59, we get a contradiction. This completes the proof of
the present lemma. O

Remark 2.1. In fact, Lemma 2.5 is also true for system (1.7) with more general distribution of
vortices.

2.2. The proof of Theorem 1.2

In this subsection we carry out the proof of Theorem 1.2. For any z1,z2 € H>(R?), we first
introduce the following operator:

1
Fi(@1,22) 2 Azy + — (€570 — ef)(1 — 551501 — 1) 4 Zei1401 (] — 2 4 @)k )
K K
— Leknator( — (1 4 b)e 2t — (1 4 — b)),
K

1 b
Fr(z1,22) 2 Az + ;(eKZ2+¢‘2 _ e¢2)(1 _ ekntdr _ e¢2) 4 ;eK22+¢2(1 -2+ b)eK12+¢2)

_ éeKZlJFd’l 1-( +a)eK11+¢1 —(1+b-— a)eKzZ+¢2).
K

By a direct computation, we can see that u; = kz1 + ¢1, u2 = k22 + ¢2 is a solution of (1.7)
if and only if F(zy,z2) £ (Fi(z1,22), F2(z1, 22)) = 0. Here (¢1, ¢2) is the unique topological
solution of system (1.8).

Lemma 2.6. Let F(z1,22) : H*(R?) x H*(R?) — L2(R?) x L*(R?) be defined as above and
«2 2 max(|a|, |b|). Then there exists 80 = 8o(N1, N2) > 0 such that

(1). I1F 0, 0l L2m2)x r2r2) = €1 (N1, N2)k;
(2). Forany yr1,yn € HZ(R?), we have

IDF 0,0 (W1, ¥l 2®2yx r2®2) = 2N N2) (191 2wy + 1¥21l 2 r2)):
(3). Forany z1,z> € H*(R?) with ||z; Il 2®2) < 1, we have

(DF(z1,22) = DF(0,0) (Y1, ¥2)l L2r2) x L2(R2)
< cs(N1, Nk (11 gz gey + 121l 2 r2))

provided |a|, |b] < &p.

Proof. First we prove (1). By the definition of F(z1, z2), we get

a a
IR0, 0l 2z = | 2911 = @+ a)e?) — et = (1 -+ b)e — (1 +a — be?)

L2(R?)

= Cie (I =Ml 2y + 11—l 2y ) < 1.

Here we have used (¢, ¢») is the unique topological solution of (1.8). The proof for (0, 0) is
the same.
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Now we turn to prove (2). By a direct computation, one gets

DF(0,0)(hy, h2)
= Ah; +e?' (1 —2e?Yh +ae® (1 =22 + a)e? )i,
—ae®(1 —2(1 +b)e?” — (1 +a — b)e? Yhy +a(l +a — b)e? T%2p;.

By a rearrangement, we get that £ satisfies
Ahy 4¢P (1 =2 )by =alihy +alzhy + DFi(0,0)(h1, ha),

where |11], |I>| are some functions with universal L°°-bounds. Now by the property (2.4) of ¢1,
we have

121l 22y < Cllal(lhrll 22y + 1h21l 2@®2)) + IDF1(0,0)(h1, h2)ll 2 g2 }- (2.21)

A similar argument yields that
A2l g2 g2y < C{1bI([|h1 22y + A2l L2R2)) + 1D F2(0, 0) (A1, h2)||L2(1R2)}- (2.22)

If we take |a|, |b| small enough such that C(|a| + |b|) < %, (2) follows from inequalities (2.21)
and (2.22) immediately.
It remains to prove (3). In fact, by a direct computation, one gets

(DFi(z1,22) = DF1(0,0))(h1, h2) = I3hy + Ishy, (2.23)

where I3, I4 are functions which are controlled by |1 —e“?!| + |1 — e“?2|. By Sobolev embedding
H2(R?) — L°°(R?) and mean value theorem, one can show (3) is true. O

Proof of Theorem 1.2. Set
G(z1,22) 2 (21,22) — (DF) ™' (0,0)F (21, 22) : H*(R?) x H*(R*) — H*(R?) x H*(R?).
(2.24)

It is easy to see that F'(z1, z2) = 0 is equivalent to (z1, z2) is a fixed point of G. In the following,
we will show G(z1, z2) is a contraction mapping from By x By to By x B, where 5 = {z €
H2(R?)| lzll g2r2y < 1}. Also set «2 2 max(|al, |b]).

By the definition of G(z1, z2) and (1), (2) of Lemma 2.6, we see that

_ -1
IGO0l 2y = (PP OOFO.O| L <CL N (225)
Also by (2), (3) of Lemma 2.6, we have
IDG@1, 2l < [(DF)™' 0,00 | IDF(z1,22) = DF(0,0)] = CNy Nk, (226)

From inequalities (2.25) and (2.26), one gets
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1G (z1, 22) | g2 r2) x H2(R2)
=1GO, 0l 22 xm2®2) + gupB IDGE1, 2 (21l r2eey + 22l 2w2)) (2.27)
21,22€0]

< C(Ny, Ny)k

for any z1, zo € B1. Moreover,

1G(z1,22) — G(Z1, 22) I m2 (R2) x H2(R2)

< sup [IDG(z1,22)ll(llz1 — Zill g2y + 22 — 22l g2 w2y
Z1,.22€B; ) = (2.28)

. . 1 . .
< Cr(llz1 — Zill grge) + llz2 — 220l g2 rey) < 5(“21 = Zill w2y + 122 — 220 2Ry

for any z1, z2 € By and « small enough. In view of (2.27) and (2.28), we see that G(z1, z2) is
a well-defined contraction mapping from By x B to By x By provided |a/, |b| is small enough.
Therefore, G(z1, z2) has a unique fixed point (21 4.5, 22,4.6) in B1 x B;. By the definition of
G(z1,22) and F(z1, 22), we have found a solution (¢1,4.5, ¢2.4.5) Of (1.7) as follows:

O1a,b(X) =K21,4,6(X) +O1(X),  ©2,4,6(X) =K22.45(X) + ¢2(x).

From the construction, by Lemma 2.6, we can see the non-degeneracy of the linearized operator
of (1.7) at (¢1.4.b, ¥2.4.p)- SINCE 21,45, 22.4.6 € B1, by Sobolev embedding H?*(D) — L*®(D),
D C R?,itis easy to see that z; 4 ,(x) = 0 as |x| — oo, i =1, 2. This implies (¢1,4.6, ¥2.4.5) 18
a topological solution of (1.7).

By Lemma 2.2, we know that there exists R;(Ny, N2,a,b) > 0 such that property (1)
in Theorem 1.1 holds. Then the only thing left is to show R.(Ni, Na,a,b) is indepen-
dent of a,b provided a,b are small. Suppose that there exist two sequences a,,b, — 0
such that R.(Ny, N2, a,, b,) — +o0c. Without loss of generality, we may assume ¢ ,(x,) =
©1,a,.b, *n) < vo <0 and x, — oo. By our construction of (¢ ,, ¢2,,), we have

/ 1 —e¥in| < / |1 — ekndin| 4 eknlin|] —efi| < C < oo, (2.29)

R? R2

since we have |[zinllg2@2) < 1. Set @ia(x) £ ¢ju(x + x,). By a similar argument as in
Lemma 2.4, we have (¢1,,, ¢2.,) converges to (0,0) in CIZOC(RZ). This yields a contradiction
as ¢1,,(0) < yp < 0. This proves that property (1) that R.(N1, N2) depends only on Np, Nj.
Property (2) is a direct conclusion of our procession of construction.

Now we prove the conclusion (3) in Theorem 1.2. Suppose not, we may assume for 0 <
an, by = 0, (@14, ¢1.,) and (P2,n, ¢2,,) are two different topological solution of system (1.7).
Denote

P2.n — (:52,}1
lo1,n — (/A’l,n|oo + |2, — @2,n|oo

Pln — (/Ajl,n
lo1,n — @l,n|oo + lo2.n — ‘272,n|oo

hia(x) = L hoa(x) 2

By assumption, without loss of generality, we may assume /1 ,(x,) > % for some x, € R%. Set
hin(x) £ hin(x 4+ x,). By Lemma 2.4, we know that &1 , converges to 11 which solves
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Al e (1 =21 =0 in R% 7 0)> =, |hile <1. (2.30)
Here i1 is the unique topological solution of
Adiy +e1 (1 — ey = 4 N g,
where N = 0 if limx, — co and N = N if limx, = %. By a result from [8], we know that
the equation in (2.30) only admits trivial bounded solution. This contradicts to h1(0) > % This
proves the uniqueness for a, b > 0 and small enough.

In view of the decay property of the topological solutions stated in (1) of Theorem 1.2, the last
conclusion in Theorem 1.2 concerning the quantized integrals follows from a direct integration.
Then we complete the proof of Theorem 1.2. O
3. Solutions on torus

This section is devoted to the proof of Theorem 1.1. On the basis of Theorem 1.2, we prove
the existence of a first solution of (1.3) over T? by using a perturbation argument. The existence
of a second solution is obtained by using the mountain-pass lemma [2].

3.1. Existence of a first solutions

To carry out our proof, we just need to consider the following elliptic system over T?:

1
Aup = _Z{aeuza — (14 b)e" + be')
&

N
— (@ (1= (1 + e +ae™) | +47 Y a5,

] = 3.1

_ up1 _ uy us

Ay = 2{be (1 = (1 +a)e + ae')
£

N
— (D) (1 = (14 D) + be') | +47 356,
j=1

N
where Zai,j = N;, i =1, 2. Here we relabel the configuration {p11,---, pin;, P21, » D2N,}
j=1
in Theorem 1.1 by {py1,---, pn}.
Let (@1, ¢2i) be the topological solution of the following system which is constructed in
Section 2:

A1 =ae? (1 — (14 b)e? + be?')

— (1 4+a)e?(1 — (1 4+a)e’' 4+ ae?) + 4may ;do
Ay = be?li (1 — (1 +a)e? + ae?)

— (14 b)e? (1 — (1+ b)e? + be?'') + 4y 180

in R2. (3.2)
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Now we assume rr;éln |pi — pjl = 4d > 0. Take a cut-off function & (x) € CZ°(Bog) with £(x) =1
i#]

forx e Byjand 0 <& <1.For3 <k eNT, set

&

N N
() = k2 () + Y6 — pogis <" p’) 2 k210 + Y &1 (),

i=1 i=1

3.3)
N N
() = 22 (0) + Y€ — p)ga (%) 2 k(0 + Y i ().

i=1 i=1

Then (u1, u) solves (3.1) is equivalent to (21, z2) solves

! N
Azi + W{(l +a) |:f(u1,uz) - Z%‘if(fpli,a(x}, <P2i,s(X)):|

i=1

N
—a |:g(u1,uz) — Y Eg(piie (), (02i,£(x))j| }
i=1
1 & 2 Y
+ X Z(ﬂli,sAEi + = Z Voiie-VE =0,
i=1 i=1 (34)
1 N
Azp + W{(l +b) |:g(bt1, uz) — Zéig(ﬁou,a(x), 902:',8()5)):|

i=1

N
-b [f(ul, uz) — ZEif(‘Pli,a(x)a €02i,s(x)):| }

i=1

1 2 &
T D @A+ 7 D Ve VE =0,
i=1 i=1

where
fs,0)2e’(1— (1 +a)e +ae'), g(s,1)2e'(1—(1+Db)e +be). (3.5)
For simplicity, we write (3.4) in the following form
Fe(z1,22) £ (Fe1(21, 22), Fep(z1.22)) = (0,0). (3.6)

Itis easy to see that F.(z1, z2) is a well-defined map from H2(T2) x HX(T?) to L%(T?%) x L3(T?).
Moreover, we can prove F¢(z1, z2) admits the following properties.

Lemma 3.1. Let F.(z1,22) be defined as above. Then for 0 < ¢ < go(a, b, pi, N1, N, k),
lal, |b| < 80(N1, No), F satisfies:

(i) |IF:(0, 0)||L2('J1‘2)XL2("J1‘2) < Cle_CZ/g,'
(ii) IDFe(0,0)(h1, ha)llr2m2yer2er2) = €3 (101l gaerey + h2ll g2er2));
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(iii) |(DFe(z1,22) — DFe(0,0))(h1, ho)ll 212y < 2(T2) < C4£(||hl||1-12(11‘2) + ||h2||1-12(11‘2))r for
any 21,22 € B1 £ {z € H*(T?)| |lzll g2 (p2) < 1}.

Here, all the constants c1, ¢, c3, ca4 depend only on N1, Na, pi, k.
Proof. For the first component of F,(zy, z2), by definition, we have

1 N N N
Fz1(0,0) = gm{(l +a) |:f<2§i€01i,s(x), Zsini,g(x>> — Y & (0100, <.02i,e(x))i|
i=1 i=1

i=1

N N N
—a [g(Zs,-gou,g(x), Zsiwzi,g(x)) — Y &g(piie (o), <p2,~,s(x>)} }
i=1 i=1 i=1
1Y 2 Y
t 7 D A& + o > Vo VE.
i=1 i=1

By the property (1) in Theorem 1.2, we have
l@ij.ellLoosep) + 1V @ijellLooBsp;)) < c1e”?® i=1,2, as &—0. 3.7
Since & = 11in By(p;) and f(s,t), g(s,t) = O(t +s) as t,s — 0, we get that
1Fe,100,0) [ f2q2) < c1e™ %,

A similar estimate also holds for F¢ »(0, 0). This proves (i).

Now we assume (ii) is not true. This implies that there are two sequences of hi ,, ha, €
H?(T?) satisfying the following property:

||h1,n ||H2(11‘2) + ||h2,n||H2(’H‘2) = 1, ||DF5,, (O, 0)(h1,n, h2,n)||L2(’]1‘2)><L2(’]1‘2) = 0(1)

as n — 4-o00. For simplicity, we will denote D Fy, (0, 0)(h1.,, h2,,) by DF,(0,0)(h1,n, h2.,). By
definition, we have

DF;,1(0,0)(h1,n, h2,n)

N N N
1 Y Eiplin Y Eiplin Y Eivrin
=Ah1,+ — (14 a)ei=! 1 —2(14a)ei=! + aei=1 hin
Sn
N N N
> Eivin > Epin > Eotin (3.8)
— aei=! 1 —2(1 + b)ei=! + bei=1 han
N N
Y Ei@lintEivin > &Eiotint+Eiin

+a(l 4 a)ei=! hy,,, — abei=! hin ¢,
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where @1, » = Plisen> Pin = ©2i.¢,- Consider a cut-off functign 0 <o (x) <1 which satisfies Ehat
o(x)=0in U;By/4(pi); o(x) =11in T2\ U; Bapa(pi). Set hy 2 ohi, fori=1,2. Then hy,
satisfies

N N N
_ 1 D& Y Eiplin Y Eivnin \ -
—Ahip=— (I +a)e=! 1 -2(14+a)ei=! + aei=! hin
Sn
N N
> Eipain > Ei2in Z §iviin | -
— aei=l 1 —2(14b)ei=! + bei=! han
(3.9
N N
> EiprintEivin _ > EiQrintEiin _
+a(l+ a)ei=! hy , — abei=! hin
—2Vo - Vhiy —hiyAo —oDF, 1(0,0)(h1 0, hon).
Multiplying (3.9) with /1, and integrating by parts, we get,
(1+a)+ab - la|(2 +a + b)
VA1l 2) 7” At nll? 2 e |hlnh2n|
(T%) 2 LX(T2) — 2
< CUlh1nllgir2y + h2nll gier2y + 1D Foi (A, hz,n)||L2(11‘2))||hl,n||L2(1r2)-
In getting (3.10), we use the decay property of (3.7). A similar argument yields that
_ (1+b)> +ab |b|(2 4+ a + b)
IVRsalacey + i amy W2l — i e / ot piznl -

= C(||hl,n”H1(’]I‘2) + ”hZ,n”Hl(’EZ) + | DFy2(hyn, h2,n)||L2(’]1‘2))”h2,n ||L2(1r2)-

From the assumption that |a|, |b| is small enough, (3.10) and (3.11) tell us that
IV 1122y + 12,002 my + 5 W1 22 g + 5 2l
1,n L2(T2) 2.n L2(11‘2) 82 1,n L2('ﬂ"2) 82 2.n LZ('H"Z)
n n

2
<C (Z ||hi,n||1-11(11‘2) + ”DFn(hl,na h2,n)||L2(’]I‘2)><L2(’]I‘2)> (”hl,n”LZ(TZ) + ”hZ,n”LZ(TZ))
i=1

=C (”}_ll,rl”LZ('[[‘Z) + ||}_12,n”L2("JI‘2)) . (3.12)

By (3.12), one gets [|h1.ullz2¢p2) + 1h2.n ]l 2(72) = O(e2). This again implies that

VRl 2r2) + VA2l 2072) = O (€n).
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Now we take another cut-off function 0 < & (x) < 1 such that 5(x) =0 in UB% (pi);o(x)=1

in T2\ U; By(p;). Set h; »(x) £ 6h; ,(x). Repeating the arguments for &; ,, i = 1, 2, we can get

~ ~ C ~ CcC ~
VA2 g2y + I V201720, + SInlgaee) + 5 1h2nlgaeme,
n n

2
<C (Z 12inll g1 72y + 1D F (R, hz,n)||Lz<Tz>xLz<Tz>> (||ﬁ1,n 272y + 2. ||L2<Tz))

i=1

= o(1) (Wr1ull 22y + Wzl 2, ) - (3.13)

By (3.13), we have ||I;1,,,||L2(Tz) + ||I~12,,1||L2(T2) = 0(8,21). From standard W22-estimates of uni-
formly elliptic partial differential equations, we get

1l 52 0\, Bapiy + 120 L2 02\, Ba (i) = (D G.14)
By (3.14), without loss of generality, we may assume that
||h1,n||1-12(3d(p1)) + ”hl"”Hz(Bd(m)) =co > 0. (3.15)

Consider a cut-off function 0 < & (x) < 1 such that 6(x) =1 in By(p1); 6 (x) =0 in B5,;(p1).

Set 6,(x) £ 6 (enx ﬁpl),Afli,n(X) 2 Rjn(enx + P1)éns 1 2 Baa(p1)\Ba(p1), and ; £
(X1 — p1)/&n. Then (hy ,, h2,) should solve

L(@11, 921) (10, hop)

h . R Vh -~ (h
= A, (x) ( h; ) + &2, DFy(0,0)(h1 n, han) — 262V 6, - (Vﬁ;’” ) — &2 A6y, (h; ) ,
NG \n N/

where L(¢11, ¢21) is the linearized operator of (3.2) and A, (x) is a 2 x 2 matrix function with
its entries A, ;;j (x)| = O(e¢/en). By Theorem 1.2, we have

lhtall g2 2y + 12l w22,

2 2
<C (sn D 1Vhinllais,y + D Mhinll2gs,) + Enll DFL(0,0)(h1 0, hz,n)uLz(Tz)xLz(Tz)

i=1 i=1

2 2
<C (sn S WVhinlipacmy +er D Mhinlr2es,) + o(sn)) = o(en). (3.16)

i=1 i=1
From inequality (3.16), we obtain ||hi,n||H2(Bd(p1)) < 8”_1 ”I’Ali,nHHZ(RZ) = 0(1). This contradicts

to our choice of By (p1). This proves (ii) of Lemma 3.1.
Now we are in a position to prove (iii). In fact, by a direct computation, we have

(DF1(z1,22) — DF.1(0,0))(h1, hy) = Ithy + Lha, (3.17)
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where [1, I are functions whose absolute values are controlled by 31_2 [1— eeta | and 31_2 [1— et ).
By the Sobolev embedding H?(T?) < L%°(T?), (iii) follows easily from (3.17). O

With the previous preparation, we now can prove the first part of Theorem 1.1.

Proof of Theorem 1.1 (the existence of a first solution). Define a map G.(z1,z2): H 2(’JI‘2) X
H*(T?) — H?*(T?) x H*(T?) by

Ge(z21,22) £ (21,22) — (DF:) ™' (0,0) Fe (21, 22). (3.18)

By Lemma 3.1, one gets that

-1 —c/e.
1600l < |(OF) T Q.0F 0.0 L <ce i (319)

and Vz1, 2 € By,
IDG (21,221l < [ (DF) ™' 0,0) [ IDFe(z1,2) = DEO,0)[ <Ce. (3.20)

From (3.19) and (3.20), for Vz1, zp € B}, we have

1Ge(z1, z22) | 212y < H2(T2)

<1G0, 0l g2y g2y + sup [1DGeGr, ) (Iz1ll g2y + Izl 2) — (3.21)

21,2268

<Ce.

For z;,z; € By, i =1,2, we also have,

1Ge(z1,22) — Ge(Z1,22) ||H2(11‘2)XH2(11‘2)

2 ) 2 ) (3.22)
< swp IDG:GL2)I Y llzi —Zillmaerey < Ce Y llzi — Zill g2,

Z1,22€B; i=1 i=1

Hence, inequalities (3.21) and (3.22) imply that G.(z1, z2) is a well-defined contraction map-
ping from B; x Bj to itself provided ¢ is small enough. So G.(z1, z2) has a unique fixed point
(21,6, 22,¢) In By x By, i.e. Fe(z1,6,22,¢) = 0. As a consequence, we obtain a solution of (3.1)
with the following form:

N N
ue() =210+ E@re(X). w2 () =200+ Y Eigriex). (3.23)
i=1 i=1

By the arbitrariness of k and standard W>? estimates, one gets (1.6) in Theorem 1.1. This proves
the existence of a first solution of system (3.1). O
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3.2. Mountain-pass solution on torus

In this subsection, we will prove the existence of mountain-pass solution for system (3.1).
For simplicity we set |T2| = 1 in our discussion. Since the case for a, b > 0 is already solved
by Han-Tarantello [30], we just need to focus on the case a, b < 0 or ab = 0. Here and in what
follows, we always assume (u(l), u(z)) is the unique solution of the following decoupled system [3]:

N

N
Au(l)=4n'2a1,i8pi—4nN1, /u(l)zo, Zal,i:Nl’
i=1

i=1
l T2 (3.24)

N N
Au(z):471 ZO‘Z,i‘Spi — 47 N>, /u%:O, Zaz,i =Nj.
i=1 ) i=1

Also, from [53], one can get for ¢ small enough, #; . is the unique strictly stable solution of the
following equation:

N
i (s i
Adij ¢ + e (1 =) =4x Zlal, i8p;- (3.25)
/:

Set
7 2 1 vtul 2 .
I, (v) = V| +—2(e o—1D*|(+4nN; f v, i=1,2.
£
T2 T2
Then v; o = i ¢ — uf) is a strictly local minimizer of 1~8,,~ (v). In other words,
7. _ 2 i 2 v,-_g-i-u6 _ v['s—}—ué 2 2 1 TZ
Jei(P) = | |IVY] +52( e De vz coll¥ g gy V¥ € H(TF),

T2
(3.26)
for some constant cg > 0.
3.2.1. Casea,b <0, %5 % <A A>1
As a first step, we need to show the solution constructed in Section 3.1 is actually a strictly

local minimizer. By a direct computation, we can derive the following functional for a, b < 0.

I (v, v2)

b|(1+b al(l1+a
=%/Wvﬂz—i—%/Wvﬂz—ab/Vvl-sz
'ﬂ*2

T2 T2

n 1 +a2+b |b|/ <1 +aezv1+2ué _ ev1+u(1)> + |a|/ (1 +b62v2+2u(2) . evz+u%>
£ 2 2

T2 T2
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+ ab/evl+”2+“<'>+"3 +47|b|[(1 + b)N; +aN2]/v1 +4n|a|[(l+a)N2+bN1]/v2.
TZ TZ TZ

It is easy to check that (vi, vp) is a critical point of the functional I.(vi, vp) if and only if
(u1,uz) = (v1 + u(l), v + u%) is a solution of system (3.1).

Lemma 3.2. Suppose the assumptions in Theorem 1.1 are fulfilled and a,b < 0 and % <3 =<
A A > 1. Then (v1e, v2¢) = (U1, — u(l), Upe — u%) is a strictly local minimizer of I (v1, v2),
where (u1,¢, U2,¢) is the topological solution of system (3.1) constructed in Section 3.1 provided
lal, |b] < 80(Ny, Na, A).

Proof. Since (vi ¢, v2¢) is a critical point of I (v1, v2), we only need to show that

2 2

d
37 e @+ 1V, v e 1Y) limo £ Je W, ¥2) 2 ¢ 3 Wil g1 r2), - for some cf > 0.

i=1

(3.27)
By a direct computation, one gets
d2
@Is(vl,e + Y1, v2e 1Y) =0
= |b|(1+b)/|V¢1|2+Ia|(1+a)/|V1ﬁ2|2—2f1b/V1ﬂ1 -V +
T2 T2
1 b (3.28)
# ab/eul*gﬂlzvg(l//] + 1,02)2 _ b/(Z(l +a)e2u1,g _ eul,e)wlz
e
T

—a / Q(1 + b)e?2s —e2e)y3
T

Suppose Lemma 3.2 is not true. Then there exist &, — O, |¥1.nll g1 (72) + Y201l 112y = 1 such
that

In (Wt ns V2.0) & Je, Wiy Y2.0) <o UY1all g2y + 1920l g1 r2)-

Set u; n(x) =u;g,(x),i =1,2. Recall that

N
X —=Pj .
Ui (X) = €32in + Zéjwi/’,n, ®ijn(xX) = @ij ( . J) ,i=1,2, (3.29)

j=1 "
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where (¢1;(x), ¢2;(x)) are the topological solutions of (1.7) constructed in Section 2 with
Ni=ay,j, N2 =a3; and ||z; » ||H2(’11‘2) < 1. Also by Theorem 1.2, we have

01 () =731 (0) + 550, = max {Vial, Vibl} (3:30)

where (¢1;(x), ¢2;(x)) are the unique topological solutions of (1.8) with Ni =« j, No =, j
and ||Zij || 22y < 1. Hence we have

2
i 1— e“i,n 2 < E 1 — eé‘,:;Zi,n
g2 ~ g2
n ’]1‘2 n T2

N
§c€n+cZ/ [1—evi]?
jZIRZ

<Cen+CZf< il

J= IRZ

N
4 2Engin Z ‘ 1 — ebi%iin|?
Jj=1

(3.31)

+e;czl/ |1 ¢ij’2)

<C.

In getting (3.31), we have used the embedding H%(R?) < L*°(R?). By definition, we have

Jn(Win, Y2n) — (1 +a +b) |b|/|V1/f1|2+|aI/|V1/f2|2
2 2

l1+a+b
> —a 2(1 +a)|b|/e“1,n ("1 — 1)1#12,;1 +|b|(1 +2a)/(eul,n — 1)1#12’,Z

n
+ |b|(1+2a)f1/fin +2(1+b)|a|fe“2v”(e“2-'l - y3,
2 2

(3.32)
4 lald +2b>/<e“2v" — D)Y2, +lal(l +2b>/w%,n
2

1
2
4
|b|/ |/ ) /|1—e“1~"|2 /t/fl n
_C b - ’
= 4g2 1'[/1 n 8%T2 ¢2,n 1101 J 8’2Z 8%

4
11— ”2n|2 ¥,

- C1|a| / 2”
811

T2
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By Sobolev inequality, one gets

Wil emay < 1Winll Lo cr2y 1Winll 2 T2y
L4(T2) (T=) (

(3.33)
< Clivinll g2y IWinll 22y < CllYinllp2(12)-
2
From assumption J, (¥1.n, ¥2.0) < 0(1) > [¥ill 172, and (3.31), (3.33), we get
i=1
1 2 1 2
) %ﬂ+;5 Vi, <CQ) <oo. (3.34)
n n
T2 T2
Recall the definition of u; , and i; ,, i =1, 2. One has
eul,n _ eﬂl,n — 68321,n+ZlN:1 gi(’(zli,n“"(ﬁli,n) _ esgzl.n“rzl{v:l Sifpli,n
< eZiN=1 &iPlin (’1 _ 68221,n+Z,N=1 §ikZlin | 4 ’1 _ efailn ) (3.35)

<Ck+¢).

Here [Iz1.0llg2em2) 1210l 22y 1200l g2erey < 1 and 210 (%) £ 21 ((x — pi)/en), Prin(x) £
¢1i((x — pi)/€n), where ¢1;(x) is the unique topological solution of (2.1) with N = «y,;. Now
we rewrite J, (¥1.n, ¥2.n) as

W Van) = (1 a+ ) (1110 + al o (V2,0)) + ab / VY10 = Vil

T2
b(1 b . ,
— % [2(1 +a)(ezul,n _ e2M1.n) — (e"1n — eul,n)] 1/,12n
n Tz
1 b . _
— a(—:—‘;—i_) [2(1 +b) (eZMz,n _ e2uz,n) — (e"2n — euz,n)] szzn
n Tz
2ab(1 +a+b) - . 1
T2 [62”1’"1#%," +etnyg, — ey, + wz,nﬂ}
n ’11‘2
= ColblllYill g er2) + ColalllV2ll g2y — C(A)(lal + [bDk — Cab
> comin(|al, |b]) (3.36)

provided |a|, |b| are small enough which yields a contradiction. In getting (3.36), we have used
(3.34) and that (i1 ,, li2,) is the unique topological solution of (3.25) and the strictly stable
property (3.26). O
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The next step is to show that the functional I, satisfies the compactness condition of Palais—
Smale.

Lemma 3.3. Suppose the assumptions in Lemma 3.2 are fulfilled. Let vy ,, v2,, € H L(T?) be two
sequences of functions satisfying

(i) I:(v1,n, v2,0) = Yo aS 1 —> OO;
(it) I} (v1,,v2,0)] = 0asn— oo.

Then {(v1 n, v2,,)} admits a convergent subsequence in H! (’]IQ) x H! (Tz) provided [(1+b)N| +
aN>[(1 +a)N, +bN1]1#0.

Proof. By a direct computation, one gets

L1 v2.0) (D1, ¥2)
= b1 +b)/Vv1,n~VI/f1+|a|(1 +a)vaz,n~V1/f2—ab/Vu1,n Vi

T2 T2 T2

1 b
_ab/ Vv, - Vi — (L;_) |b|/(ev1~"+”(l) —q +a)e2”1~"+2“(1>)¢1
&
T2

5 (3.37)

+ lal f (€214 — (14 b)e? 2128y yry + ab / e 2 (3 )
T2 T2
+4m|b|[(1 4+ b)N; +aN2]/1/f1 +4mlal[(1 +a)N> +bN1]/1/f2.
T2 T2

Set Y1 = y¥» = 1, we get from (3.37) that

1 2 1 2 1 2
/e2v1,n+2u0’ /621)2_,1+2u0’ /e”h""‘”o, /evz,n+u0’ v/‘evl.,l+u0+v2,n+u0 <C. (3.38)

T2 T2 T2 T2 T2

In what follow we use the decomposition v; , = w; , + ¢i, With ¢; , = sz vin, i =1,2. By
Jessen’s inequality and the convexity of function €, (3.38) implies that e, e©2" < C. Set y; =
wjn, i =1,2. Then

Ié(vl,na U2,n)(wl,n» w2,n)
= bI(1 + D) IVwyll3 + lal(l +a) [ Vw3 — 2Clb/le,n -Vwy

T2

1 b
+ +a2+ (1+a)|b|/e2vl,n+2bt(l)wl’n+(l+b)|a|/62vz,n+2u%w2’n
&

T? T2
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+ ab/‘e“""“éﬂl"”%(wl,n +wa.n) +b/e”1’"+“éw1,n +a/e“2~"+”5w2,,,
T2 T2 T2
> (14+a+b)(|bl[Vwi a3 + lalllVwa,al3) — CUVwLll2 + [Vwa,ull2)

1 b
+ ;Eaf (1+a)lb| / e e e
T2
+ (14 b)lal / 2225 (2w _ 1y,
T2
+ |a|/ecl,n+02‘n+u(])+u(2)(ewl,n“l‘wZ,n — D) (Wi + wan) + (1 +a)|b|fe201,n+2“g)w1’n
T2 T2

+ (1L +b)lal / X2 Mo, , 4 Jal / 12 I (1 4 )
T2 T2
> [b|(14a+b)[[Vwiall3 + lal(1+a + ) [Vwaall; — CUVwiallz + [ Vwaall).
This implies that [|[Vwy ,|l2 4 [[Vw2.,|l2 < C. Then from assumption (i), we have

47 |b|[(1 + b)N1 +aNzlc1 ., +4m|all(1 +a)Ny +bNilcan = O(1). (3.39)

Since (1 + b)(1 + a) > ab, without loss of generality, we may assume (1 + b)N| + aN, > 0.
There are two cases:

(1) (14+a)Ny+bN; > 0. Then by (3.39), we see that ¢y ,, ¢2,, are uniformly bounded.

(2) (1 +a)N2+ bN; < 0. Then by (3.39) and ¢y 5, c2,n < C, we have ¢y, c2,, either go to
—oo or remain uniformly bounded simultaneously. If ¢y ,, c2,, — —o0, by taking V; = y;,
i=1,21n (3.37), we get

o(1) = I, (V1,0 v2,0) (1, 72)
=47|b|[(1 +b)Ny + aNaly1 +4mal[(1 +a)N2 + bNi]y2 +o(1).  (3.40)

Since y; are arbitrary constants, (3.40) yields a contradiction. This proves that ¢y , c2,, are
uniformly bounded.

So, by taking a subsequence, we get v;, — ©;, i = 1,2, weakly in HI(P]I‘Z_), strongly in

LP(T?), p = 1. By Moser—Trudinger inequality [24], we also have e'i" — e% strongly in
LP(T?). This yields that, ¥ ¢, ¥» € H'(T?), there holds

(010, v2,0) (Y1, ¥2) = I(D1, 02) (Y1, ¥2) = 0.

Then we see that (vy, v2) is a critical point of I. In fact, by taking ¥, =v; , —v;, i = 1,2, we
have
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|(I (1,0, v2,0) — IL(B1, 92)) (V1,0 — D1, V2,0 — D2)| = 0(1).
This will imply (v, v2.,) — (1, ¥2) strongly in H'(T?) x H'(T?). O

Now we are in a position to show the existence of mountain-pass solution of (3.1) for
a,b < 0 small. Since (1 4+ a)(1 + b) > ab, without loss of generality, we may assume
(14+b)N;1 +aNz > 0. Let (vy¢, v2,¢) be the strictly local minimizer as in Lemma 3.2. Then
I.(vie —c,v2) = —00 as ¢ — 400. By Lemma 3.2, there exists pg > 0 such that I (vy, v2) >
V1> I (Vi e, v2.6) = yo, forany [[vi —vi el gier2) + [lv2 — v2.ell g1 2y = po- Also we choose co
large enough such that I, (vy, ¢ — co, V2.¢) < y0. Set

P 21110, 11— H'(T) x H'(T)[10) = (10, v2,0), 1(1) = (w10 = 0, v2,0) |
Then, we obtain

Yo & inf sup I (vi, v2) > .
I€P (v, vy)el

Therefore, by Lemma 3.3 and the mountain-pass lemma [2], we conclude that there ex-
ists (v} . véyg) e HY(T?) x H'(T?) such that (v} .. v5 ) is a critical point of I(vi, v2) and
IE(vi,ga v/z’g) = )/0/'

3.2.2. Caseab=0
Without loss of generality, we may assume in this case a = 0, b # 0. In this case, we need to
consider the following functional

/(1 ;—bez"“ué _e"*“%) +471N2/”+ %/eu“u — e,
&
T2 T2

T2

1+b
18<v)=/|Vv|2+ >
&
T2

where (41, u2) is the solution constructed in Section 3.1. The proof for this case is similar
as in Section 3.2.1. Then, for this case, it is sufficient to complete the proof by observing the
following two lemmas, which can be verified as previously.

Lemma 3.4. Let the assumptions in Theorem 1.1 be fulfilled and a = 0,b # 0. Then vy, =
Uz e — u% is a strictly local minimizer of I (v).

Lemma 3.5. Let the assumptions in Lemma 3.4 be fulfilled. Suppose v, € H'(T?) is a sequence
of functions satisfying:

(i) Ig(vy) — y1, as n — o0;
(ii) |[1(vp)|l = 0 as n — oo.

Then v, admits a convergent subsequence in H'(T?) provided N, # 0.
Hence we get the existence part of Theorem 1.1.

Finally, after an integration we obtain the quantized integrals stated in Theorem 1.1, which
completes our proof.



1550 X. Han, G. Huang / J. Differential Equations 263 (2017) 1522—1551

Acknowledgments

The second author would like to thank Mathematical Sciences Institute, Australian National
University for the warm hospitality when this work is done.

References

[1] A.A. Abrikosov, On the magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957)
1174-1182.
[2] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14
(1973) 349-381.
[3] T. Aubin, Nonlinear Analysis on Manifolds: Monge—Ampére Equations, Springer, Berlin, New York, 1982.
[4] D. Bartolucci, G. Tarantello, Liouville type equations with singular data and their applications to periodic multivor-
tices for the electroweak theory, Comm. Math. Phys. 229 (2002) 3-47.
[5] E.B. Bogomol’nyi, The stability of classical solutions, Sov. J. Nucl. Phys. 24 (1976) 449-454.
[6] L.A. Caffarelli, Y. Yang, Vortex condensation in the Chern—Simons Higgs model: an existence theorem, Comm.
Math. Phys. 168 (1995) 321-336.
[7] D. Chae, O.Y. Imanuvilov, The existence of non-topological multivortex solutions in the relativistic self-dual Chern—
Simons theory, Comm. Math. Phys. 215 (2000) 119-142.
[8] H. Chan, C.C. Fu, C.-S. Lin, Non-topological multi-vortex solutions to the self-dual Chern—Simons—Higgs equation,
Comm. Math. Phys. 231 (2002) 189-221.
[9] R. Chen, Y. Guo, D. Spirn, Y. Yang, Electrically and magnetically charged vortices in the Chern—Simons—Higgs
theory, Proc. R. Soc. Ser. A Math. Phys. Eng. Sci. 465 (2009) 3489-3516.
[10] S. Chen, X. Han, G. Lozano, F.A. Schaposnik, Existence theorems for non-Abelian Chern—Simons—Higgs vortices
with flavor, J. Differential Equations 259 (2015) 2458-2498.
[11] X. Chen, S. Hastings, J.B. McLeod, Y. Yang, A nonlinear elliptic equation arising from gauge field theory and
cosmology, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 446 (1994) 453—478.
[12] S.S. Chern, J. Simons, Some cohomology classes in principal fiber bundles and their application to Riemannian
geometry, Proc. Natl. Acad. Sci. USA 68 (1971) 791-794.
[13] S.S. Chern, J. Simons, Characteristic forms and geometric invariants, Ann. of Math. 99 (1974) 48—69.
[14] K. Choe, Uniqueness of the topological multivortex solution in the self-dual Chern—Simons theory, J. Math. Phys.
46 (2005) 012305.
[15] K. Choe, N. Kim, C.-S. Lin, Existence of self-dual non-topological solutions in the Chern—Simons Higgs model,
Ann. Inst. H. Poincaré Anal. Non Linéaire 28 (2011) 837-852.
[16] S. Deser, R. Jackiw, S. Templeton, Three-dimensional massive gauge theories, Phys. Rev. Lett. 48 (1982) 975-978.
[17] S. Deser, R. Jackiw, S. Templeton, Topologically massive gauge theories, Ann. Phys. 140 (1982) 372-411.
[18] H.J. De Vega, F.A. Schaposnik, Electrically charged vortices in non-Abelian gauge theories with Chern—Simons
term, Phys. Rev. Lett. 56 (1986) 2564-2566.
[19] H.J. De Vega, F.A. Schaposnik, Vortices and electrically charged vortices in non-Abelian gauge theories, Phys. Rev.
D 34 (1986) 3206-3213.
[20] G. Dunne, Self-Dual Chern—Simons Theories, Lecture Notes in Physics, vol. 36, Springer, Berlin, 1995.
[21] G. Dunne, Mass degeneracies in self-dual models, Phys. Lett. B 345 (1995) 452-457.
[22] G. Dunne, R. Jackiw, S.-Y. Pi, C. Trugenberger, Self-dual Chern—Simons solitons and two-dimensional nonlinear
equations, Phys. Rev. D 43 (1991) 1332-1345.
[23] E. Ezawa, Quantum Hall Effects, World Scientific, 2000.
[24] L. Fontana, Sharp borderline Sobolev inequalities on compact Riemannian manifolds, Comment. Math. Helv. 68
(1993) 415-454.
[25] J. Frohlich, P.A. Marchetti, Quantum field theories of vortices and anyons, Comm. Math. Phys. 121 (1989) 177-223.
[26] S.B. Gudnason, Non-Abelian Chern—Simons vortices with generic gauge groups, Nuclear Phys. B 821 (2009)
151-169.
[27] S.B. Gudnason, Fractional and semi-local non-Abelian Chern—Simons vortices, Nuclear Phys. B 840 (2010)
160-185.
[28] X. Han, C.-S. Lin, G. Tarantello, Y. Yang, Chern—Simons vortices in the Gudnason model, J. Funct. Anal. 267
(2014) 678-726.


http://refhub.elsevier.com/S0022-0396(17)30152-3/bib616272s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib616272s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib616D7261s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib616D7261s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib61756269s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib426172746F6C75636369546172616E74656C6C6F3032s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib426172746F6C75636369546172616E74656C6C6F3032s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib626Fs1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4361796131s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4361796131s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib636861696Ds1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib636861696Ds1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib63666Cs1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib63666Cs1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6368677379s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6368677379s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib63686A6465s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib63686A6465s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6368686D79s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6368686D79s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib435331s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib435331s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib435332s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib43686F653035s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib43686F653035s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib63686B6C31s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib63686B6C31s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib444A5431s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib444A5432s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib64657631s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib64657631s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib64657632s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib64657632s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4431s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4432s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4433s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4433s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib657A61s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib666F6E74s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib666F6E74s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib464Ds1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4775646E61736F6E3039s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4775646E61736F6E3039s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4775646E61736F6E3130s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4775646E61736F6E3130s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib484C54593134s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib484C54593134s1

X. Han, G. Huang / J. Differential Equations 263 (2017) 1522-1551 1551

[29] X. Han, C.-S. Lin, Y. Yang, Resolution of Chern—Simons-Higgs vortex equations, Comm. Math. Phys. 343 (2016)
701-724.

[30] X. Han, G. Tarantello, Doubly periodic self-dual vortices in a relativistic non-Abelian Chern—Simons model, Calc.
Var. Partial Differential Equations 49 (2014) 1149-1176.

[31] X. Han, Y. Yang, Relativistic Chern—Simons-Higgs vortex equations, Trans. Amer. Math. Soc. 368 (2016)
3565-3590.

[32] J. Hong, Y. Kim, P.-Y. Pac, Multivortex solutions of the Abelian Chern—Simons—Higgs theory, Phys. Rev. Lett. 64
(1990) 2330-2333.

[33] P.A. Horvathy, P. Zhang, Vortices in (Abelian) Chern—Simons gauge theory, Phys. Rep. 481 (2009) 83-142.

[34] G. Huang, C.-S. Lin, Uniqueness of topological solutions of self-dual Chern—Simons equation with collapsing
vortices, J. Differential Equations 259 (2015) 1819-1840.

[35] R. Jackiw, K.-M. Lee, E.J. Weinberg, Self-dual Chern—Simons solitons, Phys. Rev. D 42 (1990) 3488-3499.

[36] R. Jackiw, E.J. Weinberg, Self-dual Chern—Simons vortices, Phys. Rev. Lett. 64 (1990) 2334-2337.

[37] R. Jackiw, S.-Y. Pi, Classical and quantal nonrelativistic Chern—Simons theory, Phys. Rev. D 42 (1990) 3500-3513.

[38] V.G. Kac, Infinite-Dimensional Lie Algebras, third edition, Cambridge University Press, Cambridge, 1990.

[39] D.I. Khomskii, A. Freimuth, Charged vortices in high temperature superconductors, Phys. Rev. Lett. 75 (1995)
1384-1386.

[40] K.-M. Lee, Self-dual nonabelian Chern—Simons solitons, Phys. Rev. Lett. 66 (1991) 553-555.

[41] K.-M. Lee, Relativistic non-Abelian self-dual Chern—Simons systems, Phys. Lett. B 255 (1991) 381-384.

[42] C.-K. Lee, K.-M. Lee, E.J. Weinberg, Supersymmetry and self-dual Chern—Simons systems, Phys. Lett. B 243
(1990) 105-108.

[43] G.S. Lozano, D. Marqués, E.F. Moreno, F.A. Schaposnik, Non-Abelian Chern—Simons vortices, Phys. Lett. B 654
(2007) 27-34.

[44] Y. Matsuda, K. Nozakib, K. Kumagaib, Charged vortices in high temperature superconductors probed by nuclear
magnetic resonance, J. Phys. Chem. Solids 63 (2002) 1061-1063.

[45] M. Nolasco, G. Tarantello, Vortex condensates for the SU (3) Chern—Simons theory, Comm. Math. Phys. 213 (2000)
599-639.

[46] S.K. Paul, A. Khare, Charged vortices in an Abelian Higgs model with Chern—Simons term, Phys. Lett. B 174
(1986) 420-422.

[47] M.K. Prasad, C.M. Sommerfield, Exact classical solutions for the 't Hooft monopole and the Julia—Zee dyon, Phys.
Rev. Lett. 35 (1975) 760-762.

[48] J.B. Sokoloft, Charged vortex excitations in quantum Hall systems, Phys. Rev. B 31 (1985) 1924-1928.

[49] M. Stone, The Quantum Hall Effect, World Scientific, Singapore, 1992.

[50] J. Spruck, Y. Yang, Topological solutions in the self-dual Chern—Simons theory: existence and approximation, Ann.
Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 75-97.

[51] J. Spruck, Y. Yang, The existence of non-topological solitons in the self-dual Chern-Simons theory, Comm. Math.
Phys. 149 (1992) 361-376.

[52] G. Tarantello, Multiple condensate solutions for the Chern—Simons-Higgs theory, J. Math. Phys. 37 (1996)
3769-3796.

[53] G. Tarantello, Uniqueness of selfdual periodic Chern—Simons vortices of topological type, Calc. Var. Partial Differ-
ential Equations 29 (2007) 191-217.

[54] G. Tarantello, Self-Dual Gauge Field Vortices, an Analytic Approach, Progress in Nonlinear Differential Equations
and Their Applications, vol. 72, Birkhéuser, Boston, Basel, Berlin, 2008.

[55] R. Wang, The existence of Chern—Simons vortices, Comm. Math. Phys. 137 (1991) 587-597.

[56] F. Wilczek, Quantum mechanics of fractional-spin particles, Phys. Rev. Lett. 49 (1982) 957-959.

[57] E. Wilczek, Fractional Statistics and Anyon Superconductors, World Scientific, Singapore, 1990.

[58] Y. Yang, The relativistic non-Abelian Chern—Simons equations, Comm. Math. Phys. 186 (1997) 199-218.

[59] Y. Yang, Solitons in Field Theory and Nonlinear Analysis, Springer, New York, 2001.


http://refhub.elsevier.com/S0022-0396(17)30152-3/bib68616C79s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib68616C79s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6861746131s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6861746131s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6861796131s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6861796131s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib686B70s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib686B70s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib686F7As1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4875616E674C696E3135s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4875616E674C696E3135s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6A616C77s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4A57s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6A6170s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6B6163s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4B68s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4B68s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6C6531s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6C6532s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6C656C77s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6C656C77s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4C4D4D53s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4C4D4D53s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4D61s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib4D61s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6E6F7461s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib6E6F7461s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib70616Bs1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib70616Bs1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib7073s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib7073s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib736Fs1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib73746Fs1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib7370796131s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib7370796131s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib7370796132s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib7370796132s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib746172616E3936s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib746172616E3936s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib546172616E74656C6C6F3037s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib546172616E74656C6C6F3037s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib7461626Bs1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib7461626Bs1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib77616E6772s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib5731s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib5732s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib79616E6732s1
http://refhub.elsevier.com/S0022-0396(17)30152-3/bib79616E6731s1

	Existence theorems for a general 2x2 non-Abelian Chern-Simons-Higgs system over a torus
	1 Introduction
	2 Topological solution in R2
	2.1 Preliminaries
	2.2 The proof of Theorem 1.2

	3 Solutions on torus
	3.1 Existence of a ﬁrst solutions
	3.2 Mountain-pass solution on torus
	3.2.1 Case a,b<0, 1/λ<=a/b <=λ, λ>1
	3.2.2 Case ab=0


	Acknowledgments
	References


