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Abstract

The wavefronts of a nonlinear nonlocal bistable reaction–diffusion equation,

∂u

∂t
= ∂2u

∂x2
+ u2(1 − Jσ ∗ u) − du, (t, x) ∈ (0,∞) ×R,

with Jσ (x) = (1/σ)J (x/σ) and 
∫
R

J (x)dx = 1 are investigated in this article. It is proven that there exists 

a c∗(σ ) such that for all c ≥ c∗(σ ), a monotone wavefront (c, ω) can be connected by the two positive 
equilibrium points. On the other hand, there exists a c∗(σ ) such that the model admits a semi-wavefront 
(c∗(σ ), ω) with ω(−∞) = 0. Furthermore, it is shown that for sufficiently small σ , the semi-wavefronts 
are in fact wavefronts connecting 0 to the largest equilibrium. In addition, the wavefronts converge to those 
of the local problem as σ → 0.
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1. Introduction

In this work we study the nonlinear nonlocal reaction–diffusion equation

∂u

∂t
= ∂2u

∂x2
+ u2(1 − Jσ ∗ u) − du in (0,∞) ×R, (1.1)

where 0 ≤ d <
2

9
, Jσ (x) = 1

σ
J (

x

σ
) is a σ -parameterized nonnegative kernel with

J ∈ L1(R),

∫
R

J (x)dx = 1

and

Jσ ∗ u(x) =
∫
R

Jσ (x − y)u(y)dy.

This equation has three constant solutions,

0, a = 1

2
(1 − √

1 − 4d), A = 1

2
(1 + √

1 − 4d).

The problem arises in population dynamics with nonlocal consumption of resources, for ex-
ample in [7,19]. It is used to model the behavior of various biological phenomena such as 
emergence and evolution of biological species and the process of speciation. Actually, similar 
nonlocal structure in the reaction term appears also in describing the behavior of cancer cells 
with therapy as well as polychemotherapy and chemotherapy [16,17].

The reaction term u2(1 − Jσ ∗ u) − du consists of the reproduction which is proportional to 
the square of the density, the available resources and the mortality. The nonlocal consumption 
of the resources Jσ ∗ u(x) describes the phenomenon that consumption at the space point x is 
determined by the individuals located in some area around this point, where Jσ represents the 
probability density function that describes the distribution of individuals.

For J (x) = 1, with a general nonlinearity, uα(1 −
∫

u(x, t)dx) in the multi-dimensional case, 

the problem has been studied [9,10] in terms of the existence of the classical solutions both in 
bounded and unbounded domains correspondingly.

In the case of J (x) = δ(x), where δ(x) is the Dirac function, equation (1.1) becomes the so 
called Huxley equation, which is a classical reaction–diffusion equation. It has the same constant 
solutions, 0, a and A to the nonlocal problem. The existence of traveling waves has been studied 
extensively in the literature (see [15,4,5,8,12,20] among others). It’s proved that there exists a 
minimum speed such that the traveling waves connecting a and A exist for all values of the 
speed greater than or equal to this minimum speed. While the traveling waves connecting 0 and 
A exist only for a single value of the speed.
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Compared to the rich results for the local version of the Fisher-KPP reaction diffusion equa-
tion, very limited theoretical results exist for its nonlocal version. In the last few years, there has 
been several works on wavefronts for some typical nonlocal reaction diffusion equations. In the 
research of wavefronts, in order to get a priori bounds for the existence and monotonicity prop-
erties of the fronts, the classical methods substantially depend on the application of comparison 
principle. However, for the equation with nonlocal competition term, the most challenging point 
arises from the lack of the comparison principle. One first example is the following nonlocal 
Fisher-KPP equation

∂u

∂t
= ∂2u

∂x2
+ u(1 − Jσ ∗ u) in (0,∞) ×R. (1.2)

Berestycki et al. [7] proved that (1.2) admits a semi-wavefront connecting 0 to an unknown pos-
itive state for all c ≥ c∗ = 2 and there is no such kind of wavefront with wave speed c < 2. In 
[18], Nadin et al. numerically verified the existence of monotone wavefronts. After that, Alfaro 
et al. [1] rigorously proved that (1.2) admits the rapid wavefront connecting 0 and 1. Further-
more, Fang et al. [11] gave a sufficient and necessary condition for the existence of monotone 
wavefronts of (1.2) that connect the two equilibrium points 0 and 1. In a recent paper by Hasik 
et al. [14], for nonsymmetric interaction kernel Jσ , the different roles of the right and the left 
interactions are investigated. Nonlocal equations with bistable reactions have been investigated 
in [21,2,3]. In [21], Wang et al. studied

∂u

∂t
= ∂2u

∂x2
+ g(u,J ∗ S(u)), (1.3)

where g(u, J ∗ S(u)) satisfies some bistable assumptions. Although it is a nonlocal problem, 
due to their special assumptions, the comparison principle still holds. Therefore, by constructing 
various pairs of super- and sub-solutions, employing the comparison principle and the squeezing 
technique, the authors proved the existence of monotone traveling wavefronts.

There are further results on equations with other bistable reactions, where comparison princi-
ple can not be applied. In [2], Alfaro et al. considered the following equation

∂u

∂t
= ∂2u

∂x2
+ u(u − θ)(1 − Jσ ∗ u) in (0,∞) ×R (1.4)

with 0 < θ < 1. The Leray–Schauder degree method is used to indicate that (1.4) admits semi-
wavefronts connecting 0 to an unknown positive steady state, which is above and away from the 
intermediate equilibrium. For focusing kernel, it is proved that the wave connects 0 and 1.

The wavefront solution ω(x − ct) for Equation (1.1) has been investigated, for small σ , in [3]
by Apreutesei et al. It satisfies

ω′′(ξ) − cω′(ξ) + ω2(ξ)(1 − Jσ ∗ ω(ξ)) − dω(ξ) = 0. (1.5)

They proved the existence of wavefronts of (1.1) that connect 0 and A. In fact, for small σ , the 
nonlocal operator is a perturbation of the corresponding local operator, thus the implicit function 
theorem can be applied. More precisely, under the assumptions



JID:YJDEQ AID:8912 /FLA [m1+; v1.268; Prn:31/07/2017; 9:57] P.4 (1-29)

4 J. Li et al. / J. Differential Equations ••• (••••) •••–•••

∫
R

|z|J (z)dz < ∞,

∫
R

|z|2J (z)dz < ∞,

they obtained that there exists σ0 > 0 such that, for any |σ | < σ0, equation (1.6) has a solution 
(c, ω) ∈ C2+α(R) × R with ω(−∞) = 0 and ω(+∞) = A. Furthermore, the solution is of the 
class C1 with respect to σ .

In this paper, we study the existence of wavefronts of (1.1) which connect a to A and 0 to A
respectively by using a totally different method from [3]. The main results we obtained in this 
paper are as follows.

The first result shows the existence of wavefronts connecting a to A for any σ with big enough 
wave speed c.

Theorem 1.1. Suppose 0 ≤ d <
2

9
, then it holds that

(i) for any σ > 0, there exists a c∗(σ ) > 0 such that when c ≥ max {2√
2A − d , c∗(σ )}, (1.1)

admits a monotone wavefront ω ∈ C2(R), i.e., (c, ω) is the solution of the following problem

ω′′ − cω′ + ω2(1 − Jσ ∗ ω) − dω = 0 in R,

ω(−∞) = a, ω(+∞) = A. (1.6)

(ii) As σ → 0, c∗(σ ) converges to c∗. Moreover, for any c ≥ max{2√
2A − d, c∗}, by fixing 

ω(0) = 1

2
, ω has a subsequence converging to ω0 in C1,α

loc (R), where (ω0, c) is the solution 

of the following problem

ω′′
0 − cω′

0 + ω2
0(1 − ω0) − dω0 = 0 in R,

ω0(−∞) = a, ω0(0) = 1

2
, ω0(+∞) = A. (1.7)

The second result demonstrates the existence of a semi-wavefronts connecting 0 to an inter-
mediate state d0 for any σ ; and furthermore this semi-wavefront can be extended to A as x goes 
to +∞ in the case of small σ .

Theorem 1.2. Suppose 0 < d <
2

9
, then it holds that

(i) there exists an M > 0 such that for any σ > 0 and 0 < d0 < d , (1.1) admits a semi-wavefront 
(ω, c∗(σ )) with max{|c∗(σ )|, ‖ω‖C2(R)} ≤ M , i.e. ω is the solution of the following problem

ω′′ − c∗(σ )ω′ + ω2(1 − Jσ ∗ ω) − dω = 0 in R,

ω(−∞) = 0, ω(0) = d0, (1.8)

and 0 ≤ ω ≤ A on R, ω′ ≥ 0 in (−∞, 0].
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(ii) If furthermore mi =
∫
R

|z|iJ (z)dz < +∞ for i = 1, 2, then there exists σ ∗ > 0 such that for 

σ < σ ∗, c∗(σ ) is positive and the semi-wavefronts are in fact wavefronts with ω(+∞) = A.
(iii) As σ → 0, c∗(σ ) converges to c∗. Moreover, the solution ω has a subsequence converging 

to ω0 in C1,α
loc (R), which satisfies

ω′′
0 − c∗ω′

0 + ω2
0(1 − ω0) − dω0 = 0 in R

ω0(−∞) = 0, ω0(0) = d0, ω0(+∞) = A. (1.9)

Next we summarize the main methods used in this paper. To study the existence of monotone 
traveling waves, we use the classical method of sub- and super-solutions for an appropriate mono-
tone operator, which is motivated by [13] on the time-delay Fisher-KPP equation and [11] on the 
nonlocal Fisher-KPP equation. In our case, it’s verified that the obtained monotone wavefronts 
connect the two positive states a and A. The proof of the existence of wavefronts connecting 0
and A is more delicate. We start from a cut-off approximation, in a bounded domain [−L, L], 
of the original problem and show that the solutions are between 0 and A. Furthermore we can 
obtain the uniform C2-bound of the solutions independent of L and the scale of the cut-off. By 
removing the cut-off and letting L tend to infinity we derive the existence of semi-wavefronts 
which connect 0 to d0. To show the semi-wavefronts are in fact wavefronts with ω(+∞) = A, 
the main difficulty is to exclude the case that ω(+∞) = 0 and ω(+∞) = a. Such a difficulty also 
arises in the construction of bistable wavefronts in [6,2]. Instead of using the energy methods as 
in [6], we adopt a rather direct method by comparing the semi-wavefronts that has been obtained 
from the nonlocal problem with those of the corresponding local problem.

The paper is organized as follows. In Section 2, by monotone iteration method, we estab-
lish the existence of monotone wavefronts connecting the two positive equilibrium a and A. In 
Section 3, we prove the existence of semi-wavefronts by a limiting process. Moreover, for σ
sufficiently small, we prove that the semi-wavefronts are wavefronts connecting 0 and A. Fur-
thermore, as σ → 0, in both of Section 2 and Section 3, we prove that the wavefronts converge 
to those of the corresponding local problems.

2. Monotone wavefronts connecting a and A

To prove the existence of monotone wavefronts, we adopt the method of the sub- and super-
solution. The main task is to define a monotone operator and to construct a pair of ordered lower 
and upper fixed points. To this end, we prove the following lemmas.

Lemma 2.1. Denote

F(ω)(ξ) = 2Aω(ξ) − ω2(ξ)(1 − Jσ ∗ ω(ξ)),

then for any 0 ≤ ω ≤ A, we have

(i) F(ω)(ξ) > 0;
(ii) F(ω1)(ξ) ≥ F(ω2)(ξ) if ω1(ξ) ≥ ω2(ξ).
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Proof. (i) It can be easily checked that

F(ω) =2Aω − ω2(1 − Jσ ∗ ω)

=ω[2A − ω(1 − Jσ ∗ ω)]
≥ω(2A − A) > 0.

(ii) Denote g(ω) = 2Aω−ω2, then g′(ω) = 2A −2ω ≥ 0, which together with the monotonicity 
of h(ω) = ω2Jσ ∗ ω with ω imply the monotonicity of F(ω) in ω. �

Note that if ω(ξ) satisfies (1.6), then we have

ω′′(ξ) − cω′(ξ) + (2A − d)ω(ξ) = F(ω)(ξ).

Define

L[ω] = ω′′(ξ) − cω′(ξ) + (2A − d)ω(ξ) − F(ω)(ξ),

then it is clear that finding a solution of (1.6) is equivalent to searching a function ω satisfying 
L[ω] = 0, which is equivalent to

ω(ξ) = 1

μ2 − μ1

+∞∫
ξ

(
eμ1(ξ−y) − eμ2(ξ−y)

)
F(ω(y))dy,

where 0 < μ1 ≤ μ2 are the two different real and positive roots of μ2 − cμ + 2A − d = 0 as 
c > 2

√
2A − d .

Lemma 2.2. For c > 2
√

2A − d , let

T [ω](ξ) = 1

μ2 − μ1

+∞∫
ξ

(
eμ1(ξ−y) − eμ2(ξ−y)

)
F(ω(y))dy,

then

(i) if ω(ξ) is a super-solution of (1.6), then T [ω](ξ) ≤ ω(ξ) and T [ω](ξ) is also a super-
solution. Moreover, for any sub-solution ω(ξ) of (1.6) that satisfies ω(ξ) ≤ ω(ξ), we have 
ω(ξ) ≤ T [ω](ξ).

(ii) If ω(ξ) is increasing, then T [ω](ξ) is also increasing.

Proof. (i) If ω(ξ) is a super-solution of (1.6), then

L[ω] = ω′′(ξ) − cω′(ξ) + (2A − d)ω(ξ) − F(ω)(ξ) ≥ 0. (2.1)
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Let ω1 = T [ω], then

ω′′
1(ξ) − cω′

1(ξ) + (2A − d)ω1(ξ) − F(ω(ξ)) = 0. (2.2)

Let ϕ(ξ) = ω(ξ) −ω1(ξ), r(ξ) = ϕ′′(ξ) − cϕ′(ξ) + (2A −d)ϕ(ξ), then from (2.1) and (2.2), 
we obtain r(ξ) ≥ 0 and

ϕ(ξ) = 1

μ2 − μ1

+∞∫
ξ

(
eμ1(ξ−y) − eμ2(ξ−y)

)
r(ξ)dy ≥ 0,

which means that T [ω](ξ) ≤ ω(ξ). Similarly, we can get ω ≤ T [ω](ξ).
Furthermore, noticing

ω ≥ T [ω] = ω1,

from (ii) of Lemma 2.1 we derive

ω′′
1 − cω′

1 + (2A − d)ω1 = F(ω) ≥ F(ω1).

It follows that L[ω1] ≥ 0 and ω1 is also a super-solution.
(ii) If ω(ξ) is increasing, then from (ii) of Lemma 2.1 we obtain F(ω)(ξ) is also increasing, 

therefore

F(ω)(ξ + t) − F(ω)(ξ) ≥ 0, ∀t > 0.

Furthermore, we have

T [ω](ξ + t) − T [ω](ξ)

= 1

μ2 − μ1

+∞∫
ξ

(
eμ1(ξ−y) − eμ2(ξ−y)

)
(F (ω)(ξ + t) − F(ω)(ξ))dy ≥ 0,

which implies that T [ω](ξ) is also increasing in ξ . �
Define


1(c, σ,λ) := λ2 − cλ − d − A2
∫
R

Jσ (s)e−λsds = 0

and


2(c, σ,λ) := λ2 − cλ + d − A2
∫

Jσ (s)e−λsds = 0,
R
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which, by a change of variable, are equivalent to

1

σ 2
λ2 − c

σ
λ − d − A2

∫
R

J (s)e−λsds = 0

and

1

σ 2
λ2 − c

σ
λ + d − A2

∫
R

J (s)e−λsds = 0

respectively. Similar to Proposition 2.1 in [11], we have the following result

Proposition 2.1. For any σ > 0, there exists c∗(σ ) ∈ (0, +∞], which is increasing in σ , such 
that if c ≥ c∗(σ ), then 
i(c, σ, λ) = 0, i = 1, 2, admit the largest negative roots λi , and there 
exists εi = εi(c, σ) > 0 such that 
i(c, σ, λi − εi) > 0. While if c < c∗(σ ), there exists i ∈ {1, 2}
such that 
i(c, σ, λ) = 0 admits no negative root.

Proof. Due to the fact that for any fixed λ < 0, 
1

σ 2
λ2 − c

σ
λ is increasing in c ≥ 0 and decreasing 

in σ > 0, one has that for any σ > 0, there exists ci∗(σ ) ≥ 0 such that ci∗(σ ) is increasing in σ
and 
i(c, σ, λ) = 0, i = 1, 2, have at least one negative root if and only if c ≥ ci∗(σ ). Choosing 
c∗(σ ) = max{c1∗(σ ), c2∗(σ )}, the proposition follows. �

Next, we will construct a pair of sub- and super-solutions in order to obtain a wavefront ω.
For fixed c > max{2√

2A − d, c∗(σ )}, let

ω(ξ) =
{

αeμξ + d, ξ ≤ ξ−,

A(1 − eλ1ξ ), ξ > ξ−,

where μ > 0 is a solution of μ2 − cμ + 1 = 0, λ1 < 0 is a solution of 
1(c, σ, λ) = 0, α and ξ−
are uniquely determined by

{
αeμξ− + d = A(1 − eλ1ξ−),

αμeμξ− = −λ1Aeλ1ξ− ,

so that

αeμξ + d ≥ A(1 − eλ1ξ ), ∀ξ ≥ ξ−.

Proposition 2.2. For c ≥ c∗(σ ), ω is a sub-solution of (1.6), i.e., L[ω] ≤ 0.

Proof. For ξ ≤ ξ−, due to the fact that

d ≤ ω ≤ A ≤ 1,

we have
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L[ω] = α(μ2 − cμ)eμξ + ω2(1 − Jσ ∗ ω) − dω

= (μ2 − cμ + 1)(ω − d) − (ω − d) + ω2(1 − Jσ ∗ ω) − dω

= −(1 − ω)(ω − d) − ω2Jσ ∗ ω < 0,

where we have used the fact that μ2 − cμ + 1 = 0.
For ξ > ξ−, noticing that

αeμξ + d ≥ A(1 − eλ1ξ ),

we have

L[ω] =A(−λ2
1 + cλ1)e

λ1ξ + ω2(1 − Jσ ∗ ω) − dA(1 − eλ1ξ )

=A(−λ2
1 + cλ1 + d)eλ1ξ

+ ω2

⎛
⎜⎝1 −

ξ−∫
−∞

(αeμs + d)Jσ (ξ − s)ds −
+∞∫
ξ−

A(1 − eλ1s)Jσ (ξ − s)ds

⎞
⎟⎠ − dA

≤ − A3
∫
R

Jσ (s)e−λ1(s−ξ)ds + ω2(1 −
∫
R

A(1 − eλ1s)Jσ (ξ − s)ds) − A2(1 − A)

= − A3
∫
R

Jσ (s)e−λ1(s−ξ)ds + ω2(1 − A) + ω2A

∫
R

eλ1sJσ (ξ − s)ds − A2(1 − A)

=A(ω2 − A2)

∫
R

Jσ (s)e−λ1(s−ξ)ds + (ω2 − A2)(1 − A) < 0,

where we have used that d = A(1 − A) and


1(c, σ,λ1) = λ2
1 − cλ1 − d − A2

∫
R

Jσ (s)e−λ1sds = 0. �

Denote

ω(b, ξ) =
{

A(1 − eλ2ξ + be(λ2−ε2)ξ ), ξ ≥ ξb,

μb, ξ < ξb,

where λ2 < 0 is the largest negative root of 
2(c, σ, λ2) = 0, ε2 > 0 is the constant such that 

2(c, σ, λ2 − ε2) > 0, b > 0 is a constant to be determined later, and A(1 − eλ2ξ + be(λ2−ε2)ξ )

achieves its minimum μb at the point

ξ = ξb = 1

ε 2
ln

b(λ2 − ε2)

λ2

with
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μb = A(1 − eλ2ξb + be(λ2−ε2)ξb ) = A + ε2A

λ2 − ε2

(
b(λ2 − ε2)

λ2

)λ2/ε2

.

Since λ2 < 0, it is easy to verify that for sufficiently large b, ξb > 0 and a < μb < A. Moreover, 
ω is a C1 function and is increasing with respect to b > 0.

Proposition 2.3. For c ≥ c∗(σ ), ω is a super-solution of (1.6) for b � 1, i.e., L[ω] ≥ 0.

Proof. For ξ < ξb ,

L[ω] = ω2(1 − Jσ ∗ ω) − dω

= μ2
b(1 − A) + μ2

b(A − Jσ ∗ ω) − dμb

= μ2
b(1 − A) + μ2

bA

+∞∫
ξb

(eλ2s − be(λ2−ε2)s)Jσ (ξ − s)ds

+ μ2
b

ξb∫
−∞

(A − μb)Jσ (ξ − s)ds − dμb

≥ μ2
b(1 − A) + μ2

b

ξ∫
−∞

(A − μb)Jσ (ξ − s)ds − dμb

= μ2
b(1 − A) + 1

2
μ2

b(A − μb) − dμb

= μb(A − μb)(
1

2
μb − (1 − A)).

For fixed 0 ≤ d <
2

9
, we have

A = 1 + √
1 − 4d

2
>

2

3
.

For any

0 < ε < min{1 − 9d

2
,3A − 2},

noticing that lim
b→∞μb = A, we have

2(1 − A) < A − ε < μb < A

for sufficiently large b, which implies

L[ω] > 0.
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For ξ ≥ ξb , noticing that


2(c, σ,λ2) = λ2
2 − cλ2 + d − A2

∫
R

Jσ (s)e−λ2sds = 0

and


2(c, σ,λ2 − ε2) = (λ2 − ε2)
2 − c(λ2 − ε2) + d − A2

∫
R

Jσ (s)e−(λ2−ε2)sds > 0,

we have

L[ω] =A(1 − eλ2ξ + be(λ2−ε2)ξ )′′ − cA(1 − eλ2ξ + be(λ2−ε2)ξ )′ + ω2(1 − Jσ ∗ ω) − dω

≥A(−λ2
2 + cλ2)e

λ2ξ + Ab([(λ2 − ε2)
2 − c(λ2 − ε2)]e(λ2−ε2)ξ + ω2(1 − A)

+ ω2(A − Jσ ∗ ω) − dA(1 − eλ2ξ + be(λ2−ε2)ξ )

=A(−λ2
2 + cλ2 + d)eλ2ξ + Ab[(λ2 − ε2)

2 − c(λ2 − ε2) − d]e(λ2−ε2)ξ + ω2(1 − A)

+ ω2A

∫
R

(eλ2(ξ−s) − be(λ2−ε2)(ξ−s))Jσ (s)ds − dA

= 1

A
(A2 − ω2)(−λ2

2 + cλ2 − d)eλ2ξ + b

A
(A2 − ω2)[(λ2 − ε2)

2 − c(λ2 − ε2) + d]e(λ2−ε2)ξ

+ b

A
ω2
2(c, σ,λ2 − ε2)e

(λ2−ε2)ξ − (A2 − ω2)(1 − A) + 2dA(eλ2ξ − be(λ2−ε2)ξ )

≥ b

A
ω2
2(c, σ,λ2 − ε2)e

(λ2−ε2)ξ − 1

A
(A2 − ω2)(λ2

2 − cλ2 + d)eλ2ξ + (1 − A)(A − ω)2

≥ b

A
ω2e(λ2−ε2)ξ

[

2(c, σ,λ2 − ε2) − A2

bω2
(2e(λ2+ε2)ξ + 2be2λ2ξ )(λ2

2 − cλ2 + d)

]

≥ b

A
ω2e(λ2−ε2)ξ

[

2(c, σ,λ2 − ε2) − A2

bω2
(2e(λ2+ε2)ξb + 2be2λ2ξb )(λ2

2 − cλ2 + d)

]

≥ b

A
ω2e(λ2−ε2)ξ ·

[

2(c, σ,λ2 − ε2) − 2A2

a2

(
1

b

(
λ2

b(λ2 − ε2)

)−λ2/ε2−1

+
(

λ2

b(λ2 − ε2)

)−2λ2/ε2
)

(λ2
2 − cλ2 + d)

]
,

where we have used the fact that ξb = 1

ε 2
ln

b(λ2 − ε2)

λ2
, a < ω < A and

(A2 − ω2) ≤ A2(2eλ2ξ + 2be(2λ2−ε2)ξ ).

For b sufficiently large, since λ2 < 0, it is easy to see that L[ω] > 0. �
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Lemma 2.3. Any solution ω ∈ C2(R) ∩L∞(R) to (1.5) with lim
ξ→−∞ω(ξ) = α0 and lim

ξ→+∞ω(ξ) =
β0 has the property that α0, β0 ∈ {0, a, A}.

Proof. Let xn → ∞, then the sequence of functions vn(x) = ω(x + xn) solve

v′′
n − cv′

n + v2
n(1 − Jσ ∗ vn) − dvn = 0, in R.

Since ω is bounded, vn is uniformly bounded with respect to n. From the classical W 2,p theory 
for second order linear elliptic equations, we obtain that for all 1 < p < ∞,

‖vn‖W
2,p
loc (R)

≤ C.

From Sobolev embedding theorem, there is a subsequence of vn, still denoted by vn itself, such 
that vn → v strongly in C1,α

loc (R) and weakly in W 2,p
loc (R). Then v(x) ≡ β0 and

v′′ − cv′ + v2(1 − Jσ ∗ v) − dv = 0,

which implies β2
0 (1 − β0) − dβ0 = 0 and β0 ∈ {0, a, A}. Similarly, we can prove that α0 ∈

{0, a, A}. �
Proof of Theorem 1.1. The proof consists of the following two parts.

(i) First we consider the case

c > max{2√
2A − d, c∗(σ )}.

Let ω0 = ω and define the bounded continuous function sequence ωm by the following iter-
ation scheme

ω′′
m(ξ) − cω′

m(ξ) + (2A − d)ωm(ξ) = F(ωm−1)(ξ).

Then from Lemma 2.1 and Lemma 2.2, we can obtain that for any m,

ωm(ξ) = T [ωm−1](ξ)

is increasing and satisfies

ω ≤ · · · ≤ ωm ≤ · · · ≤ ω1 ≤ ω0 = ω. (2.3)

Hence, there exists a increasing function ω(ξ) such that ωm(ξ) → ω(ξ) a.e. for ξ ∈ R. 
Therefore, we have

ω(ξ) = T [ω](ξ),

which implies that ω is a solution of (1.5). Since 0 ≤ ω(ξ) ≤ A is increasing, there exist two 
non-negative constants α0, β0 such that
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lim
ξ→−∞ω(ξ) = α0, lim

ξ→+∞ω(ξ) = β0.

By Lemma 2.3, we have α0, β0 ∈ {0, a, A}. Noticing that

lim
ξ→+∞ω(ξ) = lim

ξ→+∞ω(ξ) = A,

we have β0 = A. Furthermore,

lim
ξ→−∞ω(ξ) = d, lim

ξ→+∞ω(ξ) = μb < A,

imply d < α0 < A, then α0 = a, which means that (c, ω) is a solution of (1.6).
Since a ≤ ω ≤ A and ω′ ≥ 0, we claim that ω′(ξ) ≤ μ1A for ξ ∈ R. In order to prove this, a 
direct computation from

ω(ξ) = 1

μ2 − μ1

+∞∫
ξ

(
eμ1(ξ−y) − eμ2(ξ−y)

)
F(ω(y))dy

gives that

ω′(ξ) = 1

μ2 − μ1

+∞∫
ξ

(
μ1e

μ1(ξ−y) − μ2e
μ2(ξ−y)

)
F(ω(y))dy.

Therefore,

ω′(ξ) − μ1A ≤ ω′(ξ) − μ1ω(ξ) = −
+∞∫
ξ

eμ2(ξ−y)F (ω(y))dy ≤ 0,

by noticing that

F(ω) = 2Aω − ω2(1 − Jσ ∗ ω) > 0,

and 0 < μ1 ≤ μ2 are the two positive roots of μ2 − cμ + 2A − d = 0. Thus we have ω′(ξ) ≤
μ1A for ξ ∈R. Furthermore, ‖ω‖C2(R) ≤ M can be obtained directly from (1.6).
We are left to consider the case

c = max{2√
2A − d, c∗(σ )}.

Choosing {cn} such that cn > max{2√
2A − d, c∗(σ )} and cn → max{2√

2A − d, c∗(σ )}, 
then for each n, the above discussion gives a monotone traveling wavefront ωn with speed 
cn, such that

‖ωn‖C2(R) ≤ M.
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By appropriate translations, we fix

ωn(0) = 1

2
for all n.

By Arzelà–Ascoli theorem, ωn and ω′
n have a locally uniformly convergent subsequence 

with limit ω, ω′ and

a ≤ ω ≤ A, 0 ≤ ω′ ≤ μ1A

together with

ω(0) = 1

2
, ω(−∞) = a, ω(+∞) = A,

such that (c, ω) is the solution of (1.6).
(ii) By Proposition 2.1, we have that c∗(σ ) ≥ 0 and c∗(σ ) is decreasing as σ → 0. Thus there 

exists c∗ ≥ 0 such that c∗(σ ) → c∗. Next we take the limit σ → 0. Let (ωσ , c) be the solution 
of (1.6) that has been obtained in the previous step, where c ≥ max{2√

2A − d, c∗(σ )}, and 
by appropriate translations, fix

ωσ (0) = 1

2
for all σ

and

‖ωσ ‖C2(R) ≤ M.

Therefore, ωσ has a subsequence which converges to ω0 locally uniformly in C1,α(R) as 
σ → 0, where ω0 ∈ C2(R) is the solution of (1.7), that is,

ω′′
0 − cω′

0 + ω2
0(1 − ω0) − dω0 = 0 in R,

ω0(−∞) = a, ω0(0) = 1/2, ω0(+∞) = A. �
3. Semi-wavefronts with ω(−∞) = 0 and wavefronts connecting 0 and A

In this section, we study the existence of wavefronts connecting 0 and A. We construct the 
wavefronts connecting 0 and A by considering a sequence of approximating problems on inter-
vals [−L, L], and then pass to the limit L → ∞. In particular, two difficulties arise in the proof. 
One comes in proving that the speed c and the C1 norm of ω are controlled by a constant in-
dependent of L, while the other one lies in establishing that the two equilibriums 0 and A are 
indeed reached at infinity.

For L > 0, we introduce the homotopy parameter 0 ≤ τ ≤ 1 and a smooth cut-off function 
gε(s) ∈ C∞

0 (0, A) with ε ∈ (0, A/6) such that 0 ≤ gε(s) ≤ 1 for 0 ≤ s ≤ A and

gε(s) ≡ 1 for s ∈ (3ε,A − 3ε).
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We consider the following problem with a cut-off both in space variable and in the nonlinear 
reaction,

ω′′ − cω′ + τgε(ω)[ω2(1 − Jσ ∗ ω̃) − dω] = 0 in (−L,L) (3.1)

with

ω(−L) = 0, ω(L) = A, (3.2)

where ω̃ is the extension of ω with ω = 0 on (−∞, −L) and ω = A on (L, +∞).
If

max
t∈[−L,L]ω(t) = ω(t0) > A or min

t∈[−L,L]ω(t) = ω(t0) < 0,

then t0 ∈ (−L, L) and gε(ω) = 0 in a neighborhood of t0, which together with (3.1) implies 
ω′′ − cω′ = 0 in the same neighborhood. The maximum principle implies that ω ≡ ω(t0), which 
is a contraction. Thus,

0 ≤ ω(t) ≤ A for all t ∈ [−L,L].
For fixed d0 ∈ (0, d), we normalize the wavefront ω such that

max
−L≤t≤0

ω(t) = d0. (3.3)

This constraint indirectly fixes the speed c.
We claim that ω is increasing in [−L, 0]. In fact, if there exists a local maximal point t0 ∈

[−L, 0) such that ω′′(t0) ≤ 0, ω′(t0) = 0, then from (3.1), we obtain

ω(t0)(1 − Jσ ∗ ω(t0)) ≥ d,

which contradicts to (3.3). Therefore, ω is increasing in [−L, 0] and ω(0) = d0.

The following lemma provides a priori bounds for ‖ω‖C2(−L,L).

Lemma 3.1. There exist C and L0 such that, for all τ ∈ [0, 1], L ≥ L0, ε ∈ (0, 
1

6
A) and σ > 0, 

any solution (c, ω) of (3.1)–(3.3) satisfies

‖ω‖C2(−L,L) ≤ C.

Proof. Noticing 0 ≤ ω(t) ≤ A for all t ∈ [−L, L], which together with the fact that ω(−L) = 0
and ω(L) = A imply that

ω′(−L) ≥ 0 and ω′(L) ≥ 0.

Let

H(t) = τgε(ω)[ω2(1 − Jσ ∗ ω) − dω],
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then |H(t)| ≤ A2 for all t ∈ [−L, L]. From

(e−ctω′)′ = −e−ctH(t),

we obtain that for −L ≤ t1 ≤ t2 ≤ L,

ω′(t1)ec(t2−t1) + A2

c
(1 − ec(t2−t1)) ≤ ω′(t2) ≤ ω′(t1)ec(t2−t1) − A2

c
(1 − ec(t2−t1)) (3.4)

and

ω′(t2)ec(t1−t2) + A2

c
(ec(t1−t2) − 1) ≤ ω′(t1) ≤ ω′(t2)ec(t1−t2) − A2

c
(ec(t1−t2) − 1). (3.5)

We claim that

0 ≤ ω′(−L) ≤ A2

c
, for c > 0, (3.6)

0 ≤ ω′(L) ≤ −A2

c
, for c < 0. (3.7)

We first prove (3.6). Assuming the contrary, from (3.4), by choosing t1 = −L, we have

ω′(t2) ≥ A2

c
+ (ω′(−L) − A2

c
)ec(t2−t1)) ≥ A2

c
, for all t2 ∈ [−L,L].

This cannot hold for a bounded function 0 ≤ ω(t) ≤ A and ω(L) = A for L ≥ L0 = 2c

A
. Simi-

larly from (3.5) and choosing t2 = L, we can verify (3.7).

Next we prove the boundedness of ω′(t) on [−L, L] uniformly in τ , L, ε and σ .
For c > 0, with the change of variables

ω(t) = ex(t) − 1,

(3.1) is transformed into

x′′ − cx′ + (x′)2 + τgε(ω)
ω

ω + 1
[ω(1 − Jσ ∗ ω) − d] = 0.

Denote y(t) = x′(t), we obtain

y′ − cy + y2 + f (t) = 0, (3.8)

where

f (t) = τgε(ω)
ω

[ω(1 − Jσ ∗ ω) − d] .

ω + 1
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We have that |f (t)| ≤ A, which is a direct consequence of 0 ≤ ω(t) ≤ A. ω ∈ C2[−L, L] shows 
that y(t) ∈ C1[−L, L]. Let

β = min
t∈[−L,L]y(t), γ = max

t∈[−L,L]y(t).

Next we will give a lower bound for β and an upper bound for γ uniformly in τ , ε, L and σ . 
Denote

λ1(t) = c − √
c2 − 4f (t)

2
, λ2(t) = c + √

c2 − 4f (t)

2
,

which are the roots of y2 − cy + f (t) = 0. Suppose that y(t) achieves its minimum at t1, i.e.,

β = min
t∈[−L,L]y(t) = y(t1).

If t1 = −L, then

β = y(−L) = x′(−L) = ω′(−L) ≥ 0.

If t1 = L, then

β = y(L) = x′(L) = ω′(L)

A + 1
≥ 0.

While if t1 ∈ (−L, L), then y ′(t1) = 0. From (3.8), we obtain

y2(t1) − cy(t1) + f (t1) = 0,

thus

β = y(t1) ∈ {λ1(t1), λ2(t1)} ≥ c − √
c2 + 4A

2
.

On the other hand, suppose that y(t) achieves its maximum at t2, i.e.,

γ = max
t∈[−L,L]y(t) = y(t2).

If t2 = −L, then from (3.6),

γ = y(−L) = x′(−L) = ω′(−L) ≤ A2

c
.

If t2 = L, then y′(L) ≥ 0, from (3.8), we obtain

y2(L) − cy(L) + f (L) ≤ 0,

thus
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γ = y(L) ∈ (λ1(L),λ2(L)) ≤ c + √
c2 + 4A

2
.

If t2 ∈ (−L, L), then y ′(t2) = 0. From (3.8), we obtain

y2(t2) − cy(t2) + f (t2) = 0,

then

γ = y(t2) ∈ {λ1(t2), λ2(t2)} ≤ c + √
c2 + 4A

2
.

From the above discussion, we obtain that

β ≥ c − √
c2 + 4A

2

and

γ ≤ max{A
2

c
,
c + √

c2 + 4A

2
}.

Furthermore, noticing ω(t) = ex(t) − 1 and ω′(t) = (ω(t) + 1)y(t), the uniform boundedness of 
ω′ can be obtained.

For c < 0, with the change of variables ω(t) = e−x(t) − 1, since

A2

c(A + 1)
≤ x′(L) = −ω′(L)

A + 1
≤ 0

and

x′(−L) = −ω′(−L) ≤ 0,

by similar analysis, the uniform boundedness of ω′ achieves.
Now we have proved that the bounds of ω and ω′ are independent of τ , L, ε and σ . Then from 

(3.1), for c �= 0, the uniform boundedness of ω′′ can be obtained. While for the case c = 0, the 
uniform boundedness of ω′′ follows directly from (3.1). Now we obtain that for any c ∈R, there 
exists a constant C independent of τ , L, ε and σ such that ‖ω‖C2(−L,L) ≤ C. �

The next lemma provides an a priori bound for the speed c. The proof follows the ideas from 
[7,2].

Lemma 3.2. There exists L0 > 0, for any L > L0, there exists K(L) > 0 such that for all 

τ ∈ [0, 1], ε ∈ (0, 
1

6
A), any solution (c, ω) of (3.1)–(3.3) satisfies −K(L) ≤ c ≤ cmax = 2

√
A. 

Moreover, for τ = 1, there exists cmin < 0 such that for all L ≥ L0, ε > 0 and σ > 0, we have 
c ≥ cmin.
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Proof. Since 0 ≤ ω ≤ A ≤ 1, the solution ω of (3.1) satisfies the inequality

ω′′ − cω′ + Aω ≥ 0. (3.9)

We will prove c ≤ 2
√

A for big enough L by a contradiction argument. If c > 2
√

A, let

hμ(t) = μe
√

A(t−L),

then

ch′
μ(t) > h′′

μ(t) + Ahμ(t). (3.10)

Noticing that ω(t) ∈ L∞(−L, L), when μ > 0 is sufficiently large, we have that ω(t) ≤ hμ(t) in 
(−L, L). While for μ < 0 we have ω(t) > hμ(t). Therefore, define

μ0 = inf{μ : hμ(t) > ω(t) for all t ∈ [−L,L]}.

It follows that there exists t0 ∈ [−L, L] so that hμ0(t0) = ω(t0) and μ0 > 0. However, (3.9) and 
(3.10) imply that t0 /∈ (−L, L). As μ0 > 0, it is impossible that t0 = −L, hence t0 = L. As a 
consequence, hμ0(L) = A, thus μ0 = A. However,

d0 = ω(0) ≤ hμ0(0) = Ae−L
√

A,

which is impossible for

L > L0 = (lnA − lnd0)/
√

A.

Hence, c > 2
√

A is impossible for L sufficiently large.
Next we prove a lower bound for c with given L > 0. We consider a solution (c, ω) of 

(3.1)–(3.3). It satisfies

ω′′ − cω′ ≤ dω,

as well as ω(−L) = 0, ω(L) = A. If v is the solution of v′′ − cv′ = dv with v(−L) = 0 and 
v(L) = A, then by comparison principle, we obtain ω ≥ v. As v can be computed explicitly and

v(0) = A

eλ+L + eλ−L
, λ± := c ± √

c2 + 4d

2
.

We see that v(0) → A as c → −∞. It follows that, for any L > 0, there exists K(L) > 0 such 
that c < −K(L) implies v(0) > d0, which contradict with the fact that ω ≥ v and ω(0) = d0. 
Therefore, if (c, ω) is a solution of (3.1)–(3.3), then c ≥ −K(L).

In the end, we obtain a lower bound for the speed c with τ = 1. Suppose that c < −1. We 
start by proving that the derivative ω′ is bounded by −A2/c on an interval [−L + K0, L] with 
the constants K0 independent of L. Choosing t1 = −L in (3.4) and noticing that ω′(−L) ≥ 0, we 
obtain
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ω′(t2) ≥ A2

c
for all t2 ∈ [−L,L] (3.11)

and for some constant K0 > − c

A
independent of L, we have

ω′(t2) ≤ −A2

c
for any t2 ∈ [−L + K0,L]. (3.12)

Otherwise there exists t2 ∈ [−L + K0, L] such that ω′(t2) > −A2

c
, the from (3.5), we have 

ω′(t1) ≥ −A2

c
for all t1 ∈ [−L, t2]. Integrating this from −L to t2 we see that

A ≥ ω(t2) ≥ −A2

c
K0,

which contradicts the definition of K0. This proves (3.12).

Now we consider the case τ = 1. For a fixed ε0 = 1 − 4d

36
, there exists R > 1 such that

A

∫
[−R,R]c

Jσ (x)dx ≤ ε0.

We are going to prove that

c ≥ cmin = −2A2R

ε0
.

If this is not true, assume c ≤ cmin. Thanks to the conditions ω(L) = A and ω(0) = d0 < d <
2

9
, 

we can define t0 > 0 as the smallest positive real such that ω(t0) = 1

2
. From (3.12), we obtain for 

t ∈ [t0 − R, t0 + 2R] ∩ [−L, L], we have

d0 <
1

2
− ε0 ≤ 1

2
+ 2A2R

c
≤ ω(t) ≤ 1

2
− 2A2R

c
≤ 1

2
+ ε0 < A (3.13)

and [t0 − R, t0 + 2R] ⊂ [0, L] as soon as c ≤ −2A2R

ε0
= cmin. Furthermore, for t ∈ [t0, t0 + R], 

we have

Jσ ∗ ω(t) =
∫

[−R,R]
Jσ (x)ω(t − x)dx +

∫
[−R,R]c

Jσ (x)ω(t − x)dx

≤ 1

2
+ ε0 + A

∫
[−R,R]c

Jσ (x)dx ≤ 1

2
+ 2ε0 (3.14)
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as soon as c ≤ cmin. We claim that for c ≤ cmin, ω is increasing on (t0, t0 + R). If not, the 

definition of t0 implies the existence of a local minimum t ∈ (t0, t0 +R). Noticing d <
2

9
, ω′(t) =

0, ω′′(t) ≥ 0, from (3.1), we have Jσ ∗ ω(t) ≥ 1 − d/ω(t), which together with (3.13) and (3.14)
implies

1

2
+ 2ε0 ≥ Jσ ∗ ω(t) ≥ 1 − d/ω(t) ≥ 1 − 2d

1 − 2ε0
>

1

2
+ 2ε0,

which is a contraction. Therefore, for c ≤ cmin, t ∈ (t0, t0 + R), we have ω′(t) ≥ 0 and thus

ω′′ ≤ ω′′ − cω′ = gε(ω)[dω − ω2(1 − Jσ ∗ ω)]

≤ ω(d + ω(2ε0 − 1

2
))

≤ d − (
1

2
− 2ε0)(

1

2
− ε0)

< d − 1

4
+ 3

2
ε0 = −15

2
ε0.

It follows that ω′(t0) − ω′(t0 + R) ≥ 15

2
ε0R, which together with (3.11) and (3.12) implies 

c ≥ − 4A2

15ε0R
> cmin, which is a contraction.

Finally, it is proved that cmin = −2A2R

ε0
is an explicit lower bound for c. �

Now we begin the homotopy argument. The a priori bounds obtained in Lemma 3.1 and 3.2
allow us to use the Leray–Schauder topological degree argument to prove existence of solutions 
to the problem (3.1)–(3.3) with τ = 1 on the bounded domain [−L, L].

Proposition 3.1. There exist K > 0 and L0 such that, for all L ≥ L0, ε ∈ (0, A/6) and σ > 0, 
(3.1)–(3.3) with τ = 1 has a solution (c, ω), i.e., (c, ω) satisfies

{
ω′′ − cω′ + gε(ω)[ω2(1 − Jσ ∗ ω̃) − dω] = 0 in (−L,L),

ω(−L) = 0, ω(0) = d0, ω(L) = A
(3.15)

with

‖ω‖C2(−L,L) ≤ K, −cmin ≤ c ≤ cmax.

Proof. We introduce a map Kτ which is defined from the Banach space X = R × C1[−L, L], 
equipped with the norm ‖(c, v)‖X = max{|c|, ‖v‖C1[−L,L]}, onto itself, i.e.,

Kτ : (c, v) → (d0 − v(0) + c,ω),

where ω is the solution of the linear system
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Pτ

{
ω′′ − cω′ + τgε(v)[v2(1 − Jσ ∗ ṽ) − dv] = 0 in (−L,L),

ω(−L) = 0, ω(L) = A.
(3.16)

A solution (cτ , ωτ ) of the finite interval problem (3.1)–(3.3) is a fixed point of Kτ and satisfies 
Kτ (cτ , ωτ ) = (cτ , ωτ ) and vice versa. Hence, in order to show that (3.15) has a wavefront, it 
suffices to show that the kernel of the operator Id − K1 is nontrivial. The classical regularity 
theory implies that the operator Kτ is compact and continuous in τ ∈ [0, 1]. Let BM = {(c, v) :
‖(c, v)‖X ≤ M}. Then Lemma 3.1 and 3.2 show that the operator Id − Kτ does not vanish on 
the boundary ∂BM with M sufficiently large for any τ ∈ [0, 1]. It remains only to show that 
deg(Id − K1, BM, 0) �= 0 in BM . The homotopy invariance property of the degree implies that 
deg(Id − K1, BM, 0) = deg(Id − K0, BM, 0). Moreover, for τ = 0, the operator F0 = Id − K0
is given by

F0(c, v) = (v(0) − d0, v − ωc
0).

Here ωc
0(t) solves

(ωc
0)

′′ − c(ωc
0)

′ = 0,

ωc
0(−L) = 0, ωc

0(L) = A

and is given by

ωc
0(t) =

⎧⎪⎪⎨
⎪⎪⎩

A
ect − e−cL

ecL − e−cL
, c �= 0,

At

2L
+ A

2
, c = 0.

In particular, since ωc
0(0) is decreasing in c, ω0

0(0) = A

2
>

d

2
and lim

c→+∞ωc
0(0) = 0, there exists 

a unique c0 such that ωc0
0 (0) = d0. The mapping F0 = Id − K0 is homotopic to


(c, v) = (ωc
0(0) − d0, v − ω

c0
0 ).

The degree of the mapping 
 is the product of the degrees of each component. As ωc
0(0) is 

decreasing in c, deg(ωc
0(0) − d0, BM, 0) = −1. While deg(v − ω

c0
0 , BM, 0) = 1. Thus

deg(Id − K1,BM,0) = deg(Id − K0,BM,0) = −1,

and thereafter a solution (ω, c) ∈ BM of P1 exists. �
The following lemma is used as a preparation in passing to the limit L → ∞ and ε → 0. The 

proof is inspired by [1].

Lemma 3.3. For any solution (c, ω) of (1.8) with ω ∈ C2(R) and

|c| > 2σA2√m2, (3.17)

where mi =
∫

|z|iJ (z)dz, i = 1, 2, it holds that lim
t→+∞ω ∈ {0, a, A}.
R
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Proof. Rewrite the first equation of (1.8) as

ω′′ − cω′ + ω2(1 − ω) + ω2(ω − Jσ ∗ ω) − dω = 0,

then multiply it by ω′ and integrate from −R to R for arbitrary R, we get

c

R∫
−R

|ω′|2dt = [1

2
(ω′)2 + 1

3
ω3 − 1

4
ω4 − d

2
ω2]|R−R +

R∫
−R

ω′ω2(ω − Jσ ∗ ω)dt. (3.18)

Denote the last term by I , Cauchy’s inequality implies

I 2 ≤
R∫

−R

(ω′ω2)2dt

R∫
−R

(ω − Jσ ∗ ω)2dt ≤ A4

R∫
−R

(ω′)2dt

R∫
−R

(ω − Jσ ∗ ω)2dt. (3.19)

Noticing

ω(t) − Jσ ∗ ω(t) =
∫
R

Jσ (t − y)(ω(t) − ω(y))dy =
∫
R

1∫
0

Jσ (−z)ω′(t + θz))(−z)dθdz,

again by Cauchy’s inequality we obtain

(ω(t) − Jσ ∗ ω(t))2 ≤ m2σ
2
∫
R

1∫
0

Jσ (−z)ω′ 2(t + θz))dθdz.

Integrating the above inequality, we have

R∫
−R

(ω(t) − Jσ ∗ ω(t))2dt ≤ m2σ
2

1∫
0

∫
R

Jσ (−z)

R+θz∫
−R+θz

ω′ 2(t)dtdzdθ

≤ m2σ
2

R∫
−R

ω′(t)2dt + m2σ
2

1∫
0

∫
R

Jσ (−z)2θ |z|C2dzdθ (3.20)

≤ m2σ
2

R∫
−R

ω′(t)2dt + m2m1σ
3C2.

A combination of (3.18), (3.19) and (3.20) gives us

|c|
R∫

ω′(t)2dt ≤
[

1

2
(ω′)2 + 1

3
ω3 − 1

4
ω4 − d

2
ω2

] ∣∣R−R
−R
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+ A2

√√√√√
R∫

−R

ω′(t)2dt

⎛
⎝m2σ 2

R∫
−R

ω′(t)2dt + m1m2σ 3C2

⎞
⎠

≤ C + A2√m2σ

⎛
⎝2

R∫
−R

ω′(t)2dt + m1σC2

⎞
⎠ . (3.21)

If |c| > 2σA2√m2, then ω′ ∈ L2(R). Furthermore, ω ∈ C2(R) implies that lim
t→±∞ω′ = 0, thus 

lim
t→+∞ω exists. Then from Lemma 2.3, we have lim

t→+∞ω ∈ {0, a, A}. �
Proof of Theorem 1.2. From Proposition 3.1, for each L � 1 and 0 < ε � 1, the problem (3.15)
does have at least one solution (cL,ε, ωL,ε). Next we will show that, for ε → 0 and then L →
+∞, the sequence (cL,ε, ωL,ε) (or an extracted subsequence) converges to a solution of (1.8).

(i) Having constructed a solution (cL,ε, ωL,ε) of (3.15) with

−cmin ≤ cL,ε ≤ cmax, ‖ωL,ε‖C2(−L,L) ≤ K

and noticing that K , cmin and cmax are uniform in L ≥ L0 and ε ∈ (0, A/6). We can take 
the limit ε → 0 and L → +∞ in the approximating problem, and show that the limit (ω, c)
is the wavefront that connects 0 and A. Namely, with fixed L, for ε → 0, there exists a 
subsequence of cL,ε and ωL,ε , denoted by itself, such that cL,ε → cL and ωL,ε → ωL in 
C1

loc(R). Then

−cmin ≤ cL ≤ cmax, ‖ωL‖C2(−L,L) ≤ K.

Moreover, from the definition of gε, we have gε → 1 in R as ε → 0. Then (cL, ωL) is the 
solution of

{
ω′′ − cω′ + ω2(1 − Jσ ∗ ω̃) − dω = 0 in (−L,L),

ω(−L) = 0, ω(0) = d0, ω(L) = A.

Again, there exists a subsequence Ln → ∞, such that cLn → c∗(σ ) and ωLn → ω in 
C1

loc(R), and

−cmin ≤ c∗(σ ) ≤ cmax, ‖ω‖C2(R) ≤ M,

together with

0 ≤ ω ≤ A, in R, and 0 ≤ ω ≤ d0 in (−∞,0].

Furthermore, the limit (c∗(σ ), ω) is a solution of (1.8), with ω′(t) ≥ 0 for t ∈ (−∞, 0]. 
Hence, as t → −∞, ω(t) → α0 and 0 ≤ α0 ≤ d0. By Lemma 2.3, we have α0 = 0.
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(ii) In order to show that ω(+∞) = A, we have to start from the approximation ωL(t) in 
[−L, L] with ωL(L) = A and then take the limit L → +∞. In other words, we need to 
prove lim

L→+∞ωL(L) = A. The uniform bound of |ω′
L|∞ ≤ C provides that

|ωL − Jσ ∗ ωL|(t) ≤
∫
R

Jσ (s)|ωL(t) − ωL(t − s)|ds

≤‖ω′
L‖∞

∫
R

sJσ (s)ds

≤Cm1σ.

Thus

ω′′
L − cLω′

L + ω2
L(1 − ωL) − dωL = ω2

L(Jσ ∗ ωL − ωL) ≤ A2Cm1σ.

Denote f (s) = s2(1 − s) − ds, the equation can be rewritten as

ω′′
L − cLω′

L + f (ωL) − C0σ ≤ 0,

where C0 = A2Cm1. Let α < γ < β be the three solutions of f (s) − C0σ = 0. There exists 
σ0 > 0 such that for σ < σ0, it holds α < 0 < a < γ < β < A. Let ψL be the solution of

ψ ′′
L − cLψ ′

L + f (ψL) − C0σ = 0 in [−L,L], (3.22)

ψL(−L) = α,ψL(L) = β. (3.23)

By maximum principle, we have that α ≤ ψL ≤ β . By comparison principle as in [6], we get 
that ψL(t) ≤ ωL(t) for t ∈ [−L, L]. Then by the classical theory of elliptic equations, there 
exists a subsequence Ln, denoted by itself, such that as n → ∞, Ln → ∞, cLn → c∗(σ ) and 
ψLn → ψ in C1

loc(R), and the limit satisfies the following local problem

ψ ′′ − c∗(σ )ψ ′ + f (ψ) − C0σ = 0 in R. (3.24)

It can be easily verified that ψ ≤ ω in R, from which we obtain for t ∈ (−∞, 0], α ≤ ψ ≤
d0 < γ and then f (ψ) − C0σ ≤ 0, from which and (3.24) we obtain ψ ′(t) ≥ 0 for t ∈
(−∞, 0]. By the same arguments as that in Lemma 2.3, we obtain lim

t→−∞ψ(t) = α.

Now we claim that there exists a constant C such that |ψ ′(t)| ≤ C, for any t ∈ R. We refor-
mulate (3.24) into its integral version

ψ − α = 1

z2 − z1

⎛
⎝ t∫

−∞
ez1(t−s)r(ψ)(s)ds +

+∞∫
t

ez2(t−s)r(ψ)(s)ds

⎞
⎠ ,

where

r(ψ) = ψ2(1 − ψ) − dψ + d(ψ − α) − C0σ > 0, for σ < −dα
,

C0
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and

z1 = c∗(σ ) − √
(c∗(σ ))2 + 4d

2
< 0, z2 = c∗(σ ) + √

(c∗(σ ))2 + 4d

2
> 0.

The first order derivative of ψ is

ψ ′ = 1

z2 − z1

⎛
⎝z1

t∫
−∞

ez1(t−s)r(ψ)(s)ds + z2

+∞∫
t

ez2(t−s)r(ψ)(s)ds

⎞
⎠ .

Thus we have

ψ ′ − z1(ψ − α) =
+∞∫
t

ez2(t−s)r(ψ)(s)ds ≥ 0

and

ψ ′ − z2(ψ − α) = −
t∫

−∞
ez1(t−s)r(ψ)(s)ds ≤ 0,

which imply that

z1(ψ − α) ≤ ψ ′ ≤ z2(ψ − α).

Then the boundedness of ψ ′ follows from the boundedness of ψ . Moreover, noticing 
ψ(−∞) = α, we have ψ ′(−∞) = 0. For any R > 0, multipling (3.24) by ψ ′ and integrating 
from −R to R, we get

c∗(σ )

R∫
−R

|ψ ′|2dt = [1

2
(ψ ′)2 + 1

3
ψ3 − 1

4
ψ4 − d

2
ψ2 − C0σψ]∣∣R−R

≤ C. (3.25)

Next, we need to prove that c∗(σ ) is strictly positive in order to show that ψ ′ is bounded in 
L2. Noticing that

β3 = β2 − dβ − C0σ, α3 = α2 − dα − C0σ,

we have that

α → 0, β → A as σ → 0.

Together with the fact that

lim ψ ′
L(−L) = ψ ′(−∞) = 0,
L→∞
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and (
1

3
− 1

4
A2 − 1

2
d

)
A − 1

3
d > 0, for d <

2

9
,

it is easy to verify that there exists σ1 > 0 such that for σ < σ1 and big enough L,

cL

L∫
−L

|ψ ′
L|2dt

=
[1

2
(ψ ′

L)2 + 1

3
ψ3

L − 1

4
ψ4

L − d

2
ψ2

L − CσψL

]∣∣∣L−L

≥ 1

3
(β3 − α3) − 1

4
(β4 − α4) − d

2
(β2 − α2) − Cσ(β − α) − 1

2
(ψ ′

L(−L))2 (3.26)

= 1

3
(β2 − α2 − d(β − α)) − (

1

4
(β2 + α2) + d

2
)(β2 − α2) − Cσ(β − α) − 1

2
(ψ ′

L(−L))2

=
([

1

3
− 1

4
(β2 + α2) − 1

2
d

]
(β + α) − 1

3
d − Cσ

)
(β − α) − 1

2
(ψ ′

L(−L))2 > 0.

From (3.25) and (3.26), we obtain

0 < c∗(σ )

∫
R

|ψ ′|2dt ≤ C.

Thus

c∗(σ ) > 0, 0 <

∫
R

|ψ ′|2dt <
C

c∗(σ )
,

which implies that ψ ′ ∈ L2. By the same arguments as that in Lemma 2.3, we obtain 
lim

t→+∞ψ(t) exists and belong to {α, γ, β}. Now we claim that ψ(+∞) > α. If ψ(+∞) = α, 

noticing that c∗(σ ) > 0, then from the theory of traveling waves for local problem, there must 

holds ψ ≡ α, which contradict with the fact that 
∫
R

|ψ ′|2dt > 0. Thus ψ(+∞) > α, which 

means that either ψ(+∞) = β or ψ(+∞) = γ . Again from the theory of traveling waves 
for local problem, we obtain there exists c0 independent of σ such that c∗(σ ) > c0 > 0. Then 
Lemma 3.3 implies that for

σ < σ ∗ = {σ0, σ1,
c0√
m2A2

,
−dα

C0
},

lim
t→+∞ω exists and belongs to {0, a, A}. Noticing that β > γ > a, we have

ω(+∞) ≥ ψ(+∞) > a.

Therefore, ω(+∞) = A.
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(iii) In the end, as a byproduct, we can also take the limit σ → 0. Let ωσ be the solution of (1.8)
with ωσ (+∞) = A. Noticing that

‖ωσ ‖C2(R) ≤ K, −cmin ≤ c∗(σ ) ≤ cmax

with K , cmin and cmax independent of σ for σ < σ ∗, we get a subsequence of (c∗(σ ), ωσ ), 
denoted by itself, such that c∗(σ ) → c∗ and ωσ → ω0 locally uniformly in C1,α(R) as σ →
0, where (c∗, ω0) is the solution of (1.9), i.e.,

ω′′
0 − c∗ω′

0 + ω2
0(1 − ω0) − dω0 = 0 in R

ω0(−∞) = 0, ω0(0) = d0, ω0(+∞) = A. �
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