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Abstract

We consider the following parabolic system whose nonlinearity has no gradient structure:

{
∂tu = �u + epv, ∂t v = μ�v + equ,

u(·,0) = u0, v(·,0) = v0,
p, q,μ > 0,

in the whole space RN . We show the existence of a stable blowup solution and obtain a complete description 
of its singularity formation. The construction relies on the reduction of the problem to a finite dimensional 
one and a topological argument based on the index theory to conclude. In particular, our analysis uses neither 
the maximum principle nor the classical methods based on energy-type estimates which are not supported 
in this system. The stability is a consequence of the existence proof through a geometrical interpretation of 
the quantities of blowup parameters whose dimension is equal to the dimension of the finite dimensional 
problem.
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1. Introduction

In this paper we study the reaction–diffusion system

{
∂tu = �u + F(v), ∂tv = μ�v + G(u),

u(·,0) = u0, v(·,0) = v0,
μ > 0, (1.1)

in the whole space RN , where the nonlinearity is of exponential type

F(v) = epv, G(u) = equ, p, q > 0. (1.2)

Our aim is to construct a blowup solution for this system and to precisely describe its blowup 
profile. We also intend to show the stability of our solution with respect to initial data.

For the expert reader, we would like to immediately present our motivations in considering 
such a system. For other readers, we will take the time to present the history of the models, 
hoping that our motivations will gradually become more accessible to him.

1.1. Our motivations for the expert reader

In fact, our motivation in this work is double:
• Physical motivation: this is an ignition model for thermal explosions of two mixed solid fuels 
of finite extent, as one may see from Bebernes, Bressan and Eberly [2] as well as Bebernes and 
Kassoy [3], cited by Zheng, Zhao and Chen [38]. In this model, u and v stand for the temperatures 
of the two fuels.
• Mathematical motivation: We acknowledge that our argument uses the method introduced by 
Bressan [4], Bricmont and Kupiainen [6] and Merle and Zaag [25] for the scalar semilinear heat 
equation with exponential or power nonlinearity. That method is based on 3 steps:

– the linearization of the equation around the intended profile;
– the reduction of the problem to a finite-dimensional one, corresponding to the positive eigen-

values, thanks to the control of the negative directions of the spectrum with the properties of 
the linear operator;

– the solution of the finite-dimensional problem thanks to Brouwer’s lemma and the degree 
theory.

Nevertheless, the case of our system (1.1) is much tougher than the mentioned scalar cases, 
at least for two reasons, which means that our analysis in this paper is far from being a simple 
adaptation of the arguments introduced in the scalar case, making our interest in (1.1) completely 
meaningful. These are the two reasons:

– first, we have here a system and not just a scalar equation, with different diffusivities between 
the components (μ may or may not be equal to 1), which makes the above-mentioned linear 
operator neither self-adjoint nor diagonal. Some additional spectral arguments are therefore 
needed;

– second, the intended profile for the solution is unbounded in the space variable, as one may 
see from the statement of Theorem 1.1 below, where we see that
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(u, v) ∼ (− log(T − t) + log�∗,− log(T − t) + log�∗),

with �∗ and �∗ introduced in (1.15). This makes it difficult to control the solution in the 
intermediate zone, between the blow-up and the regular zones. Thanks to the introduction 
of U = equ and V = epv , we make the profile bounded, at the expense of adding two terms 
unknown in the scalar case, namely |∇U |2/U and |∇V |2/V (see (1.19) below). These terms 
are delicate, since both upper bound and lower bound are needed; especially when U and V
become smaller in the intermediate and regular zones. In order to treat them, we introduce 
estimates of the solution in a 3-fold shrinking set (see Definition 3.1 below), where the 
control in the blow-up zone is inspired by the scalar case, hence not new, whereas the control 
in the intermediate region is one of the novelties of our paper.

More details are given below in the introduction and in the following sections.

1.2. Previous literature and statement of the results

The local Cauchy problem for (1.1) can be solved in several functional spaces F , for example 
F = L∞(RN) × L∞(RN) or in a special affine space F =Ha for some positive constant a with

Ha = {(u, v) ∈ (φ̄, ψ̄) + L∞(RN) × L∞(RN) with qφ̄ = pψ̄ = − ln(1 + a|x|2)}. (1.3)

We denote by T = T (u0, v0) ∈ (0, +∞] the maximal existence time of the classical solution 
(u, v) of problem (1.1). If T < +∞, then the solution blows up in finite time T in the sense that

lim
t→T

(‖u(t)‖L∞(RN) + ‖v(t)‖L∞(RN)) = +∞.

In that case, T is called the blowup time of the solution. A point a ∈ R
N is said to be a 

blowup point of (u, v) if (u, v) is not locally bounded near (a, T ) in the sense that |u(xn, tn)| +
|v(xn, tn)| → +∞ for some sequence (xn, tn) → (a, T ) as n → +∞. We say that the blowup is 
simultaneous if

lim sup
t→T

‖u(t)‖L∞(RN) = lim sup
t→T

‖v(t)‖L∞(RN) = +∞, (1.4)

and that it is non-simultaneous if (1.4) does not hold, i.e. if one of the two components remains 
bounded on RN ×[0, T ). For the system (1.1), it is easy to see that the blowup is always simulta-
neous. Indeed, if u is uniformly bounded on RN ×[0, T ), then the second equation would yield a 
uniform bound on v. More specifically, we say that u and v blow up simultaneously at the same 
point a ∈R

N if a is a blowup point both for u and v.

When system (1.1) is coupled with power nonlinearities of the type

F(v) = |v|p−1v, G(u) = |u|q−1u, (1.5)

and the diffusion coefficient μ = 1, Escobedo and Herrero [11] (see also [12], [13]) showed that 
any nontrivial positive solution which is defined for all x ∈ R

N must simultaneously blow up in 
finite time, provided that
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pq > 1, and
max{p,q} + 1

pq − 1
≥ N

2
.

The authors in [1] proved that if

pq > 1, and q(pN − 2)+ < N + 2 or p(qN − 2)+ < N + 2, (1.6)

then every positive solution (u, v) of system (1.1) exhibits the Type I blowup, i.e. there exists 
some constant C > 0 such that

‖u(t)‖L∞(RN) ≤ Cū(t), ‖v(t)‖L∞(RN) ≤ Cv̄(t), (1.7)

where (ū, v̄) is the blowup positive solution of the associated ordinary differential system

ū(t) = �(T − t)
− p+1

pq−1 , v̄(t) = γ (T − t)
− q+1

pq−1

and

γ p = �

(
p + 1

pq − 1

)
, �q = γ

(
q + 1

pq − 1

)
. (1.8)

The estimate (1.7) has been proved by Caristi and Mitidieri [7] in a ball under assumptions on p
and q different from (1.6). See also Fila and Souplet [15], Deng [9] for other results relative to 
estimate (1.7).

Through the introduction of the following similarity variables for all a ∈ R
N (a may or may 

not be a blowup point):

�T,a(y, s) = (T − t)
p+1
pq−1 u(x, t), �T,a(y, s) = (T − t)

q+1
pq−1 v(x, t),

where y = x − a√
T − t

, s = − ln(T − t).
(1.9)

Andreucci, Herrero and Velázquez [1] (recall that we are considering the case when μ = 1) 
showed that if the solution (u, v) exhibits Type I blowup, then one of the following cases occurs 
(up to replacing (u, v) by (−u, −v) if necessary):
• either (�T,a, �T,a) goes to (�, γ ) exponentially fast,
• or there exists k ∈ {1, · · · , N} such that after an orthogonal change of space coordinates,

�T,a(y, s) = � − c1

s
(p + 1)�

k∑
i=1

(y2
i − 2) + o

(
1

s

)
,

�T,a(y, s) = γ − c1

s
(q + 1)γ

k∑
i=1

(y2
i − 2) + o

(
1

s

)
,

(1.10)

where (�, γ ) is defined by (1.8), c1 = c1(p, q) > 0, and the convergence holds in C

loc(R

N) for 
any 
 ≥ 0.

It is worth mentioning the work of [37] where the author obtained a Liouville theorem for 
system (1.1) with the nonlinearity (1.5) and μ = 1 that improves the result in [1]. Based on this 
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theorem, he was able to derive sharp estimates of asymptotic behaviors as well as a localization 
property for blowup solutions.

When system (1.1) is considered with the nonlinearity (1.5) and the diffusion coefficient μ > 0
(not necessarily equal to 1), Mahmoudi, Souplet and Tayachi [22] (see also Souplet [32]) prove 
the single point blowup for any radially decreasing, positive and classical solution in a ball. This 
result improves a result by Friedman and Giga [16] where the method requires a very restrictive 
conditions p = q and μ = 1 in order to apply the maximum principle to suitable linear combi-
nation of the components u and v. The authors of [22] also derive the lower pointwise estimates 
on the final blowup profiles:

for all 0 < |x| ≤ ε1, |x| 2(p+1)
pq−1 u(T , x) ≥ ε0 and |x| 2(q+1)

pq−1 v(T , x) ≥ ε0, (1.11)

for some ε0, ε1 > 0. Recently, we establish in [18] the existence of finite time blowup solutions 
verifying the asymptotic behavior (1.10). In particular, we exhibit stable finite time blowup solu-
tions according to the dynamics:

u(x, t) ∼ �
[
(T − t)

(
1 + b|x|2

(T −t)| ln(T −t)|
)]− p+1

pq−1
,

v(x, t) ∼ γ
[
(T − t)

(
1 + b|x|2

(T −t)| ln(T −t)|
)]− q+1

pq−1
,

as t → T ,

where �, γ and b are positive constants depending on p, q, μ. Moreover, we derive the following 
sharp description of the final blowup profiles:

u(T , x) ∼ �

(
b|x|2

2| ln |x||
)− p+1

pq−1

and v(T , x) ∼ γ

(
b|x|2

2| ln |x||
)− q+1

pq−1

as |x| → 0. (1.12)

The method we used in [18] is an extension of the technique developed by Merle and Zaag [25]
treated for the standard semilinear heat equation

∂tu = �u + |u|p−1u. (1.13)

The analysis in [25] is mainly based on the spectral property of the linearized operator of the 
form

L = � − 1

2
y · ∇ + Id,

whose spectrum has two positive eigenvalues, a null and then infinity many negative eigenvalues. 
In particular, the method relies on a two step procedure:
– The reduction of the problem to a finite dimensional one. This means that controlling the solu-
tion in the similarity variables (1.9) around the profile reduces to the control of the components 
corresponding to the two positive eigenvalues.
– Solving the finite dimensional problem thanks to a topological argument based on index theory.

As for system (1.1) with the nonlinearity (1.2), much less result is known, in particular in the 
study of the asymptotic behavior of the solution near singularities. To our knowledge, there are 
no results concerning the blowup behavior even when μ = 1. The only known result is due to 
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Souplet and Tayachi [33] who follow the strategy of [22] to establish the single point blowup for 
large classes of radially decreasing solutions. A similar single point blowup result was obtained 
in [16] under the restrictive condition μ = 1. In this paper we exhibit finite time blowup solu-
tions for system (1.1) coupled with (1.2) and obtain the first complete description of its blowup 
behavior. More precisely, we prove the following result.

Theorem 1.1 (Existence of blowup solutions for system (1.1) with the complete description of its 
profile). Consider a ∈R

N . There exists T > 0 such that system (1.1) has a solution (u, v) defined 
on RN × [0, T ) such that:
(i) equ and epv blow up in finite time T simultaneously at only one blowup point a;
(ii)

∥∥∥(T − t)equ(x,t) − �∗(z)
∥∥∥

L∞(RN)
+
∥∥∥(T − t)epv(x,t) − �∗(z)

∥∥∥
L∞(RN)

≤ C√| ln(T − t)| ,
(1.14)

where z = x − a√
(T − t)| ln(T − t)| and the profiles are given by

p�∗(z) = q�∗(z) =
(

1 + b|z|2
)−1

with b = 1

2(μ + 1)
; (1.15)

(iii) for all x �= a, (u(x, t), v(x, t)) → (u∗(x), v∗(x)) ∈ C2(RN\{0}) × C2(RN\{0}) with

u∗(x) ∼ 1

q
ln

(
2b

p

| ln |x − a||
|x − a|2

)
and v∗(x) ∼ 1

p
ln

(
2b

q

| ln |x − a||
|x − a|2

)
as |x − a| → 0.

Remark 1.2. The blowup profile (1.15) is formally derived through a matching asymptotic ex-
pansion in Section 2.2 below. We would like to emphasis that the derivation of the blowup profile 
(1.15) is not obvious due to numerous parameters of the problem, in particular in precising the 
value b = 1

2(μ+1)
which is crucial in various algebraic identities in our analysis.

Remark 1.3. When p = q = μ = 1 and v = u, system (1.1) reduces to the single equation

∂tu = �u + eu. (1.16)

Theorem 1.1 obviously yields the existence of finite time blowup solution to equation (1.16)
according the dynamic

u(x, t) ∼ − ln(T − t) − ln

(
1 + |x|2

4(T − t)| ln(T − t)|
)

as t → T , (1.17)

which covers the results obtained by Bressan [4,5] and the authors [20]. It is worth remarking 
that the asymptotic behavior (1.17) is different from the one obtained by Pulkkinen [31] (see 
also Fila–Pulkkinen [14]) where the authors concern non constant self-similar ones for a class of 
radially symmetric L1-solutions.
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The proof of Theorem 1.1 follows the strategy developed in [25] and [6] for the standard 
semilinear heat equation (1.13). This method has been successfully implemented in [18] for 
constructing blowup solutions for system (1.1) coupled with the nonlinearity (1.5). One may 
think that the implementation in [18] should work the same for system (1.1) coupled with (1.2), 
perhaps with some technical complications. This is not the case, because the method we present 
here is not based on a simple perturbation of system (1.1)–(1.5) treated in [18] as explained 
shortly.

It is worth mentioning that the method of [25] has been also proved to be successful for con-
structing a solution to some partial differential equation with a prescribed behavior. It was the 
case of the complex Ginzburg–Landau equation with no gradient structure by Masmoudi and 
Zaag [23] (see also the earlier work by Zaag [36]) and Nouaili and Zaag [30]; by Nguyen and 
Zaag [27], [28] for a logarithmically perturbed nonlinear heat equation and for a refined blowup 
profile for equation (1.13), or by Nouaili and Zaag [29] for a non-variational complex-valued 
semilinear heat equation. It was also the case of a non-scaling invariant semilinear heat equation 
with a general nonlinearity treated in [10], and the energy supercritical harmonic heat flow and 
wave maps by Ghoul, Ibrahim and Nguyen [17,19]. Surprisingly enough, this kind of method 
is also applicable for the construction of multi-solitons for the semilinear wave equation in one 
space dimension by Côte and Zaag [8], where the authors first show that controlling the simi-
larity variables version around some expected behavior reduces to the control of a finite number 
of unstable directions, then use the same topological argument to solve the finite dimensional 
problem.

As in [25] and [18] (see also [35], [23]), it is possible to make the interpretation of the finite-
dimensional variable in terms of the blowup time and the blowup point. This allows us to derive 
the stability of the profile (�∗, �∗) in Theorem 1.1 with respect to perturbations of the initial 
data. More precisely, we have the following:

Theorem 1.4 (Stability of the blowup profile (1.14)). Let us denote by (û, v̂)(x, t) the solution 
constructed in Theorem 1.1 and by T̂ its blowup time. Then, there exists a neighborhood V0 of 
(û, v̂)(x, 0) in Ha defined in (1.3) such that for any (u0, v0) ∈ V0, system (1.1) has a unique 
solution (u, v)(x, t) with initial data (u0, v0), and (u, v)(x, t) blows up in finite time T (u0, v0)

at point a(u0, v0). Moreover, estimates given in Theorem 1.1 are satisfied by (u, v)(x − a, t) and

T (u0, v0) → T̂ , a(u0, v0) → 0 as (u0, v0) → (û0, v̂0) in Ha.

Remark 1.5. The basic idea behind the stability proof is roughly understood as follows: The 
linearized operator H + M (see (1.24) for its definition) has two positive eigenvalues λ0 = 1, 
λ1 = 1

2 , a zero eigenvalue λ2 = 0, then an infinitely discrete negative spectrum (see Lemma 2.2
below). As usual in the analysis of stability of blowup problems, the component corresponding 
to λ0 = 1 has the exponential growth es , which can be eliminated by means of change of the 
blowup time; and the component corresponding to λ1 = 1

2 has the growth es/2 can be eliminated 
by means of a shifting of the blowup point. As for the neutral, non exponential growth corre-
sponding to λ2 = 0, it can be also eliminated as well after a suitable use of the scaling dilation 
invariance associated to the problem. Hence, the contribution associated to these three modes of 
the linearized problem can be assumed to be zero. Since the remaining modes of the linearized 
problem corresponding to negative spectrum decay exponentially, one derives the stable asymp-
totic behavior of the corresponding blowup mechanism.
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We will not give the proof of Theorem 1.4 because the stability result follows from the re-
duction to a finite dimensional case as in [25] (see Theorem 2 and its proof in Section 4) with 
the same argument. Here, we only prove the existence result (Theorem 1.1) and kindly refer the 
reader to [25] and [18] for a similar proof of the stability.

1.3. Strategy of the proof of Theorem 1.1

Let us explain in the following the main steps of the proof of Theorem 1.1. For clearness, we 
divide our explanation in 3 paragraphs below:
– The linearized problem;
– The properties of the linearized operator;
– The decomposition of the solution and the control of the nonlinear gradient terms.

(i) The linearized problem. Let us start with the change of variables

⎧⎨
⎩

�(y, s) = (T − t)equ(x,t), �(y, s) = (T − t)epv(x,t),

where y = x√
T − t

, s = − ln(T − t),
(1.18)

which transforms system (1.1) to

⎧⎪⎨
⎪⎩

∂s� = �� − 1

2
y · ∇� − � + q�� − |∇�|2

�
,

∂s� = μ�� − 1

2
y · ∇� − � + p�� − μ

|∇�|2
�

,

(1.19)

(in comparison with the work of [18] treated for the case where system (1.1) is considered with 
the nonlinearity (1.5), we have extra nonlinear gradient terms in (1.19), which come from the 
nonlinear transformation (1.18); the nonlinear gradient terms are the main sources causing se-
rious difficulties in the analysis). The problem then reduces to construct for (1.19) a solution 
(�, �) defined for all (y, s) ∈R

N × [s0, +∞) such that

∥∥∥∥�(y, s) − �∗
(

y√
s

)∥∥∥∥
L∞(RN)

+
∥∥∥∥�(y, s) − �∗

(
y√
s

)∥∥∥∥
L∞(RN)

−→ 0, (1.20)

as s → +∞. One may think that it is natural to linearize system (1.19) around (�∗, �∗), however, 
the error generated by this approximate profile is too large to allow us to close estimates in our 
analysis. Following the formal approach given in Section 2.2 below, the good approximate profile 
is given by

φ(y, s) = �∗
(

y√
s

)
+ μ

p(1 + μ)s
and ψ(y, s) = �∗

(
y√
s

)
+ 1

q(1 + μ)s
, (1.21)

where the term of order 1
s

appears as a corrective term to minimize the generated error. We then 
introduce


 = � − φ and ϒ = � − ψ, (1.22)
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leading to the system

∂s

(



ϒ

)
=
(
H +M+ V (y, s)

)(


ϒ

)
+
(

q

p

)

ϒ +

(
R1

R2

)
+
(

G1

G2

)
, (1.23)

where

H =
(

L1 0
0 Lμ

)
, M =

(
0 q

p
p
q

0

)
, Lη = η� − 1

2
y · ∇, (1.24)

V (y, s) =
(

qψ − 1 q
(
φ − 1/p

)
p
(
ψ − 1/q

)
pφ − 1

)
,

the term 
(
R1
R2

)
is the generated error which is uniformly bounded by C

s
(see definition (3.7) and 

Lemma 4.8 below), the nonlinear gradient term 
(
G1
G2

)
is built to be quadratic (see definition (3.6)

and Lemma 4.10 below).

(ii) The properties of the linearized operator. As we will see in Section 3.1 below, the key step 
towards Theorem 1.1 is the construction of a solution (
, ϒ) for system (1.23) defined for all 
(y, s) ∈ R

N × [s0, +∞) such that

‖
(s)‖L∞(RN) + ‖ϒ(s)‖L∞(RN) → 0 as s → +∞.

In view of system (1.23), we see that the nonlinear terms and the generated error are small and 
can be negligible in comparison with the linear term. Therefore, the linear part will play an 
important role in the dynamic of the solution. As we show in Lemma 2.2 below, the linearized 
operator H +M can be diagonalizable and its spectrum is explicitly given by

spec
(
H +M

)
=
{
±1 − n

2
, n ∈N

}
.

Depending on the asymptotic behavior of the potential term V , the full linear part has two fun-
damental properties:
– For |y| ≤ K0

√
s for some K0 large, the potential term is considered as a perturbation of the 

effect of H +M.
– For |y| ≥ K0

√
s, the linear operator behaves as an operator with fully negative spectrum, which 

gives the decay of the solution in this region.

(iii) The decomposition of the solution and the control of the nonlinear gradient terms. While 
the control of the flow in the region |y| ≥ K0

√
s is easy, it is not the case in the inner region, 

i.e. when |y| ≤ K0
√

s. Moreover, the nonlinear gradient terms appearing in (1.23) cause serious 
difficulties in the analysis, and crucial modifications are needed in comparison with the proof in 
[25] and [18]. The essential idea in our approach is that we introduce estimates in three regions 
in different variable scales, inspired by the works of [26] and [20], as follows:

– In the blowup region D1 = {|x| ≤ K0
√

(T − t)| ln(T − t)|}, we carry on our analysis in the 
similarity variables setting. In particular, the solution (
, ϒ) is decomposed according to the 
eigenfunctions of H +M,



JID:YJDEQ AID:9227 /FLA [m1+; v1.279; Prn:26/02/2018; 9:21] P.10 (1-57)

10 T.-E. Ghoul et al. / J. Differential Equations ••• (••••) •••–•••
(



ϒ

)
=

2∑
n=0

θn

(
fn

gn

)
+
(


−
ϒ−

)
,

where 
(
fn

gn

)
is the eigenfunction of H +M corresponding to the eigenvalue λn = 1 − n

2 ; and 
(

−
ϒ−
)

is the projection of 
(


ϒ

)
on the subspace of H + M where the spectrum of H + M is strictly 

negative. Since the spectrum of the linear part of system satisfied by (
−, ϒ−) (see (4.24) below) 
is negative, it is controllable to zero.

The control of θ2 is delicate. In fact, we need to refine the asymptotic behavior of the potential 
term V (y, s) and the nonlinear gradient term 

(
G1
G2

)
in (1.23) to find that

θ ′
2 = −2

s
θ2 +O

(
1

s3

)
,

which shows a negative spectrum (in the slow variable τ = ln s), hence, it is controllable to zero 
as well. Here, we want to remark that the factor − 2

s
and the error 1

s3 are derived thanks to the 
linearization of system (1.19) around the approximate profile (φ, ψ) defined in (1.21) with the 
precise value of the constant b introduced in Theorem 1.1.

As for the control of the positive modes θ0 and θ1 (reduction to a finite dimensional problem), 
we use a basic topological argument to show the existence of initial data (u0, v0) depending on 
(N + 1) parameters (see definition (3.23) below) such that the corresponding modes θ0 and θ1
are controlled to zero.

– In the intermediate region D2 = {x| K0/4
√

(T − t)| ln(T − t)| ≤ |x| ≤ ε0}, we use classical 
parabolic regularity estimates on (ũ, ṽ), a rescaled version of (u, v) (see Definition 3.17 below). 
Roughly speaking, we show that in this region the solution behaves like the solution of the asso-
ciated ordinary differential system to (1.1). The analysis in this region also gives the final blowup 
profile as described in part (iii) of Theorem 1.1.

– In the regular region D3 = {|x| ≥ ε0/4}, we directly control the solution thanks to the local 
in time well-posedness of the Cauchy problem for system (1.1).

We would like to remark that in [25] and [18], the authors introduce the estimates in the region 
|y| ≤ K0

√
s and the regular region |y| ≥ K0

√
s. However, the estimates in the region |y| ≥

K0
√

s imply the smallness of (
, ϒ) only, and do not allow any control of the nonlinear gradient 
terms in this region. In other words, the analysis based on the method of [25] and [18], that 
is to estimate the solution in the z = y√

s
variable is not sufficient and must be improved. By 

introducing additional estimates in the regions D2 and D3, we are able to achieve the full control 
of the nonlinear gradient term, then, complete the proof of Theorem 1.1.

The rest of the paper is organized as follows:
– In section 2, we first derive the basic properties of the linearized operator H + M, then, 
we give a formal explanation on the derivation of the blowup profile (�∗, �∗) by means of the 
spectral analysis. This formal approach also gives an approximate profile to be linearized around.
– In Section 3, we give the main arguments of the proof of Theorem 1.1 and postpone most of 
technicalities to next sections. Interested readers can find in Subsection 3.2 a particular defini-
tion of a shrinking set to trap the solution of (1.1) according to the blowup regime described in 
Theorem 1.1. They also find a basic topological argument for the finite dimensional problem at 
page 27.
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– In Section 4, we give the proof of Proposition 3.6, which gives the reduction of the problem to 
a finite dimensional one. This is the central part in the proof of Theorem 1.1.

2. A formal approach through a spectral analysis of the linearized operator

In this section we follow the idea of Bricmont and Kupiaien [6] treated for the semilinear 
heat equation in order to formally derive the blowup profile described in (1.14). The argument 
is mainly based on a spectral analysis of the linearized operator and a matching asymptotic 
expansion.

2.1. Spectral properties of the linearized operator

In this part we recall some well-known properties of the linear operator Lη from which we 
derive spectral properties of the linear operator H +M introduced in (1.24).
• Spectral properties of Lη: Let η > 0, we consider the weighted space L2

ρη
(RN, R) the set of 

all f ∈ L2
loc(R

N, R) satisfying

‖f ‖2
ρη

= 〈
f,f

〉
ρη

< +∞,

where the inner product is defined by

〈
f,g

〉
ρη

=
∫
RN

f (y)g(y)ρη(y)dy with ρη(y) = 1

(4πη)N/2 e
− |y|2

4η2 . (2.1)

Note that the linear operator Lη can be written in the divergence form

Lηv = η

ρη

div
(
ρη∇v

)
,

which shows that Lη is self-adjoint with respect to the weight ρη, i.e.

∀v,w ∈ L2
ρη

,

∫
RN

vLηwρηdy =
∫
RN

wLηvρηdy. (2.2)

For each α = (α1, · · · , αN) ∈ N
N , we set

h̃α(y) = cα

N∏
i=1

Hαi

(
yi

2
√

η

)
,

where Hn is the one dimensional Hermite polynomial defined by

Hn(x) = (−1)nex2 dn

(e−x2
), (2.3)
dxn
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and cα ∈ R is the normalization constant chosen so that the term of highest degree in h̃α is ∏N
i=1 y

αi

i . In the one dimensional case, we have

h̃n(y) =
[

n
2

]∑
j=0

cn,j η
j yn−2j with cn,j = (−1)j

n!
(n − 2j)!j ! . (2.4)

The first four terms are explicitly given by

h̃0 = 1, h̃1 = y, h̃2 = y2 − 2η,

h̃3 = y3 − 6ηy, h̃4 = y4 − 12ηy2 + 12η2.

The family of eigenfunctions of Lη generates an orthogonal basis in L2
ρη

(RN, R), i.e. for any 

different α and β in NN ,

Lηh̃α = −|α|
2

h̃α, |α| = α1 + · · · + αN,∫
RN

h̃α(y)h̃β(y)ρη(y)dy = 0, (2.5)

and that for any f in L2
ρη

(RN, R), one can decompose

f =
∑

α∈NN

〈
f, h̃α

〉
ρη

h̃α =
∑

α∈NN

fαh̃α.

Remark 2.1. For any polynomial Pn(y) of degree n, we have by (2.5),

∫
RN

Pn(y)h̃α(y)ρη(y)dy = 0 if |α| ≥ n + 1.

• Spectral properties of H : Let us consider the functional space L2
ρ1

(RN, R) × L2
ρμ

(RN, R), 

which is the set of all 
(
f
g

) ∈ L2
loc(R

N, R) × L2
loc(R

N, R) such that

〈(
f

g

)
,

(
f

g

)〉
< +∞,

where

〈(
f1

g1

)
,

(
f2

g2

)〉
:= 〈

f1, f2
〉
ρ1

+ 〈
g1, g2

〉
ρμ

.

If we introduce for each α ∈N
N ,
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hα(y) = aα

N∏
i=1

Hαi

(
yi√

2

)
and ĥα(y) = âα

N∏
i=1

Hαi

(
yi

2
√

μ

)
, (2.6)

where Hn is defined by (2.3), and aα and âα are constants chosen so that the terms of highest 
degree in hα and ĥα is 

∏N
i=1 yαi , then

H

(
hα

0

)
= −|α|

2

(
hα

0

)
and H

(
0

ĥα

)
= −|α|

2

(
0

ĥα

)
. (2.7)

Moreover, for each 
(
f
g

)
in L2

ρ1
(RN, R) × L2

ρμ
(RN, R), we have the decomposition

(
f

g

)
=

∑
α∈NN

〈
f,hα

〉
ρ1

(
hα

0

)
+ 〈

g, ĥα

〉
ρμ

(
0

ĥα

)
.

• Spectral properties of H + M: In this part we derive a basis where H + M is diagonal. 
More precisely, we have the following lemma whose proof follows from an explicit computation.

Lemma 2.2 (Diagonalization of H + M in the one dimensional case). For all n ∈N, there exist 
polynomials fn, gn, f̃n and g̃n of degree n such that

(
H +M

)(fn

gn

)
=
(

1 − n

2

)(fn

gn

)
, (2.8)

and

(
H +M

)(f̃n

g̃n

)
= −

(
1 + n

2

)(f̃n

g̃n

)
, (2.9)

where

(
fn

gn

)
=

[
n
2

]∑
j=0

dn,n−2j

(
hn−2j

0

)
+ en,n−2j

(
0

ĥn−2j

)
, (2.10)

(
f̃n

g̃n

)
=

[
n
2

]∑
j=0

d̃n,n−2j

(
hn−2j

0

)
+ ẽn,n−2j

(
0

ĥn−2j

)
, (2.11)

and the coefficients dn,n−2j , en,n−2j , d̃n,n−2j , ẽn,n−2j depend on the parameters p, q and μ. In 
particular, we have

(
dn,n

en,n

)
=
(

q

p

)
,

(
dn,n−2

en,n−2

)
= n(n − 1)(μ − 1)

(−q

p

)
(2.12)
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and

(
d̃n,n

ẽn,n

)
=
(

q

−p

)
,

(
d̃n,n−2

ẽn,n−2

)
= 1

3
n(n − 1)(1 − μ)

(
q

p

)
. (2.13)

Remark 2.3. Lemma 2.2 also holds in higher dimensions with some complication in the compu-
tation. Here, we remark that the spectrum of H +M has only two positive eigenvalues λ0 = 1
and λ1 = 1

2 corresponding to the eigenvectors 
(
f0
g0

)
and 

(
f1
g1

)
; a zero eigenvalue λ2 = 0 corre-

sponding to the eigenvector 
(
f2
g2

)
. In the two dimensional case, we have

(
f0

g0

)
=
(

q

p

)
,

(
f1

g1

)
=
(

qyi

pyi

)
1≤i≤N

,

and

(
f2

g2

)
=
(

f2,ij

g2,ij

)
1≤i,j≤N

,

where

(
f2,ij

g2,ij

)
=
(

f2,j i

g2,j i

)
=
(

qyiyj

pyiyj

)
for 1 ≤ i �= j ≤ N,

and

(
f2,ii

g2,ii

)
=
(

q(y2
i − 2μ)

p(y2
i − 2)

)
for 1 ≤ i ≤ N. (2.14)

The following lemma gives the definition of the projection on the modes 
(
fn

gn

)
and 

(f̃n

g̃n

)
.

Lemma 2.4 (Definition of the projection on the directions 
(
fn

gn

)
and 

(f̃n

g̃n

)
). Let M � 1 be an even 

integer and let 
(


ϒ

)
be of the form

(



ϒ

)
=
∑
n≤M

ωn

(
hn

0

)
+ ω̂n

(
0

ĥn

)
. (2.15)

Then we can expand 
(


ϒ

)
with respect to the basis 

{(
fn

gn

)
,
(f̃n

g̃n

)}
n≤M

as follows:

(



ϒ

)
=
∑
n≤M

θn

(
fn

gn

)
+ θ̃n

(
f̃n

g̃n

)
, (2.16)

where
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θn =

[
M−n

2

]
∑
j=0

An+2j,n ωn+2j + Bn+2j,n ω̂n+2j := Pn,M

(



ϒ

)
, (2.17)

and

θ̃n =

[
M−n

2

]
∑
j=0

Ãn+2j,n ωn+2j + B̃n+2j,n ω̂n+2j := P̃n,M

(



ϒ

)
, (2.18)

with the coefficients An+2j,n, Bn+2j,n, Ãn+2j,n and B̃n+2j,n for j = 0, 1, 2, · · · depending on 
p, q and μ. In particular, we have

An,n = 1

2q
, Bn,n = 1

2p
, (2.19)

and

An+2,n = 1

6q
(n + 2)(n + 1)(μ − 1), Bn+2,n = 1

6p
(n + 2)(n + 1)(1 − μ). (2.20)

Proof. Since the proof is exactly the same lines as the one written in [18] and since it is 
purely computational, we kindly refer interested readers to Lemma 3.4 of [18] for an analogous 
proof. �
Remark 2.5. From Lemma 2.4, we obviously see that when a function is of the form ∑M

n=0 θn

(
fn

gn

)+ θ̃n

(f̃n

g̃n

)
, its projections on 

(
fn

gn

)
and 

(f̃n

g̃n

)
are respectively θn and θ̃n.

2.2. A formal approach

In this part we make use the spectral properties of the linear operator H + M given in the 
previous subsection to formally derive the profile described in Theorem 1.1. For simplicity, we 
assume that (u, v) is a positive, radially symmetric solution of system (1.1) in the one dimen-
sional case. By the translation invariance in space, we assume that (u, v) blows up in finite time 
T > 0 at the origin. Let us start with the nonlinear transformation

ū = equ and v̄ = epv, (2.21)

which leads to the new system

∂t ū = �ū − |∇ū|2
ū

+ qūv̄, ∂t v̄ = μ�v̄ − μ
|∇v̄|2

v̄
+ pūv̄. (2.22)

We then introduce the similarity variables

{
�(y, s) = (T − t)ū(x, t), �(y, s) = (T − t)v̄(x, t),

where y = x√ , s = − log(T − t),
(2.23)
T − t
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which shows that (�, �) solves

⎧⎪⎨
⎪⎩

∂s� = �� − 1

2
y · ∇� − � − |∇�|2

�
+ q��,

∂s� = μ�� − 1

2
y · ∇� − � − μ

|∇�|2
�

+ p��.

(2.24)

In the similarity variables (2.23), justifying (1.14) is equivalent to show that

�(y, s) ∼ �∗
(

y√
s

)
and �(y, s) ∼ �∗

(
y√
s

)
as s → +∞. (2.25)

Note that the nonzero constant solution to system (2.24) is 
(

1
p
, 1

q

)
. This suggests the linearization

�̄ = � − 1

p
and �̄ = � − 1

q
, (2.26)

and (�̄, �̄) solves the system

∂s

(
�̄

�̄

)
= (H +M)

(
�̄

�̄

)
+
(

q

p

)
�̄�̄ −

( |∇�̄|2
(
�̄ + 1

p

)−1

μ|∇�̄|2
(
�̄ + 1

q

)−1

)
, (2.27)

where H and M are defined by (1.24).

From Lemma 2.2, we know that 
(
fn

gn

)
n≥3

and 
(f̃n

g̃n

)
n∈N correspond to negative eigenvalues of 

H +M, therefore, we may consider that

(
�̄

�̄

)
= θ0(s)

(
f0

g0

)
+ θ2(s)

(
f2

g2

)
, (2.28)

where |θ0(s)| + |θ2(s)| → 0 as s → +∞ (note that θ1(s) ≡ 0 by the radially symmetric assump-
tion). Plugging this ansatz in system (2.27) yields

θ ′
0

(
f0

g0

)
+ θ ′

2

(
f2

g2

)
= θ0

(
f0

g0

)
+
(

q

p

)
[(θ0f0 + θ2f2)(θ0g0 + θ2g2)]

− θ2
2

( |∇f2|2
(
θ0f0 + θ2f2 + 1

p

)−1

μ|∇g2|2
(
θ0g0 + θ2g2 + 1

q

)−1

)
.

Assume that |θ0(s)| � |θ2(s)| as s → +∞, we then use Lemma 2.4 to find the ordinary differ-
ential system ⎧⎪⎪⎨

⎪⎪⎩
θ ′

0 = θ0 +O(|θ2|2),

θ ′
2 = c2θ

2
2 +O(|θ2|3 + |θ0θ2| + |θ0|3),

(2.29)
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where the constant c2 is computed as follows:

c2 = P2,M

(
qf2g2 − p|∇f2|2

pf2g2 − qμ|∇g2|2
)

= P2,M

(
pq2

[
h4 + (6 − 2μ)h2 + 12

]
p2q

[
ĥ4 + (6μ − 2)ĥ2

] )

= A2,2(6 − 2μ)pq2 + B2,2(6μ − 2)p2q + A4,2pq2 + B4,2pq2

= 2pq(μ + 1).

Solving system (2.29) yields

θ2(s) = − 1

2pq(μ + 1)s
+O

(
ln s

s2

)
and |θ0(s)| = O

(
1

s2

)
as s → +∞.

From (2.28) and (2.26), we have just derived the following asymptotic expansion:

⎧⎪⎪⎨
⎪⎪⎩

�(y, s) = 1
p

[
1 − y2

2(μ+1)s
+ μ

(μ+1)s

]
+O

(
ln s
s2

)
,

�(y, s) = 1
q

[
1 − y2

2(μ+1)s
+ 1

(μ+1)s

]
+O

(
ln s
s2

)
,

(2.30)

where the convergence takes place in L2
ρ1

×L2
ρμ

as well as uniformly on compact sets by standard 
parabolic regularity.

These expansions provide a relevant variable for blowup, namely z = y√
s
, therefore, we try to 

search formally solutions of (2.24) of the form

⎧⎪⎪⎨
⎪⎪⎩

�(y, s) = �0(z) + μ
p(μ+1)s

+O
(

1
s1+ν

)
,

�(y, s) = �0(z) + 1
q(μ+1)s

+O
(

1
s1+ν

)
,

(2.31)

for some ν > 0, subject to the condition

�0(0) = 1

p
, �0(0) = 1

q
. (2.32)

Plugging this ansatz in system (2.24), keeping only the main order, we end up with the following 
system satisfied by (�0, �0):

− z

2
�′

0 − �0 + q�0�0 = 0, − z

2
�′

0 − �0 + p�0�0 = 0. (2.33)

Solving this system with the condition (2.32) yields

�0(z) = 1

p
(1 + c0|z|2)−1, �0(z) = 1

q
(1 + c0|z|2)−1,

for some constant c0 > 0. By matching asymptotic this expansion with (2.30), we find that
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c0 = 1

2(μ + 1)
.

In conclusion, we have formally obtained from (2.31) the following candidate for the profile:⎧⎪⎪⎨
⎪⎪⎩

�(y, s) ∼ φ(y, s) := 1
p

(
1 + y2

2(μ+1)s

)−1 + μ
p(μ+1)s

,

�(y, s) ∼ ψ(y, s) := 1
q

(
1 + y2

2(μ+1)s

)−1 + 1
q(μ+1)s

.

(2.34)

3. Proof of Theorem 1.1 without technical details

In this section we give the proof of Theorem 1.1. To avoid winding up with details, we will 
only give the main arguments of the proof and postpone most of technicalities to next sections. 
For simplicity, we consider the one dimensional case (N = 1), however, the proof remains the 
same for higher dimensions N ≥ 2.

Hereafter we denote by C a generic positive constant depending only on the parameters of the 
problem such as N, p, q, μ and K introduced in (3.8).

3.1. Linearization of the problem

In this part we give the formulation of the problem to justify the formal result obtained in 
previous section, i.e. the proof of Theorem 1.1. We want to prove the existence of suitable initial 
data (u0, v0) so that the corresponding solution (u, v) of system (1.1) blows up in finite time 
T only at one point a ∈ R and verifies (1.14). From translation invariance of equation (1.1), 
we may assume that a = 0. Through the transformations (2.21) and (2.23), we want to find 
s0 > 0 and (�(y, s0), �(y, s0)) such that the solution (�, �) of system (2.24) with initial data 
(�(y, s0), �(y, s0)) satisfies

lim
s→+∞

∥∥∥∥�(y, s) − �∗
(

y√
s

)∥∥∥∥
L∞(RN)

= lim
s→+∞

∥∥∥∥�(y, s) − �∗
(

y√
s

)∥∥∥∥
L∞(RN)

= 0, (3.1)

where �∗ and �∗ are defined in (1.15).
According to the formal analysis in the previous section, let us introduce 
(y, s) and ϒ(y, s)

such that

�(y, s) = 
(y, s) + φ(y, s), �(y, s) = ϒ(y, s) + ψ(y, s), (3.2)

where φ and ψ are defined by (2.34).
With the introduction of (
, ϒ) in (3.2), the problem is then reduced to construct functions 

(
, ϒ) such that

lim
s→+∞‖
(s)‖L∞(RN) = lim

s→+∞‖ϒ(s)‖L∞(RN) = 0, (3.3)

and from (2.24), (
, ϒ) solves the system

∂s

(


)

=
(
H +M+ V (y, s)

)(

)

+
(

q
)


ϒ +
(

R1
)

+
(

G1
)

, (3.4)

ϒ ϒ p R2 G2
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where H and M are defined by (1.24),

V (y, s) =
(

qψ − 1 q
(
φ − 1/p

)
p
(
ψ − 1/q

)
pφ − 1

)
=
(

V1 V2
V3 V4

)
, (3.5)

(
G1

G2

)
=
( −|∇(
 + φ)|2(
 + φ)−1 + |∇φ|2/φ

−μ|∇(ϒ + ψ)|2(ϒ + ψ)−1 + μ|∇ψ |2/ψ
)

, (3.6)

and

(
R1

R2

)
=
( −∂sφ + �φ − 1

2y · ∇φ − φ + qφψ − |∇φ|2/φ
−∂sψ + μ�ψ − 1

2y · ∇ψ − ψ + pφψ − μ|∇ψ |2/ψ
)

. (3.7)

Since we would like to make (
, ϒ) go to zero as s → +∞ in L∞(RN) × L∞(RN), then 
the nonlinear terms 

(
q
p

)

ϒ and 

(
G1
G2

)
, which are built to be quadratic, can be neglected. The error 

term 
(
R1
R2

)
is of the size 1

s
uniformly in RN . Thus, the dynamics of (3.4) are strongly influenced 

by the linear part

(
H +M+ V (y, s)

)(


ϒ

)
as s → +∞.

The spectrum of H +M is well studied in the previous section. The potential V (y, s) has two 
fundamental properties that will strongly influence our analysis:
– The effect of V inside the blowup region |y| ≤ K

√
s will be considered as a perturbation of the 

effect of H +M.
– Outside the blowup region, i.e. when |y| ≥ K

√
s, we have the following property: for all ε > 0, 

there exist Kε > 0 and sε > 0 such that

sup
s≥sε ,|y|≥Kε

√
s

|V (y, s)| ≤ ε.

In other words, outside the blowup region, the linear operator H +M + V behaves as

H +
(±ε − 1 ±ε

±ε ±ε − 1

)
.

Given that the spectrum of H is non positive (see (2.7) above) and that the matrix has negative 
eigenvalues for ε small, we see that H +M +V behaves like one with a fully negative spectrum, 
which greatly simplifies the analysis in that region.

Since the behavior of the potential V inside and outside the blowup region is different, we will 
consider the dynamics for |y| ≥ K

√
s and |y| ≤ 2K

√
s separately for some K to be fixed large. 

Let us consider a non-increasing cut-off function χ0 ∈ C∞
0 ([0, +∞)), with supp(χ0) ⊂ [0, 2] and 

χ0 ≡ 1 on [0, 1], and introduce

χ(y, s) = χ0

( |y|√
)

, (3.8)

K0 s
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where K0 is chosen large enough so that various technical estimates hold. We define

(

e

ϒe

)
= (1 − χ)

(



ϒ

)
, (3.9)

(

e

ϒe

)
coincides with 

(


ϒ

)
for |y| ≥ 2K0

√
s. As announced a few lines above and as we will see 

in Section 4.1.3, the spectrum of the linear operator of the equation satisfied by 
(

e

ϒe

)
is negative, 

which makes the control of ‖
e(s)‖L∞(R) and ‖ϒe(s)‖L∞(R) easy.
While the control of the outer part is simple, it is not the case for the inner part of 

(


ϒ

)
, 

i.e. for |y| ≤ 2K0
√

s. In fact, inside the blowup region |y| ≤ 2K0
√

s, the potential V can be 
seen as a perturbation of the effect of H + M whose spectrum has two positive eigenvalues, 
a zero eigenvalue in addition to infinitely negative ones (see Lemma 2.2 above). For the sake 
of controlling 

(


ϒ

)
in the region |y| ≤ 2K0

√
s, we will expand 

(


ϒ

)
with respect to the family {(

hn

0

)
,
( 0
ĥn

)}
n≥0

and then with respect to the family 
{(

fn

gn

)
,
(f̃n

g̃n

)}
n≥0

as follows:

(

(y, s)

ϒ(y, s)

)
=
∑
n≤M

Qn(s)

(
hn(y)

0

)
+ Q̂n(s)

(
0

ĥn(y)

)
+
(


−(y, s)

ϒ−(y, s)

)
, (3.10)

=
∑
n≤M

θn(s)

(
fn(y)

gn(y)

)
+ θ̃n(s)

(
f̃n(y)

g̃n(y)

)
+
(


−(y, s)

ϒ−(y, s)

)
, (3.11)

where M is a fixed even integer satisfying

M ≥ 4

[
p

q
+ q

p
+

4∑
i=1

‖Vi‖L∞
y,s

]
, (3.12)

with ‖Vi‖L∞
y,s

= max
y∈RN ,s≥1

|Vi(y, s)| .

• Qn(s) and Q̂n(s) are respectively the projections of 
(


ϒ

)
on 

(
hn

0

)
and 

( 0
ĥn

)
defined by

Qn(s) =
〈(



ϒ

)
,
(
hn

0

)〉
〈(

hn

0

)
,
(
hn

0

)〉 =
〈

,hn

〉
ρ1〈

hn,hn

〉2
ρ1

≡ �n

(



ϒ

)
, (3.13)

Q̂n(s) =
〈(



ϒ

)
,
( 0
ĥn

)〉
〈( 0

ĥn

)
,
( 0
ĥn

)〉 =
〈
ϒ, ĥn

〉
ρμ〈

ĥn, ĥn

〉2
ρμ

≡ �̂n

(



ϒ

)
, (3.14)

• 
(

−(y,s)
ϒ−(y,s)

)= �−,M

(


ϒ

)
denotes the infinite-dimensional part of 

(


ϒ

)
, where �−,M is the projec-

tor on the subspace of Lρ1 × Lρμ where the spectrum of H is lower than 1−M
2 . We have the 

orthogonality: for all n ≤ M ,

〈(

−

)
,

(
hn

)〉
= 〈


−, hn

〉
ρ1

= 0 and

〈(

−

)
,

(
0
ˆ
)〉

= 〈
ϒ−, ĥn

〉
ρμ

= 0. (3.15)

ϒ− 0 ϒ− hn



JID:YJDEQ AID:9227 /FLA [m1+; v1.279; Prn:26/02/2018; 9:21] P.21 (1-57)

T.-E. Ghoul et al. / J. Differential Equations ••• (••••) •••–••• 21
• We set �+,M = Id − �−,M , and the complementary part

(

+
ϒ+

)
= �+,M

(



ϒ

)
=
(




ϒ

)
−
(


−
ϒ−

)

which satisfies for all s,

〈(

+(y, s)

ϒ+(y, s)

)
,

(

−(y, s)

ϒ−(y, s)

)〉
= 0. (3.16)

• θn(s) = Pn,M

(


ϒ

)
and θ̃n(s) = P̃n,M

(


ϒ

)
are respectively projections of 

(


ϒ

)
on 

(
fn

gn

)
and 

(f̃n

g̃n

)
. 

From Lemma 2.4, we can express θn(s) and θ̃n(s) in terms of Qn(s) and Q̂n(s).

3.2. Definition of the shrinking set and its properties

In this part we will give the definition of a shrinking set to trap the solution according to the 
blowup regime described in Theorem 1.1. In particular, we aim at defining a set whose elements 
will satisfy (3.3). To do so, we follow ideas of [18] and [20] where the authors suggested a modi-
fication of the argument of [25] for the standard semilinear heat equation (1.13). In particular, we 
shall control the solution in three different zones covering RN , defined as follows: For K0 > 0, 
ε0 > 0 and t ∈ [0, T ), we set

D1(t) =
{
x

∣∣∣ |x| ≤ K0
√| ln(T − t)|(T − t)

}
≡ {

x
∣∣ |y| ≤ K0

√
s
}≡

{
x

∣∣∣ |z| ≤ K0

}
,

D2(t) =
{
x

∣∣∣ K0

4

√| ln(T − t)|(T − t) ≤ |x| ≤ ε0

}

≡
{
x

∣∣∣ K0

4

√
s ≤ |y| ≤ ε0e

s
2

}
≡
{
x

∣∣∣ K0

4
≤ |z| ≤ ε0√

s
e

s
2

}
,

D3(t) =
{
x

∣∣∣ |x| ≥ ε0

4

}
≡
{
x
∣∣ |y| ≥ ε0

4
e

s
2

}
≡
{
x

∣∣∣ |z| ≥ ε0

4
√

s
e

s
2

}
.

– In the blowup region D1, we work with the self similar system (3.4) and do an analysis accord-
ing to the decomposition (3.11) and the definition (3.9).
– In the intermediate region D2, we control the solution by using classical parabolic estimates on 
(ũ, ṽ), a rescaled version of (u, v) defined for x �= 0 by

⎧⎨
⎩

ũ(x, ξ, τ ) = 1
q

lnσ(x) + u
(
x + ξ

√
σ(x), t (x) + τσ (x)

)
,

ṽ(x, ξ, τ ) = 1
p

lnσ(x) + v
(
x + ξ

√
σ(x), t (x) + τσ (x)

)
,

(3.17)

where t (x) is uniquely defined for |x| sufficiently small by

|x| = K0√
σ(x)| lnσ(x)| with σ(x) = T − t (x). (3.18)
4
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From (1.1), we see that (ũ, ṽ) satisfies the same system for (u, v). That is for all ξ ∈ R
N and 

τ ∈
[
− t (x)

σ (x)
,1
)

,

∂τ ũ = �ξ ũ + epṽ, ∂τ ṽ = μ�ξ ṽ + eqũ. (3.19)

We will in fact prove that (ũ, ṽ) behaves for

|ξ | ≤ α0
√| lnσ(x)| and τ ∈

[
t0 − t (x)

σ (x)
,1

)

for some t0 < T and α0 > 0, like the solution of the ordinary differential system

∂τ û = epv̂, ∂τ v̂ = eqû, (3.20)

subject to the initial data

û(0) = − 1

q
ln

[
p

(
1 + K2

0 /16

2(μ + 1)

)]
, v̂(0) = − 1

p
ln

[
q

(
1 + K2

0 /16

2(μ + 1)

)]
.

The solution is explicitly given by

û(τ ) = − 1

q
ln

[
p

(
1 − τ + K2

0/16

2(μ + 1)

)]
, v̂(τ ) = − 1

p
ln

[
q

(
1 − τ + K2

0 /16

2(μ + 1)

)]
. (3.21)

As we will see that the analysis in D2 will imply the conclusion of item (iii) of Theorem 1.1.
– In D3, we directly estimate (u, v) by using the local in time well-posedness of the Cauchy 
problem for system (1.1).

We give the definition of the shrinking set to trap the solution according to the blowup regime 
described in Theorem 1.1. This set is precisely defined as follows:

Definition 3.1 (Definition of a shrinking set). For all t0 < T , K0 > 0, ε0 > 0, α0 > 0, A > 0, 
δ0 > 0, η0 > 0, C0 > 0, for all t ∈ [t0, T ), we define S(t0, K0, ε0, α0, A, δ0, η0, C0, t) (or S(t)

for short) being the set of all functions (u, v) such that
(i) (Control in the blowup region D1) 

(

(s)
ϒ(s)

) ∈ VA(s) where 
(


ϒ

)
is defined as in (3.2), s =

− ln(T − t) and VA(s) is the set of all functions 
(


ϒ

)
verifying

‖
e(s)‖L∞(R),‖ϒe(s)‖L∞(R) ≤ AM+2

√
s

,

‖
−(y, s)‖L∞(R) + ‖ϒ−(y, s)‖L∞(R) ≤ AM+1s− M+2
2
(|y|M+1 + 1

)
,

‖∇
−(y, s)‖L∞(R) + ‖∇ϒ−(y, s)‖L∞(R) ≤ AM+2s− M+2
2
(|y|M+1 + 1

)
,

|θ̃i (s)| ≤ A2

for i = 0,1,2, |θj (s)|, |θ̃j (s)| ≤ Ajs− j+1
2 for 3 ≤ j ≤ M,
s2
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|θ0(s)|, |θ1(s)| ≤ A

s2 , |θ2(s)| ≤ A4 ln s

s2 ,

where 
e, ϒe are defined by (3.9), 
−, ϒ−, θn, θ̃n are defined as in (3.11).

(ii) (Control in the intermediate region D2) For all |x| ∈
[

K0
4

√| ln(T − t)|(T − t), ε0

]
, τ =

τ(x, t) = t−t (x)
σ (x)

and |ξ | ≤ α0
√

lnσ(x),

∣∣ũ(x, ξ, τ ) − û(τ )
∣∣≤ δ0, |∇ξ ũ(x, ξ, τ )| ≤ C0√| lnσ(x)| ,∣∣ṽ(x, ξ, τ ) − v̂(τ )
∣∣≤ δ0, |∇ξ ṽ(x, ξ, τ )| ≤ C0√| lnσ(x)| ,

where ũ, ṽ, û, v̂, t (x) and σ(x) are defined in (3.17), (3.21) and (3.18) respectively.

(iii) (Control in the regular region D3) For all |x| ≥ ε0
4 ,

|∇ i
xu(x, t) − ∇ i

xu(x, t0)| ≤ η0 and |∇i
xv(x, t) − ∇i

xv(x, t0)| ≤ η0 for i = 0,1.

Remark 3.2. In comparison with the shrinking set defined in [25], our definition has additional 
estimates on ∇
− and ∇ϒ− in D1, ∇ξ ũ and ∇ṽ in D2, ∇xu and ∇xv in D3. These estimates are 
needed to achieve the control of the nonlinear gradient term 

(
G1
G2

)
appearing in (3.4). This idea 

was first used in [26] for the finite time quenching for the vortex reconnection with the boundary 
problem, and then in [18] for equation (1.16) coupled with a critical nonlinear gradient term.

As a mater of fact, if 
(


ϒ

)
(s) ∈ VA(s) for s ≥ s0, then

‖
(s)‖L∞(R) + ‖ϒ(s)‖L∞(R) ≤ CAM+2

√
s

, ∀s ≥ s0, (3.22)

for some positive constant C. More precisely, we have the following proposition.

Proposition 3.3 (Properties of elements belonging to S(t)). For all K0 ≥ 1 and ε0 > 0, there 
exist t0,2(K0, ε0) and η0,2(ε0) > 0 such that for all t0 ∈ [t0,2, T ), A ≥ 1, α0 > 0, C0 > 0, δ0 ≤
1
2 min{|û(1)|, v̂(1)} and η0 ∈ (0, η0,2], we have the following properties: Assume that the initial 
data (u, v)(x, t0) is given by (3.23) and that for all t ∈ [t0, T ), (u, v)(t) ∈ S(t), then there exists 
a positive constant C = C(K0, C0) such that for all y ∈R

N and s = − log(T − t),

(i) (Estimates on (
, ϒ))

|
(y, s)| + |ϒ(y, s)| ≤ CAM+2

√
s

,

|
(y, s)| + |ϒ(y, s)| ≤ CA4 ln s

s2 (|y|2 + 1) +
M+1∑
j=3

CAj

s
j+1

2

(|y|j + 1).

(ii) (Estimates on (∇
, ∇ϒ))
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|∇
(y, s)| + |∇ϒ(y, s)| ≤ CA4 ln s

s2 (|y| + 1) +
M∑

j=3

CAj

s
j+1

2

(|y|j−1 + 1) + CAM+2

s
M+2

2

(|y|M+1 + 1),

|(1 − χ(y, s))∇
(y, s)| + |(1 − χ(y, s))∇ϒ(y, s)| ≤ C√
s
,

|∇
(y, s)| + |∇ϒ(y, s)| ≤ CAM+2

√
s

.

Proof. The proof of item (i) and the first estimate in item (ii) directly follows from the definition 
of the set VA given in part (i) of Definition 3.1 and the decomposition (3.11). The proof of the 
second estimate in item (ii) follows from parts (ii) and (iii) of Definition 3.1. We kindly refer 
to Proposition A.1 in [20] where the reader can find an analogous proof for the case of single 
equation and have no difficulties to adapt to the system case. The last estimate in item (ii) is a 
direct consequence of the first two ones. This concludes the proof of Proposition 3.3. �
3.3. Preparation of initial data

As for initial data at time t = t0 for which the corresponding solution to system (1.1) is trapped 
in the set S(t) for all t ∈ [t0, T ), we consider the following functions depending on (N + 1)

fine-tune parameters (d0, d1) ∈ R
1+N :

(
qu

pv

)
d0,d1

(x, t0) =
(

û∗(x)

v̂∗(x)

)(
1 − χ1(x, t0)

)
+
{(

1

1

)
s0 + ln

[(
φ

ψ

)
(y0, s0)

]}
χ1(x, t0)

+ ln

{(
d0

(
f0(y0)

g0(y0)

)
+ d1.

(
f1(y0)

g1(y0)

))
A2

s2
0

χ(16y0, s0)

}
χ1(x, t0), (3.23)

where s0 = − ln(T − t0), y0 = xe
s0
2 , φ and ψ are defined by (2.34), 

(
f0
g0

)
and 

(
f1
g1

)
are the 

eigenfunctions corresponding to the positive eigenvalues of the linear operator H + M (see 
Lemma 2.2), χ is introduced in (3.8), χ1 is defined by

χ1(x, t0) = χ0

( |x|
| ln(T − t0)|√T − t0

)
= χ0

(
y0

s0

)
,

and (û∗, v̂∗) ∈ C∞(RN {0}) × C∞(RN \ {0}) is defined by

û∗(x) =
{

ln
(

4(μ+1)| ln |x||
p|x|2

)
for |x| ≤ C(a),

− ln
(
1 + a|x|2) for |x| ≥ 1,

(3.24)

v̂∗(x) =
{

ln
(

4(μ+1)| ln |x||
q|x|2

)
for |x| ≤ C(a),

− ln
(
1 + a|x|2) for |x| ≥ 1.

(3.25)

By selecting suitable parameters, we make sure that the initial data (3.23) starts in S(t0). More 
precisely, we have the following.
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Proposition 3.4 (Properties of initial data (3.23)). There exists K0,1 > 0 such that for each 
K0 ≥ K0,1 and δ0,1 > 0, there exist α0,1(K0, δ0,1) > 0, C0,1(K0) > 0 such that for all α0 ∈
(0, α0,1], there exists ε0,1(K0, δ0,1, α0) > 0 such that for all ε0 ∈ (0, ε0,1] and A ≥ 1, there ex-
ists t0,1(K0, δ0,1, ε0, A, C0,1) < T such that for all t0 ∈ [t0,1, T ), there exists a subset Dt0,A ⊂
R ×R

N with the following properties. If (u, v)d0,d1(x, t0) is defined as in (3.23), then:

(I ) For all (d0, d1) ∈ Dt0,A, (u, v)d0,d1(x, t0) belongs in S(t0, K0, ε0, α0, A, δ0,1, 0, C0,1, t0). 
More precisely, we have

(i) (Estimates in D1) (
0, ϒ0)d0,d1 ∈ VA(s0), where (
0, ϒ0)d0,d1 is defined from
(u, v)d0,d1(x, t0) through the transformations (3.2), (2.23) and (2.21) with s0 = − ln(T − t0)

and y = xes0/2, with strict inequalities except for (θ0,0, θ0,1)(s0) in the sense that

‖
0,e‖L∞(R) = ‖ϒ0,e‖L∞(R) = 0,∥∥
0,−(y)
∥∥

L∞(R)
+ ∥∥ϒ0,−(y)

∥∥
L∞(R)

+ ∥∥∇
0,−(y)
∥∥

L∞(R)
+ ∥∥∇ϒ0,−(y)

∥∥
L∞(R)

≤ s
− M+2

2
0

(|y|M+1 + 1
)
,

|θ̃0,i | ≤ 1

s2
0

for i = 0,1,2, |θ0,j |, |θ̃0,j | ≤ s
− j+1

2
0 for 3 ≤ j ≤ M, |θ0,2| ≤ ln s0

s2
0

,

∣∣∣∣∣θ0,0 − Ad0

s2
0

∣∣∣∣∣+
∣∣∣∣∣θ0,1 − Ad1

s2
0

∣∣∣∣∣≤ C(|d0| + |d1|)e−s0 ,

where 
0,e, ϒ0,e , 
0,−, ϒ0,−, θ0,n, θ̃0,n are the components of (
0, ϒ0)d0,d1 defined as in (3.9)
and (3.11).

(ii) (Estimates in D2) For all |x| ∈
[

K0
4

√| lnσ(x)|σ(x), ε0

]
, τ0 = τ0(x, t0) = t0−t (x)

σ (x)
and 

|ξ | ≤ α0
√

lnσ(x) with σ(x), t (x) being uniquely defined by (3.18), we have

∣∣ũ(x, ξ, τ0) − û(τ0)
∣∣≤ δ0,1, |∇ξ ũ(x, ξ, τ0)| ≤ C0,1√| lnσ(x)| ,∣∣ṽ(x, ξ, τ0) − v̂(τ0)
∣∣≤ δ0,1, |∇ξ ṽ(x, ξ, τ0)| ≤ C0,1√| lnσ(x)| ,

where ũ, ṽ, û, v̂ are defined in (3.17) and (3.21).

(II) Let V̂A(s0) =
[
− A

s2
0
, A

s2
0

]1+N

, then

(d0, d1) ∈Dt0,A ⇐⇒ (
θ0,0, θ0,1

)
(s0) ∈ V̂A(s0),

(d0, d1) ∈ ∂Dt0,A ⇐⇒ (
θ0,0, θ0,1

)
(s0) ∈ ∂V̂A(s0).

Proof. Item (II) directly follows from item (i) of part (I ). The proof of item (i) of part (I )

mainly relies on the projections of (
0, ϒ0)d0,d1 defined as in Lemma 2.4. Since its proof is 
purely computational, we refer the readers to Lemma 5.2 in [18] for an analogous proof. As for 
the proof of item (ii) of part (I ), see Lemma A.2 in [20] where the proof for the case of a single 
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equation is treated in details and the same proof can be carried on for the system case without 
difficulties. This concludes the proof of Proposition 3.4. �
3.4. Existence of solutions trapped in S(t)

In this section we aim at proving the following proposition which implies Theorem 1.1.

Proposition 3.5 (Existence of solutions of (3.4) trapped in S(t)). We can choose parameters 
t0 < T , K0, ε0, α0, A, δ0, η0, C0 such that the following holds: there exists (d0, d1) ∈ R

1+N such 
that if (u, v)(x, t) is the solution to the system (1.1) with initial data at t = t0 given by (3.23), 
then (u, v)(x, t) exists for all (x, t) ∈R

N × [t0, T ) and satisfies

(u, v)(t) ∈ S(t), ∀t ∈ [t0, T ).

Proof. The proof of this proposition follows from the general idea developed in [25]. We proceed 
in two steps:
– In the first step, we reduce the problem of controlling (u, v)(t) in S(t) to the control of 

(θ0, θ1)(s) in 
[
− A

s2 , A
s2

]1+N

, where (θ0, θ1) are the positive modes of (
, ϒ) defined as in (3.11).

– In the second step, we use a classical topological argument based on index theory to solve the 
finite dimensional problem.

Step 1: Reduction to a finite dimensional problem.
In this step, we show through a priori estimate that the control of (u, v)(t) in S(t) reduces 

to the control of (θ0, θ1)(s) in V̂A(s) =
[
− A

s2 , A
s2

]1+N

. This result crucially follows from a good 

understanding of the properties of the linear operator H +M +V of equation (3.4) in the blowup 
region D1 together with classical parabolic techniques for the analysis in the intermediate and 
regular regions D2 and D3. In particular, we claim the following proposition, which is the heart 
of our contribution:

Proposition 3.6 (Control of (u, v)(t) in S(t) by (θ0, θ1)(s) in V̂A(s)). We can choose parameters 
t0 < T , K0, ε0, α0, A, δ0, η0, C0 such that the following properties hold. Assume that (u, v)(x, t0)
is given by (3.23) with (d0, d1) ∈ Dt0,A. Assume in addition that for some t∗ ∈ [t0, T ),

(u, v)(t) ∈ S(t0,K0, ε0, α0,A, δ0, η0,C0, t), ∀t ∈ [t0, t∗],

and

(u, v)(t∗) ∈ ∂S(t0,K0, ε0, α0,A, δ0, η0,C0, t
∗).

Then, we have
(i) (Finite dimensional reduction) (θ0, θ1)(s

∗) ∈ ∂V̂A(s∗), where s∗ = − log(T − t∗) and θ0, θ1
are the components of (
, ϒ) defined as in (3.11).
(ii) (Transversality) There exists μ0 > 0 such that for all μ ∈ (0, μ0),

(θ0, θ1)(s
∗ + μ) /∈ V̂A(s∗ + μ),
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hence,

(u, v)(t∗ + μ′) /∈ S(t0,K0, ε0, α0,A, δ0, η0,C0, t
∗ + μ′), μ′ = μ′(t∗,μ) > 0.

Proof. The proof uses ideas of [18,20] where the authors adapted the technique of a priori esti-
mates developed in [6] and [25] for equation (1.13). Let us insist on the fact that the techniques 
introduced in [6] and [25] are not enough to handle the nonlinear gradient term appearing in 
equation (3.4). The essential idea is to introduce additional estimates in the intermediate and reg-
ular zones to achieve the control of this term and this is one of the main novelties in this paper. 
The main feature of the proof is that the bounds appearing in Definition 3.1 can be improved, 
except the bounds on (θ0, θ1). More precisely, the improvement of the bounds in the blowup 
region D1 (except for θ0, θ1) is done through projecting equation (3.4) on the different compo-
nents of (
, ϒ) introduced in (3.11). One can see that the components 

{
θj

}
2≤j≤M

, 
{
θ̃j

}
0≤j≤M

, 
(
−, ϒ−), (∇
−, ∇ϒ−), (
e, ϒe) which correspond to decreasing directions of the flow, are 
already small at s = s0 and they remain small up to s = s∗, hence, they can not touch their bound-
ary. In D2 and D3, we directly use parabolic techniques applied to system (1.1) to achieve the 
improvement. Therefore, only θ0 and θ1 may touch their boundary at s = s∗ and the conclusion 
follows. Since we would like to keep the proof of Proposition 3.5 short, we leave the proof of 
Proposition 3.6 to the next section. �
Step 2: A basic topological argument.

From Proposition 3.6, we claim that there exist (d0, d1) ∈ Dt0,A such that equation (1.1) with 
initial data (3.23) has a solution

(u, v)d0,d1(t) ∈ S(t0,K0, ε0, α0,A, δ0, η0,C0, t) for all t ∈ [t0, T ),

for a suitable choice of the parameters. Note that the argument of the proof is not new and it is 
completely analogous as in [25]. Let us give its main ideas.

Let us consider t0, K0, ε0, α0, A, δ0, η0, C0 such that Propositions 3.6 and 3.4 hold. From 
Proposition 3.4, we have

∀(d0, d1) ∈Dt0,A, (u, v)d0,d1(x, t0) ∈ S(t0,K0, ε0, α0,A, δ0, η0,C0, t0),

where (u, v)d0,d1(x, t0) is defined by (3.23). Note that (u, v)d0,d1(x, t0) ∈ Ha , where Ha is intro-
duced in (1.3). Therefore, from the local existence theory for the Cauchy problem of (1.1) in Ha , 
we can define for each (d0, d1) ∈ Dt0,A a maximum time t∗(d0, d1) ∈ [t0, T ) such that

(u, v)d0,d1(t) ∈ S(t0,K0, ε0, α0,A, δ0, η0,C0, t), ∀t ∈ [t0, t∗).
If t∗(d0, d1) = T for some (d0, d1) ∈ Dt0,A, then the proof is complete. Otherwise, we argue 
by contradiction and assume that t∗(d0, d1) < T for any (d0, d1) ∈ Dt0,A. By continuity and the 
definition of t∗, the solution (u, v)d0,d1(t) at time t = t∗ is on the boundary of S(t∗). From part 
(i) of Proposition 3.6, we have

(θ0, θ1)(s∗) ∈ ∂V̂A(s∗) with s∗ = − ln(T − t∗).

Hence, we may define the rescaled flow � at s = s∗ for θ0 and θ1 as follows:
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� : Dt0,A �→ ∂([−1,1] × [−1,1]N)

(d0, d1) →
(

s2∗
A

θ0(s∗),
s2∗
A

θ1(s∗)
)

.

It follows from part (ii) of Proposition 3.6 that � is continuous. If we manage to prove that the 
degree of � on the boundary is different from zero, then we have a contradiction from the degree 
theory. Let us prove that. From part (II) Proposition 3.4, we see that if (d0, d1) ∈ ∂Dt0,A, then

(θ0, θ1)(s0) ∈ ∂V̂A(s0).

Using part (ii) of Proposition 3.6, we see that (
, ϒ)(s) must leave VA(s) at s = s0, hence, 
s∗(d0, d1) = s0. Using again part (i) of Proposition 3.4, we see that the degree of � on the 
boundary must be different from zero. This gives us a contradiction (by the index theory) and 
concludes the proof of Proposition 3.5, assuming that Proposition 3.6 holds. �
3.5. Conclusion of the proof of Theorem 1.1

In this part we use Proposition 3.5 to conclude the proof of Theorem 1.1. We have already 
showed in Proposition 3.5 that there exist initial data of the form (3.23) such that the correspond-
ing solution (u, v)(t) of system (3.4) satisfies (u, v)(t) ∈ S(t) for all t ∈ [t0, T ). From item (i)
of Definition 3.1, we have (
, ϒ)(s) ∈ VA(s) for all s ≥ s0. This means that (3.3) holds for all 
s ≥ s0. From (3.2), (1.9) and (2.21), we concludes the proof of part (ii) of Theorem 1.1.

From (1.14), we see that

equ(0,t) ∼ 1

p(T − t)
and ev(0,t) ∼ 1

q(T − t)
as t → T .

Hence, equ and epv blow up at time T at the origin simultaneously. It remains to show that if 
x0 �= 0, then x0 is not a blowup point of equ and epv . The following result allows us to conclude.

Proposition 3.7 (No blowup under some threshold). For all C0 > 0, there is η0 > 0 such that if (
u(ξ, τ), v(ξ, τ)

)
solves

∣∣∂τ u − �u
∣∣≤ C0

(
1 + eqv

)
,

∣∣∂τ v − μ�v
∣∣≤ C0

(
1 + epu

)
and satisfies

(1 − τ)epv(ξ,τ ) + (1 − τ)equ(ξ,τ ) ≤ ε, ∀|ξ | < 1, τ ∈ [0,1),

then, equ and epv do not blow up at ξ = 0 and τ = 1.

Proof. The proof of this result uses ideas given by Giga and Kohn [21] for the single equation 
with the nonlinear source term |u|p . Their proof uses a truncation technique together with the 
smoothness effect of the heat semigroup eτ� and some type of Gronwall’s argument. Since their 
argument can be extended to our case without difficulties, we kindly refer the interested readers 
to Theorem 2.1 in [21] for an analogous proof. �
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From (1.14), we see that

sup
|x|< |x0 |

2

(T − t)equ(x,t) ≤ �∗
( |x0|/2√

(T − t) ln(T − t)

)
+ C√

ln(T − t)
→ 0,

and

sup
|x|< |x0 |

2

(T − t)epv(x,t) ≤ �∗
( |x0|/2√

(T − t) ln(T − t)

)
+ C√

ln(T − t)
→ 0,

as t → T , hence, x0 is not a blowup point of equ and epv from Proposition 3.7. This concludes 
the proof of part (i) of Theorem 1.1.

We now give the proof of part (iii) of Theorem 1.1. Using the technique of Merle [24], we 
derive the existence of a blowup profile (u∗, v∗) ∈ C2(R∗) × C2(R∗) such that

(u, v)(x, t) → (u∗, v∗)(x) as t → T .

Here, we are interested in finding an equivalent of (u∗, v∗)(x) for |x| small. To do so, let us con-
sider the rescaled functions 

(
ũ, ṽ

)
(x, ξ, τ)) defined as in (3.17). From item (ii) of Definition 3.1

and (3.21), we have

u∗(x) = lim
t→T

u(x, t) = lim
τ→1

[
− 1

q
ln(T − t (x)) + ũ(x,0, τ )

]

∼ − 1

q
ln(T − t (x)) − 1

q
ln

(
p

K2
0/16

2(μ + 1)

)
.

Using the definition (3.18) of t (x), we have

− ln(T − t (x)) ∼ −2 ln |x|, T − t (x) = 16

K2
0

|x|2
| ln(T − t (x))| ∼ 16

K2
0

|x|2
2| ln |x|| for |x| → 0.

This yields

u∗(x) ∼ − 1

q
ln

(
p|x|2

4(μ + 1)| ln |x||
)

as |x| → 0.

Similarly, we obtain

v∗(x) ∼ − 1

p
ln

(
q|x|2

4(μ + 1)| ln |x||
)

as |x| → 0.

This concludes the proof of Theorem 1.1 assuming that Proposition 3.6 holds.
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4. Reduction to a finite dimensional problem

In this section we give the proof of Proposition 3.6, which is the central part in our analysis. As 
mentioned in the beginning of Section 3, we will consider the one dimensional case for simplicity, 
however, the same proof holds for higher dimensional cases. We proceed in two subsections:
– In the first subsection, we derive an a priori estimates on (u, v)(t) in S(t). In the region D1, we 
project system (3.4) on the different components defined by (3.9) and the decomposition (3.11). 
In comparison with the work [18], we have an extra nonlinear gradient term 

(
G1
G2

)
which is delicate 

since we need both upper and lower bound of the solution. In the intermediate region D2, we 
work with the rescaled version (3.17) and control the solution by classical parabolic techniques. 
In the regular region D3, we directly estimate the solution by using the local well-posedness in 
time of the Cauchy problem for system (1.1).
– In the second subsection, we use the a priori estimates obtained in the first part to show that 
the new bounds are better than the ones defined in S(t) except for the modes θ0 and θ1. This 
reduces the problem to a finite dimensional one which concludes item (i) of Proposition 3.6. The 
outgoing transversality property is just a consequence of the dynamics of the modes θ0 and θ1.

4.1. A priori estimates in D1

We claim the following:

Proposition 4.1 (A priori estimates in D1). There exist K0,2 > 0 and A0,2 > 0 such that for all 
K0 ≥ K0,2, ε0 > 0, A ≥ A0,2, λ∗ > 0, C0,2 > 0, there exists t0,2(K0, ε0, A, λ∗, C0,2) with the 
following property: For all δ0 ≤ 1

2 min{|û(1)|, |v̂(1)|}, α0 > 0, C0 > 0 and η0 ≤ η0,2 for some 
η0,2(ε0) > 0, λ ∈ [0, λ∗] and t0 ∈ [t0,2, T ), assume that

• (u, v)(x, t0) is given by (3.23) and (d0, d1) is chosen such that (θ0,0, θ0,1) ∈
[
− A

s2
0
, A

s2
0

]2

, 

where s0 = ln(T − t0) and (θ0,0, θ0,1) are the components of (
, ϒ)(y, s0) defined as in 
(3.11).

• for some σ ≥ s0, we have for all t ∈ [T − e−σ , T − e−(σ+λ)],

(u, v)(x, t) ∈ S(t0,K0, ε0, α0,A, δ0,C0, η0, t).

Then, we have for all s ∈ [σ, σ + λ],
(i) (ODEs satisfied by the positive modes) For n = 0, 1, we have

∣∣∣θ ′
n(s) −

(
1 − n

2

)
θn(s)

∣∣∣≤ C

s2 .

(ii) (ODE satisfied by the null mode)

∣∣∣∣θ ′
2(s) + 2

s
θ2(s)

∣∣∣∣≤ CA3

s3 .

(iii) (Control of the finite dimensional part)
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|θj (s)| ≤ e
−
(

j
2 −1

)
(s−τ)|θj (τ )| + CAj−1

s
j+1

2

, 3 ≤ j ≤ M,

|θ̃j (s)| ≤ e
−
(

j
2 +1

)
(s−τ)|θ̃j (τ )| + CAj−1

s
j+1

2

, 3 ≤ j ≤ M,

|θ̃j (s)| ≤ e
−
(

j
2 +1

)
(s−τ)|θ̃j (τ )| + C

s2 , j = 0,1,2.

(iv) (Control of the infinite dimensional part)

∥∥∥∥ 
−(y, s)

1 + |y|M+1

∥∥∥∥
L∞(R)

+
∥∥∥∥ ϒ−(y, s)

1 + |y|M+1

∥∥∥∥
L∞(R)

≤ Ce− (M+1)(s−τ )
4

(∥∥∥∥ 
−(y, τ )

1 + |y|M+1

∥∥∥∥
L∞(R)

+
∥∥∥∥ ϒ−(y, τ )

1 + |y|M+1

∥∥∥∥
L∞(R)

)
+ CAM

s
M+2

2

.

(v) (Control of the gradient)

∀y ∈ R
N, |∇
−(y, s)| + |∇ϒ−(y, s)| ≤ CAM+1s− M+2

2
(|y|M+1 + 1

)
.

(vi) (Control of the outer part)

‖
e(s)‖L∞(R) + ‖ϒe(s)‖L∞(R)

≤ Ce− 1
2 (s−τ)

(‖
e(τ)‖L∞(R) + ‖ϒe(τ)‖L∞(R)

)+ CAM+1

√
s

(1 + s − τ).

Remark 4.2. Note the factor 2
s

appearing the ODE satisfied by θ2 comes from the projection 
P2,M of V

(


ϒ

)
and 

(
G1
G2

)
thanks to the precise computation in Lemmas 2.2 and 2.4. In particular, 

we prove in Lemmas 4.6 and 4.11 below that

P2,M

[
V

(



ϒ

)]
∼ 4

s
θ2, P2,M

(
G1

G2

)
∼ −2

s
θ2.

Because of the number of parameters in our problem (p, q and μ) and the coordinates in 
(3.11), resulting in a very long proof, we will organize the rest of this subsection in three separate 
parts for the reader’s convenience:

– Part 1: We deal with system (3.4) to write ODEs satisfied by θn and θ̃n for n ≤ M . The defini-

tion of the projection of 
(


ϒ

)
on 

(
fn

gn

)
and 

(
f̃n

gn

)
given in Lemma 2.4 will be the main tool to derive 

these ODEs. Then, we prove items (i), (ii) and (iii) of Proposition 4.1.
– Part 2: We derive from system (3.4) a system satisfied by (
−, ϒ−) and prove item (iv) of 
Proposition 4.1. Unlike the estimate on θn and θ̃n where we use the properties of the linear 
operator H +M, here we use the operator H . The value of M , which is fixed large enough as 
in (3.12), is essential in the proof, in the sense that it allows us to successfully apply Gronwall’s 
lemma. The item (v) follows from a parabolic regularity argument applied to the system satisfied 
by (
−, ϒ−).
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– Part 3: We derive the system satisfied by (
e, ϒe) and prove item (vi) of Proposition 4.1. 
As mentioned earlier, the linear operator of the equation satisfied by 
e and ϒe has a negative 
spectrum, which makes the control of ‖
e(s)‖L∞(R) and ‖ϒe(s)‖L∞(R) easy.

Note that system (3.4) is analogous to the one in [18], except for the extra nonlinear gradient 
term 

(
G1
G2

)
. One of them concerns the shrinking set introduced in Definition 3.1 which involves an 

extra gradient estimate in D1 and additional estimates in D2 and D3. When taking into account 
this new definition, we shall use some estimates similar to those obtained in [18] and only focus 
on the novelties. We would like to mention that our handling of the gradient term is inspired by 
the technique developed by Tayachi and Zaag [35] (see also [34]) for the following nonlinear 
heat equation

∂tu = �u + |u|p−1u + μ|∇u| 2p
p+1 , μ > 0,p > 3.

In [20], we adapt the technique of [35] to handle the case when p → +∞, namely the equation

∂tu = �u + eu + μ|∇u|2, μ > −1.

4.1.1. Control of the finite dimensional part
In this subsection we give the proof of items (i)–(iii) of Proposition 4.1. In particular, we 

will estimate the main contribution to the projections Pn,M and P̃n,M (see Lemma 2.4 for the 
definition) of all terms appearing in (3.4), then the conclusion simply follows by addition.
• The derivative term ∂s

(


ϒ

)
. From the decomposition (3.11) and Lemma 2.4, we have

Pn,M

[
∂s

(



ϒ

)]
= θ ′

n and P̃n,M

[
∂s

(



ϒ

)]
= θ̃ ′

n. (4.1)

• The linear term (H +M)
(


ϒ

)
. We claim the following:

Lemma 4.3 (Projections of (H + M)
(


ϒ

)
on 

(
fn

gn

)
and 

(f̃n

g̃n

)
for n ≤ M). For all n ≤ M ,

(i) It holds that

∣∣∣∣Pn,M

[
(H +M)

(



ϒ

)]
−
(

1 − n

2

)
θn(s)

∣∣∣∣
+
∣∣∣∣P̃n,M

[
(H +M)

(



ϒ

)]
−
(

1 + n

2

)
θ̃n(s)

∣∣∣∣
≤ C

∥∥∥∥ 
−(y, s)

1 + |y|M+1

∥∥∥∥
L∞(R)

+ C

∥∥∥∥ ϒ−(y, s)

1 + |y|M+1

∥∥∥∥
L∞(R)

. (4.2)

(ii) For all A ≥ 1, there exists s4(A) ≥ 1 such that for all s ≥ s4(A), if 
(

(s)
ϒ(s)

) ∈ VA(s), then:

∣∣∣∣Pn,M

[
(H +M)

(


)]

−
(

1 − n)
θn(s)

∣∣∣∣
ϒ 2
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+
∣∣∣∣P̃n,M

[
(H +M)

(



ϒ

)]
−
(

1 + n

2

)
θ̃n(s)

∣∣∣∣≤ C
AM+1

s
M+2

2

. (4.3)

Proof. The proof follows exactly the same lines as in [18]. The only difference is the eigenvalues 
of the matrix M which are given by ±1. We refer the readers to Lemma 5.4 in [18] for all the 
details of the proof. �
• The potential term V (y, s)

(


ϒ

)
. We claim the following:

Lemma 4.4 (Expansion of the potential term V (y, s)). Let V (y, s) be defined by (3.5), we have

i = 1,2,3,4, |Vi(y, s)| ≤ C(1 + |y|2)
s

, ∀y ∈R, s ≥ 1, (4.4)

and for all k ∈N
∗,

i = 1,2,3,4, Vi(y, s) =
k∑

j=1

1

sj
Wi,j (y) + W̃i,k(y, s), (4.5)

where Wi,j (y) is an even polynomial of degree 2j , and W̃i,k(y, s) satisfies the estimate

|W̃i,k(y, s)| ≤ C(1 + |y|2k+2)

sk+1 , ∀|y| ≤ √
s, s ≥ 1.

Moreover, we have for all |y| ≤ √
s and s ≥ 1,

∣∣∣∣∣V (y, s) + 1

2(μ + 1)s

(
h2

q
p
ĥ2

p
q
h2 ĥ2

)∣∣∣∣∣≤ C(1 + |y|4)
s2 . (4.6)

Proof. The proof simply follows from Taylor expansions and we refer to Lemma 5.5 in [18] for 
a similar proof. �

We now use Lemma 4.4 to derive the projections of V
(


ϒ

)
on 

(
fn

gn

)
and 

(f̃n

g̃n

)
. More precisely, 

we have the following:

Lemma 4.5 (Projections of V
(


ϒ

)
on 

(
fn

gn

)
and 

(f̃n

g̃n

)
).

(i) For all s ≥ 1 and n ≤ M , we have

∣∣∣∣Pn,M

[
V

(



ϒ

)]∣∣∣∣+
∣∣∣∣P̃n,M

[
V

(



ϒ

)]∣∣∣∣
≤ C

s

M∑ (|θi(s)| + |θ̃i (s)|
)+

n−3∑ C

s
n−i

2

(|θi(s)| + |θ̃i (s)|
)

i=n−2 i=0
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+ C

s

(∥∥∥∥ 
−(y, s)

1 + |y|M+1

∥∥∥∥
L∞(R)

+
∥∥∥∥ ϒ−(y, s)

1 + |y|M+1

∥∥∥∥
L∞(R)

)
.

(ii) For all A ≥ 1, there exists s5(A) ≥ 1 such that for all s ≥ s5(A), if 
(

(s)
ϒ(s)

) ∈ VA(s), then:
– for 3 ≤ n ≤ M ,

∣∣∣∣Pn,M

[
V

(



ϒ

)]∣∣∣∣+
∣∣∣∣P̃n,M

[
V

(



ϒ

)]∣∣∣∣≤ CAn−2

s
n+1

2

,

– for n = 0, 1, 2,

∣∣∣∣Pn,M

[
V

(



ϒ

)]∣∣∣∣+
∣∣∣∣P̃n,M

[
V

(



ϒ

)]∣∣∣∣≤ C

s2 .

Proof. The argument of the proof is the same as the one written in [18] although we have a 
slightly different definition of the potential term V . However, since we have an analogous expan-
sion of V given in Lemma 4.4, the readers will have no difficulties to adapt those proof to this 
new situation. We then refer to Lemma 5.6 in [18] for all the details of the proof. �

Using the precise expansion (4.6), we are able to derive a sharp estimate for the projection of 
V
(


ϒ

)
on 

(
f2
g2

)
. In particular, we claim the following.

Lemma 4.6 (Refined projection of V
(
ϒ



)
on 

(
f2
g2

)
).

(i) It holds that

∣∣∣∣P2,M

[
V

(



ϒ

)]
+ 4

s
θ2(s)

∣∣∣∣≤ C

s

⎛
⎝ M∑

j=0,j �=2

|θj (s)| +
M∑

j=0

|θ̃j (s)|
⎞
⎠

+ C

s

(∥∥∥∥ 
−(y, s)

1 + |y|M+1

∥∥∥∥
L∞(R)

+
∥∥∥∥ ϒ−(y, s)

1 + |y|M+1

∥∥∥∥
L∞(R)

)
.

(i) For all A ≥ 1, there exists s6(A) ≥ 1 such that for all s ≥ s6(A), if 
(

(s)
ϒ(s)

) ∈ VA(s), then:

∣∣∣∣P2,M

[
V

(



ϒ

)]
+ 4

s
θ2(s)

∣∣∣∣≤ CA3

s3 .

Proof. See Lemma 5.7 in [18] for a similar proof. The readers should notice that the only dif-
ference in comparison with the proof written in that paper is the expansion (4.6) which results 
in

P2,M

[
θ2

2(μ + 1)s

(
h2

q
p
ĥ2

p
q
h2 ĥ2

)(
f2

g2

)]

= θ2
P2,M

(
2q[h4 + (10 − 2μ)h2 + 8]

ˆ ˆ 2

)

2(μ + 1)s 2p[h4 + (10μ − 2)h2 + 8μ ]
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= θ2

2(μ + 1)s

[
2qA4,2 + 2pB4,2 + 2q(10 − 2μ)A2,2 + 2p(10 − 2μ)B2,2

]= 4

s
θ2.

This concludes the proof of Lemma 4.6. �
• The nonlinear term 

(
q
p

)

ϒ. We claim the following:

Lemma 4.7 (Projections of 
(
q
p

)

ϒ on 

(
fn

gn

)
and 

(f̃n

g̃n

)
). For all A ≥ 1, there exists s7(A) ≥ 1 such 

that for all s ≥ s7(A), if 
(

(s)
ϒ(s)

) ∈ VA(s), then:
– for 3 ≤ m ≤ M , ∣∣∣∣Pm,M

[(
q

p

)

ϒ

]∣∣∣∣+
∣∣∣∣P̃m,M

[(
q

p

)

ϒ

]∣∣∣∣≤ CAn

s
n+2

2

,

– for m = 0, 1, 2, ∣∣∣∣Pm,M

[(
q

p

)

ϒ

]∣∣∣∣+
∣∣∣∣P̃m,M

[(
q

p

)

ϒ

]∣∣∣∣≤ C

s3 .

Proof. From Lemma 2.4, it is enough to estimate �m(
ϒ) and �̂m(
ϒ) with m ≤ M , since it 
implies the same estimate for Pm,M and P̃m,M . Since the estimates for �m and �̂m are the same, 
we only deal with �m(
ϒ) which is defined as follows:

�m(
ϒ) = ‖hm‖−2
ρ1

∫
R


ϒhmρ1dy.

By the decomposition (3.11) and part (i) of Definition 3.1, we write for 0 ≤ m ≤ M ,


ϒ =
(

M∑
i=0

θifi + θ̃i f̃i + 
−

)⎛⎝ M∑
j=0

θjgj + θ̃j g̃j + ϒ−

⎞
⎠

=
(

M∑
i=0

αiy
i + 
−

)⎛⎝ M∑
j=0

βjy
j + ϒ−

⎞
⎠

=
2M∑

i+j=0

αiβjy
i+j +O

(
A2(M+1) ln s

s
M+2

2 +2

(|y|2M+1 + 1
))

,

where |αi |, |βi | ≤ CA4 ln s
s2 for i = 0, 1, 2 and |αi |, |βi | ≤ CAi

s
i+1

2
for 3 ≤ i ≤ M . From Remark 2.1, 

we deduce that

|�m(
ϒ)| ≤ C

2M∑
i+j=m

|αiβj | + C
A2(M+1) ln s

s
M+2

2 +2
≤
⎧⎨
⎩

CAm

s
m+2

2
for 3 ≤ m ≤ M

CA8 ln2 s
s4 for m = 0,1,2.

This concludes the proof of Lemma 4.7. �
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• The error term 
(
R1
R2

)
. We first expand R1(y, s) and R2(y, s) as a power series of 1

s
as s → +∞, 

uniformly for |y| < √
s. More precisely, we claim the following:

Lemma 4.8 (Expansion of R1 and R2 as s → +∞). For all m ∈ N, the functions R1(y, s) and 
R2(y, s) defined in (3.7) can be decomposed as follows: for all |y| < √

s and s ≥ 1,

∣∣∣∣∣Ri(y, s) −
m−1∑
k=1

1

sk+1 Ri,k(y)

∣∣∣∣∣≤ C(1 + |y|2m)

sm+1 , (4.7)

where Ri,k is a polynomial of degree 2k. More precisely, we have

R1,1 = μ(2 + μ)

p(1 + μ)2 + 1 − μ2

p(1 + μ)3 y2, (4.8)

R2,1 = 1 + 2μ

q(1 + μ)2 + μ2 − 1

q(1 + μ)3 y2. (4.9)

Proof. Let z = y√
s
, D = μ

p(μ+1)
, E = 1

q(μ+1)
, we then write from (2.34),

φ(y, s) = �∗(z) + D

s
, ψ(y, s) = �∗(z) + E

s
,

where �∗ and �∗ are defined by (1.15). Using the fact that (�∗, �∗) satisfies (2.33), we rewrite

R1(y, s) = z

2s
· ∇z�

∗ + D

s2 + 1

s
�z�

∗ − D

s
+ qDE

s2 + qD

s
�∗ + qE

s
�∗ − |∇z�

∗|2
s(�∗ + D

s
)
,

R2(y, s) = z

2s
· ∇z�

∗ + E

s2 + μ

s
�z�

∗ − E

s
+ pDE

s2 + pD

s
�∗ + pE

s
�∗ − μ

|∇z�
∗|2

s(�∗ + E
s
)
.

The proof then follows from Taylor expansion of Ri, i = 1, 2 near z = 0. Note that the term of 
order 1

s
is identically zero. This concludes the proof of Lemma 4.8. �

From Lemma 4.8, we directly derive the following estimate of the projections of 
(
R1
R2

)
on 

(
fn

gn

)
and 

(f̃n

g̃n

)
:

Lemma 4.9 (Projections of 
(
R1
R2

)
on 

(
fn

gn

)
and 

(f̃n

g̃n

)
). For all s ≥ 1 and n ≤ M , we have

– if n is odd, then

Pn,M

(
R1(y, s)

R2(y, s)

)
= P̃n,M

(
R1(y, s)

R2(y, s)

)
= 0, (4.10)

– if n ≥ 4 is even, then ∣∣∣∣Pn,M

(
R1(y, s)

)∣∣∣∣+
∣∣∣∣P̃n,M

(
R1(y, s)

)∣∣∣∣≤ C
n+2 , (4.11)
R2(y, s) R2(y, s) s 2
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– if n = 0 and n = 2, then

∣∣∣∣P0,M

(
R1(y, s)

R2(y, s)

)∣∣∣∣+
∣∣∣∣P̃0,M

(
R1(y, s)

R2(y, s)

)∣∣∣∣+
∣∣∣∣P̃2,M

(
R1(y, s)

R2(y, s)

)∣∣∣∣≤ C

s2 , (4.12)

and ∣∣∣∣P2,M

(
R1(y, s)

R2(y, s)

)∣∣∣∣≤ C

s3 . (4.13)

Proof. The proof simply follows from the expansion (4.7) and Lemma 2.4. For the sharp esti-
mate (4.13), we need to use the precise expressions (4.8) and (4.9) which gives

P2,M

(
R1,1

R1,2

)
= 0.

This concludes the proof of Lemma 4.9. �
• The nonlinear gradient term 

(
G1
G2

)
. In comparison with the work [18], this part is new. We 

shall give all details of the proof.

Lemma 4.10 (Expansion of 
(
G1
G2

)
). For all K0 ≥ 1, A ≥ 1 and ε0 > 0, there exists

t0,3(K0, A, ε0) < T and η0,3(ε0) such that for each t0 ∈ [t0,3, T ), α0 > 0, C0 > 0, C′
0 > 0, 

δ0 ≤ min{|û(1)|, |v̂(1)|} and η0 ∈ (0, η0,3]: if (u, v)(x, t0) is given by (3.23) and (u, v)(t) ∈ S(t)

for t ∈ [t0, T ), then we have

|χ(y, s)G1(
,y, s)| ≤ C(K0,A)χ(y, s)

( |
|
s

+ |∇
|√
s

)
, (4.14)

|χ(y, s)G2(ϒ,y, s)| ≤ C(K0,A)χ(y, s)

( |ϒ|
s

+ |∇ϒ|√
s

)
, (4.15)

∣∣∣∣(1 − χ(y, s)
)(G1(
,y, s)

G2(ϒ,y, s)

)∣∣∣∣≤ C(K0,C
′
0)

s
, (4.16)

and for k ∈N
∗,

∣∣∣∣∣∣χ(y, s)

⎧⎨
⎩G1(
,y, s) −

k∑
j=1

1

j !
[
Dj

|∇φ|2
φj+1 
j + Dj−1

2∇
 · ∇φ

φj

j−1

+ Dj−2
2|∇
|2
φj−2 
j−2

]}∣∣∣∣
≤ C(K0,A)χ(y, s)

(
1

s
|
|k+1 + |y|2

s2 |
|k + |
|k−1|∇
|2
)

, (4.17)

∣∣∣∣∣∣χ(y, s)

⎧⎨
⎩G2(ϒ,y, s) − μ

k∑ 1

j !
[
Dj

|∇ψ |2
ψj+1 ϒj + Dj−1

2∇ϒ · ∇ψ

ψj
ϒj−1
j=1
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+ Dj−2
2|∇ϒ|2
ψj−2 ϒj−2

]}∣∣∣∣
≤ C(K0,A)χ(y, s)

(
1

s
|ϒ|k+1 + |y|2

s2 |ϒ|k + |ϒ|k−1|∇ϒ|2
)

, (4.18)

where Dj = (−1)j+1j ! and D−1 = 0.

Proof. We only deal with the estimates for G1, the estimates for G2 follows similarly. Let ν ∈
[0, 1] and

G1(ν) = −|ν∇
 + ∇φ|2
ν
 + φ

+ |∇φ|2
φ

.

We have by (3.6),

G1(y, s) ≡ G1(1) =
k∑

j=0

1

j !G
(j)

1 (0) + 1

(k + 1)!
1∫

0

(1 − ν)G(k+1)
1 (ν)dν, ∀k ∈N,

where G1(0) = 0 and for j ≥ 1,

G(j)

1 (ν) = Dj

j |ν∇
 + ∇φ|2

(ν
 + φ)j+1 + Dj−1

j−1 2∇
 · (ν∇
 + ∇φ)

(ν
 + φ)j
+ Dj−2


j−2 2|∇
|2
(ν
 + φ)j−1 ,

with Dj = (−1)j+1j ! and D−1 = 0 by convention. The estimate (4.14) and the expansion (4.17)
then follow from the fact that

|∇φ| ≤ C√
s
,

|∇φ|2
φ

≤ C

s
,

|∇φ|2
φ2 ≤ C|y|2

s2 , ∀y ∈R, s ≥ s0,3(K0).

In order to prove (4.16), it remains to show that for |y| ≥ K0
√

s, |∇
+∇φ|2

+φ

≤ C
s

. From (3.2), 

(2.23) and (2.21), it is equivalent to show that for |x| ≥ r(t) = K0
√

(T − t)| ln(T − t)| and t ≥ t0,

|∇xu|2equ(x,t) ≤ C

(T − t)2| ln(T − t)| . (4.19)

Arguing as in [20], we consider two cases:– Case 1: |x| ∈ [r(t), ε0)]. In this case we use the 
bounds given in part (ii) of Definition 3.1 to prove (4.19). By (3.17), we have

|∇xu(x, t)|2equ(x,t) = σ(x)−2|∇ξ ũ(x,0, τ (x, t))|2eqũ(x,0,τ (x,t)),

where τ(x, t) = t−t (x)
σ (x)

, σ(x) = T − t (x) and t (x) is uniquely defined by (3.18). From part (ii)
of Definition 3.1, we have for |x| ∈ [r(t), ε0],

|ũ(x,0, τ (x, t)) − û(τ (x, t))| ≤ δ0, |∇ξ ũ(x,0, τ (x, t))| ≤ C0√ ,
| lnσ(x)|
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from which we derive

|∇xu(x, t)|2equ(x,t) ≤ C(C0)

σ (x)2| lnσ(x)| ≤ C(C0)

σ (r(t))2| lnσ(r(t))| .

Since r(t) → 0 as t → T , we deduce from (3.18),

σ(r(t)) ∼ 2

K2
0

r2(t)

| ln r(t)| and lnσ(r(t)) ∼ ln r(t) as t → T .

Recalling that r(t) = K0
√

(T − t)| ln(T − t)|, we derive

C(C0)

σ (r(t))2| lnσ(r(t))| ∼ C(C0,K0)

(T − t)2| ln(T − t)| ,

which concludes the proof of (4.19) for |x| ∈ [r(t), ε0].
– Case 2: |x| ≥ ε0. From part (iii) of Definition 3.1, we have

i = 0,1, |∇ i
xu(x, t) − ∇i

xu(x, t0)| ≤ η0, ∀|x| ≥ ε0.

Let

η0,3(ε0) = 1

2
min{ min|x|≥ε0

|u(x, t0)|, min|x|≥ε0
|∇u(x, t0)|},

then from (3.23), we have for η0 ∈ (0, η0,3] and |x| ≥ ε0,

|∇xu(x, t)|2equ(x,t) ≤ C|∇xu(x, t0)|2equ(x,t0) ≤ C|∇xû∗(x)|2eqû∗(x) ≤ C(ε0),

where û∗ is defined by (3.24). Therefore, if t0 ∈ [t0,3, T ), where t0,3 = t0,3(ε0) < T such 
that C(ε0) ≤ C

(T −t0,3)
2| ln(T −t0,3)| , we have proved (4.19) for t = t0 and |x| ≥ ε0. Since 

C
(T −t0)

2| ln(T −t0)| ≤ C
(T −t)2| ln(T −t)| for all t ∈ [t0, T ), we concludes that estimate (4.19) holds 

true for t ≥ t0 and |x| ≥ ε0. This concludes the proof of Lemma 4.10. �
From Lemma 4.10, we are ready to estimate the projection of 

(
G1
G2

)
on 

(
fn

gn

)
and 

(f̃n

g̃n

)
. In partic-

ular, we have the following.

Lemma 4.11 (Projection of 
(
G1
G2

)
on 

(
fn

gn

)
and 

(f̃n

g̃n

)
). Under the assumption of Lemma 4.10, we 

have
– For n = 0, 1, 2,

∣∣∣∣Pn,M

(
G1

G2

)∣∣∣∣+
∣∣∣∣P̃n,M

(
G1

G2

)∣∣∣∣≤ C

s2 . (4.20)

– For 3 ≤ n ≤ M ,
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∣∣∣∣Pn,M

(
G1

G2

)∣∣∣∣+
∣∣∣∣P̃n,M

(
G1

G2

)∣∣∣∣≤ CAn

s
n+2

2

. (4.21)

Moreover, we have the refined estimate

∣∣∣∣P2,M

(
G1

G2

)
− 2

s
θ2

∣∣∣∣≤ CA2

s3 . (4.22)

Proof. From (4.14), (4.15), (4.16), part (ii) of Proposition 3.3 and Lemma 2.4, we derive for 
n = 0, 1, 2,

|Pn,M

(
G1

G2

)
| + |P̃n,M

(
G1

G2

)
| ≤ C(A) ln s

s2
√

s
+ C(A)e−cs ≤ 1

s2 .

We can refine the estimate for P2,M by using the expansions (4.17) and (4.18) with k = 1 which 
reads as follows:

∣∣∣∣χ(y, s)

[
G1(
,y, s) + 2∇
 · ∇φ

φ

]∣∣∣∣≤ C(A,K0)

( |
|2
s

+ |y|2
s2 |
| + |∇
|2

)
,

∣∣∣∣χ(y, s)

[
G2(ϒ,y, s) + 2μ∇ϒ · ∇ψ

ψ

]∣∣∣∣≤ C(A,K0)

( |ϒ|2
s

+ |y|2
s2 |ϒ| + |∇ϒ|2

)
.

From these expansions, part (i) of Definition 3.1, decomposition 3.11 and the fact that |∇φ|
φ

+
|∇ψ |

ψ
≤ C|y|

s
for all y ∈R, we derive

P2,M

(
G1

G2

)
= −2θ2P2,M

(
(∇f2 · ∇φ)/φ

μ(∇g2 · ∇ψ)/ψ

)
+O

(
CA2

s3

)
,

= 4

(1 + μ)s
θ2P2,M

(
qy2

μpy2

)
+O

(
CA2

s3

)
= 2

s
θ2 +O

(
CA2

s3

)
,

which is the desired conclusion in (4.22).
For 3 ≤ n ≤ M , we note from Lemma 2.4 that it is enough to estimate �n(G1) and 

�̃n(G2) which directly implies the estimates for Pn,M

(
G1
G2

)
and P̃n,M

(
G1
G2

)
. Since the esti-

mates for �n(G1) and �̃n(G2) are similar, we only deal with �n(G1). From (4.16), we have ∫
|y|≥K0

√
s
G1hnρ1dy ≤ Ce−cs . We now use the expansion (4.17) for the estimates in the re-

gion |y| ≤ 2K0
√

s. To do so, let us expand G1(y, s) for |y| ≤ 2K0
√

s in power series of y for 

|y| ≤ 2K
√

s. We start with the term |∇φ|2
φj+1 
j for j ≥ 1. By the definition (2.33), we write

|∇φ|2
φj+1 =

M/2∑
k=0

ck

sk+2 y2(�∗)k+4−(j+1) +O
( |y|2

sM/2+3

)
=

M/2∑
m=1

c̃m

sm+1 y2m +O
( |y|2

sM/2+2

)
,

and from part (i) of Definition 3.1 and the decomposition (3.11),
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j =
[

M∑
i=0

αiy
i +O

( |y|M+1 + 1

sM/2+1

)]j

=
M∑
i=0

α̃iy
i +O

(
C(A)

|y|M+1 + 1

sM/2+1

)
,

with |α̃i | ≤ C(A)

s(i+1)/2 . Hence, we have

|∇φ|2
φj+1 
j =

M∑
m=2

dmym +O
(

C(A)
|y|M+1 + 1

sM/2+2

)
with |dm| ≤ C(A)

s
m+3

2

,

from which we directly obtain the estimate

∣∣∣∣�m

( |∇φ|2
φj+1 
j

)∣∣∣∣≤ C

s
m+2

2

for 3 ≤ m ≤ M.

A similar computation yields the same bound on the projection �m, 3 ≤ m ≤ M of the terms 
∇
·∇φ

φj 
j−1 (for j ≥ 1) and |∇
|2
φj−2 
j−2 (for j ≥ 2). This concludes the proof of (4.21) as well 

as Lemma 4.11. �
Proof of items (i)–(iii) of Proposition 4.1 We have estimated the projections Pn,M and P̃n,M of 
the all terms appearing in system (3.4). In particular, taking the projection of (3.4) on 

(
fn

gn

)
and (f̃n

g̃n

)
for n ≤ M , we obtain for all s ∈ [τ, τ1]:

– if n = 0 and n = 1, then

∣∣∣θ ′
n(s) −

(
1 − n

2

)
θn(s)

∣∣∣≤ C

s2 ,

which is the conclusion of part (i) of Proposition 4.1,
– if n = 2, then ∣∣∣∣θ ′

2(s) + 2

s
θ2(s)

∣∣∣∣≤ CA3

s3 ,

which is the conclusion of part (ii) of Proposition 4.1,
– if 3 ≤ n ≤ M , then

∣∣∣θ ′
n(s) −

(
1 − n

2

)
θn(s)

∣∣∣≤ CAn−1

s
n+1

2

,

∣∣∣θ̃ ′
n(s) +

(
1 + n

2

)
θ̃n(s)

∣∣∣≤ CAn−1

s
n+1

2

,

and n = 0, 1, 2,

∣∣∣θ̃ ′
n(s) +

(
1 + n

2

)
θ̃n(s)

∣∣∣≤ C

s2 .

Integrating these differential equations between τ and s yields the conclusion of part (iii) of 
Proposition 4.1.
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4.1.2. Control of the infinite dimensional part
We prove item (iv)–(v) of Proposition 4.1 in this part. We proceed in three parts:

– In the first part, we project system (3.4) using the projector �−,M . Recall that �−,M is the 
projector on the subspace of H where the spectrum is less than 1−M

2 . Unlike the previous part 
where we used the spectrum of H + M, in this step, we use the spectrum of H and consider 
M as a perturbation. This is enough since for M > 0 large enough (see (3.12)), the spectrum of 
H +M is fully negative.
– In the second part, we collect all the estimates obtained in the first step to write a system 
satisfied by 

(

−
ϒ−
)
, then we use a Gronwall’s inequality to get the conclusion of item (iv).

– In the third part, we prove item (v) through a parabolic regularity argument as in [35] (see also 
[34]) applied to the system for 

(

−
ϒ−
)
.

Part 1: projection �−,M of all the terms appearing in (3.4) In this part, we will find the main 
contribution to the projection �−,M of the various terms appearing in (3.4).

From the decomposition (3.11) and the fact that �−,M

(
fn

gn

)+ �−,M

(f̃n

g̃n

) = 0 for all n ≤ M , 
we immediately obtain

�−,M

[
∂s

(



ϒ

)
− (H +M)

(



ϒ

)]
= ∂s

(

−
ϒ−

)
− (

H +M
)(
−

ϒ−

)
.

As for the potential term, we have the following estimates:

Lemma 4.12 (Estimate of �−,M

(
V
(


ϒ

))
).

(i) For all s ≥ 1, we have∥∥∥∥�−,M(V1
 + V2ϒ)

1 + |y|M+1

∥∥∥∥
L∞(R)

≤
(

‖V1‖L∞(R) + C

s

)∥∥∥∥ 
−
1 + |y|M+1

∥∥∥∥
L∞(R)

+
(

‖V2‖L∞(R) + C

s

)∥∥∥∥ ϒ−
1 + |y|M+1

∥∥∥∥
L∞(R)

+
M∑

n=0

C

s
M+1−n

2

(|θn(s)| + |θ̃n(s)|),
∥∥∥∥�−,M(V3
 + V4ϒ)

1 + |y|M+1

∥∥∥∥
L∞(R)

≤
(

‖V3‖L∞(R) + C

s

)∥∥∥∥ 
−
1 + |y|M+1

∥∥∥∥
L∞(R)

+
(

‖V4‖L∞(R) + C

s

)∥∥∥∥ ϒ−
1 + |y|M+1

∥∥∥∥
L∞(R)

+
M∑

n=0

C

s
M+1−n

2

(|θn(s)| + |θ̃n(s)|).

(ii) For all A ≥ 1, there exists s8(A) ≥ 1 such that for all s ≥ s8(A), if 
(

(s)
ϒ(s)

) ∈ VA(s), then

∥∥∥∥�−,M(V1
 + V2ϒ)

1 + |y|M+1

∥∥∥∥ ∞
≤ ‖V1‖L∞(R)

∥∥∥∥ 
−
1 + |y|M+1

∥∥∥∥ ∞
L (R) L (R)
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+ ‖V2‖L∞(R)

∥∥∥∥ ϒ−
1 + |y|M+1

∥∥∥∥
L∞(R)

+ CAM

s
M+2

2

,

∥∥∥∥�−,M(V3
 + V4ϒ)

1 + |y|M+1

∥∥∥∥
L∞(R)

≤ ‖V3‖L∞(R)

∥∥∥∥ 
−
1 + |y|M+1

∥∥∥∥
L∞(R)

+ ‖V4‖L∞(R)

∥∥∥∥ ϒ−
1 + |y|M+1

∥∥∥∥
L∞(R)

+ CAM

s
M+2

2

.

Proof. See Lemma 5.12 in [18] for a similar proof. �
For the nonlinear term, we claim the following:

Lemma 4.13 (Estimate of �−,M

((
q
p

)

ϒ

)
). Let 

(

(s)
ϒ(s)

) ∈ VA(s). Then for all A ≥ 1 and K0 ≥ 1

introduced in (3.8), there exists s9(A, K0) ≥ 1 such that for all s ≥ s9(A, K0), we have

∥∥∥∥∥∥
�−,M

[(
q
p

)

ϒ

]
1 + |y|M+1

∥∥∥∥∥∥
L∞(R)

≤ CA2(M+2)

s
M+3

2

.

Proof. From part (i) of Proposition 3.3, we have the estimate

|
(y, s)ϒ(y, s)| ≤ CA2(M+2)

s
s− M+1

2 (|y|M+1 + 1), ∀y ≥ √
s.

For |y| ≤ √
s, we use the decomposition 3.11 and part (i) of Definition 3.1 to write


ϒ =
[

M∑
i=0

αiy
i + 
−

]⎡⎣ M∑
j=0

βjy
j + ϒ−

⎤
⎦

=
M∑

i+j=0

αiβjy
i+j +O

(
A2(M+1)s− M+3

2 (|y|M+1 + 1)
)

, ∀|y| ≤ √
s,

where we used the fact that |αi | + |βi | ≤ CAis− i+1
2 . Note that for all polynomial functions f (y)

of degree M , we have �−,Mf (y) = 0. The conclusion then follows from part (iv) of Lemma A.2. 
This ends the proof of Lemma 4.13. �

For the error term, we use Lemma 4.8 to get the following estimates:

Lemma 4.14 (Estimate for �−,M

(
R1
R2

)
.). The functions R1(y, s) and R2(y, s) defined by (3.7)

satisfy

∥∥∥∥∥�−,M

[
Ri(y, s)

]
1 + |y|M+1

∥∥∥∥∥
L∞(R)

≤ C

s
M+3

2

.
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Proof. Applying Lemma 4.8 with m = M+2
2 , we write for all |y| ≤ √

s and s ≥ 1,

∣∣∣∣∣∣Ri(y, s) −
M/2∑
k=1

1

sk+1 Ri,k(y)

∣∣∣∣∣∣≤
C(1 + |y|M+2)

s
M+4

2

≤ C(1 + |y|M+1)

s
M+3

2

.

Since deg(Ri,k) = 2k ≤ M , we have �−,MRi,k = 0. The conclusion simply follows by using part 
(iv) of Lemma A.2. This ends the proof of Lemma 4.14. �

We now turn to the estimate for the nonlinear gradient term. We claim the following:

Lemma 4.15 (Estimates for �−,M

(
G1
G2

)
). Under the assumption of Lemma 4.10, we have

for i = 1,2,

∥∥∥∥∥�−,M

[
Gi(y, s)

]
1 + |y|M+1

∥∥∥∥∥
L∞(R)

≤ C(A)

s
M+3

2

.

Proof. We only deal with the G1 term because the estimate for G2 follows similarly. From 
(4.14), (4.16) and part (i) of Proposition 3.3, we see that

‖G1(s)‖L∞(R) ≤ C(A)

s
.

This immediately yields the estimate

|G1(y, s)| ≤ C(A)s− M+3
2 (|y|M+1 + 1), ∀|y| ≥ √

s.

For |y| ≤ √
s, we recall that for all polynomial functions f (y) of degree M , we have 

�−,Mf (y) = 0. Hence, the conclusion follows once we show that there exists a polynomial 
function G1,M of degree M in y such that

|G1(y, s) − G1,M(y, s)| ≤ C(A)s− M+3
2 (|y|M+1 + 1), ∀|y| ≤ √

s. (4.23)

In particular, we take

G1,M = �+,M

⎧⎨
⎩

M∑
j=1

1

j !
[
Dj

|∇φ|2
φj+1 
j + Dj−1

2∇
 · ∇φ

φj

j−1 + Dj−2

2|∇
|2
φj−2 
j−2

]⎫⎬
⎭ .

Arguing as in the proof of Lemma 4.11, we deduce that the coefficient of degree k ≥ M + 1 of 
the polynomial

M∑
j=1

1

j !
[
Dj

|∇φ|2
φj+1 
j + Dj−1

2∇
 · ∇φ

φj

j−1 + Dj−2

2|∇
|2
φj−2 
j−2

]
− G1,M

is controlled by CAk

k+2 . Hence, for |y| ≤ √
s,
s 2
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∣∣∣∣∣∣
M∑

j=1

1

j !
[
Dj

|∇φ|2
φj+1 
j + Dj−1

2∇
 · ∇φ

φj

j−1 + Dj−2

2|∇
|2
φj−2 
j−2

]
− G1,M

∣∣∣∣∣∣
≤ CAM+2

s
M+3

2

(|y|M+1 + 1).

According to the expansion (4.17), it remains to control |
|M+1

s
+ |y|2

s2 |
|M + |
|M−1|∇
|2. 

From Proposition 3.3, we have |
(y, s)| ≤ C(A) ln s

s2 (|y|M+1 + 1) and |
(y, s)| + |∇
(y, s)| ≤
C(A)√

s
for all y ∈R. This implies that for |y| ≤ √

s,

|
|M+1

s
+ |y|2

s2 |
|M + |
|M−1|∇
|2

≤ C(A)
(
s− M

2 −1 + s− M−1
2 −1 + s− M−2

2 −1
) ln s

s2 (|y|M+1 + 1)

≤ C(A)s− M+3
2 (|y|M+1 + 1).

This concludes the proof of (4.23) as well as Lemma 4.15. �
Part 2: proof of item (iv) of Proposition 4.1 Applying the projection �−,M to system (3.4) and 
using the various estimates given in the first step, we see that 
− and ϒ− satisfy the following 
system:

∂s
− = L1
− + q

p
ϒ− + H1,−(y, s) (4.24)

∂sϒ− = Lμϒ− + p

q

− + H2,−(y, s), (4.25)

where H1,− and H2,− satisfy

∥∥∥∥ H1,−(y, s)

1 + |y|M+1

∥∥∥∥
L∞(R)

≤ ‖V1(s)‖L∞(R)

∥∥∥∥ 
−
1 + |y|M+1

∥∥∥∥
L∞(R)

+ ‖V2(s)‖L∞(R)

∥∥∥∥ ϒ−
1 + |y|M+1

∥∥∥∥
L∞(R)

+ CAM

s
M+2

2

+ C(A)

s
M+3

2

,

and ∥∥∥∥ H2,−(y, s)

1 + |y|M+1

∥∥∥∥
L∞(R)

≤ ‖V3(s)‖L∞(R)

∥∥∥∥ 
−
1 + |y|M+1

∥∥∥∥
L∞(R)

+ ‖V4(s)‖L∞(R)

∥∥∥∥ ϒ−
1 + |y|M+1

∥∥∥∥
L∞(R)

+ CAM

s
M+2

2

+ C(A)

s
M+3

2

.

Using the integral formulation associated to the linear operator Lη with η ∈ {1, μ}, we write for 
all s ∈ [τ, τ1],
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−(s) = e(s−τ)L1
−(τ ) +
s∫

τ

e(s−s′)L1

(
q

p
ϒ−(s′) + H1,−(s′)

)
ds′

ϒ−(s) = e(s−τ)Lμϒ−(τ ) +
s∫

τ

e(s−s′)Lμ

(
p

q

−(s′) + H2,−(s′)

)
ds′.

Using part (iii) of Lemma A.2, we estimate

∥∥∥∥ 
−(s)

1 + |y|M+1

∥∥∥∥
L∞

≤ e− M+1
2 (s−τ)

∥∥∥∥ 
−(τ )

1 + |y|M+1

∥∥∥∥
L∞

+
s∫

τ

e− M+1
2 (s−s′)

{
q

p

∥∥∥∥ ϒ−(s′)
1 + |y|M+1

∥∥∥∥
L∞

+
∥∥∥∥ H1,−(y, s)

1 + |y|M+1

∥∥∥∥
L∞

}
ds′,

and ∥∥∥∥ ϒ−(s)

1 + |y|M+1

∥∥∥∥
L∞

≤ e− M+1
2 (s−τ)

∥∥∥∥ ϒ−(τ )

1 + |y|M+1

∥∥∥∥
L∞

+
s∫

τ

e− M+1
2 (s−s′)

{
p

q

∥∥∥∥ 
−(s′)
1 + |y|M+1

∥∥∥∥
L∞

+
∥∥∥∥ H2,−(y, s)

1 + |y|M+1

∥∥∥∥
L∞

}
ds′.

Introducing λ(s) =
∥∥∥ 
−(s)

1+|y|M+1

∥∥∥
L∞ +

∥∥∥ ϒ−(s)

1+|y|M+1

∥∥∥
L∞ , then we have

λ(s) ≤ e− M+1
2 (s−τ)λ(τ ) +

s∫
τ

e− M+1
2 (s−s′)

(
p

q
+ q

p
+

4∑
i=1

‖Vi‖L∞

)
λ(s′)ds′

+ C

s∫
τ

e− M+1
2 (s−s′)

(
C(A)

s′ M+3
2

+ AM

s′ M+2
2

)
ds′.

Since we have already fixed M in (3.12), we then apply Lemma A.1 to deduce that

e
M+1

2 sλ(s) ≤ e
M+1

4 (s−τ)e
M+1

2 τ λ(τ ) + Ce
M+1

2 s AM

s
M+2

2

,

which concludes the proof of part (iv) of Proposition 4.1.

Part 3: proof of item (v) of Proposition 4.1 In this part, we use the parabolic regularity of the 
semigroup associated to the linear operator Lη for η ∈ {1, μ} to prove item (v) of Proposition 4.1. 
Since the controls of ∇
− and ∇ϒ− are the same, we only deal with ∇
−. By (4.24) and part 
(i) of Definition 3.1, we have

∂s
− = L1
− + H̃1,−,
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where

|H̃1,−(y, s)| ≤ CAM+1

s
M+2

2

(|y|M+1 + 1), ∀y ∈ R.

We then write


−(s) = e(s−s0)L1
−(s0) +
s∫

s0

e(s−s′)L1H̃1,−(s′)ds′,

and

|∇
−(s)| ≤ |∇e(s−s0)L1
−(s0)| +
s∫

s0

∣∣∣∇e(s−s′)L1H̃1,−(s′)
∣∣∣ds′.

We consider two cases:
– Case 1: s ≤ s0 + 1. We use parts (v)–(vi) of Lemma A.2 and part (i) of Proposition 3.4 to 
estimate

|∇
−(y, s)| ≤ C

s
M+2

2
0

(|y|M+1 + 1) + CAM+1

s
M+2

2

(|y|M+1 + 1)

s∫
s0

ds′√
1 − e−(s−s′)

≤ CAM+1

s
M+2

2

(|y|M+1 + 1), ∀y ∈R.

– Case 2: s > s0 + 1. We write for s > s0 + 1,

∇
−(s) = ∇eL1
−(s − 1) +
s∫

s−1

∇
(
e(s−s′)L1H̃1,−(s′)

)
ds′.

From part (i) of Definition 3.1, we have

|
−(y, s − 1)| ≤ AM+1

(s − 1)
M+2

2

(|y|M+1 + 1), ∀y ∈ R,

from which and part (vi) of Lemma A.2, we estimate

|∇
−(y, s)| ≤ CAM+1

(s − 1)
M+2

2
√

1 − e−1
(|y|M+1 + 1) + CAM+1

s
M+2

2

(|y|M+1 + 1)

s∫
s0

ds′√
1 − e−(s−s′)

≤ CAM+1

s
M+2

2

(|y|M+1 + 1), ∀y ∈R.

This concludes the proof of item (v) of Proposition 4.1.
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4.1.3. Control of the outer part
We prove part (vi) of Proposition 4.1 in this subsection. Let us write from (3.4) a system 

satisfied by 
̃e = (1 − χ(2y, s))
 and ϒ̃e = (1 − χ(2y, s))ϒ (χ is defined by (3.8)):

∂s
̃e = L1
̃e − 
̃e + (1 − χ(2y, s))
(
F̃1(y, s) + R1(y, s) + G1(y, s)

)
− 
(s)

(
∂sχ(2y, s) + �χ(2y, s) + 1

2
y · ∇χ(2y, s)

)
+ 2div(
∇χ(2y, s)),

∂sϒ̃e = Lμϒ̃e − ϒ̃e + (1 − χ(2y, s))
(
F̃2(y, s) + R2(y, s) + G2(y, s)

)
− ϒ(s)

(
∂sχ(2y, s) + μ�χ(2y, s) + 1

2
y · ∇χ(2y, s)

)
+ 2μdiv(ϒ∇χ(2y, s)),

where

1

q
F̃1 = 1

p
F̃2 = 
ϒ + ψ
 + φϒ.

Using the semigroup representation of Lη with η ∈ {1, μ} and parts (i)–(ii) of Lemma A.2, we 
write for all s ∈ [τ, τ1],

‖
̃e(s)‖L∞ ≤ e−(s−τ)‖
̃e(τ )‖L∞

+
s∫

τ

e−(s−s′)
(∥∥∥(1 − χ(2y, s′))F̃1(s

′)
∥∥∥

L∞ + ∥∥(1 − χ(2y, s′))R1(s
′)
∥∥

L∞
)

ds′

+
s∫

τ

e−(s−s′)
∥∥∥∥
(s′)

(
∂sχ(2y, s′) + �χ(2y, s′) + 1

2
y · ∇χ(2y, s′)

)∥∥∥∥
L∞

ds′

+
s∫

τ

e−(s−s′) C√
1 − e−(s−s′)

‖
(s′)∇χ(2y, s′)‖L∞ds′,

and

‖ϒ̃e(s)‖L∞ ≤ e−(s−τ)‖ϒ̃e(τ )‖L∞

+
s∫

τ

e−(s−s′)
(∥∥∥(1 − χ(2y, s′))F̃2(s

′)
∥∥∥

L∞ + ∥∥(1 − χ(2y, s′))R2(s
′)
∥∥

L∞
)

ds′

+
s∫

τ

e−(s−s′)
∥∥∥∥ϒ(s′)

(
∂sχ(2y, s′) + μ�χ(2y, s′) + 1

2
y · ∇χ(2y, s′)

)∥∥∥∥
L∞

ds′

+
s∫

τ

e−(s−s′) C√
1 − e−(s−s′)

‖ϒ(s′)∇χ(2y, s′)‖L∞ds′.
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From the definition (3.8) of χ and part (i) of Proposition 3.3, we have

∥∥∥∥
(s′)
(

∂sχ(2y, s′) + �χ(2y, s′) + 1

2
y · ∇χ(2y, s′)

)∥∥∥∥
L∞

+
∥∥∥∥ϒ(s′)

(
∂sχ(2y, s′) + μ�χ(2y, s′) + 1

2
y · ∇χ(2y, s′)

)∥∥∥∥
L∞

≤ C
(
‖
(s′)‖

L∞(|y|≤K0
√

s′) + ‖ϒ(s′)‖
L∞(|y|≤K0

√
s′)

)
≤ CAM+1

√
s′ ,

and

‖
(s′)∇χ(2y, s′)‖L∞ + ‖ϒ(s′)∇χ(2y, s′)‖L∞

≤ C

K0
√

s′
(
‖
(s′)‖

L∞(|y|≤K0
√

s′) + ‖ϒ(s′)‖
L∞(|y|≤K0

√
s′)

)
≤ CAM+1

s′ .

Note from the proof of Lemma 4.8 that

∥∥R1(s
′)
∥∥

L∞ + ∥∥R2(s
′)
∥∥

L∞ ≤ C

s′ .

From the definitions (2.34) of φ and ψ , we see that |(1 − χ(2y, s′))φ(y, s′)| + |(1 −
χ(2y, s′))ψ(y, s′)| ≤ 1

4 for K0 large enough. By part (i) of Proposition 3.3, we derive

∥∥∥(1 − χ(2y, s′))F̃1(s
′)
∥∥∥

L∞ +
∥∥∥(1 − χ(2y, s′))F̃2(s

′)
∥∥∥

L∞ ≤ 1

2

(
‖
̃e(s

′)‖L∞ + ‖ϒ̃e(s
′)‖L∞

)
,

for K0 large enough. From (4.16), we have

‖(1 − χ(2y, s′))G1(s
′)‖L∞ + ‖(1 − χ(2y, s′))G2(s

′)‖L∞ ≤ C

s′ .

Let λ(s) = ‖
̃e(s)‖L∞ + ‖ϒ̃e(s)‖L∞ , then we end up with

λ(s) ≤ e−(s−τ)λ(τ )

+
s∫

τ

e−(s−s′)
(

1

2
λ(s′) + CAM+1

√
s′ + CAM+1

s′√1 − e−(s−s′)

)
ds′.

Applying Lemma A.1 yields

λ(s) ≤ e− 1
2 (s−τ)λ(τ ) + CAM+1

√
s

(s − τ + √
s − τ).

Since supp(1 − χ(y, s)) ⊂ supp(1 − χ(2y, s)), we have ‖
e‖L∞ ≤ ‖
̃e‖L∞ and ‖ϒe‖L∞ ≤
‖ϒ̃e‖L∞ . This concludes the proof of part (vi) of Proposition 4.1.
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4.2. A priori estimates in D2 and D3

In this section, we estimate directly the solution of system (1.1) through a classical parabolic 
regularity argument. Note that this part corresponds to Section 4.1 in [20] (see also Section 4 
in [26]). Note also that the mentioned papers deal with a single equation, however, it can be 
naturally extended to system (1.1) without any difficulties. For the sake of completeness, we will 
sketch the proof.

We have the following a priori estimates in D2.

Proposition 4.16 (A priori estimate in D2). There exists K0,3 > 0 such that for all K0 ≥ K0,3, 
δ1 ≤ 1, ξ0 � 1 and C∗

0,1 > 0, C∗
0,2 > 0, we have the following property: Assume that (ũ, ṽ) is a 

solution to the system

∂τ ũ = �ũ + epṽ, ∂τ ṽ = �ṽ + eqũ, (4.26)

for τ ∈ [τ1, τ2] with 0 ≤ τ1 ≤ τ2 ≤ 1. Assume in addition, for all τ ∈ [τ1, τ2],

(i) for all |ξ | ≤ 2ξ0,

|ũ(ξ, τ1) − û(τ1)| + |ṽ(ξ, τ1) − v̂(τ1)| ≤ δ1, |∇ũ(ξ, τ1)| + |∇ṽ(ξ, τ1)| ≤
C∗

0,1

ξ0
,

where û(τ ) and v̂(τ ) are given by (3.21),

(ii) for all |ξ | ≤ 7
4ξ0, |∇ũ(ξ, τ)| + |∇ṽ(ξ, τ)| ≤ C∗

0,2
ξ0

,

(iii) for all |ξ | ≤ 7
4ξ0, ũ(ξ, τ) ≤ 1

2 û(τ ) and ṽ(ξ, τ) ≤ 1
2 v̂(τ ).

Then, for ξ0 ≥ ξ0,3(C
∗
0 ), there exists ε = ε(K0, C∗

0,2, δ1, ξ0) such that for all |ξ | ≤ ξ0 and τ ∈
[τ1, τ2],

|ũ(ξ, τ ) − û(τ )| + |ṽ(ξ, τ ) − v̂(τ )| ≤ ε, |∇ũ(ξ, τ )| + |∇ṽ(ξ, τ )| ≤ 2C∗
0,1

ξ0
,

where ε → 0 as (δ1, ξ0) → (0, +∞).

Proof. We first deal with the gradient estimate. Let θ = |∇ũ|2 + |∇ṽ|2, then we write from 
(4.26),

∂τ θ ≤ �θ + Cθ,

where we used the fact that 2∇f · ∇(�f ) ≤ �(|∇f |2) and the boundedness of epṽ and eqũ.
Consider ϕ1 ∈ C∞(RN) such that ϕ1 ∈ [0, 1], ϕ1(ξ) = 1 for |ξ | ≤ 3

2ξ0 and ϕ1(ξ) = 0 for 
|ξ | ≥ 7

4ξ0, |∇ϕ1(ξ)| ≤ 1
ξ0

and |�ϕ1(ξ)| ≤ 1
ξ2

0
. Then, θ1 = ϕ1θ satisfies

∂τ θ1 ≤ �θ1 + C(C∗
0,2)ξ

−2
0 1{ 3

2 ξ0≤|ξ |≤2ξ0} + Cθ1.

Let θ2 = e−Cτ θ1, we write
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∂τ θ2 ≤ �θ2 + C(C∗
0,2)ξ

−2
0 1{ 3

2 ξ0≤|ξ |≤2ξ0}, 0 ≤ θ2(τ1) ≤ C∗
0,1

2

ξ2
0

.

By the maximum principle, we deduce

∀|ξ | ≤ 5

4
ξ0, τ ∈ [τ1, τ2], θ(ξ, τ ) ≤ C∗

0,1
2 + C(C∗

0,2)
2e−C′ξ2

0

ξ2
0

≤ 2C∗
0,1

ξ2
0

,

for ξ0 ≥ ξ0,3(C
∗
0,2), which yields the conclusion.

We now turn to the estimates on ũ and ṽ. Let us consider ũ1 and ṽ1 a solution of system (4.26)
such that for all |ξ | ≤ 2 and τ ∈ [τ1, τ2]:

|ũ1(ξ, τ1) − û(τ1)| + |ṽ1(ξ, τ1) − v̂(τ1)| ≤ δ1, |∇ũ1(ξ, τ )| + |∇ṽ1(ξ, τ )| ≤ ε,

where û and v̂ are defined as in (3.21). Let us show that for all |ξ | ≤ 2 and τ ∈ [τ1, τ2]:

|ũ1(ξ, τ ) − û(τ )| + |ṽ1(ξ, τ ) − v̂(τ )| ≤ C(K0)ε + δ1,

where C(K0) is independent from ε.
We have for all τ ∈ [τ1, τ2],

ũ1(0, τ ) = 1

|B2(0)|
∫

|ξ |≤2

ũ1(ξ, τ )dξ + ũ2(τ ), ṽ1(0, τ ) = 1

|B2(0)|
∫

|ξ |≤2

ṽ1(ξ, τ )dξ + ṽ2(τ ),

and

eqũ1(0,τ ) = 1

|B2(0)|
∫

|ξ |≤2

eqũ1(ξ,τ )dξ + ũ3(τ ), epṽ1(0,τ ) = 1

|B2(0)|
∫

|ξ |≤2

epṽ1(ξ,τ )dξ + ṽ3(τ ),

where |B2(0)| is the volume of the sphere of radius 2 in RN , ‖ũi‖L∞ +‖ṽi‖L∞ ≤ Cε for i = 2, 3.
For ε small, we consider in the distribution sense,

Ũ (τ ) = 1

|B2(0)|
∫

|ξ |≤2

ũ1(ξ, τ )dξ, Ṽ (τ ) = 1

|B2(0)|
∫

|ξ |≤2

ṽ1(ξ, τ )dξ,

then we have from (4.26),

epṼ − Cε ≤ dŨ

dτ
≤ epṼ + Cε, eqŨ − Cε ≤ dṼ

dτ
≤ epŨ + Cε,

and

|Ũ (τ1) − û(τ1)| + |Ṽ (τ1) − v̂(τ1)| ≤ Cε + δ1.

We obtain by a classical a priori estimates that for all τ ∈ [τ1, τ2], |Ũ (τ ) − û(τ )| + |Ṽ (τ ) −
v̂(τ )| ≤ C(K0)ε + δ1 (since C1 ≤ |û(τ )| + |v̂(τ )| ≤ C′ (K0)). Therefore, for all |ξ | ≤ 2 and 
1
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τ ∈ [τ1, τ2], we have |ũ(ξ, τ) − û(τ )| + |ṽ(ξ, τ) − v̂(τ )| ≤ C(K0)ε + δ1. Applying this result 
to ũ′(ξ, τ) = ũ(ξ − ξ̄0, τ) and ṽ′(ξ, τ) = ṽ(ξ − ξ̄0, τ) for |ξ̄0| ≤ ξ0 − 2 with ξ0 � 1, from the 
assumption and the gradient estimates proved in the previous step, i.e. |∇ũ(ξ, τ)| +|∇ṽ(ξ, τ)| ≤
2C∗

0,1
ξ0

, we end-up with

∀|ξ | ≤ ξ0, τ ∈ [τ1, τ2], |ũ(ξ, τ ) − û(τ )| + |ṽ(ξ, τ ) − v̂(τ )| ≤ ε,

where ε = ε(δ1, ξ0) → 0 as (δ1, ξ0) → (0, +∞). This concludes the proof of Proposi-
tion 4.16. �

For the a priori estimates in D3, we have the following:

Proposition 4.17 (A priori estimate in D3). For all ε > 0, ε0 > 0, σ0 > 0, there exists 
t0,4(ε, ε0, σ0) < T such that for all t0 ∈ [t0,4, T ), if (u, v) is a solution of (1.1) on [t0, t∗] for 
some t∗ ∈ [t0, T ) satisfying

(i) for all |x| ∈ [ ε0
6 ,

ε0
4

]
and t ∈ [t0, t∗],

i = 0,1, |∇ iu(x, t)| + |∇ iv(x, t)| ≤ σ0, (4.27)

(ii) for |x| ≥ ε0
6 , u(x, t0) = û∗(x) and v(x, t0) = v̂∗(x) where û∗ and v̂∗ are defined in (3.24)

and (3.25) respectively.

Then for all |x| ∈ [ ε0
4 ,+∞)

and t ∈ [t0, t∗],

i = 0,1, |∇ iu(x, t) − ∇ iu(x, t0)| + |∇ iv(x, t) − ∇iv(x, t0)| ≤ ε. (4.28)

Proof. The proof follows from a standard parabolic regularity argument. We refer the interested 
reader to Proposition 4.3 in [20] for a similar proof. �
4.3. Conclusion of the proof of Proposition 3.6

In this subsection we complete the proof of Proposition 3.6. We will show that we can choose 
the parameters K0, δ0, C0 independently from A, where A is fixed large enough. Then we choose 
the parameter ε0, α0, η0, s0 in term of A such that all the bounds given in Definition 3.1 are 
improved, except for the components θ0 and θ1. This concludes the proof of part (i) of Proposi-
tion 3.6. Part (ii) is just a direct consequence of the dynamics on the components θ0 and θ1 given 
in Proposition 4.1.

– Proof of part (i) of Proposition 3.6. For the proof of the improved bounds in D1, we have the 
following: for all s ∈ [s0, s1],

‖
e(s)‖L∞(R) + ‖ϒe(s)‖L∞(R) ≤ AM+2

2
√

s
,

∥∥∥∥ 
−(y, s)

1 + |y|M+1

∥∥∥∥ ∞
+
∥∥∥∥ ϒ−(y, s)

1 + |y|M+1

∥∥∥∥ ∞
≤ AM+1

M+2 ,

L (R) L (R) 2s 2
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∥∥∥∥∇
−(y, s)

1 + |y|M+1

∥∥∥∥
L∞(R)

+
∥∥∥∥ ∇ϒ−(y, s)

1 + |y|M+1

∥∥∥∥
L∞(R)

≤ AM+2

2s
M+2

2

,

|θj (s)| ≤ Aj

2s
j+1

2

, |θ̃j (s)| ≤ Aj

2s
j+1

2

for 3 ≤ j ≤ M,

|θ̃i (s)| ≤ A2

2s2 for i = 0,1,2, |θ2(s)| < A4 ln s

s2 .

Since the proof of these estimates uses the same argument as in Section 5.2.1 of [18] through the 
dynamics of the solution given in Proposition 4.1, therefore we omit it here.

For the improved control on D2, we use the following result:

Lemma 4.18. Under the hypothesis of Proposition 3.6, we have for all

|x| ∈
[
K0

4

√
(T − t∗)| ln(T − t∗)|, ε0

]
,

(i) For all |ξ | ≤ 7
4α0

√| lnσ(x)| and τ ∈
[
max

{
0,

t0−t (x)
σ (x)

}
,

t∗−t (x)
σ (x)

]
,

|∇ξ ũ(x, ξ, τ )| + |∇ξ ṽ(x, ξ, τ )| ≤ 2C0√| lnσ(x)| , ũ(x, ξ, τ ) ≤ 1

2
û(τ ), ṽ(x, ξ, τ ) ≤ 1

2
v̂(τ ).

(ii) For all |ξ | ≤ 2α0
√| lnσ(x)| and τ = max

{
0,

t0−t (x)
σ (x)

}
and for all δ1 ≤ 1,

|ũ(x, ξ, τ ) − û(τ )| + |ṽ(x, ξ, τ ) − v̂(τ )| ≤ δ1, |∇ξ ũ(x, ξ, τ )| + |∇ξ ṽ(x, ξ, τ )| ≤ C0

4
√| lnσ(x)| .

Proof. See Lemma 4.4 in [26] for an analogous proof. �
From Lemma 4.18, we apply Proposition 4.16 with C∗

0,1 = C0
4 , C∗

0,2 = 2C0, ξ0 =
α0

√| lnσ(ε0)| for α0 ∈ (0, 1) to derive

|ũ(x, ξ, τ∗) − û(τ∗)| + |ṽ(x, ξ, τ∗) − v̂(τ∗)| ≤ δ0

2
,

|∇ξ ũ(x, ξ, τ∗)| + |∇ξ ṽ(x, ξ, τ∗)| ≤ C0

2
√| lnσ(x)| ,

which concludes the improved control in D2.
For the proof of the improved bounds on D3, we note from the choice of initial data (3.23)

that the hypothesis of Proposition 4.17 holds. We then apply Proposition 4.17 with ε = η0/2 to 
obtain the estimate for all t ∈ [t0, t∗] and |x| ≥ ε0

4 ,

i = 0,1, |∇ iu(x, t) − ∇ iu(x, t0)| + |∇ iv(x, t) − ∇iv(x, t0)| ≤ η0

2
.

This completes the proof of part (i) of Proposition 3.6.
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– Proof of part (ii) of Proposition 3.6. This is just a consequence of the dynamics of the com-
ponents θ0 and θ1. Indeed, from part (i) of Proposition 3.6, we know that for n = 0 or 1 and 
ω = ±1, we have θn(s1) = ω A

s2
1

. From part (i) of Proposition 4.1, we see that

ωθ ′
n(s1) ≥

(
1 − n

2

)
ωθn(s1) − C

s2
1

≥ (1 − n/2)A − C

s2
1

.

Taking A large enough gives ωθ ′
n(s1) > 0, which means that θn is traversal outgoing to the 

bounding curve s �→ ωAs−2 at s = s1. This completes the proof of Proposition 3.6. �
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Appendix A. Some technical results used in the proof of Theorem 1.1.

The following lemma is an integral version of Gronwall’s inequality:

Lemma A.1 (A Gronwall’s inequality). If λ(s), α(s) and β(s) are continuous defined on [s0, s1]
such that

λ(s) ≤ λ(s0) +
s∫

s0

α(τ)λ(τ)dτ +
s∫

s0

β(τ)dτ, s0 ≤ s ≤ s1,

then

λ(s) ≤ exp

⎛
⎝ s∫

s0

α(τ)dτ

⎞
⎠
⎡
⎣λ(s0) +

s∫
s0

β(τ) exp

⎛
⎝−

τ∫
s0

α(τ ′)dτ ′
⎞
⎠dτ

⎤
⎦ .

Proof. See Lemma 2.3 in [21] for an example of the proof. �
In the following lemma, we recall some linear regularity estimates of the linear operator Lη

defined in (1.24):

Lemma A.2 (Properties of the semigroup eτLη ). The kernel eτLη (y, x) of the semigroup eτLη

is given by

eτLη (y, x) = 1[
4π(1 − e−τ )

]N/2 exp

(
−|ye−τ/2 − x|2

4η(1 − eτ )

)
, ∀τ > 0, (A.1)

and eτLη is defined by
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eτLηg(y) =
∫
RN

eτLη (y, x)g(x)dx. (A.2)

We have the following estimates:

(i) 
∥∥∥eτLηg

∥∥∥
L∞(RN)

≤ ‖g‖L∞(RN) for all g ∈ L∞(RN).

(ii) 
∥∥∥eτLη div(g)

∥∥∥
L∞(RN)

≤ C√
1−e−τ

‖g‖L∞(RN) for all g ∈ L∞(RN).

(iii) If |g(x)| ≤ c(1 + |x|M+1) for all x ∈R
N , then∣∣∣eτLη�−,M(g(y))

∣∣∣≤ Cce− (M+1)τ
2 (1 + |y|M+1), ∀y ∈R

N.

(iv) For all k ≥ 0, we have∥∥∥∥ �−,M(g)

1 + |y|M+k

∥∥∥∥
L∞(RN)

≤ C

∥∥∥∥ g

1 + |y|M+k

∥∥∥∥
L∞(RN)

.

(v) If |∇g(x)| ≤ D(1 + |x|m) for all x ∈R
N , then

|∇
(
eτLηg

)
(y)| ≤ CDe

τ
2 (1 + |y|m), ∀y ∈R

N.

(vi) If |g(x)| ≤ D(1 + |x|m) for all x ∈R
N , then

|∇
(
eτLηg

)
(y)| ≤ CD

e
τ
2√

1 − e−τ
(1 + |y|m), ∀y ∈ R

N.

Proof. The expressions of eτLη (y, x) and eτLη are given in [6], page 554. For item (i)–(ii) and 
(v)–(vi), see Lemma 4.15 in [35]. For item (iii)–(iv), see Lemmas A.2 and A.3 in [23]. �
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