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Abstract

This paper provides an upper bound for the invariance pressure of control sets with nonempty interior 
and a lower bound for sets with finite volume. In the special case of the control set of a hyperbolic linear 
control system on Rd this yields an explicit formula. Further applications to linear control systems on Lie 
groups and to inner control sets are discussed.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

The notion of invariance pressure generalizes invariance entropy by adding potentials f on 
the control range. It has been introduced and analyzed in Colonius, Cossich and Santana [5,6]. 
Zhong and Huang [18] show that invariance pressure can be characterized as a dimension-like 
notion within the framework due to Pesin. A basic reference for invariance entropy is Kawan’s 
monograph [16]; here also the relation to minimal data rates is explained which gives the main 
motivation from applications. Further references include the seminal paper Nair, Evans, Mareels 
and Moran [17] as well as Colonius and Kawan [7] and Da Silva and Kawan [11], [12]. In the 
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latter paper, robustness properties in the hyperbolic case are proved. Huang and Zhong [14] show 
that several generalized notions of invariance entropy fit into the dimension-theoretic framework.

The main results of the present paper are upper and lower bounds for the invariance pressure 
of compact subsets K in a control set D with nonvoid interior and compact closure as well as a 
formula for the invariance pressure in the case of hyperbolic linear control systems on Rd where 
a unique control set with nonvoid interior exists. We also give applications for inner control 
sets and for certain linear systems on Lie groups. Invariance entropy of these systems has been 
analyzed by Da Silva [9].

Section 2 collects results on linearization of control systems and on the notion of invariance 
pressure. Upper and lower bounds for invariance pressure are given in Sections 3 and 4, respec-
tively. Section 5 presents a formula for the invariance pressure of linear control systems on Rd

and Section 6 discusses applications to linear systems on Lie groups and for inner control sets.

2. Preliminaries

In this section we first recall basic notions for control systems on manifolds and their lin-
earization. Then the concepts of invariance pressure and outer invariance pressure are presented 
as well as some of their properties.

2.1. Control systems and linearization

Throughout the paper M will denote a smooth manifold, that is, a connected, second-
countable, topological Hausdorff manifold endowed with a C∞ differentiable structure. A 
continuous-time control system on a smooth manifold M is a family of ordinary differential 
equations

ẋ(t) = F(x(t),ω(t)),ω ∈ U , (1)

on M which is parametrized by measurable functions ω : R → Rm, ω(t) ∈ U ⊂ Rm almost 
everywhere, called controls forming the set U of admissible control functions, where U ⊂ Rm

is a compact set, the control range. The function F : M × Rm → T M is a C1-map such that 
for each u ∈ U , Fu(·) := F(·, u) is a smooth vector field on M . For each x ∈ M and ω ∈ U , 
we suppose that there exists an unique solution ϕ(t, x, ω) which is defined for all t ∈ R. We 
usually refer to the solution ϕ(·, x, ω) as a trajectory of x with control function ω and write 
ϕt (x, ω) = ϕ(t, x, ω) where convenient. We need several notions characterizing controllability 
properties of subsets of the state space M of system (1). For x ∈ M and t > 0, the set of points 
reachable from x up to time t and the set of points controllable to x within time t are given 
by

O+≤t (x) := {y ∈ M; there are s ∈ [0, t] and ω ∈ U with ϕ(s, x,ω) = y},

and

O− (x) := {y ∈ M; there are s ∈ [0, t] and ω ∈ U with ϕ(s, y,ω) = x},
≤t
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respectively. The positive and negative orbits from x ∈ M are

O+(x) :=
⋃
t>0

O+≤t (x) and O−(x) :=
⋃
t>0

O−≤t (x),

respectively.
A key concept of this paper is presented in the following definition.

Definition 1. A subset D of M is a control set if

(i) for each x ∈ D, there exists ω ∈ U with ϕ(R+, x, ω) ⊂ D (controlled invariance);
(ii) for each x ∈ D one has D ⊂ O+(x) (approximate controllability);

(iii) D is maximal with these properties.

If for all t > 0 the sets O−≤t (x) and O+≤t (x) have nonempty interior, we say that system (1)
is locally accessible from x ∈ M . We are mainly interested in control sets with nonvoid interior 
which are locally accessible from all x ∈ intD, since here a general theory can be developed. In 
particular, they enjoy the property intD ⊂ O+(x) for all x ∈ D, cf. Colonius and Kliemann [8, 
Lemma 3.2.13].

Next we recall some basic concepts and results on linearization of a control system on a 
smooth Riemannian manifold (M, g), cf. Kawan [16].

Definition 2. For a control-trajectory pair (ω(·), ϕ(·, x, ω)) the linearized system is given by

Dz

dt
(t) = A(t)z(t) + B(t)μ(t), μ ∈ L∞(R,Rm), (2)

where A(t) := ∇Fω(t)(ϕ(t, x, ω)) and B(t) := D2F(ϕ(t, x, ω), ω(t)).

The derivative on the left-hand side of (2) is the covariant derivative of z(·) along ϕ(·, x, ω)

and D2 is the derivative with respect to second component. A solution of (2) corresponding to 
μ ∈ L∞(R, Rm) with initial value λ ∈ TxM is a locally absolutely continuous vector field z =
φx,ω(·, λ, μ) : R → T M along ϕ(·, x, ω) with z(0) = λ, satisfying the differential equation (2)
for almost all t ∈R.

The next proposition presents some properties of linearized systems.

Proposition 3. Let (ω(·), ϕ(·, x, ω)) be a control-trajectory pair with corresponding lineariza-
tion (2). Then the following statements hold:

(i) For all τ > 0 the mapping ϕτ : M × L∞([0, τ ], Rm) → M, (x, ω) 	→ ϕ(τ, x, ω) is continu-
ously (Fréchet) differentiable.

(ii) For every initial value λ ∈ TxM and every μ ∈ L∞(R, Rm) there exists a unique solution 
φx,ω(·, λ, μ) : R → T M of (2) satisfying

φx,ω(0, λ,μ) = λ,φx,ω(t, λ,μ) = Dϕt(x,ω)(λ,μ), t ∈ R, (3)

for (λ, μ) ∈ TxM × L∞(R, Rm), where D stands for the total derivative of ϕt : M ×
L∞(R, Rm) → M which consists of the derivative dxϕt (·, ω) : TxM → Tϕ(t,x,ω)M in the 
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first, and the Fréchet derivative of ϕt(x, ·) : L∞(R, Rm) → Tϕ(t,x,ω)M in the second com-
ponent.

(iii) For every τ > 0 the map φx,ω(τ, ·, ·) : TxM × L∞([0, τ ], Rm) → Tϕ(τ,x,ω)M is linear and 
continuous.

(iv) For each t ∈ R abbreviate φx,ω
t := φϕ(t,x,ω),ω(t+·). Then for all t, s ∈ R, λ ∈ TxM and 

μ ∈ L∞(R, Rm),

φx,ω
s (t, φx,ω(s, λ,μ),�sμ) = φx,ω(t + s, λ,μ),

and, in particular,

φx,ω
s (t, φx,ω(s, λ,0),0) = φx,ω(t + s, λ,0).

Now we present the notion of regularity of a control-trajectory pair.

Definition 4. Consider some (x, ω, τ) ∈ M × U × (0, ∞) and let y := ϕ(τ, x, ω). The lineariza-
tion along (ω(·), ϕ(·, x, ω)) is controllable on [0, τ ] if for each λ1 ∈ TxM and λ2 ∈ TyM there 
exists μ ∈ L∞([0, τ ], Rm) with

φx,ω(τ, λ1,μ) = λ2.

In this case, we say that the control-trajectory pair (ω(·), ϕ(·, x, ω)) is regular on [0, τ ].

A control-trajectory pair (ω(·), ϕ(·, x, ω)) is called τ -periodic, τ ≥ 0, if (ϕ(t +τ, x, ω), ω(t +
τ)) = (ϕ(t, x, ω), ω(t)) for all t ∈ R, or equivalently if ϕ(τ, x, ω) = x and �τω = ω, where 
(�τω)(t) = ω(t + τ), t ∈ R, is the τ -shift on U . A periodic regular control-trajectory pair enjoys 
the property described in the following proposition (cf. [16, Proposition 1.30]).

Proposition 5. Let (ω(·), ϕ(·, x, ω)) be a τ -periodic control-trajectory pair which is regular on 
[0, τ ]. Then there exists C > 0 such that for every λ ∈ TxM there is μ ∈ L∞([0, τ ], Rm) with 
φx,ω(τ, λ, μ) = 0x and ‖μ‖[0,τ ] ≤ C|λ|, where ‖ · ‖[0,τ ] denotes the L∞-norm.

For a τ -periodic control-trajectory pair (ω(·), ϕ(·, x, ω)) the Floquet or Lyapunov exponents 
are given by

lim
t→∞

1

t
log

∥∥φx,ω(t, λ,0)
∥∥= lim

n→∞
1

nτ
log

∥∥φx,ω(nτ,λ,0)
∥∥ , λ ∈ TxM. (4)

These limits exist and the Lyapunov exponents are denoted by ρ1(ω, x), . . . , ρr (ω, x) with 1 ≤
r := r(ω, x) ≤ d = dimM . The Lyapunov spaces are given by

Lj (ω,x) =
{
λ ∈ TxM; lim

t→±∞
1

t
log

∥∥φx,ω(t, λ,0)
∥∥= ρj (ω,x)

}
, j = 1, . . . , r,

with dimensions dj (ω, x). They yield the decomposition

TxM = L1(ω, x) ⊕ · · · ⊕ Lr(ω,x).
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2.2. Invariance pressure

In this subsection we recall the concepts of invariance and outer invariance pressure intro-
duced in Colonius, Cossich and Santana [5,6] and some of their properties.

A pair (K, Q) of nonempty subsets of a smooth Riemannian manifold M is called admissible
if K is compact and for each x ∈ K there exists ω ∈ U such that ϕ(R+, x, ω) ⊂ Q. For an 
admissible pair (K, Q) and τ > 0, a (τ, K, Q)-spanning set S is a subset of U such that for 
all x ∈ K there is ω ∈ S with ϕ(t, x, ω) ∈ Q for all t ∈ [0, τ ]. Denote by C(U, R) the set of 
continuous function f : U → R which we call potentials.

For a potential f ∈ C(U, R) denote (Sτf )(ω) := ∫ τ

0 f (ω(t))dt and

aτ (f,K,Q) := inf

{∑
ω∈S

e(Sτ f )(ω); S (τ,K,Q)-spanning

}
.

The invariance pressure Pinv(f, K, Q) of control system (1) is defined by

Pinv(f,K,Q) := lim sup
τ→∞

1

τ
logaτ (f,K,Q).

Given an admissible pair (K, Q) such that Q is closed in M and a metric 	 on M which is 
compatible with the Riemannian structure, we define the outer invariance pressure of (K, Q)

by

Pout (f,K,Q) := lim
ε→0

Pinv(f,K,Nε(Q)),

where Nε(Q) = {y ∈ M; ∃ x ∈ Q with 	(x, y) < ε} denotes the ε - neighborhood of Q.
Note that −∞ < Pout (f, K, Q) ≤ Pinv(f, K, Q) ≤ ∞ for every admissible pair (K, Q) and 

all potentials f . For the potential f = 0, this reduces to the notion of invariance entropy, 
Pinv(0, K, Q) = hinv(K, Q) and Pout (0, K, Q) = hout (K, Q), cf. Kawan [16].

The next proposition presents some properties of the function Pinv(·, K, Q) : C(U, R) → R, 
cf. [6, Proposition 3.4].

Proposition 6. The following assertions hold for an admissible pair (K, Q), functions f, g ∈
C(U, R) and c ∈R:

(i) Pinv(f, K, Q) ≤ Pinv(g, K, Q) and Pout (f, K, Q) ≤ Pout (g, K, Q) for f ≤ g.
(ii) Pinv(f + c, K, Q) = Pinv(f, K, Q) + c.

(iii) hinv(K, Q) + minu∈U f (u) ≤ Pinv(f, K, Q) ≤ hinv(K, Q) + maxu∈U f (u).

Proposition 6(iii) shows, in particular, that Pinv(f, K, Q)<∞ if and only if hinv(K, Q)<∞. 
For general admissible pairs (K, Q), one cannot guarantee the existence of finite (τ, K, Q)-span-
ning sets S . The following two remarks discuss the cardinality of spanning sets and relations to 
properties of invariance pressure.

Remark 7. If there is no countable (τ, K, Q)-spanning set, then aτ (f, K, Q) = ∞ (see Kawan 
[16, Example 2.3] for an example). If Pinv(f, K, Q) < ∞, then aτ (f, K, Q) < ∞ for every 
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τ > 0. Hence there is a (τ, K, Q)-spanning set with 
∑

ω∈S e(Sτ f )(ω) < ∞ implying that there 
can be only countably many summands, i.e., there is a countable (τ, K, Q)-spanning set. On the 
other hand, if for all τ > 0 there is a countable (τ, K, Q)-spanning set, aτ (f, K, Q) = ∞ is also 
possible. If every (τ, K, Q)-spanning set S contains a finite (τ, K, Q)-spanning subset S ′, then

aτ (f,K,Q) = inf

{∑
ω∈S

e(Sτ f )(ω); S finite and (τ,K,Q)-spanning

}
.

This follows, since all summands satisfy e(Sτ f )(ω) > 0, and hence the summands in S \ S ′ can 
be omitted. This situation occurs e.g. if Q is open where compactness of K may be used. For the 
outer invariance entropy one considers (τ, K, Nε(Q))-spanning sets, ε > 0, and hence here it is 
also sufficient to consider finite (τ, K, Nε(Q))-spanning sets. In the definition of inner invariance 
pressure of discrete time systems, one considers sets which are (τ, K, intQ)-spanning. Here again 
finite spanning sets are sufficient.

Remark 8. The Lipschitz continuity property

|Pinv(f,K,Q) − Pinv(g,K,Q)| ≤ ‖f − g‖∞ for f,g ∈ C(U,R),

holds if hinv(K, Q) < ∞. In fact, as seen in Remark 7, in this case there are for ev-
ery τ > 0 countable (τ, K, Q)-spanning sets S with 

∑
ω∈S e(Sτ f )(ω) < ∞. The arguments 

used in [5, Proposition 13(iii)] to show Lipschitz continuity under the assumption that finite 
(τ, K, Q)-spanning sets exist, can be applied in this situation observing that the elementary 
lemma [5, Lemma 12], on which the proof is based, is valid not only for finite but also for 
infinite sequences: Let ai ≥ 0, bi > 0, i ∈ N . Then for all n ∈N

∑n
i=1 ai∑n
i=1 bi

≥ min
i=1,...,n

ai

bi

≥ inf
i∈N

ai

bi

,

and one may take the limit for n → ∞.

The following proposition shows that in the definition of invariance pressure we can take the 
limit superior over times which are integer multiples of some fixed time step τ > 0.

Proposition 9. The invariance pressure satisfies for every τ > 0

Pinv(f,K,Q) = lim sup
n→∞

1

nτ
loganτ (f,K,Q) for all f ∈ C(U,R). (5)

Proof. Let τk ∈ (0, ∞), k ∈N , with τk → ∞. Then for every k ≥ 1 there exists nk ≥ 1 such that 
nkτ ≤ τk ≤ (nk + 1)τ and nk → ∞ for k → ∞. Since f̃ (u) := f (u) − minf, u ∈ U , is nonneg-
ative, it follows that aτk

(f̃ , K, Q) ≤ a(nk+1)τ (f̃ , K, Q) and consequently 1
τk

logaτk
(f̃ , K, Q) is 

less than or equal to 1 loga(n +1)τ (f̃ , K, Q). Hence

nkτ k
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lim sup
k→∞

1

τk

logaτk
(f̃ ,K,Q) ≤ lim sup

k→∞
1

nkτ
loga(nk+1)τ (f̃ ,K,Q)

= lim sup
k→∞

nk + 1

nk

1

(nk + 1)τ
loga(nk+1)τ (f̃ ,K,Q)

≤ lim sup
n→∞

1

nτ
loganτ (f̃ ,K,Q).

This shows that

Pinv(f − minf,K,Q) ≤ lim sup
n→∞

1

nτ
loganτ (f − minf,K,Q).

Using anτ (f̃ , K, Q) = anτ (f, K, Q) − minf and Proposition 6(ii) we obtain

Pinv(f,K,Q) ≤ lim sup
n→∞

1

nτ
loganτ (f,K,Q).

The converse inequality is obvious. �
For the proof of the following proposition see [6, Corollary 15].

Proposition 10. Let K1, K2 be two compact sets with nonempty interior contained in a control 
set D ⊂ M . Then (K1, Q) and (K2, Q) are admissible pairs and for all f ∈ C(U, R) we have

Pinv(f,K1,Q) = Pinv(f,K2,Q).

3. An upper bound on control sets

Our goal in this section is to obtain an upper bound for the invariance pressure of a control set. 
We consider a smooth control system (1) on a Riemannian manifold (M, g) under our standard 
assumptions.

In the following theorem, given a periodic control-trajectory pair (ω(·), ϕ(·, x, ω)), the dif-
ferent Lyapunov exponents at (x, ω) are denoted by ρ1(x, ω), . . . , ρr(x, ω), r = r(x, ω), with 
Lyapunov spaces of dimensions d1(x, ω), . . . , dr(x, ω), respectively.

Theorem 11. Let D ⊂ M be a control set with nonempty interior and compact closure for con-
trol system (1). Then for every compact set K ⊂ D and every set Q ⊃ D, the pair (K, Q) is 
admissible and for all potentials f ∈ C(U, R) the invariance pressure satisfies

Pinv(f,K,Q) ≤ inf
(T ,x,ω)

⎧⎨
⎩

r(x,ω)∑
j=1

max{0, dj (x,ω)ρj (x,ω)} + 1

T

T∫
0

f (ω(s))ds

⎫⎬
⎭ ,

where the infimum is taken over all (T , x, ω) ∈ (0, ∞) × intD×U such that the control-trajectory 
pair (ω(·), ϕ(·, x, ω)) is T -periodic and regular and the values ω(t), t ∈ [0, T ], are in a compact 
subset of intU .
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Remark 12. For f ≡ 0, the statement of the theorem reduces to Kawan [15, Theorem 4.3],

hinv(K,Q) = Pinv(0,K,Q) ≤ inf
(T ,x,ω)

⎧⎨
⎩

r(x,ω)∑
j=1

max{0, dj (x,ω)ρj (x,ω)}
⎫⎬
⎭ .

Proof. The theorem will follow by an extension of the proof given in [15, Theorem 4.3] for 
invariance entropy. First we briefly sketch the construction in [15, pp. 740-745], then we indicate 
the new arguments needed for invariance pressure.

By Proposition 10 one can choose K as an arbitrary compact subset of D with nonvoid 
interior. Let (ω0(·), ϕ(·, x0, ω0)) be a T -periodic and regular control-trajectory pair as in the 
statement of the theorem. Then fix real numbers ε > 0 and

S0 >

r∑
j=1

max(0, djρj ),

where dj = dj (x0, ω0) and ρj = ρj (x0, ω0), j = 1, . . . , r . An ingenious and lengthy construction 
in [15] provides a closed ball K := cl(Bb0(x0)) ⊂ D with radius b0 > 0 centered at x0 with 
the following properties: For some τ = kT , k ∈ N , and arbitrary n ∈ N one finds a set Sn of 
(nτ, K, Q)-spanning controls ω ∈ Sn satisfying

‖ω − ω0‖[0,nτ ] ≤ Cb0
√

d, (6)

where C > 0 is a constant and b0 > 0 can be taken arbitrarily small (see [15, formula (4.17)]: the 
elements of Sn are n-fold concatenations of the controls denoted there by ux). The cardinality 
#Sn of Sn is bounded by

1

nτ
log #Sn ≤ S0 + ε, (7)

cf. [15, estimates on middle of p. 745].
In order to get a bound for the invariance pressure we need the following additional arguments: 

Let f ∈ C(U, R) be a potential. Since f is defined on the compact set U , its uniform continuity 
implies that there exists δ > 0 such that |u − v| < δ implies |f (u) −f (v)| < ε. Take b0 > 0 small 
enough such that Cb0

√
d < δ. By (6) every ω ∈ Sn satisfies |ω(t) − ω0(t)| ≤ ‖ω − ω0‖[0,nτ ] < δ

for almost all t ∈ [0, nτ ]. Hence it follows that |f (ω(t)) − f (ω0(t))| < ε for almost all t ∈
[0, nτ ].

Now we can estimate

1

nτ
loganτ (f,K,Q) ≤ 1

nτ
log

∑
ω∈Sn

e(Snτ f )(ω) = 1

nτ
log

∑
ω∈Sn

e
∫ nτ

0 f (ω(t))dt

= 1

nτ
log

∑
ω∈Sn

e
∫ nτ

0 f (ω0(t))dt+∫ nτ
0 [f (ω(t))−f (ω0(t))]dt

≤ 1

nτ
log

⎡
⎣∑ e

∫ nτ
0 f (ω0(t))dt · e

∫ nτ
0 εdt

⎤
⎦

ω∈Sn
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= 1

nτ
log

(
#Sne

∫ nτ
0 f (ω0(t))dt

)
+ 1

nτ
log e

∫ nτ
0 εdt

= 1

nτ
log #Sn + 1

nτ

nτ∫
0

f (ω0(t))dt + ε

< S0 + 1

T

T∫
0

f (ω0(t))dt + 2ε.

For the last inequality we have used (7) and T -periodicity of ω0. By Proposition 9 this implies

Pinv(f,K,Q) = lim sup
n→∞

1

nτ
loganτ (f,K,Q) ≤ S0 + 1

T

T∫
0

f (ω0(t))dt + 2ε.

Since ε > 0 can be chosen arbitrarily small and S0 arbitrarily close to 
∑r

j=1 max(0, djρj ), the 
assertion of the theorem follows. �
Remark 13. In Kawan [16, Section 5.2] and Da Silva and Kawan [11, Section 3.2] one finds 
more information on regular periodic control-trajectory pairs.

4. A lower bound

Again we consider a smooth control system (1) on a Riemannian manifold (M, g) under our 
standard assumptions. The next theorem presents a lower bound for the invariance pressure of 
admissible pairs (K, Q).

Theorem 14. Let (K, Q) be an admissible pair where both K and Q have positive and finite 
volume. Then for every f ∈ C(U, R)

Pinv(f,K,Q)

≥ lim sup
τ→∞

1

τ

⎛
⎝ inf

(x,ω)

τ∫
0

f (ω(s))ds + max{0, inf
(x,ω)

τ∫
0

divFω(s)(ϕ(s, x,ω))ds}
⎞
⎠ ,

where both infima are taken over all (x, ω) ∈ K × U with ϕ([0, τ ], x, ω) ⊂ Q.

Proof. First observe that by Remark 7 we may assume that for all τ > 0 there exists a 
countable (τ, K, Q)-spanning set, since otherwise Pinv(f, K, Q) = ∞, and the infimum in 
aτ (f, K, Q) may be taken over all countable (τ, K, Q)-spanning sets S . For each ω in a count-
able (τ, K, Q)-spanning set S define

Kω := {x ∈ K;ϕ([0, τ ], x,ω) ⊂ Q}.
Thus K =⋃

ω∈SKω . Since Q is Borel measurable, each set Kω is measurable as the countable 
intersection of measurable sets,
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Kω = K ∩
⋂

t∈[0,τ ]∩Q
ϕ−1

t,ω(Q).

Then

vol(Q) ≥ vol(ϕτ,ω(Kω)) =
∫

ϕτ,ω(Kω)

dvol =
∫

Kω

∣∣det dxϕτ,ω

∣∣dvol

≥ vol(Kω) inf
(x,ω)

∣∣det dxϕτ,ω

∣∣ ,
where the infimum is taken over all (x, ω) ∈ K ×U with ϕ([0, τ ], x, ω) ⊂ Q. Abbreviating with 
the same infima

α(τ) := inf
(x,ω)

∣∣det dxϕτ,ω

∣∣ , β(τ ) := inf
(x,ω)

Sτ (f )(ω),

we find

eβ(τ)vol(K) ≤
∑
ω∈S

e(Sτ f )(ω)vol(Kω) ≤ sup
ω∈S

vol(Kω)
∑
ω∈S

e(Sτ f )(ω)

≤ vol(Q)

max{1, α(τ )}
∑
ω∈S

e(Sτ f )(ω).

Since this holds for every countable (τ, K, Q)-spanning set S , we find

aτ (f,K,Q) = inf

{∑
ω∈S

e(Sτ f )(ω); S countable (τ,K,Q)-spanning

}

≥ vol(K)

vol(Q)
eβ(τ) max{1, α(τ )}.

Since for each t ≥ 0 and each control ω ∈ U the map ϕt,ω : M → M is a diffeomorphism, 
Liouville’s formula shows

log det dxϕτ,ω =
τ∫

0

divFω(s)(ϕ(s, x,ω))ds. (8)

Now the assertion of the theorem follows from

Pinv(f,K,Q) = lim sup
τ→∞

1

τ
logaτ (f,K,Q)

≥ lim sup
τ→∞

1

τ
(β(τ) + log max{1, α(τ )})

= lim sup
τ→∞

1

τ

⎛
⎝ inf

(x,ω)

τ∫
0

f (ω(s))ds + max{0, inf
(x,ω)

τ∫
0

divFω(s)(ϕ(s, x,ω))ds}
⎞
⎠ . �
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5. Linear control systems

In this section we consider linear control systems on Rd with restricted controls. Here a unique 
control set D with nonvoid interior exists and the previous bounds on the invariance pressure are 
sharpened to provide a formula for the invariance pressure of D.

Linear control systems on Rd have the form

ẋ(t) = Ax(t) + Bω(t), ω ∈ U , (9)

with A ∈Rd×d and B ∈ Rd×m and we suppose that the set U of control functions is as for (1).
For system (9) there exists a unique control set D with nonvoid interior, if, without control 

constraint, the system is controllable (which holds if and only if rank[B, AB, . . . , Ad−1B] =
d) and the control range U is a compact neighborhood of the origin in Rm. It is convex with 
0 ∈ intD, and it is bounded if and only if A is hyperbolic, i.e., there is no eigenvalue of A
with vanishing imaginary part (cf. Hinrichsen and Pritchard [13, Theorems 6.2.22 and 6.2.23], 
Colonius and Kliemann [8, Example 3.2.16]). Then the state space Rd can be decomposed into 
the direct sum of the stable subspace Es and the unstable subspace Eu which are the direct sums 
of all generalized real eigenspaces for the eigenvalues λ with Reλ < 0 and Reλ > 0, resp. Let 
π : Rd → Eu be the projection along Es . We obtain the following estimates, where λj denote 
the r eigenvalues of A with algebraic multiplicities dj .

Lemma 15. Consider a linear control system in Rd of the form (9) and assume that the pair 
(A, B) is controllable, that A is hyperbolic and the control range U is a compact neighborhood 
of the origin. Let D be the unique control set with nonvoid interior. Then for every compact set 
K ⊂ D with positive Lebesgue measure every potential f ∈ C(U, R) satisfies

inf
(T ′,x′,ω′)

1

T ′

T ′∫
0

f (ω′(s))ds ≤ Pinv(f,K,D) −
r∑

j=1

dj max{0,Reλj }

≤ inf
(T ,x,ω)

1

T

T∫
0

f (ω(s))ds,

where the first infimum is taken over all (T ′, x′, ω′) ∈ (0, ∞) × πK ×U with πϕ([0, T ′], x′, ω′)
⊂ πD and the second infimum is taken over all (T , x, ω) ∈ (0, ∞) × intD × U such that the 
control-trajectory pair (ω(·), ϕ(·, x, ω)) is T -periodic and the values ω(t), t ∈ [0, T ], are in a 
compact subset of intU .

Proof. The hypotheses imply that 0 ∈ intD ⊂Rd and the Lebesgue measures of K and D (which 
coincide with the volumes) are finite and positive. Theorem 11 yields

Pinv(f,K,D) ≤ inf
(T ,x,ω)

⎧⎨
⎩

r(x,ω)∑
j=1

max{0, dj (x,ω)ρj (x,ω)} + 1

T

T∫
f (ω(s))ds

⎫⎬
⎭ , (10)
0
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where the infimum is taken over all T > 0 and all (x, ω) ∈ intD × U such that the control-
trajectory pair (ω(·), ϕ(·, x, ω)) is T -periodic and the values ω(t), t ∈ [0, T ], are in a compact 
subset of intU . Note that this control-trajectory pair is regular, since we assume that (A, B)

is controllable. By Floquet theory it follows (cf. [6, Proposition 20]) that for all T -periodic 
(ω(·), ϕ(·, x, ω))

r(x,ω)∑
j=1

max{0, dj (x,ω)ρj (x,ω)} =
r∑

j=1

max{0, dj Reλj },

where the sum is over the r eigenvalues λj of A with multiplicities dj . Hence

Pinv(f,K,D) ≤ inf
(T ,x,ω)

1

T

T∫
0

f (ω(s))ds +
r∑

j=1

dj max{0,Reλj },

where the infimum is taken over all (T , x, ω) as in (10). This proves the second inequality.
Hence it remains to prove the first inequality. By Theorem 14

Pinv(f,K,D)

≥ lim sup
τ→∞

1

τ

⎛
⎝ inf

(x,ω)

τ∫
0

f (ω(s))ds + max

⎧⎨
⎩0, inf

(x,ω)

τ∫
0

divFω(s)(ϕ(s, x,ω))ds

⎫⎬
⎭
⎞
⎠

≥ inf
(T ,x,ω)

1

T

T∫
0

f (ω(s))ds + max

⎧⎨
⎩0, inf

(T ,x,ω)

1

T

T∫
0

divFω(s)(ϕ(s, x,ω))ds

⎫⎬
⎭ ,

where both infima in the second line are taken over all pairs (x, ω) ∈ K ×U with ϕ([0, τ ], x, ω) ⊂
D and both infima in the third line are taken over all (T , x, ω) ∈ (0, ∞) × K × U with 
ϕ([0, T ], x, ω) ⊂ D. In the considered linear case one has dxϕT,ω = A and

T∫
0

divFω(s)(ϕ(s, x,ω))ds = log det dxϕT,ω = T

r∑
j=1

dj Reλj ,

where the sum is over the r eigenvalues λj of A with multiplicities dj .

Step 1: Suppose that Reλj > 0 for all j . Then it follows that

Pinv(f,K,D)

≥ inf
(T ,x,ω)

1

T

T∫
0

f (ω(s))ds +
r∑

j=1

dj Reλj ,

where the infimum is taken over all (T , x, ω) ∈ (0, ∞) × K × U with ϕ([0, T ], x, ω) ⊂ D.
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Step 2: Next we treat the general case, where also eigenvalues with negative real part are 
allowed. Recall that π : Rd → Eu denotes the projection onto the unstable subspace Eu along 
the stable subspace Es .

Since these subspaces are A-invariant, this defines a (time-invariant) semi-conjugacy between 
system (9) and the system on Eu given by

ẏ(t) = A|Eu y(t) + πBu(t), u ∈ U , (11)

with trajectories πϕ(·, x′, ω′), and the sets K and D are mapped to πK and πD, resp. Then 
πK and πD have positive volume and form an admissible pair (cf. Kawan [16, proof of Theo-
rem 3.1]). One easily proves that (cf. [6, Proposition 10])

Pinv(f,K,Q) ≥ Pinv(f,πK,πQ),

since every (τ, K, D)-spanning set yields a (τ, πK, πD)-spanning set. Similarly as in Step 1, 
Theorem 14 applied to system (11) implies that

Pinv(f,πK,πD) ≥ inf
(T ′,x′,ω′)

1

T ′

T ′∫
0

f (ω′(s))ds +
r∑

j=1

dj max{0,Reλj },

where the infimum is taken over all (T ′, x′, ω′) ∈ R+ × πK × U with

πϕ([0, T ′], x′,ω′) ⊂ πD. �
Next we show that the two infima in the lemma above actually coincide again using hyper-

bolicity of A in a crucial way. This provides the announced formula for the invariance pressure 
involving the r eigenvalues λj of A with algebraic multiplicities dj .

Theorem 16. Consider a linear control system in Rd of the form (9) and assume that the pair 
(A, B) is controllable, the matrix A is hyperbolic and the control range U is a compact neigh-
borhood of the origin. Let D be the unique control set with nonvoid interior. Then for every 
compact set K ⊂ D with nonempty interior every potential f ∈ C(U, R) satisfies

Pinv(f,K,D) = min
u∈U

f (u) +
r∑

j=1

dj max{0,Reλj }. (12)

Proof. Let ε > 0 and consider T0 > 0 and a control ω0 ∈ U satisfying

1

T0

T0∫
f (ω0(s))ds ≤ inf

(T ′′,ω′′)∈(0,∞)×U
1

T ′′

T ′′∫
f (ω′′(s))ds + ε. (13)
0 0
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Since f is continuous, there is a control value u0 ∈ U with

f (u0) = min
u∈U

f (u) = inf
(T ′′,ω′′)∈(0,∞)×U

1

T ′′

T ′′∫
0

f (ω′′(s))ds, (14)

where the second equality holds trivially. There is a control ω1 in the set

intU|[0,T0] = {ω ∈ L∞([0, T0]; ∃K ⊂ intU compact with ω(t) ∈ K a.e.}

such that

1

T0

T0∫
0

f (ω1(s))ds ≤ 1

T0

T0∫
0

f (ω0(s))ds + ε. (15)

Claim. For every T > 0 and every control ω ∈ U there exists x1 ∈ Rd with ϕ(T , x1, ω) = x1.

In fact, hyperbolicity of A implies that the matrix I − eAT is invertible, and hence there is a 
unique solution x(T , ω) of

(
I − eAT

)
x(T ,ω) = ϕ(T ,0,ω).

Now the variation-of-constants formula shows the claim:

x(T ,ω) = eAT x(T ,ω) + ϕ(T ,0,ω) = ϕ(T , x(T ,ω),ω).

Applying this to T0 and ω1 we find a point x1 := x(T0, ω1) = ϕ(T0, x1, ω1). Since ω1 ∈ intU|[0,T0]
every point in a neighborhood of x1 can be reached in time T0 from x1. This follows, since by 
controllability the map

L∞([0, T0],Rm) →Rd ,ω 	→ ϕ(T0,0,ω)

is a linear surjective map, hence maps open sets to open sets, and the same is true for the map

ω 	→ ϕ(T0, x1,ω) = eAT1 + ϕ(T0,0,ω).

Analogously, x1 can be reached from every point in a neighborhood of x1 in time T0. Hence 
in the intersection of these two neighborhoods every point can be steered in time 2T0 into 
every other point. This shows that x1 is in the interior of the (unique) control set D, and 
the corresponding trajectory ϕ(t, x1, ω1), t ∈ [0, T0], remains in the interior of D. Extending 
ω1(t), t ∈ [0, T0], to a T0-periodic control, again denoted by ω1 we find that the control-
trajectory pair (ω1(·), ϕ(·, x1, ω1)) is T0-periodic, the trajectory is contained in intD and the 
values ω1(t), t ∈ [0, T0], are in a compact subset of intU . By (13) and (15) it follows that
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inf
(T ′′,ω′′)

1

T ′′

T ′′∫
0

f (ω′′(s))ds ≥ 1

T0

T0∫
0

f (ω0(s))ds − ε

≥ 1

T0

T0∫
0

f (ω1(s))ds − 2ε ≥ inf
(T ,x,ω)

1

T

T∫
0

f (ω(s))ds − 2ε,

where the infimum in the last line is taken over all (T , x, ω) ∈ (0, ∞) × D × U such that the 
control-trajectory pair (ω(·), ϕ(·, x, ω)) is T -periodic, the trajectory is contained in intD and the 
values ω(t), t ∈ [0, T ], are in a compact subset of intU .

Together with (14) and the inequalities in Lemma 15 this implies

min
u∈U

f (u) = inf
(T ′′,ω′′)

1

T ′′

T ′′∫
0

f (ω′′(s))ds ≤ inf
(T ′,x′,ω′)

1

T ′

T ′∫
0

f (ω′(s))ds

≤ Pinv(f,K,D) −
r∑

j=1

dj max{0,Reλj }

≤ inf
(T ,x,ω)

1

T

T∫
0

f (ω(s))ds

≤ inf
(T ′′,ω′′)

1

T ′′

T ′′∫
0

f (ω′′(s))ds + 2ε

= min
u∈U

f (u) + 2ε.

Since ε > 0 is arbitrary, assertion (12) follows. �
Remark 17. The proof of the Claim above follows arguments in the proof of Da Silva and 
Kawan [12, Theorem 20].

Remark 18. Theorem 16 improves [6, Theorem 6.2], where it had to be assumed additionally 
that the minimum of f (u), u ∈ U , is attained in an equilibrium.

6. Further applications

In this section, we apply Theorem 11 to linear control systems on Lie groups and to inner 
control sets.

6.1. Control sets and equilibrium pairs

Given a control system (1), a pair (u0, x0) ∈ U × M is called an equilibrium pair if 
F(x0, u0) = 0, or equivalently, ϕ(t, x0, ū0) = x0 for all t ∈R, where ū0(t) ≡ u0.
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If (u0, x0) is an equilibrium pair, the linearized system is an autonomous linear control system 
in Tx0M and the Lyapunov exponents at (u0, x0) in the direction λ ∈ Tx0M\{0x0} coincide with 
the real parts of the eigenvalues of ∇Fu0(x0) : Tx0M → Tx0M . Then regularity, i.e., controllabil-
ity of the linearized system, can be checked by Kalman’s rank condition.

Corollary 19. Let D ⊂ M be a control set with nonempty interior and let f ∈ C(U, R). Suppose 
that there is a regular equilibrium pair (u0, x0) ∈ intU × intD. Then for every compact set K ⊂ D

and every set Q ⊃ D we have

Pinv(f,K,Q) ≤
∑

λ∈σ(∇Fu0 (x0))

max{0, dλ Re(λ)} + f (u0),

where dλ is the algebraic multiplicity of the eigenvalue λ in the spectrum σ(∇Fu0(x0)).

Proof. Since (u0, x0) is a regular equilibrium pair, the control-trajectory pair (ū0(·), ϕ(·, x0, ū0))

is T -periodic and regular for every T > 0. By Theorem 11 we obtain

Pinv(f,K,Q) ≤ inf
(T ,x,ω)

⎧⎨
⎩

r(x,ω)∑
j=1

max{0, dj (x,ω)ρj (x,ω)} + 1

T

T∫
0

f (ω(s))ds

⎫⎬
⎭

≤
∑

λ∈σ(∇Fω0 (x0))

max{0, dλ Re(λ)} + f (u0). �

6.2. Control sets of linear control systems on Lie groups

In this subsection we consider linear control systems on a connected Lie group G introduced 
in Ayala and San Martin [2] and Ayala and Tirao [4].

They are given by a family of ordinary differential equations on G of the form

ẋ(t) =X (x(t)) +
m∑

j=1

ωj (t)Xj (x(t)), ω = (ω1, . . . ,ωm) ∈ U , (16)

where the drift vector field X , called the linear vector field, is an infinitesimal automorphism, 
i.e., its solutions are a family of automorphisms of the group, and the Xj are right invariant vector 
fields. Note that the linear control systems of the form (9) are a special case with G = Rd .

Their controllability properties have been analyzed in Da Silva [10], Ayala, Da Silva and 
Zsigmond [3] and Ayala and Da Silva [1]. In particular, the existence and uniqueness of control 
sets for general systems of the form (16) has been analyzed in [3]. If 0 is in the interior of 
the control range U and the reachable set O+(eG) from the neutral element eG is open (this 
holds e.g. if eG ∈ intO+(eG)), then there exists a control set D containing eG in the interior. 
Sufficient conditions for boundedness and uniqueness of D are given in [3, Theorem 3.9] and [3, 
Corollary 3.12], respectively.

Along with system (16) comes an associated derivation D of the Lie algebra g of G which is 
given by

D(Y ) = −ad(X )(Y ) := [X , Y ](eG).
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Corollary 20. Consider the linear control system (16) on a Lie group G. Suppose that D is a 
control set with eG ∈ intD and compact closure D and let K ⊂ D ⊂ Q. Let f ∈ C(U, R) be a 
potential. If the equilibrium pair (0, eG) ∈ intU × intD is regular, then

Pinv(f,K,Q) ≤
∑

λ∈σ(D)

max{0, dλ Re(λ)} + f (0).

If furthermore K has positive Haar measure and f (0) = minu∈U f (u), then

Pinv(f,K,Q) = Pout (f,K,Q) =
∑

λ∈σ(D)

max{0, dλ Re(λ)} + f (0).

Proof. Note that the right hand side of the system is given by F(x, u) =X (x) +∑m
i=1 uiXi(x)

and hence F0(x) := F(x, 0) = X (x). Let (φ, U) be a local coordinate neighborhood of eG and 
pick a left invariant vector field Y in the Lie algebra g of G. Then we can express X in terms of 
(φ, U) by

X (h) =
d∑

i=1

yi(h)
∂

∂xi

.

Note that X (eG) = 0 implies yi(eG) = 0 for every i ∈ {1, . . . , d}, hence the Levi-Civita connec-
tion ∇ satisfies

(∇XY)(eG) =
d∑

i=1

yi(eG)

(
∇ ∂

∂xi

Y

)
(eG) = 0.

Since ∇ is symmetric, we have

(∇Y F0) (eG) = (∇YX ) (eG) = (∇XY − [X , Y ]) (eG) = −[X , Y ] =D(Y ).

Since this holds for every Y ∈ g, we have ∇F0(eG) = D. By Corollary 19 we obtain

Pinv(f,K,Q) ≤
∑

λ∈σ(D)

max{0, dλ Re(λ)} + f (0).

Now, suppose that K has positive Haar measure. By Da Silva [9, Theorem 4.3], we know that

hout (K,Q) ≥
∑

λ∈σ(D)

max{0, dλ Re(λ)}.

Define f̃ (u) = f (u) − f (0), u ∈ U . Since f̃ ≥ 0 Proposition 6(i) implies that

Pinv(f̃ ,K,Q) ≥ Pout (f̃ ,K,Q) ≥ hout (K,Q) ≥
∑

max{0, dλ Re(λ)}.

λ∈σ(D)
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Proposition 6(ii) implies Pinv(f̃ , K, Q) = Pinv(f, K, Q) − minf , hence this yields

Pinv(f,K,Q) = Pout (f,K,Q) =
∑

λ∈σ(D)

max{0, dλ Re(λ)} + minf. �

6.3. Inner control sets

This section presents an application of Theorem 11 to the class of inner control sets as defined 
(with small changes) in Kawan [16, Definition 2.6]. This nomenclature refers to a control set 
D ⊂ M for which there exists a decreasing family of compact and convex sets {Uρ}ρ∈[0,1] in Rm

(i.e., Uρ2 ⊂ Uρ1 for ρ1 < ρ2), such that for every ρ ∈ [0, 1] system (1)ρ with control range Uρ

(instead of U in (1)) has a control set Dρ with nonvoid interior and compact closure, and the 
following conditions are satisfied:

(i) U = U0 and D = D1;
(ii) Dρ2 ⊂ intDρ1 whenever ρ1 < ρ2;

(iii) for every neighborhood W of D there is ρ ∈ [0, 1) with Dρ ⊂ W .

We will estimate the outer invariance pressure of the set Q = D for the system with control 
range U = U0. Note that, in general, D is not a control set for this system, since we only have 
D = D1 ⊂ D0.

Corollary 21. Consider an inner control set D of control system (1). Let (ω0(·), ϕ(·, x0, ω0)) be 
a regular T -periodic control-trajectory pair with x0 ∈ D and ω0 ∈ U1. Then

Pout (f,D) ≤
r∑

j=1

max{0, dj Reλj } + 1

T

T∫
0

f (ω0(s))ds

holds, where λ1, . . . , λr are the Lyapunov exponents at (x0, ω0) with corresponding multiplicities 
d1, . . . , dr .

Proof. Note that the definition of inner control sets implies that for every ρ ∈ [0, 1) the set D is 
a compact subset of Dρ and the pair (D, Dρ) is admissible. By Theorem 11 it follows that the 
outer invariance pressure P ρ

out (f, D, Dρ) for system (1)ρ satisfies

P
ρ
out (f,D,Dρ) ≤

r∑
j=1

max{0, djρj } + 1

T

T∫
0

f (ω0(s))ds for all ρ ∈ [0,1).

Now for given ε > 0 we may choose ρ ∈ [0, 1) such that Dρ ⊂ Nε(D). Then

Pout (f,D,Nε(D)) ≤ P
ρ
out (f,D,Nε(D)) ≤ P

ρ
out (f,Dρ,Nε(D))

≤
r∑

j=1

max{0, djρj } + 1

T

T∫
0

f (ω0(s))ds.
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The first two inequalities follow from Uρ ⊂ U0 and Dρ ⊂ Nε(D). Since Pout (f, D) =
limε→0 Pout (f, D, Nε(D)), the assertion follows. �
6.4. Example

The following example illustrates Theorem 16. Consider the following linear control system 
in Rd ,

[
ẋ

ẏ

]
=
[

1 −1
1 1

]
︸ ︷︷ ︸

=:A

[
x

y

]
+
[

0
1

]
︸︷︷︸
=:B

ω(t)

and assume that ω(t) ∈ U := [−1, 1] + u0 for some u0 ∈ (−1, 1). In this case, 0 ∈ intU , the pair 
(A, B) is controllable, and A is hyperbolic with eigenvalues given by λ± = 1 ± i. There exists a 
unique control set D ⊂R2 such that (0, 0) ∈ intD, and D is compact.

We may interpret the control functions ω(t) and also u0 as external forces acting on the 
system. Take f ∈ C(U, R) as f (u) := |u − u0|, then (Sτf )(ω) represents the impulse of ω − u0
until time τ . For a subset K ⊂ D a (τ, K, D)-spanning set S represents a set of external forces ω
that cause the system to remain in D when it starts in K . By Theorem 16 we obtain for a compact 
subset K ⊂ D with nonempty interior that

Pinv(f,K,Q) = 2 + min
u∈U

f (u) = 2 + min
u∈[−1,1]+u0

|u − u0| .

Here Pinv(f, K, Q) represent the exponential growth rate of the amount of total impulse required 
of the external forces ω − u0 acting on the system to remain in D as time tends to infinity. The 
minimum of f is attained in u = u0, which does not correspond to an equilibrium if u0 �= 0. 
Hence [6, Corollary 21] (cf. Remark 18) could not be applied in this case.

References

[1] V. Ayala, A. Da Silva, Controllability of linear systems on Lie groups, SIAM J. Control Optim. 55 (2017) 
1332–1343.

[2] V. Ayala, L.A.B. San Martin, Controllability properties of a class of control systems on Lie groups, in: A. Isidori, 
F. Lamnabhi-Lagarrigue, W. Respondek (Eds.), Nonlinear Control in the Year 2000, vol. 1, in: Lecture Notes in 
Control and Inform. Sciences, vol. 258, Springer, 2001, pp. 83–92.

[3] V. Ayala, A. Da Silva, G. Zsigmond, Control sets of linear systems on Lie groups, Nonlinear Differ. Equ. Appl. 
24 (8) (2017) 1–15.

[4] V. Ayala, J. Tirao, Linear control systems on Lie groups and controllability, in: G. Ferreyra, R. Gardner, H. Hermes, 
H. Sussmann (Eds.), Differential Geometry and Control, in: Proc. Sympos. Pure Math., vol. 64, AMS, Providence, 
RI, 1999, pp. 47–64.

[5] F. Colonius, J.A.N. Cossich, A.J. Santana, Invariance pressure for control systems, J. Dyn. Differ. Equ. 31 (1) (2019) 
1–23.

[6] F. Colonius, J.A.N. Cossich, A.J. Santana, Invariance pressure of control sets, SIAM J. Control Optim. 56 (6) (2018) 
4130–4147.

[7] F. Colonius, C. Kawan, Invariance entropy for control systems, SIAM J. Control Optim. 48 (2009) 1701–1721.
[8] F. Colonius, W. Kliemann, The Dynamics of Control, Birkhäuser Boston, Boston, MA, 2000.
[9] A. Da Silva, Outer invariance entropy for linear systems on Lie groups, SIAM J. Control Optim. 52 (2014) 

3917–3934.
[10] A. Da Silva, Controllability of linear systems on solvable Lie groups, SIAM J. Control Optim. 54 (2016) 372–390.

http://refhub.elsevier.com/S0022-0396(19)30625-4/bib4179646153s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib4179646153s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib417953616Es1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib417953616Es1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib417953616Es1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib41535As1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib41535As1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib417954696Fs1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib417954696Fs1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib417954696Fs1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib436F636F7361s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib436F636F7361s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib436F636F736132s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib436F636F736132s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib436F6C4B61303961s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib436F6C4B3030s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib646153696C3134s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib646153696C3134s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib646153696C3136s1


JID:YJDEQ AID:10168 /FLA [m1+; v1.304; Prn:28/11/2019; 11:56] P.20 (1-20)

20 F. Colonius et al. / J. Differential Equations ••• (••••) •••–•••
[11] A. Da Silva, C. Kawan, Invariance entropy of hyperbolic control sets, Discrete Contin. Dyn. Syst. 36 (1) (2016) 
97–136.

[12] A. Da Silva, C. Kawan, Robustness of critical bit rates for practical stabilization of networked control systems, 
Automatica 93 (2018) 397–406.

[13] D. Hinrichsen, A.J. Pritchard, Mathematical Systems Theory, vol. 2, 2020, in preparation.
[14] Y. Huang, X. Zhong, Carathéodory–Pesin structures associated with control systems, Syst. Control Lett. 112 (2018) 

36–41.
[15] C. Kawan, Invariance entropy of control sets, SIAM J. Control Optim. 49 (2011) 732–751.
[16] C. Kawan, Invariance Entropy for Deterministic Control Systems. An Introduction, Lecture Notes in Math., 

vol. 2089, Springer, Berlin, 2013.
[17] G. Nair, R.J. Evans, I. Mareels, W. Moran, Topological feedback entropy and nonlinear stabilization, IEEE Trans. 

Autom. Control 49 (2004) 1585–1597.
[18] X. Zhong, Y. Huang, Invariance pressure dimensions for control systems, J. Dyn. Differ. Equ. 31 (4) (2019) 

2205–2222, https://doi .org /10 .1007 /s10884 -018 -9701 -z.

http://refhub.elsevier.com/S0022-0396(19)30625-4/bib4164724B61s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib4164724B61s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib646153696C4B3138s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib646153696C4B3138s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib4869503138s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib4875616E5A3138s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib4875616E5A3138s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib4B617761313162s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib4B6177613133s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib4B6177613133s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib4E454D4D3034s1
http://refhub.elsevier.com/S0022-0396(19)30625-4/bib4E454D4D3034s1
https://doi.org/10.1007/s10884-018-9701-z

	Bounds for invariance pressure
	1 Introduction
	2 Preliminaries
	2.1 Control systems and linearization
	2.2 Invariance pressure

	3 An upper bound on control sets
	4 A lower bound
	5 Linear control systems
	6 Further applications
	6.1 Control sets and equilibrium pairs
	6.2 Control sets of linear control systems on Lie groups
	6.3 Inner control sets
	6.4 Example

	References


