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Abstract

The paper is concerned with the propagation of ion-acoustic shock waves in a collision dominated plasma 
whose equations of motion are described by the one-dimensional isothermal Navier-Stokes-Poisson system 
for ions with the electron density determined by the Boltzmann relation. The main results include three 
parts: (a) We establish the existence and uniqueness of a small-amplitude smooth traveling wave by solving 
a 3-D ODE in terms of the center manifold theorem. (b) We study the shock structure in a specific asymptotic 
regime where the viscosity coefficient and the shock strength are proportional to ε and the Debye length 
is proportional to (δε)1/2 with two parameters ε and δ, and show that in the limit ε → 0, shock profiles 
obtained in (a) can be approximated by the profiles of KdV-Burgers uniformly for 0 < δ ≤ δ0 with some 
δ0 > 0. The proof is based on the suitable construction of the KdV-Burgers shock profiles together with 
the delicate analysis of a linearized variable coefficient system in exponentially weighted Sobolev spaces 
involving parameters ε and δ. (c) We also prove the large time asymptotic stability of traveling waves under 
suitably small smooth zero-mass perturbations. Note that the ions’ temperature is allowed to be zero in parts 
(a) and (b), but necessarily required to be strictly positive in the proof of part (c).
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1. Introduction

As a fundamental issue of great physical importance, the problem of shock structures in 
plasma has received considerable attention in the literature from both theoretical and experi-
mental perspectives, e.g. [25,26,42,45]. In this paper, we carry out a mathematical study of the 
existence and stability of smooth shock profiles for the Navier-Stokes-Poisson system describing 
the dynamics of single-ions under the Maxwell-Boltzmann relation. Moreover, we prove that the 
obtained shock wave solution converges to the one of the KdV-Burgers equations in a specific 
asymptotic regime where the viscosity, the square of the Debye length as well as the amplitude 
of the shock are of the same order in a small parameter ε.

1.1. Equations of motion

In this paper, we study the existence, structure and stability of small-amplitude shock waves of 
the following one-dimensional Navier-Stokes-Poisson system for ions in {(t, x) : t > 0, x ∈R}:

⎧⎪⎪⎨
⎪⎪⎩

∂tn + ∂x(nu) = 0,

∂t (nu) + ∂x(nu2 + T n) = μ∂xxu − n∂xφ,

− λ2∂xxφ = n − eφ.

(1.1)

Here T ≥ 0, μ > 0 and λ > 0 are constants which stand for the absolute temperature, viscosity 
coefficient and Debye length, respectively. Particularly, when T = 0, the momentum equation is 
pressureless and (1.1) is usually used to model the motion of cold plasma. The electric potential 
φ = φ(t, x) is induced by the total charge of ions and electrons. In (1.1), we have assumed that 
the density of electrons ne follow the Maxwell-Boltzmann relation ne = eφ , which is a physical 
assumption according to the fact that lighter electrons get close to the equilibrium state at a much 
faster rate than heavier ions in plasma, cf. [4,29]. As shown in [18,21], it can be formally derived 
from the two-fluid model by taking the velocity of electrons to be zero. To solve (1.1), the initial 
data are given by

[n,u](0, x) = [n0, u0](x),
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with

lim
x→±∞[n0, u0](x) = [n±, u±].

The far-field data of φ are given by

lim
x→±∞φ(t, x) = φ±,

under the quasi-neutral condition φ± = logn± at x = ±∞. In this paper, we are interested in 
the case where n+ �= n−, thus the electric potential φ connects two distinct constants φ± at the 
far-fields x = ±∞. Without loss of generality, we assume that [n−, u−] = [1, 0] throughout the 
paper.

1.2. Existence of shock profile

One of main purposes of this paper is to construct a shock profile [n, u, φ](ξ), which is a 
smooth traveling wave solution to (1.1) satisfying

lim
x→±∞[n,u,φ](x) = [n±, u±, φ±]. (1.2)

Here ξ := x − st and s is a speed of the shock. Therefore, the equations of [n, u, φ] are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− s
dn

dξ
+ d(nu)

dξ
= 0,

− s
d(nu)

dξ
+ d(nu2 + T n)

dξ
= μ

d2u

dξ2 − n
dφ

dξ
,

− λ2 d2φ

dξ2 = n − eφ.

(1.3)

We observe that, by (1.3)3, the last term in (1.3)2 can be rewritten as

−n
dφ

dξ
= d

dξ

[
λ2

2

(
dφ

dξ

)2

− eφ

]
.

Hence, the system (1.3) is equivalent to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− s
dn

dξ
+ d(nu)

dξ
= 0,

− s
d(nu)

dξ
+ d(nu2 + T n)

dξ
= μ

d2u

dξ2 + d

dξ

[
λ2

2

(
dφ

dξ

)2

− eφ

]
,

− λ2 d2φ

2 = n − eφ.

(1.4)
dξ
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Integrating the first two equations in (1.4) over R and using φ± = logn±, we have the following 
Rankine-Hugoniot condition

{− s(n+ − n−) + n+u+ − n−u− = 0,

− s(n+u+ − n−u−) + n+u2+ − n−u2− + (T + 1)(n+ − n−) = 0,
(1.5)

which gives the shock speed s = ±√
(T + 1)n+. In this paper, we only consider the 2-shock 

and take s = √
(T + 1)n+ accordingly. In such case, the Lax shock condition is given by √

(T + 1)n+ < s <
√

T + 1, that is,

n+ < 1. (1.6)

First of all, as for the existence of shock profile solutions to (1.1) with fixed constants μ > 0 and 
λ > 0, we have the following result.

Theorem 1.1. Let T ≥ 0. For given data [n−, u−] with n− > 0, there exist positive constants ε̂0, 
C̄ and ¯C, such that if [n+, u+] satisfies (1.5), (1.6) and

|n+ − n−| ≤ ε̂0,

the problem (1.3) has a unique (up to a shift in ξ ) solution [n̄, ū, φ̄] satisfying

¯Cφ̄ξ ≤ n̄ξ = n̄2ūξ

n−|u− − s| ≤ C̄φ̄ξ < 0, (1.7)

for any ξ ∈R. Moreover, by a suitable choice of the shift, the solution satisfies

∣∣∣∣ dk

dξk

[
n̄ − n±, ū − u±, φ̄ − φ±

]
(ξ)

∣∣∣∣≤ Ck|n+ − n−|k+1e−θ |(n+−n−)ξ | (1.8)

for ξ ≶ 0 and k = 0, 1, · · · , where each Ck and θ are generic positive constants.

Remark 1.2. We would emphasize that T = 0, corresponding to the pressureless or cold plasma, 
is allowed for the existence of smooth shock profiles. Also note that the self-consistent electric 
potential φ connects two distinct constants φ± at the far-fields x = ±∞, and thus the profile of 
φ is nontrivial.

Remark 1.3. Formally, if one lets λ = 0 then (1.1) reduces to the isothermal Navier-Stokes equa-
tions of which even the large-amplitude shock waves can be constructed in terms of the classical 
phase space analysis method. However, in our case we have to be restricted to the consideration 
of small-amplitude shock waves, because the phase space analysis seems no longer useful due to 
the appearance of the second-order elliptic equation (1.4)3 with the nonlinear term eφ such that 
φ cannot be explicitly solved by n. Thus, the existence of large-amplitude shock waves is left 
open.
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1.3. The KdV-Burgers approximation

When the Debye length λ = 0, the plasma becomes quasi-neutral and the system (1.1) reduces 
to the classical Navier-Stokes system of which the shock profile is governed by the scalar vis-
cous Burgers equation in the small amplitude limit, as shown in [31,36]. In typical plasma, the 
parameter λ is small compared with the characteristic length of physical interest. Thus it would 
be interesting to understand how the internal structure of plasma shock waves relies on this small 
parameter. In the second part of the paper, we will show that, in a specific regime where the 
square of the Debye length, the viscosity as well as the amplitude of the shock are of the same 
order, the shock wave solution obtained in Theorem 1.1 is close to the one of the KdV-Burgers 
equation. This result is also in agreement with numerical experiments carried out in [14,42].

To be precise, we re-set up the problem (1.3) in the regime where both the viscosity coefficient 
μ and the Debye length λ are small and depend on a small parameter ε > 0 by

μ = εμ̄, λ = ε1/2λ̄ (1.9)

for two positive constants μ̄ and λ̄ of the same order as a typical length. We denote

δ = λ̄2

μ̄2 (1.10)

and introduce a scaled variable z = ξ/μ̄. The equations of the shock waves [nε, uε, φε] are given 
by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− sεn
′
ε + (nεuε)

′ = 0,

− sε(nεuε)
′ + (nεu

2
ε + T nε)

′ = εu′′
ε − nεφ

′
ε,

− εδφ′′
ε = nε − eφε ,

lim
z→±∞[nε(z), uε(z),φε(z)] = [nε,±, uε,±, φε,±],

(1.11)

where ′ stands for the differential operator d
dz

. Notice that the R-H condition (1.5) for the far 
fields remains the same in this formulation.

Formally, we assume to have the following expansion of [nε, uε, φε] near the equilibrium 
[nε,−, uε,−, φε,−] = [1, 0, 0]:

⎧⎪⎪⎨
⎪⎪⎩

nε = 1 + εn1 + ε2n2 + · · · ,

uε = εu1 + ε2u2 + · · · ,

φε = εφ1 + ε2φ2 + · · · .

(1.12)

To make the far fields compatible with the expansion in ε, the shock speed sε and the downstream 
constant equilibrium [nε,+, uε,+, φε,+] are also supposed to have the following asymptotic ex-
pansion:
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

sε = √
T + 1 + εs1 + ε2s2 + · · · ,

nε,+ = 1 + εn1,+ + ε2n2,+ + · · · ,

uε,+ = εu1,+ + ε2u2,+ + · · · ,

φε,+ = εφ1,+ + ε2φ2,+ + · · · .

(1.13)

Here 
√

T + 1 in the first equation of (1.13) is equal to the acoustic speed of the second family of 
characteristic field at [n, u] = [1, 0], and it is the exact leading term of the asymptotic expansion 
of sε as ε → 0. Here we take 0 < sε <

√
T + 1 according to compressibility of the shock. For 

brevity, in what follows we shall make a simple choice of sε by

sε = √
T + 1 − ε. (1.14)

Upon substituting (1.14) into the R-H condition (1.5), the data [nε,+, uε,+, φε,+] are parameter-
ized in terms of ε as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

nε,+ = s2
ε

T + 1
= 1 − ε

(
2√

T + 1
− ε

T + 1

)
,

uε,+ = sε(1 − 1

nε,+
) = −ε

(
2 + ε√

T + 1 − ε

)
,

φε,+ = lognε,+ = −ε

(
2√

T + 1
− aε

)
.

(1.15)

Here aε in the last line of (1.15) is denoted by

aε = 1

ε
log

s2
ε

T + 1
+ 2√

T + 1
.

By (1.14), it is straightforward to verify that

aε = 2

ε
log

(
1 − ε√

T + 1

)
+ 2√

T + 1
= − ε

T + 1
− O(1)ε2.

Now we are in the position to derive the equations for [n1, u1, φ1] corresponding to the first-
order terms in (1.12). In fact, substituting (1.12) into (1.11) immediately yields, to the vanishing 
zeroth order in ε and the subsequent orders, the following hierarchy of equations:

ε1 : − √
T + 1n′

1 + u′
1 = 0, (1.16)

− √
T + 1u′

1 + T n′
1 = −φ′

1, (1.17)

n1 − φ1 = 0, (1.18)

ε2 : − √
T + 1n′

2 + u′
2 + n′

1 + (n1u1)
′ = 0, (1.19)

− √
T + 1u′

2 + T n2 + u′
1 − √

T + 1(n1u1)
′ + 2u1u

′
1

= −φ′ + u′′ − n1φ
′ , (1.20)
2 1 1
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n2 − φ2 − 1

2
φ2

1 = −δφ′′
1 , (1.21)

ε3 : · · · .

From (1.16), (1.17) and (1.18), we solve u1 and φ1 in terms of n1 as

u1 = √
T + 1n1, φ1 = n1. (1.22)

To further derive the equation for n1, we differentiate (1.21) with respect to z, then multiply 
(1.19) by 

√
T + 1, and further add these two resultant equations to (1.20), so it follows that

√
T + 1n′

1 + u′
1 + 2u1u

′
1 − u′′

1 + n1φ
′
1 − φ1φ

′
1 + δφ′′′

1 = 0. (1.23)

Substituting (1.22) into (1.23), one derives the equation for n1:

2
√

T + 1n′
1 + 2(T + 1)n1n

′
1 − √

T + 1n′′
1 + δn′′′

1 = 0, (1.24)

with the far fields

lim
z→+∞n1(z) := n1,+ = − 2√

T + 1
, lim

z→−∞n1(z) := n1,− = 0. (1.25)

By (1.22), the equations of u1 and φ1 are respectively given by

⎧⎪⎨
⎪⎩

2u′
1 + 2u1u

′
1 − u′′

1 + δ√
T + 1

u′′′
1 = 0,

lim
z→+∞u1(z) := u1,+ = −2, lim

z→−∞u1(z) := u1,− = 0,

(1.26)

and ⎧⎪⎨
⎪⎩

√
T + 1φ′

1 + 2(T + 1)φ1φ
′
1 − √

T + 1φ′′
1 + δφ′′′

1 = 0,

lim
z→+∞φ1(z) := φ1,+ = − 2√

T + 1
, lim

z→−∞φ1(z) := φ1,− = 0.
(1.27)

The existence of KdV-Burgers shock waves n1, u1 and φ1 is guaranteed by the result in [3], 
provided that δ is suitably small. To make the paper self-contained, we will list the related re-
sults in Lemma 5.1 in the Appendix. From (1.25), (1.26) and (1.27), we note that the far field 
[n1,+, u1,+, φ1,+] matches (1.15) at the first order of ε. So the shock profile solution to the prob-
lem (1.11) is expected to have the following form:

[nε,uε,φε] = [1,0,0] + ε[n1, u1, φ1] + o(ε).

Now we are ready to state the main result concerning the KdV-Burgers limit of the shock 
profiles.
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Theorem 1.4. Let T ≥ 0 and 0 < α < 2. There exist two positive constants ε0 and δ0, such that 
if

ε ∈ (0, ε0), δ = λ̄2

μ̄2 ∈ (0, δ0), (1.28)

and the far field [nε,+, uε,+, φε,+] satisfies (1.15), then the shock-wave equation (1.11) admits a 
unique solution [nε, uε, φε] satisfying

nε(0) = 1 + εn1(0), (1.29)

and

sup
z

∣∣∣∣eα|z| dk

dzk
[nε − 1 − εn1, uε − εu1, φε − εφ1] (z)

∣∣∣∣≤ Ckε
2, (1.30)

for any integer k ≥ 0, where each Ck > 0 is a generic constant independent of ε and δ.

Remark 1.5. Since the solutions to (1.11) are not unique due to the translation invariance of the 
shock waves, we add a constraint condition (1.29) to fix the phase.

Remark 1.6. As in Remark 1.2, we emphasize that T = 0 is allowed in the above theorem.

Remark 1.7. On the one hand, since the estimate (1.30) is uniform in δ, one can recover the 
classical viscous Burgers approximation to the shock profile of the Navier-Stokes equations for 
any fixed ε ∈ (0, ε0] by letting δ → 0+. On the other hand, we should point out that in a different 
regime where μ > 0 is fixed and λ ∼ ε → 0+, the method developed in this part can be also 
applied to construct the plasma shock profile for NSP even with large amplitude, through the 
approximation of the compressible Navier-Stokes profile.

Remark 1.8. The assumption (1.28) implies that the dissipation dominates over the dispersion, 
which leads to a monotone structure of smooth shock waves, see Lemma 5.1. On the other hand, 
when δ is suitably large, the oscillatory traveling wave solutions can be not only computed nu-
merically, cf. [14,42], but also constructed in a rigorous way, cf. [3] for KdV-Burgers equation 
and [44] for their stability. Thus it may be interesting to study whether one can construct, for 
large δ > 0, the traveling waves of the Navier-Stokes-Poisson system with an oscillatory struc-
ture through an approximation by the KdV-Burgers equations. This will be left for future.

1.4. Dynamical stability of shock profile

We shall also investigate the large time asymptotic stability of the smooth traveling shock pro-
file obtained in Theorem 1.1. For convenience, we formulate the Navier-Stokes-Poisson system 
in Lagrangian coordinates which reads⎧⎪⎪⎨

⎪⎪⎩
∂tv − ∂xu = 0,

∂tu + T ∂xv
−1 = μ∂x(v

−1∂xu) − v−1∂xφ,

− λ2∂ (v−1∂ φ) = 1 − veφ, t > 0, x ∈ R.

(1.31)
x x



JID:YJDEQ AID:10286 /FLA [m1+; v1.328; Prn:18/03/2020; 12:41] P.9 (1-48)

R. Duan et al. / J. Differential Equations ••• (••••) •••–••• 9
Here, v = 1
n

is the specific volume. We keep on using variables t and x in the Lagrangian coor-
dinates for brevity. Initial data are given by

[v,u](0, x) = [v0, u0](x) → [v±, u±] (x → ±∞), (1.32)

and the far fields of φ(t, x) are given by

lim
x→±∞φ(t, x) = φ±, (1.33)

under the quasi-neutral condition φ± = − logv± at x = ±∞. Similar to the case of Eulerian 
coordinates, we can also write the momentum equation into a conservative form. In fact, multi-
plying the third equation of (1.31) by v−1∂xφ gives

v−1∂xφ = [− λ2∂x(v
−1∂xφ) + veφ

]
v−1∂xφ = ∂x

[
−λ2

2
(v−1∂xφ)2 + eφ

]
.

Substituting the above identity into the second equation of (1.31), the system for [v, u, φ] is 
rewritten as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tv − ∂xu = 0,

∂tu + (T + 1)∂xv
−1 = μ∂x(v

−1∂xu) + λ2∂x

[
(v−1∂xφ)2

2
− v−1∂x(v

−1∂xφ)

]
,

− λ2∂x(v
−1∂xφ) = 1 − veφ.

(1.34)

From (1.34), the R-H condition is given by

{− s(v+ − v−) − (u+ − u−) = 0,

− s(u+ − u−) + (T + 1)(v−1+ − v−1− ) = 0.
(1.35)

Similar as (1.6), we only consider 2-shock, and thus assume that v+ > v−.
For the Boltzmann equation, the equivalence of shock profile in the Eulerian coordinates and 

the one in Lagrangian coordinates has been shown in [22]. The case of the Navier-Stokes-Poisson 
system is similar. Therefore, we re-state the properties of the shock profile in the Lagrangian 
coordinates in terms of Theorem 1.1 as follows.

Proposition 1.9. Let T ≥ 0. For given [v−, u−] with v− > 0, there exist positive constants ε̃, C̃1
and C̃2, such that if [v+, u+] satisfies (1.35) and

v+ − v− ∈ (0, ε̃), (1.36)

then (1.31) has a unique (up to a shift) shock profile solution [v̄, ū, φ̄](y) satisfying [v̄, ū, φ̄](y) →
[v±, u±, φ±] as y → ±∞ and

sv̄y = −ūy > 0, −C̃1v̄y ≤ φ̄y ≤ −C̃2v̄y, (1.37)
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where y = x −st and s is the shock speed. Moreover, by a suitable choice of the shift, the solution 
satisfies

∣∣∣∣ dk

dyk

[
v̄ − v±, ū − u±, φ̄ − φ±

]
(y)

∣∣∣∣≤ Ck|v+ − v−|k+1e−θ |(v+−v−)y|,

for y ≷ 0 and k = 0, 1, · · · , where each Ck and θ are generic positive constants.

Now we introduce the following anti-derivative variables

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩


(t, y) =
y∫

−∞
(v(t, y′) − v̄(y′))dy′,

�(t, y) =
y∫

−∞
(u(t, y′) − ū(y′))dy′,

(1.38)

and set


0(y) =
y∫

−∞
(v0 − v̄)(y′)dy′, �0(y) =

y∫
−∞

(u0 − ū)(y′)dy′. (1.39)

The initial data [v0, u0] are assumed to satisfy that [v0 − v̄, u0 − ū] ∈ L1 ∩H 1 and [
0, �0] ∈ L2. 
Notice that these assumptions imply that the initial perturbations are of zero integral:

+∞∫
−∞

(v0 − v̄)(y)dy =
+∞∫

−∞
(u0 − ū)(y)dy = 0. (1.40)

Define the initial energy

E0 ≡ ‖[v0 − v̄, u0 − ū]‖2
H 1 + ‖[
0,�0]‖2

L2,

the instant energy functional

E(t) ≡ ‖[
,�,φ − φ̄](t)‖2
H 2 (1.41)

and the dissipation rate functional

D(t) ≡ ‖(sv̄v̄y)
1
2 �(t)‖2

L2 + ‖[
y,φt ](t)‖2
H 1 + ‖[�y,φ − φ̄](t)‖2

H 2 . (1.42)

The main result about the dynamical stability of shock profiles is stated as follows.
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Theorem 1.10. Let T > 0. Assume (1.36) with ε̃ chosen to be further small enough. There exists 
a positive constant e0 such that if E0 ≤ e0, the Cauchy problem (1.31) together with (1.32) and 
(1.33) admits a unique global-in-time solution [v, u, φ](t, y) satisfying

E(t) +
t∫

0

D(τ )dτ ≤ CE0, (1.43)

for all t ≥ 0. Moreover, the solution [v, u, φ] tends in large time to the shock profile in the 
following sense

lim
t→∞ sup

y∈R

∣∣∣ [v(t, y) − v̄(y), u(t, y) − ū(y),φ(t, y) − φ̄(y)
] ∣∣∣= 0. (1.44)

Remark 1.11. The dynamical stability of the ion-acoustic shock profile in the case of T = 0
remains left, see (4.27) in the proof of Lemma 4.2.

Remark 1.12. Our stability result holds for any 1-D, small and zero excessive mass perturba-
tions. However, a result of multi-dimensional stability is out of reach. The energy approach used 
in this paper relies heavily on the zero-mass condition (1.40), which can propagate due to the 
conservation laws. However, this is not the case for the multi-dimensional system. The excessive 
initial mass would cause a shift in the phase of shock profile, which is hard to be determined for 
general systems. We refer to [17,24,34] for deep discussions in this direction.

1.5. Literature

Now we review some related works on the problems considered in this paper. First, the shock 
structure problem is an important problem in both mathematical and physical community. The 
pioneer work on this problem can be traced back to 50’s when Gilbarg [15] constructed a shock 
profile for Navier-Stokes system and established its limit behavior as both the viscosity and the 
heat conductivity vanish. Since then, there have been a huge amount of works on this problem for 
other physical models, cf. [1,2,5,6,10,12,33,48]. Our approach for the proof of Theorem 1.1 is 
based on the Center Manifold theory, which was first applied by Kopell-Howard [28] to construct 
the viscous shock profiles for the system with identity viscosity. Later on, it has been widely used 
in the study of shock profiles for more general hyperbolic balance laws. We refer to, for instance, 
Majda-Pego [38] for strictly parabolic systems, Majda-Ralston [39] for various of the numerical 
schemes, Yong-Zumbrun [49] for relaxation systems, and recently Liu-Yu [32] for Boltzmann 
equations. In the end we mention that a nice and detailed introduction to the history of the shock 
structure problem can be found in the book by Dafermos [9].

Concerning the stability of shock waves, it was first studied by Matsumura-Nishihara [41]
for the isentropic Navier-Stokes equations and later extended by Kawashima-Matsumura [27]
in the heat-conductive case. As for the shock waves of general systems of viscous conservation 
laws, Goodman [16] proved their stability by using a characteristic-weighted energy method. 
The proofs of the stability in [16,27,41] heavily rely on the zero-mass condition. If the initial 
perturbation has an non-zero integral, the stability of shock waves was proved by Szepessy-
Xin [47] for systems of viscous conservation laws with strictly parabolic viscosity tensor and by 
Liu-Zeng [36] for compressible Navier-Stokes system. We also mention series of works [31,35,
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36,50] by Liu, Liu-Zeng and Yu on the Green’s functions of the linearized equations around the 
shock waves. Based on the Green’s functions, they proved the pointwise convergence to shock 
waves, provided that the amplitude of shock waves is suitably small. As for shock waves over a 
full range of physical parameters including the large amplitude shocks, Gardner-Zumbrun [11]
carried out a spectral stability criteria, based on Evan function approach. We refer to [23,37,40,
51] for more applications of this approach.

Another interesting model is the Euler-Poisson system, which is the invicid system corre-
sponding to (1.1). There are a huge number of literatures have been devoted to study this system. 
Among them, we would like to mention some works only related to the current work. Concern-
ing the traveling waves of Euler-Poisson system, the first result we are aware of comes from [7], 
in which three different types of traveling waves, namely solitons, periodic solutions and shock 
waves with discontinuities were constructed. Moreover, the quasi-neutral limits of these traveling 
waves were investigated. The quasi-neutral limit in the whole spacial domain Rd was studied in 
Cordier-Grenier [8] by using pseudo-differential operator techniques. In the presence of physi-
cal boundary, the quasi-neutrality breaks down near the boundary and the plasma sheath forms. 
To our knowledge, the problem of plasma sheath was firstly formulated by Ha-Slemrond [20], 
in which the authors studied the dynamical behavior of sheath for planar spherically symmetric 
flows. By use of a weighted energy approach, Suzuki [46] proved the existence of stationary 
solutions related to sheath profile in half space and their stability. See also [43] for justification 
of Bohm criterion. In addition, there are works on the verification of boundary layer expansion 
for Euler-Poisson system, cf. [13]. In the end, we would like to mention some works on long-
wavelength limit of the Euler-Poisson system. On this matter, we refer to [19] for KdV limit and 
[30] for Zakharov-Kuznetsov limit.

1.6. Idea of the proof of main results

We briefly state the ideas for the proof of Theorems 1.1, 1.4 and 1.10. As mentioned before, the 
proof of Theorem 1.1 is based on the center manifold theorem as in [38]. As for Theorem 1.10, 
the main efforts have been made to treat the extra effect of the self-consistent force on the energy 
estimates, compared to the case of the classical Navier-Stokes equations.

For the proof of Theorem 1.4, the key step is to obtain the uniform-in-ε estimates on the 
kth derivatives (k ≥ 2) of the solution to the linearized remainder system (3.13). The difficulties 
come from the second order derivative term δφ′′/

√
T + 1 on the right-hand side of the first 

equation of (3.13). Specifically, when estimating dkn/dzk , the trouble terms like

(
δ√

T + 1

dk+1φ

dzk+1 ,w2
α

dkn

dzk

)

are hard to handle, due to the degeneracy of the Poisson equation when ε → 0. To resolve them, 
we make an essential use of the structure of the Poisson equation. Indeed, our strategy is to use the 
Poisson equation to represent dkn/dzk in terms of φ, which leads to a crucial cancellation in this 
inner product term. This strategy is also used in the later proof of Theorem 1.10. Unfortunately, 
for the dynamical stability problem, the principle part of the similar trouble term is involved in 
the energy functional E1(t), see (4.25). And, the restriction T > 0 is essentially required to assure 
the positivity of E1(t). This is the reason why the condition T > 0 is necessary in Theorem 1.10.
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1.7. Organization and notations

The rest of this paper is organized as follows. In Section 2, we shall prove Theorem 1.1 for 
the construction of the shock profile in terms of (1.4) for the fixed viscosity coefficient μ >
0 and the fixed Debye length λ > 0. In Section 3, we shall prove Theorem 1.4 for the KdV-
Burgers approximation to the shock profile. One key point there is to show Proposition 3.1 for the 
existence of solutions to the linear inhomogeneous problem, particularly to obtain the estimate 
(3.14). The smallness of δ = λ̄2/μ̄2 plays an essential role in the analysis. In Section 4, we shall 
prove Theorem 1.10 concerning the dynamical stability of the shock profile. In the Appendix, for 
completeness, we first list a lemma about the property of the KdV-Burgers shock profile, give 
the estimates on the error between [n1, u1, φ1] and an approximation solution [n1,ε, u1,ε, φ1,ε]
defined in (3.1), write down the explicit formula of remainder r2 and r3 defined in (3.10), and in 
the end show Lemmas 4.4 and 4.5 related to the higher order energy estimates.

Notations. Throughout this paper, C denotes some generic positive (generally large) constant 
and c denotes some generic positive (generally small) constant, where both C and c may take 
different values in different places. ‖ · ‖Lp stands for the spacial Lp-norm (1 ≤ p ≤ ∞). Some-
times, we denote (·, ·) to be the inner product in L2 for convenience. We also use Hk (k ≥ 0) to 
denote the usual Sobolev space with respect to spacial variable.

2. Existence for shock profiles of small amplitude

In this section, we construct the shock profile solution

[n̄, ū, φ̄](ξ)

to the system (1.1) for the fixed constant viscosity μ > 0 and Debye length λ > 0. The starting 
point is to rewrite the Poisson equation as a first-order ODE system for [φ, φ′] so that the center 
manifold approach (cf. [28,38]) can be directly applied to treat the problem.

Proof of Theorem 1.1. Denote Z = eφ and W = dφ
dξ

. By solving u from the first equation in 

(1.4), we have u = s(1 − n−1). Plugging it back into the second equation in (1.4) and then 
integrating the resultant equation from −∞ to ξ , we obtain the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dn

dξ
= n2

μs

[
(T − s2)(n − 1) + s2(n − 1)2

n
− λ2W 2

2
+ Z − 1

]
,

dZ

dξ
= ZW,

dW

dξ
= −λ−2(n − Z),

(2.1)

with the far fields given by

lim
ξ→±∞[n(ξ),Z(ξ),W(ξ)] = [n±,Z±,W±] = [n±, n±,0].
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For convenience, we introduce U = [n, Z, W ], U± = [n±, Z±, W±] and write (2.1) in the form 
U̇ = F(U), where F(·) denotes the vector field on the right hand of (2.1). Borrowing the idea 
from [38], we introduce the following extended ODE system⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ṅ = n2

μτ

[
(T − τ 2)(n − 1) + τ 2(n − 1)2

n
− λ2W 2

2
+ Z − 1

]
,

Ż = ZW,

Ẇ = −λ−2(n − Z),

τ̇ = 0.

(2.2)

One can see that [n±, Z±, W±, s] are the only two critical points of (2.2). Now we fix 
[n−, Z−, W−, 

√
T + 1] as a reference state and construct the center manifold of (2.2) around this 

reference state. To do so, we calculate the Jacobian of (2.2) at the critical point [n−, Z−, W−,√
T + 1] as

J =

⎛
⎜⎜⎜⎜⎜⎝

− 1
μ

√
T +1

1
μ

√
T +1

0 0

0 0 1 0

− 1
λ2

1
λ2 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

The eigenvalues of J are given by

σ1 = − 1

2μ
√

T + 1
−
√

1

4μ2(T + 1)
+ 1

λ2 < 0,

σ2 = σ3 = 0,

σ4 = − 1

2μ
√

T + 1
+
√

1

4μ2(T + 1)
+ 1

λ2 > 0.

One has two eigenvectors associated with the zero eigenvalue:

R1 = (1,1,0,0), R2 = (0,0,0,1).

Then using the Centre Manifold Theorem (e.g. Proposition 3.2 in [38]), we have the following 
2-d manifold M∗ which is invariant by the flow (2.2):

{
U = U(η, τ) = U− + η[1,1,0] +H(η, τ ),

τ = τ,

with |η| + |τ − √
T + 1| ≤ c for some constant c > 0. Here

H(η, τ ) = [H1,H2,H3](η, τ )
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is a higher order term satisfying

H(0,
√

T + 1) =Hη(0,
√

T + 1) =Hτ (0,
√

T + 1) = 0. (2.3)

If |n+ −1| is small enough, the equilibria [U−, s] and [U+, s] are located in M∗. Therefore, there 
exists η+ < 0 such that U+ = U− + η+[1, 1, 0] + H(η+, s). Here the sign of η+ follows from 
the entropy condition (1.6). Pick up the following curve

U(η, τ)|τ=s = [n(η),Z(η),W(η)] := U− + η[1,1,0] +H(η, s), (2.4)

for η ∈ [η+, 0]. It is straightforward to check that U(η, s) is invariant by the flow (2.1), so that 
dU(η, s)/dη, the direction field of U(η, s), is parallel to F(U(η, s)). Therefore, (2.1) admits a 
solution if and only if the following ODE

⎧⎪⎨
⎪⎩

dη

dξ
= g(η),−∞ < ξ < +∞,

lim
ξ→−∞η(ξ) = 0, lim

ξ→+∞η(ξ) = η+,

(2.5)

induces a well-defined trajectory η = η(ξ) for all ξ ∈R, where g(η) is determined by

g(η)Uη(η, s) = F(U(η, s)). (2.6)

In what follows we only focus on the existence of the solution to (2.5). Note that since η+ < 0, 
the standard ODE theory shows that (2.5) has a smooth solution if and only if g(η) < 0 for all 
η ∈ (η+, 0). Since U+ is the unique state near U− such that F(U+) = 0, it follows from (2.6)
that g(η) vanishes only at two end points of [η+, 0]. To further show that g(η) has the strictly 
negative sign in the open interval (η+, 0), we calculate ġ(0) by differentiating (2.6) and then 
taking the inner product of the resulting equation with Uη(0, s) as

ġ(0) = Uη(0, s)dF (U−)Uη(0, s)T

|Uη(0, s)|2

= T + 1

2μs
(1 − n+) + O

(
Hη(0, s)

)
=

√
T + 1

2μ
(1 − n+) + O

(
(1 − n+)2

)
> 0, (2.7)

provided that |n+ − 1| small enough. Here (2.3) has been used in the last equality in (2.7). 
Therefore, it holds that g(η) < 0 in (η+, 0), so that (2.5) admits a smooth solution η(ξ) for 
ξ ∈ R. Let

[n̄, ū, φ̄](ξ) := [n, s(1 − n−1), logZ] (η(ξ)) ,

where n(·) and Z(·) are defined in (2.4). It is straightforward to check that [n̄, ū, φ̄] solves (1.3)
together with (1.2). The monotonicity (1.7) follows from the following computations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dn̄

dξ
= ṅ(η(ξ))

dη

dξ
=
(

1 + H 1
η (η(ξ), s)

) dη

dξ
∼ dη

dξ
< 0,

dū

dξ
= s

n̄2

dn̄

dξ
< 0,

dφ̄

dξ
= Z−1Ż(η(ξ))

dη

dξ
= Z−1{1 + H 2

η (η(ξ), s)}dη

dξ
∼ dn̄

dξ
< 0,

provided that |n+ −1| is sufficiently small. Furthermore, to verify (1.8) for k = 0, it follows from 
(2.7) that

|η(ξ)| ≤ C|η+|e−θ(1−n+)|ξ | ≤ C(1 − n+)e−θ(1−n+)|ξ |, ξ < 0,

with some constants C > 0 and θ > 0 independent of ξ . Then it follows from (2.4) that

∣∣[n̄ − 1, ū, φ̄](ξ)
∣∣≤ C(1 − n+)e−θ(1−n+)|ξ |, ξ < 0.

Similarly, one also has

∣∣[n̄ − n+, ū − u+, φ̄ − φ+](ξ)
∣∣≤ C(1 − n+)e−θ(1−n+)|ξ |, ξ > 0.

This then proves (1.8) for k = 0. Estimates on (1.8) with k ≥ 1 for those high-order derivatives 
of [n̄, ū, φ̄] can be similarly obtained by differentiating (1.3), and the details of the proof are 
omitted for brevity. It is also straightforward to show the uniqueness (up to a shift) for the ODE 
system (1.3) together with (1.2). Therefore, we complete the proof of Theorem 1.1. �
3. KdV-Burgers approximation to shock profiles

In this section we shall prove Theorem 1.4 concerning the KdV-Burgers approximation of 
the smooth small-amplitude traveling shock profile under the scaling (1.9) provided that δ > 0
given by (1.10) is small enough. We will first construct a suitable approximation solution and 
then establish some uniform estimates of the remainder.

3.1. Construction of an approximate solution

We start from the rescaled system (1.11), where we have chosen sε as in (1.14), the upstream 
equilibrium [nε,−, uε,−, φε,−] = [1, 0, 0], and the downstream equilibrium [nε,+, uε,+, φε,+] as 
in (1.15). Note that by comparing the far fields n1,+, u1,+, and φ1,+ of KdV-Burgers equations 
respectively given in (1.25), (1.26) and (1.27) to [nε,+, uε,+, φε,+], one has

1

ε2

{[nε,+, uε,+, φε,+] − [1,0,0] − ε[n1,+, u1,+, φ1,+]}= [ 1

T + 1
,− 1√

T + 1 − ε
,
aε

ε
]

with

aε = − 1 − O(1)ε.

ε T + 1
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Therefore, one can see that it may not be a good ansatz to directly take [1, 0, 0] + ε[n1, u1, φ1]
as the approximation of [nε, uε, φε] up to the first order for making the energy estimates on re-
mainders in L2 setting, because their far-field data cannot be matched. To overcome this trouble, 
we introduce the modified first-order approximation [n1,ε, u1,ε, φ1,ε] satisfying

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(2
√

T + 1 − ε)n′
1,ε + 2(T + 1)n1,εn

′
1,ε − √

T + 1n′′
1,ε + δn′′′

1,ε = 0,(
2 + ε√

T + 1 − ε

)
u′

1,ε + 2u1,εu
′
1,ε − u′′

1,ε + δ√
T + 1

u′′′
1,ε = 0,(

2
√

T + 1 − aε(T + 1)
)

φ′
1,ε + 2(T + 1)φ1,εφ

′
1,ε − √

T + 1φ′′
1,ε + δφ′′′

1,ε = 0,

(3.1)

with the far-field data:

lim
z→−∞[n1,ε, u1,ε, φ1,ε](z) = [0,0,0], (3.2)

and

lim
z→∞[n1,ε, u1,ε, φ1,ε](z) = 1

ε
{[nε,+, uε,+, φε,+] − [1,0,0]}

= [− 2√
T + 1

+ ε

T + 1
,−2 − ε√

T + 1 − ε
,− 2√

T + 1
+ aε], (3.3)

in terms of (1.15). Note that compared to (1.24), (1.26) and (1.27), we have modified the coeffi-
cients of n′

1,ε , u′
1,ε and φ′

1,ε in (3.1), respectively, according to the far-field conditions (3.2) and 
(3.3). Moreover, since the shock profile is invariant under a spatial shift, we further set

n1,ε(0) = n1(0), u1,ε(0) = u1(0), φ1,ε(0) = φ1(0)

without loss of generality.
We seek for the shock profile solution in the form:

⎧⎪⎪⎨
⎪⎪⎩

nε = 1 + εn1,ε + ε2nR = 1 + εn1 + ε2(n2 + nR),

uε = εu1,ε + ε2uR = εu1 + ε2(u2 + uR),

φε = εφ1,ε + ε2φR = εφ1 + ε2(φ2 + φR),

(3.4)

where [n2, u2, φ2] is defined by

[n2, u2, φ2] := ε−1[n1,ε − n1, u1,ε − u1, φ1,ε − φ1].

Note that [n2, u2, φ2] is O(1) in terms of Lemma 5.2 in the Appendix, and

lim [nR,uR,φR] = [0,0,0].

z→±∞
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The key point is to establish uniform-in-ε estimates of the remainder [nR, uR, φR]. For this pur-
pose, we first derive the equation for [nR, uR, φR] from (1.11) as follows. In fact, integrating the 
first equation of (1.11) from −∞ to z yields that

uε = sε(nε − 1)

nε

. (3.5)

Then from (3.5), one can solve uR in terms of nR as

uR = n−1
ε (sε − εu1,ε)nR + ε−1n−1

ε (sεn1,ε − u1,ε − εn1,εu1,ε). (3.6)

From (1.22), we notice that the last term on the right hand side of (3.6)

ε−1n−1
ε (sεn1,ε − u1,ε − εn1,εu1,ε)

= ε−1n−1
ε

(
sε(n1,ε − n1) − (u1,ε − u1) − ε(n1 + n1,εu1,ε)

)= O(1),

in terms of Lemma 5.2 in the Appendix. Similar for obtaining (1.4), [nε, uε, φε] also satisfies the 
following system with two conservation laws:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− sεn
′
ε + (nεuε)

′ = 0,

− sε(nεuε)
′ + (nεu

2
ε + T nε)

′ = εu′′
ε + (1

2
εδ(φ′

ε)
2 − eφε

)′
,

− εδφ′′
ε = nε − eφε .

(3.7)

Substituting (3.5) into the second equation of (3.7) and integrating the resultant equation, one 
has

εsεn
−2
ε n′

ε = (T + 1 − s2
ε )(nε − 1) + s2

ε n−1
ε (nε − 1)2 − 1

2
εδ(φ′

ε)
2 + εδφ′′

ε . (3.8)

Here we have replaced eφε by nε +εδφ′′
ε . Plugging (3.4) into equation (3.8) and the third equation 

of (3.7) simultaneously, one has the following system for [nR, φR]:

⎧⎪⎨
⎪⎩

n′
R = 2

(
1 + √

T + 1n1(z)
)

nR + δ√
T + 1

φ′′
R + r1 + r2 + r3,

−εδφ′′ = n − φ + r + r + r ,

(3.9)
R R R 4 5 6
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where the inhomogeneous terms ri (1 ≤ i ≤ 6) are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r1 := (
1√

T + 1
+ n1,ε)n

′
1,ε + δ(1 + εn1,ε)

ε
√

T + 1
{(1 + εn1,ε)φ

′′
1,ε − n′′

1,ε}

− δ(1 + εn1,ε)
2

2
√

T + 1
(φ′

1,ε)
2,

r2 = r2[nR,φR] = O(ε){|nR| + δ|φ′′
R| + |φ′

R| + |n′
R|},

r3 = r3[nR,φR] = O(ε)|nR|2 + O(ε2)
{
|nR|2 · [|nR| + |φ′

R| + δ|φ′′
R|]

+|nR| · [|φ′
R| + δ|φ′′

R|]+ |φ′
R|2 · [1 + |nR|2]} ,

r4 = ε−2(1 + εn1,ε − eεφ1,ε ) = O(1),

r5 = r5[φR] := (1 − eεφ1,ε )φR = O(ε)|φR|,
r6 = r6[φR] := ε−2eεφ1,ε (1 − eε2φR + ε2φR) = O(ε2)|φR|2.

(3.10)

For brevity of presentation, we put the explicit formulas of r2 and r3 into the Appendix, see (5.6)
and (5.7) respectively. Moreover, from the phase condition (1.29), we have

nR(0) = 0. (3.11)

To prove Theorem 1.4, it suffices to study the existence of solutions to the ODE system (3.9)
together with (3.11) for the remainders nR and φR . Before doing that, we first define some 
function spaces which will be used later. Define a weight function

wα = wα(z) = exp

{
α

√
1 + |z|2

}
,

for α > 0, and for an integer k ≥ 0 define the weighted Sobolev space

Hk
α =

{
f = f (z) ∈ Hk

∣∣∣∣wα

dif

dzi
∈ L2, 0 ≤ i ≤ k

}
,

associated with the norm

‖f ‖Hk
α

=
{

k∑
i=0

∥∥∥∥wα

dif

dzi

∥∥∥∥
2

L2

}1/2

.

For an integer k ≥ 2 and 0 < α < 2, we also define the following solution space for the remainder 
equations (3.9):

Xα,k =
{
U(z) = [n(z),φ(z)]

∣∣∣∣n(0) = 0,‖n‖Hk
α

+ ‖φ‖
Hk+2

α
< ∞

}
(3.12)
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with the norm

‖U‖Xα,k

.= ‖[n,φ]‖Hk
α

+ √
εδ

∥∥∥∥dk+1φ

dzk+1

∥∥∥∥
L2

α

+ εδ

∥∥∥∥dk+2φ

dzk+2

∥∥∥∥
L2

α

.

3.2. Linear problem

First of all, we start from the following linear inhomogeneous problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dn

dz
= A(z)n + δ√

T + 1

d2φ

dz2 + h1,

− εδ
d2φ

dz2 = n − φ + h2,

n(0) = 0,

(3.13)

where A(z) := 2[1 + √
T + 1n1(z)]. Recall the solution space Xα,k in (3.12). The following 

result is concerned with the solvability and estimates of (3.13), which is a crucial step for further 
treating (3.9).

Proposition 3.1. Let k ≥ 2 be an arbitrary integer and 0 < α < 2. There exist positive constants 
ε1 and δ1 such that if 0 < ε ≤ ε1, 0 < δ ≤ δ1, and

‖h1‖Hk−1
α

+ ‖h2‖Hk+1
α

< ∞,

then the linear ODE system (3.13) has a unique solution U(z) = [n(z), φ(z)] in Xα,k satisfying 
the following estimate:

‖U‖Xα,k
≤ C‖h1‖Hk−1

α
+ C‖h2‖Hk

α
+ Cδ

∥∥∥∥dk+1h2

dzk+1

∥∥∥∥
L2

α

, (3.14)

where C > 0 is a generic constant independent of ε and δ.

Proof. We divide the proof into three steps.

Step 1. In this step, we treat only the a priori estimates of solutions for the case k = 2, that is 
to prove that any smooth solution U(z) = [n(z), φ(z)] to the system (3.13) enjoys the estimate 
(3.14) with k = 2. First of all, we estimate n as follows. From the first equation of (3.13), we can 
represent n as

n(z) =
z∫

0

e
∫ z

z′ A(τ)dτ

[
δφ′′

√
T + 1

+ h1

]
(z′)dz′. (3.15)

It is straightforward to check that

lim A(z) = −2 < 0, lim A(z) = 2 > 0.

z→+∞ z→−∞
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Then from (3.15), we have

‖n‖L2
α

≤ Cδ‖φ′′‖L2
α
+ C‖h1‖L2

α
, (3.16)

for α ∈ (0, 2). Here we emphasize that the constant C > 0 is independent of ε and δ. Then, again 
from the first equation of (3.13), one has

‖n′‖L2
α

≤ |A|L∞‖n‖L2
α
+ Cδ‖φ′′‖L2

α
+ C‖h1‖L2

α
≤ Cδ‖φ′′‖L2

α
+ C‖h1‖L2

α
. (3.17)

Next, we turn to estimate φ. Taking the inner product of the second equation of (3.13) with w2
αφ, 

one has

‖φ‖2
L2

α
= (εδφ′′,w2

αφ) + (n + h2,w
2
αφ).

By Cauchy-Schwarz, the second inner product term is bounded as

|(n + h2,w
2
αφ)| ≤ η‖φ‖2

L2
α
+ Cη{‖n‖2

L2
α
+ ‖h2‖2

L2
α
},

with an arbitrary constant 0 < η < 1 to be chosen later. As for the first inner product term, it 
holds from integration by parts and Cauchy-Schwarz that

(εδφ′′,w2
αφ) = −εδ‖φ′‖2

L2
α
+ (εδφ′,−2wαw′

αφ)

≤ −εδ‖φ′‖2
L2

α
+ ηεδ‖φ′‖2

L2
α
+ Cηεδ‖φ‖2

L2
α
.

Therefore, by taking η > 0 suitably small, one has

‖φ‖2
L2

α
+ εδ‖φ′‖2

L2
α

≤ C‖n‖2
L2

α
+ Cεδ‖φ‖2

L2
α
+ C‖h2‖2

L2
α
. (3.18)

Similarly, taking the inner product of the second equation of (3.13) with w2
αφ′′ and integrating 

by parts, one has

‖φ′‖2
L2

α
+ εδ‖φ′′‖2

L2
α

≤ C{‖φ‖2
L2

α
+ ‖n‖2

H 1
α

+ ‖h2‖2
H 1

α
}. (3.19)

In what follows it is necessary to get the uniform-in-ε estimate for ‖[n′′, φ′′]‖L2
α
. Differenti-

ating the first equation of (3.13) with respect to z and taking the inner product of the resultant 
equation with w2

αn′′, one has

‖n′′‖2
L2

α
= (

A′n + An′ + h′
1,w

2
αn′′)+ δ

√
T + 1

−1
(φ′′′,w2

αn′′). (3.20)

By Cauchy-Schwarz, the first inner product term is bounded by

η‖n′′‖2
2 + Cη{‖n‖2

1 + ‖h′ ‖L2 }

Lα Hα

1 α
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with an arbitrary constant 0 < η < 1 to be chosen later. To estimate the last term on the right-hand 
side of (3.20), we firstly differentiate the second equation of (3.13) twice and then solve n′′ as

n′′(z) = φ′′(z) − εδφ′′′′(z) − h′′
2(z). (3.21)

Thus, applying (3.21), one has

(δφ′′′,w2
αn′′) = (δφ′′′,w2

αφ′′) + (δφ′′′,−εδw2
αφ′′′′) + (δφ′′′,−w2

αh′′
2). (3.22)

By integration by parts, the first term on the right is bounded as

|(δφ′′′,w2
αφ′′)| = |(δφ′′,wαw′

αφ′′)| ≤ Cδ‖φ′′‖2
L2

α
,

the second term is bounded as

|(δφ′′′,−εδw2
αφ′′′′)| = εδ2|(φ′′′,wαw′

αφ′′′)| ≤ Cεδ2‖φ′′′‖2
L2

α
,

and the last term is bounded as

|(δφ′′′,−w2
αh′′

2)| = |(δφ′′,wα{wαh′′′
2 + 2w′

αh′′
2})| ≤ η‖φ′′‖2

L2
α
+ Cηδ

2‖h′′
2‖2

H 1
α
.

This completes all estimates on the right-hand side of (3.22). Plugging those estimates back to 
(3.20), one has

‖n′′‖L2
α

≤ C{‖n‖H 1
α

+ (
√

δ + √
η)‖φ′′‖L2

α
+ √

εδ‖φ′′′‖L2
α
} + C‖h′

1‖L2
α
+ Cηδ‖h′′

2‖H 1
α
.

(3.23)

Here the constant 0 < η < 1 can be chosen small enough. For the estimate of ‖φ′′‖L2
α
, we take 

the inner product of (3.21) with w2
αφ′′, which yields that

‖φ′′‖2
L2

α
= (εδφ′′′′,w2

αφ′′) + (h′′
2,w

2
αφ′′) + (n′′,w2

αφ′′). (3.24)

From integration by parts again, one has

(εδφ′′′′,w2
αφ′′) = −εδ‖φ′′′‖2

L2
α
+ (−εδφ′′′,2wαw′

αφ′′)

≤ −εδ‖φ′′′‖2
L2

α
+ η‖φ′′‖2

L2
α
+ Cηε

2δ2‖φ′′′‖2
L2

α
.

Moreover, by Cauchy-Schwarz, the last two terms on the right-hand side of (3.24) are bounded 
by

η‖φ′′‖2
2 + Cη{‖n′′‖L2 + ‖h′′‖2

2 }.

Lα α 2 Lα
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Therefore, by collecting all estimates and taking 0 < η < 1 suitably small, we have, from (3.24)
that

‖φ′′‖L2
α
+ √

εδ‖φ′′′‖L2
α

≤ Cεδ‖φ′′′‖L2
α
+ C{‖n′′‖L2

α
+ ‖h′′

2‖L2
α
}. (3.25)

Furthermore, taking the inner product of (3.21) with εδφ′′′′w2
α , one has

εδ‖φ′′′′‖L2
α

≤ C{‖φ′′‖L2
α
+ ‖n′′‖L2

α
+ ‖h′′

2‖L2
α
}. (3.26)

Finally, a suitable linear combination of (3.16), (3.17), (3.18), (3.19), (3.23), (3.25) and (3.26)
yields that

‖[n,φ]‖H 2
α

+ √
εδ‖φ′′′‖L2

α
+ εδ‖φ′′′′‖L2

α

≤ C(δ + √
δ)‖φ′′‖L2

α
+ C

√
εδ(

√
δ + √

εδ)‖φ′′′‖L2
α

+ C{‖h1‖H 1
α

+ ‖h2‖H 2
α

+ δ‖h′′′
2 ‖L2

α
}. (3.27)

Therefore, (3.14) with k = 2 follows from (3.27) by taking δ > 0 and ε > 0 suitably small.

Step 2. In this step, we use the induction argument to show that the estimates (3.14) is valid for 
any k ≥ 2. Notice that (3.14) for k = 2 has been proved in Step 1. Assume that this is valid for 
k ≥ 2. Differentiating the first equation of (3.13) k-times with respect to z yields

dk+1n

dzk+1 =
∑

0≤k′≤k

(
k′

k

)
dk′

A

dzk′ · dk−k′
n

dzk−k′ + δ√
T + 1

dk+2φ

dzk+2 + dkh1

dzk
. (3.28)

Taking the inner product of (3.28) with w2
α

dk+1n
dzk+1 , we have

∥∥∥∥dk+1n

dzk+1

∥∥∥∥
2

L2
α

=
∑

0≤k′≤k

(
k′

k

)(
dk+1n

dzk+1 , w2
α

dk′
A

dzk′ · dk−k′
n

dzk−k′

)
+
(

dkh1

dzk
, w2

α

dk+1n

dzk+1

)

+
(

δ√
T + 1

dk+2φ

dzk+2 , w2
α

dk+1n

dzk+1

)
:= J1 + J2 + J3. (3.29)

Using (5.2), the first inner product term on the right is bounded as

|J1| ≤ C
∑

0≤k′≤k

(
k′

k

)∣∣∣∣∣d
k′
A

dzk′

∣∣∣∣∣
L∞

·
∥∥∥∥∥dk−k′

n

dzk−k′

∥∥∥∥∥
L2

α

·
∥∥∥∥dk+1n

dzk+1

∥∥∥∥
L2

α

≤ η

∥∥∥∥dk+1n

dzk+1

∥∥∥∥
2

2
+ Cη,k‖n‖2

Hk
α
.

Lα



JID:YJDEQ AID:10286 /FLA [m1+; v1.328; Prn:18/03/2020; 12:41] P.24 (1-48)

24 R. Duan et al. / J. Differential Equations ••• (••••) •••–•••
Here the positive constant η > 0 can be chosen to be arbitrarily small. By Cauchy-Schwarz, the 
second inner product is bounded as

|J2| ≤ η

∥∥∥∥dk+1n

dzk+1

∥∥∥∥
2

L2
α

+ Cη

∥∥∥∥dkh1

dzk

∥∥∥∥
2

L2
α

.

To further estimate J3, in the similar way as before, we differentiate the second equation of (3.13)

k + 1 times and represent dk+1n
dzk+1 as

dk+1n

dzk+1 = dk+1φ

dzk+1 − εδ
dk+3φ

dzk+3 − dk+1h2

dzk+1 . (3.30)

Substituting (3.30) into J3, we have

J3 = δ√
T + 1

(
dk+2φ

dzk+2 , w2
α

dk+1φ

dzk+1

)
+ εδ2

√
T + 1

(
−dk+2φ

dzk+2 , w2
α

dk+3φ

dzk+3

)

+ δ√
T + 1

(
−dk+2φ

dzk+2 , w2
α

dk+1h2

dzk+1

)
. (3.31)

Then by integration by parts, it follows from (3.31) that

|J3| ≤ C(δ + η)

∥∥∥∥dk+1φ

dzk+1

∥∥∥∥
2

L2
α

+ Cεδ2
∥∥∥∥dk+2φ

dzk+2

∥∥∥∥
2

L2
α

+ Cηδ
2

(∥∥∥∥dk+1h2

dzk+1

∥∥∥∥
2

L2
α

+
∥∥∥∥dk+2h2

dzk+2

∥∥∥∥
2

L2
α

)
.

Substituting estimates of J1 to J3 into (3.29), we have, for any small η > 0, that

∥∥∥∥dk+1n

dzk+1

∥∥∥∥
L2

α

≤C‖n‖Hk
α

+ C(
√

δ + √
η)

∥∥∥∥dk+1φ

dzk+1

∥∥∥∥
L2

α

+ Cε1/2δ

∥∥∥∥dk+2φ

dzk+2

∥∥∥∥
L2

α

+ Cη

∥∥∥∥dkh1

dzk

∥∥∥∥
L2

α

+ Cηδ

(∥∥∥∥dk+1h2

dzk+1

∥∥∥∥
L2

α

+
∥∥∥∥dk+2h2

dzk+2

∥∥∥∥
L2

α

)
. (3.32)

By using the induction assumption, (3.32) implies that

∥∥∥∥dk+1n

dzk+1

∥∥∥∥
L2

α

≤ C(
√

δ + √
η)

∥∥∥∥dk+1φ

dzk+1

∥∥∥∥
L2

α

+ Cε1/2δ

∥∥∥∥dk+2φ

dzk+2

∥∥∥∥
L2

α

+ Cη

{
‖h1‖Hk

α
+ ‖h2‖Hk+1

α
+ δ

∥∥∥∥dk+2h2

dzk+1

∥∥∥∥
L2

α

}
. (3.33)
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From (3.30), we obtain that

∥∥∥∥dk+1φ

dzk+1

∥∥∥∥
L2

α

+ √
εδ

∥∥∥∥dk+2φ

dzk+2

∥∥∥∥
L2

α

+ εδ

∥∥∥∥dk+3φ

dzk+3

∥∥∥∥
L2

α

≤ C

∥∥∥∥dk+1n

dzk+1

∥∥∥∥
L2

α

+ C

∥∥∥∥dk+1h2

dzk+1

∥∥∥∥
L2

α

.

(3.34)

Therefore, (3.14) for k + 1 follows from a suitable combination of (3.33) and (3.34) and taking 
both η and δ suitably small. This completes the proof of estimate (3.14).

Step 3. In this step, we construct the solution to (3.13) by using the approximation sequence 

[nε′
, φε′ ] in terms of solutions to the following ODE system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dnε′

dz
= A(z)nε′ + ε′δ√

T + 1

d2φε′

dz2 + h1,

− εδ
d2φε′

dz2 = nε′ − φε′ + h2,

nε′
(0) = 0,

(3.35)

where 0 ≤ ε′ ≤ 1. Note that when ε′ = 1, the system (3.35) is exactly (3.13) under consideration. 
In what follows let L−1

ε′,ε,δ formally denote the solution operator for the problem (3.35).

(i) Firstly we start with the case of ε′ = 0. From the first equation of (3.35), one can solve n0(z)

as

n0(z) =
z∫

0

e
∫ z
y A(τ)dτ

h1(y)dy.

Since it holds that

lim
z→+∞A(z) = −2 < 0, lim

z→−∞A(z) = 2 > 0,

one has

‖n0‖Hk
α

≤ C‖h1‖Hk−1
α

< ∞.

The existence of the solution φ0 to the second equation of (3.35) in case of ε′ = 0 can be shown 
by the Lax-Milgram Theorem and the Hk+2

α -regularity can be shown by using the Hk
α -estimate 

of n0 and h2. Here, the details of the proof are omitted for brevity. Therefore, the solution 
U0(z) = [n0(z), φ0(z)] is well defined in the function space Xα,k . One can thereby use the sim-
ilar argument in previous steps to deduce that the solution U0(z) = [n0(z), φ0(z)] also satisfies 
the estimate (3.14). Hence the solution operator L−1 in Xα,k has been constructed.
0,ε,δ
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(ii) Next, we construct the solution of (3.35) when ε′ > 0 is small enough. For any U = [n, φ] ∈
Xα,k , we introduce the linear mapping

Tε′U := L−1
0,ε,δ[

ε′δ√
T + 1

φ′′ + h1, h2].

Then for any U1 = (ñ1, φ̃1) and U2 = (ñ2, φ̃2) in Xα,k , one has from (3.14) that

‖Tε′(U1 − U2)‖Xα,k
≤ Cε′δ‖[φ̃1 − φ̃2]‖Hk+1

α
≤ Cε−1/2ε′‖U1 − U2‖Xα,k

, (3.36)

where the constant C > 0 is independent of δ, ε, and ε′. We now choose ε′
0 = ε1/2/2C. Then it 

follows from (3.36) that Tε′ is a contraction mapping on Xα,k for any 0 < ε′ ≤ ε′
0. Thus Tε′ has 

a unique fixed point Uε′ := [nε′
, φε′ ] ∈ Xα,k . It is straightforward to check that Uε′ = [nε′

, φε′ ]
is the solution to (3.35). Therefore, L−1

ε′,ε,δ is well-defined for any 0 < ε′ ≤ ε′
0. Moreover, the 

solution also satisfies the estimates in (3.14).

(iii) Lastly, we introduce

Tε′
0+ε′U = Tε′

0+ε′ [n,φ] = L−1
ε′

0,ε,δ
[ε′δφ′′ + h1, h2].

Notice that by the uniform estimate (3.14), the upper bounds on the norm of the solution in terms 
of L−1

ε′,ε,δ is independent of ε and δ. Then by using the same argument as in (ii), one can show 
that Tε′

0+ε′ is a contraction mapping on Xα,k and thereby has a unique fixed point in Xα,k for 

0 < ε′ ≤ ε′
0. Therefore, the solution operator L−1

2ε′
0,ε,δ

has been constructed. Now we can repeat 

the same procedure and finally construct the solution operator L−1
ε,δ ≡ L−1

1,ε,δ for the original 
problem (3.13) in Xα,k . The proof of Proposition 3.1 is then completed. �
3.3. Justification of the approximation

We have the following estimates on the remaining terms r1 to r6 given in (3.10).

Lemma 3.2. Let 0 < α < 2. There exist positive constants ε2 and δ2 such that if 0 < ε ≤ ε2 and 
0 < δ ≤ δ2, then the following estimates hold:

∣∣∣∣dkr1

dzk
(z)

∣∣∣∣≤ Cke
−α|z|,

∣∣∣∣dkr4

dzk
(z)

∣∣∣∣≤ Cke
−α|z|,
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for any integer k ≥ 0 and any z ∈ R, where each Ck > 0 is a generic constant independent of ε
and δ. Moreover, we have

‖r1‖Hk−1
α

≤ Ck,

‖r2[n,φ]‖
Hk−1

α
≤ Ck

√
ε‖[n,φ]‖Xα,k

,

‖r3‖Hk−1
α

≤ Ckε‖[n,φ]‖2
Xα,k

{1 + ‖[n,φ]‖2
Xα,k

},
‖r4‖Hk

α
≤ Ck,

‖r5[φ]‖Hk
α

≤ Ckε‖φ‖Hk
α
,

‖r6[φ]‖Hk
α

≤ Ckε
2eε2‖φ‖L∞ ‖φ‖2

Hk
α
,

for any integer k ≥ 2, where each Ck > 0 is a generic constant independent of ε and δ.

Proof. We first consider r4. It holds from (3.3) that

1 + εn1,ε(±∞) − eεφ1,ε(±∞) = 0.

Hence, by (3.10), one can rewrite r4 as

r4 = ε−2
{
ε
[
n1,ε − n1,ε(±∞)

]−
[
eεφ1,ε − eεφ1,ε(±∞)

]}
.

Using (1.22), it further reduces to

r4 =ε−1{[n1,ε − n1,ε(±∞)] − [n1 − n1,±]}
− ε−1{[φ1,ε − φ1,ε(±∞)] − [φ1 − φ1,±]}
+ O(1)|φ1,ε − φ1,ε(±∞)|.

Then we use Lemma 5.1 and Lemma 5.2 to conclude the desired estimates on r4. Similarly, it 
holds that

r1 =δ(1 + εn1,ε)√
T + 1

ε−1[φ′′
1,ε − n′′

1,ε] + (
1√

T + 1
+ n1,ε)n

′
1,ε

+ δ(1 + εn1,ε)n1,εφ
′′
1,ε√

T + 1
− δ(1 + εn1,ε)

2

2
√

T + 1
(φ′

1,ε)
2

=δ(1 + εn1,ε)√
T + 1

ε−1[φ′′
1,ε − φ′′

1 − (n′′
1,ε − n′′

1) + φ′′
1 − n′′

1︸ ︷︷ ︸
=0 by (1.22)

] + (
1√

T + 1
+ n1,ε)n

′
1,ε

+ δ(1 + εn1,ε)n1,εφ
′′
1,ε√

T + 1
− δ(1 + εn1,ε)

2

2
√

T + 1
(φ′

1,ε)
2.

Notice that each term on the right contains derivatives, so that all the right-hand terms and hence 
r1 exponentially decay at z → ±∞. Then the estimates on r1 directly follow from Lemma 5.1
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and Lemma 5.2. Estimates on other terms can be treated with the help of the Sobolev inequality; 
we omit the details of the proof for brevity. The proof of Lemma 3.2 is then complete. �

Now we are in position to prove Theorem 1.4. We start from the approximation sequence 
Ui = [ni, φi] (i = 0, 1, · · · ) in terms of⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
n′

i+1 = A(z)ni+1 + δ√
T + 1

φ′′
i+1 + r1 + r2[ni,φi] + r3[ni,φi],

− εδφ′′
i+1 = ni+1 − φi+1 + r4 + r5[φi] + r6[φi],

ni+1(0) = 0,U0 = [0,0].
Note that the existence of the sequence {Ui}i≥0 is assured by Proposition 3.1. By induction, we 
claim to have the uniform bound of Ui as

‖Ui‖Xα,k
≤ K, i = 0,1, · · · (3.37)

for a suitably chosen constant K > 0 independent of ε, δ and i. Indeed, (3.37) is obviously true 
for i = 0, since U0 = [0, 0]. To proceed, we assume that (3.37) is true up to i ≥ 0. Applying 
Proposition 3.1 to U = Ui+1 with

h1 = r1 + r2[ni,φi] + r3[ni,φi], h2 = r4 + r5[φi] + r6[φi],
and further using Lemma 3.2 to estimate the right-hand side of (3.14) as

‖h1‖Hk−1
α

≤ ‖r1‖Hk−1
α

+ ‖r2‖Hk−1
α

+ ‖r3‖Hk−1
α

≤ Ck + Ck

√
ε‖Ui‖Xα,k

(
1 + ‖Ui‖3

Xα,k

)
,

‖r5[φi]‖Hk
α

+ δ

∥∥∥∥dk+1r5

dzk+1

∥∥∥∥
L2

α

≤ Ckε‖φi‖Hk
α

+ Ckεδ

∥∥∥∥dk+1φi

dzk+1

∥∥∥∥
L2

α

≤ Ck

√
ε‖Ui‖Xα,k

,

‖r6[φi]‖Hk
α

+ δ

∥∥∥∥dk+1r6

dzk+1

∥∥∥∥
L2

α

≤ Ckε
2e

ε2‖φi‖Hk
α

(
‖φi‖2

Hk
α

+ δ

∥∥∥∥dk+1φi

dzk+1

∥∥∥∥
2

L2
α

)

≤ Ckεe
ε2‖φi‖Hk

α ‖Ui‖2
Xα,k

,

one can conclude that ‖Ui+1‖Xα,k
is bounded by

B + C
√

ε‖Ui‖Xα,k

{
1 + ‖Ui‖Xα,k

(
1 + e

ε2‖Ui‖Xα,k

)
+ ‖Ui‖3

Xα,k

}
, (3.38)

for a generic constant B > 0 independent of ε, δ and i. In terms of the induction hypothesis, it 
follows from (3.38) that

‖Ui+1‖Xα,k
≤ K

by taking K = 2B and ε > 0 small enough. This then proves (3.37).
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By a similar argument, one can further show that the estimate

‖Ui+1 − Ui‖Xα,k
≤ 1

2
‖Ui − Ui−1‖Xα,k

holds true for all i ≥ 1, provided that ε > 0 is small enough. Thus, {Ui}i≥0 is a Cauchy sequence 
in Xα,k , and hence there is a function U ∈ Xα,k such that Ui → U as i → ∞ in terms of the norm 
of Xα,k . It is straightforward to check that the limit function U := [nR, φR] solves the problem 
(3.9) and satisfies

‖U‖Xα,k
≤ K. (3.39)

Once nR is solved, uR can be solved according to (3.6) and it follows that

‖uR‖Hk
α

≤ C‖[nR,φR‖Xα,k
+ C ≤ C(K + 1). (3.40)

Therefore, (1.30) is justified due to the uniform estimates (3.39) and (3.40) for the remaining 
terms [nR, uR, φR] and (5.5) for the correction terms [n2, u2, φ2]. The proof of Theorem 1.4 is 
complete. �
4. Dynamical stability of shock profiles

In this section we turn to the proof of Theorem 1.10 for the large time asymptotic stability of 
the smooth small-amplitude shock profile obtained in Theorem 1.1 under suitably small smooth 
perturbations. The proof is based on the anti-derivative technique and the elementary energy 
method. Compared to the classical result for the Navier-Stokes equations, the main difficulty is 
to treat the extra effect of the self-consistent force.

4.1. Reformulation

Recall the coordinate (t, y) = (t, x − st). We define the perturbation around the shock profile 
[v̄, ū, φ̄](y) as

[ṽ, ũ, φ̃] := [v − v̄, u − ū, φ − φ̄].

Then by (1.31), [ṽ, ũ, φ̃](t, y) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ṽt − sṽy − ũy = 0,

ũt − sũy + T

(
1

v
− 1

v̄

)
y

= μ

(
uy

v
− ūy

v̄

)
y

−
(

φy

v
− φ̄y

v̄

)
,

− λ2
(

φy

v
− φ̄y

v̄

)
y

= v̄eφ̄ − veφ.

(4.1)

Similar to (1.34), the second equation of (4.1) can be rewritten as
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ũt − sũy + (T + 1)

(
1

v
− 1

v̄

)
y

− μ

(
uy

v
− ūy

v̄

)
y

= λ2

2

[(
φy

v

)2

−
(

φ̄y

v̄

)2]
y

− λ2

[
1

v

(
φy

v

)
y

− 1

v̄

(
φ̄y

v̄

)
y

]
y

. (4.2)

Recall (1.38) for a formal definition of [
, �]. Then, from (4.1) as well as (4.2), by formally 
taking integration of [ṽ, ũ](t, ·) from −∞ to y, [
, �, φ](t, y) satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


t − s
y − �y = 0,

�t − s�y + (T + 1)

(
1

v̄ + 
y

− 1

v̄

)
− μ

(
�yy + ūy

v̄ + 
y

− ūy

v̄

)

= λ2

2

[(
φy

v

)2

−
(

φ̄y

v̄

)2]
− λ2

[
1

v

(
φy

v

)
y

− 1

v̄

(
φ̄y

v̄

)
y

]
,

− λ2
(

φy

v
− φ̄y

v̄

)
y

= v̄eφ̄ − veφ,

(4.3)

supplemented with the initial data of [
, �] given in (1.39). We regard the Cauchy problem (4.3)
and (1.39) on [
, �, φ](t, y) as an auxiliary problem for obtaining the existence of the original 
solution [v, u, φ](t, y) by defining

[v,u] = [v̄, ū] + [
y,�y], (4.4)

and the uniqueness of solutions [v, u, φ] in the prescribed function space can be independently 
proved. Thus there is actually no need to justify if the right-hand terms of (1.38) are well defined. 
Since it is a standard procedure, in what follows we will only focus on the existence of smooth 
solutions to the Cauchy problem (4.3) and (1.39) by the energy method.

4.2. A priori estimates

We are now devoted to obtaining the a priori estimates of solutions to the Cauchy problem 
(4.3) and (1.39).

Proposition 4.1. Let M > 0 be an arbitrary constant and [
, �, φ̃] be a smooth solution to the 
Cauchy problem (4.3) on [0, M] with initial data [
0, �0] ∈ H 2. There exist positive constants 
e1 and ε̃1 independent of M such that if

sup
0≤t≤M

‖[
,�, φ̃](t)‖H 2 ≤ e1 (4.5)

and

|v+ − v−| ≤ ε̃1, (4.6)

then it holds that
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‖[
,�, φ̃](t)‖2
H 2 +

t∫
0

‖√sv̄v̄y�(τ)‖2
L2

+ ‖[
y, φ̃t ](τ )‖2
H 1 + ‖[�y, φ̃](τ )‖2

H 2 dτ ≤ C‖[
0,�0]‖2
H 2, (4.7)

for all t ∈ [0, M].

We will devote the rest of this subsection to prove Proposition 4.1. Firstly we estimate the 
zero-order energy of [
, �, φ̃]. For this, we rewrite (4.3) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩


t − s
y − �y = 0,

�t − s�y − (T + 1)

v̄2 
y − μ

v̄
�yy = −λ2

[
1

v

(
φy

v

)
y

− 1

v̄

(
φ̄y

v̄

)
y

]
+J1 +N1,

− λ2
(

φy

v
− φ̄y

v̄

)
y

= −eφ̄
y − v̄eφ̄ φ̃ +N2,

(4.8)

where we have denoted

J1 ≡ λ2
(

φ̄y φ̃y

v2 − φ̄2
y
y

v2v̄

)
− μūy
y

vv̄
,

N1 ≡ −(T + 1)
2
y

v̄2v
− μ�yy
y

vv̄
+ λ2

2

(
φ̃2

y

v2 − φ̄2
y
2

y

v2v̄2

)
,

N2 ≡ eφ̄(1 − eφ̃)
y + v̄eφ̄(1 − e−φ̃ + φ̃).

Lemma 4.2. Under the assumptions of Proposition 4.1, it holds that

‖[
,�, φ̃, φ̃y](t)‖2
L2 +

t∫
0

{
‖√sv̄v̄y�(τ)‖2

L2 + ‖�y(τ)‖2
L2

}
dτ

≤ C‖[
0,�0]‖2
L2 + C‖φ̃(0)‖2

H 1

+ C(e1 + ε̃1)

t∫
0

{
‖[
y,�y](τ )‖2

H 1 + ‖φ̃(τ )‖2
H 2 + ‖φ̃t (τ )‖2

H 1

}
dτ, (4.9)

for all t ∈ [0, M].

Proof. Firstly, it holds from Sobolev embedding H 1(R) ↪→ L∞(R) as well as the a priori as-
sumption (4.5) that

‖[
,�, φ̃](t)‖L∞ + ‖[
y,�y, φ̃y](t)‖L∞ ≤ Ce1, (4.10)
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with a generic constant C > 0. Then, for e1 suitably small, in terms of (4.4) and ṽ = 
y , we have

¯V ≤ v = v̄ + ṽ ≤ V̄ , (4.11)

for two positive constants ¯V , V̄ > 0. Multiplying the first and second equations of (4.8) by 
(T + 1)
 and v̄2� respectively and adding them up, we have

{
T + 1

2

2 + v̄2

2
�2

}
t

+ {· · · }y + sv̄v̄y�
2 + μv̄�2

y

= −μv̄y��y + (J1 +N1)v̄
2� − λ2v̄2�

[
1

v

(
φy

v

)
y

− 1

v̄

(
φ̄y

v̄

)
y

]
, (4.12)

where the second term {· · · }y on the left stands for the total derivative term and will disappear 
after taking integration with respect to y. Note that the coefficient of �2 in the third term on the 
left is positive due to (1.37) for the compressibility of the shock profile. Now we estimate the 
right-hand side of (4.12) term by term. By Cauchy-Schwarz, the first term is bounded as

|μv̄y��y | ≤ ηsv̄v̄y�
2 + Cη|v+ − v−| · |�y |2, (4.13)

with an arbitrary constant 0 < η < 1 to be chosen later. The second term on the right-hand side of 
(4.12) comes from inhomogeneous and nonlinear contributions. Therefore, it holds from (1.37), 
(4.10) and (4.11) that

∣∣(J1 +N1)v̄
2�

∣∣≤ ηsv̄v̄y�
2 + {Cη|v+ − v−| + C

√
E(t)}

(

2

y + �2
yy + φ̃2

y

)
. (4.14)

Here and in the sequel we have used the notation E(t) given in (1.41). To estimate the last term 
on the right-hand side of (4.12), we first rewrite it as

λ2
[

1

v

(
φy

v

)
y

− 1

v̄

(
φ̄y

v̄

)
y

]
v̄2� = λ2

[(
φy

v2 − φ̄y

v̄2

)
v̄2�

]
y

− λ2φ̃y�y +N3, (4.15)

where we have denoted

N3 ≡ −λ2v̄2
(

1

v2 − 1

v̄2

)
φy�y − 2λ2v̄v̄y�

(
φy

v2 − φ̄y

v̄2

)
+ λ2v̄2�

(
vyφy

v3 − v̄y φ̄y

v̄3

)
.

Using (4.10) and (4.11), it is straightforward to show that N3 is bounded by

|N3| ≤ η|v̄y |�2 + {Cη|v+ − v−| + C
√
E(t)}

(

2

y + �2
y + φ̃2

y + 
2
yy

)
. (4.16)

Next, substituting the first equation of (4.8) into the second term on the right-hand side of (4.15), 
one has
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−λ2φ̃y�y = −λ2φ̃y
t + sλ2φ̃y
y

= −λ2
(
φ̃y


)
t
+ λ2φ̃yt
 + sλ2φ̃y
y

= −λ2
(
φ̃y


)
t
+ λ2

(
φ̃t


)
y

− λ2φ̃t
y + sλ2φ̃y
y. (4.17)

Now it remains to deal with the last two terms in the last line of (4.17). For this, one should 
utilize the Poisson equation. In fact, it follows from the third equation of (4.8) that


y = λ2e−φ̄

(
φy

v
− φ̄y

v̄

)
y

− v̄φ̃ + e−φ̄N2. (4.18)

Then one has

−λ2φ̃t
y = −λ4e−φ̄

(
φy

v
− φ̄y

v̄

)
y

φ̃t + λ2v̄φ̃t φ̃ − λ2e−φ̄ φ̃tN2

=
[
λ2v̄

2
φ̃2 + λ4e−φ̄

2v̄
φ̃2

y

]
t

−
[
λ4e−φ̄

(
φy

v
− φ̄y

v̄

)
φ̃t

]
y

+ I1, (4.19)

where

I1 ≡ λ4e−φ̄

[(
1

v
− 1

v̄

)
φyφ̃ty − φ̄y

(
φy

v
− φ̄y

v̄

)
φ̃t

]
− λ2e−φ̄ φ̃tN2.

Using (4.10) for ε̃1 suitably small, it is straightforward to bound I1 as

|I1| ≤ C{|v+ − v−| +√
E(t)}

(
|φ̃|2 + |φ̃t |2 + |φ̃ty |2 + |
y |2

)
. (4.20)

In the same way as before, the last term on the right-hand side of (4.17) can be computed as

sλ2φ̃y
y = sλ4e−φ̄

(
φy

v
− φ̄y

v̄

)
y

φ̃y − sλ2v̄φ̃φ̃y + sλ2e−φ̄N2φ̃y

=
[
sλ4e−φ̄

(
φy

v
− φy

v̄

)
φ̃y + sλ4e−φ̄ φ̃2

y

2v̄
− sλ2v̄φ̃2

2

]
y

+ I2, (4.21)

where

I2 ≡ sλ4e−φ̄

{(
φ̄y

2v̄
− v̄y

2v̄2

)
φ̃2

y +
(

φy

v
− φy

v̄

)(
φ̄y φ̃y − φ̃yy

)}
+ sλ2e−φ̄N2φ̃y + sλ2v̄y φ̃

2

2
.

One can bound I2 as

|I2| ≤ C{|v+ − v−| +√
E(t)}

(
|φ̃|2 + |φ̃y |2 + |φ̃yy |2 + |
y |2

)
. (4.22)
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In sum, by collecting all the above estimates (4.13), (4.14), (4.15), (4.16), (4.17), (4.19), (4.20), 
(4.21) and (4.22), it follows that

The R.H.S of (4.12) ≤ −
{

λ2v̄φ̃2

2
+ λ4e−φ̄ φ̃2

y

2v̄
− λ2φ̃y


}
t

+ {· · · }y + ηsv̄v̄y�
2

+ {Cη|v+ − v−| + C
√
E(t)}

{ 2∑
i=1

∣∣∂i
y[
,�]∣∣2 +

2∑
i=0

∣∣∂i
yφ̃

∣∣2 +
1∑

i=0

∣∣∂i
yφ̃t

∣∣}, (4.23)

with an arbitrary constant 0 < η < 1 to be chosen later. Substituting (4.23) into (4.12), integrating 
it with respect to y, and taking a suitably small constant η > 0, one obtains that

dE1(t)

dt
+
∫
R

(
sv̄v̄y�

2 + μv̄�2
y

)
dy

≤ C{|v+ − v−| +√
E(t)}

(
‖[
y,�y, φ̃t ]‖2

H 1 + ‖φ̃‖2
H 2

)
, (4.24)

for all t ∈ [0, M], where we have denoted

E1(t) ≡
∫
R

(
v̄2�2

2
+ λ2v̄φ̃2

2
+ (T + 1)
2

2
+ λ4e−φ̄ φ̃2

y

2v̄
− λ2φ̃y


)
dy. (4.25)

Finally, one can check that E1(t) is a nonnegative energy functional. Indeed, by the Poisson 
equation, one has ∣∣∣v̄−1e−φ̄ − 1

∣∣∣= ∣∣∣λ2v̄−1e−φ̄ (v̄−1φ̄y)y

∣∣∣≤ C|v+ − v−|. (4.26)

Then, due to (4.6) with ε̃1 suitably small, the quadratic integrand of E1(t) has a lower bound as

(T + 1)
2

2
+ λ4e−φ̄ φ̃2

y

2v̄
− λ2φ̃y
 ≥ c

(
|
|2 + |φ̃y |2

)
, (4.27)

for a generic constant c > 0. Here we have essentially used the condition T > 0. Therefore, (4.9)
follows from integrating (4.24) over [0, t]. This completes the proof of Lemma 4.2. �

Next, we need to derive the dissipation terms ‖[
y, φ̃, φ̃y, φ̃yy]‖L2 as well as the dissipation 
of φ̃ in H 2.

Lemma 4.3. Under the assumptions of Proposition 4.1, it holds that

‖
y(t)‖2
L2 +

t∫ {
‖
y(τ)‖2

L2 + ‖φ̃(τ )‖2
H 2

}
dτ
0



JID:YJDEQ AID:10286 /FLA [m1+; v1.328; Prn:18/03/2020; 12:41] P.35 (1-48)

R. Duan et al. / J. Differential Equations ••• (••••) •••–••• 35
≤ C‖[
0y,�0]‖2
L2 + C(e1 + ε̃1)

t∫
0

‖[
yy,�yy](τ )‖2
L2 dτ

+ C

⎛
⎝‖�(t)‖2

L2 +
t∫

0

{
‖√sv̄v̄y�(τ)‖2

L2 + ‖�y(τ)‖2
L2

}
dτ

⎞
⎠ , (4.28)

and

‖φ̃(t)‖2
H 2 ≤ C‖
y(t)‖2

L2 + C(e1 + ε̃1)‖
yy(t)‖2
L2 , (4.29)

for all t ∈ [0, M].

Proof. Differentiating the first equation of (4.3) with respect to y, one has


ty − s
yy − �yy = 0. (4.30)

Then, multiplying (4.30) and the second equation of (4.3) by 
y and −μ−1v̄
y respectively and 
adding them together, we have

(

2

y

2

)
t

−
(

s
2
y

2

)
y

+
8∑

j=3

Ij = 0, (4.31)

where Ij (3 ≤ j ≤ 8) are defined as follows.

I3 ≡ −(T + 1)

(
1

v̄ + 
y

− 1

v̄

)
v̄
y

μ
, I4 ≡ −μ−1(�t − s�y)v̄
y,

I5 ≡ −�yy
y + v̄
y

(
�yy + ūy

v̄ + 
y

− ūy

v̄

)
, I6 ≡ λ2v̄
y

2μ

[(
φy

v

)2

−
(

φ̄y

v̄

)2]
,

I7 ≡ −μ−1λ2v̄(v̄−1φ̄y)y(
1

v
− 1

v̄
)
y, I8 ≡ −μ−1λ2v−1v̄
y

(
φy

v
− φ̄y

v̄

)
y

.

Now we estimate I3 to I8 term by term. Firstly, it holds that

I3 = (T + 1)
2
y

μ(v̄ + 
y)
= (T + 1)
2

y

μv̄
− (T + 1)
3

y

μ(v̄ + 
y)v̄
≥ (T + 1)
2

y

μv̄
− C

√
E(t)
2

y.

For I4, it is straightforward to compute

I4 = −
(

v̄
y�
)

+ v̄
yt� + sv̄�y
y
μ t μ μ
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= −
(

v̄
y�

μ

)
t

+ v̄�

μ
(s
yy + �yy) + sv̄�y
y

μ

= −
(

v̄
y�

μ

)
t

+ {· · · }y −
{

v̄y

μ
(s�
y + ��y) + v̄�2

y

μ

}
. (4.32)

By Cauchy-Schwarz, the last term of (4.32) is bounded by

η
2
y + Cη{sv̄v̄y�

2 + �2
y},

where η > 0 can be small enough to be chosen later. As for I5 to I7, we have

|I5| =
∣∣∣∣
(

v̄

v
− 1

)(
�yy
y + ūy
y

)∣∣∣∣≤ C{√E(t) + |v+ − v−|}{|�yy |2 + |
y |2},

and

|I6| + |I7| ≤ C{√E(t) + |v+ − v−|}{|
y |2 + |φ̃y |2}.

Now it remains to estimate I8, which is delicate. Direct computations show that

I8 = −λ2
yφ̃yy

μv̄
+ λ2v̄
y

μv

{(
φyy

v̄
− φyy

v

)
− v

v̄

(
φ̃yy

v
− φ̃yy

v̄

)
+
(

φyvy

v2 − φ̄y v̄y

v̄2

)}
.

(4.33)

The last term of (4.33) is bounded by

C{√E(t) + |v+ − v−|}
{
|
y |2 + |
yy |2 + |φ̃y |2 + |φ̃yy |2

}
.

Note that the first term on the right-hand of (4.33) can not be cancelled by directly replacing 
y

from (4.18) like what has been done earlier in (4.19). Indeed, one has to include some estimates 
on φ̃yy simultaneously so that the quadratic form consisting of 
y and φ̃yy is strictly positive. 
For this purpose, multiplying (4.18) by −λ2φ̃yy/μv̄, one has

λ4φ̃2
yy

μv̄
+ λ2φ̃2

y

μ
− λ2φ̃yy
y

μv̄
−
(

λ2φ̃φ̃y

μ

)
y

= λ2e−φ̄ φ̃yy

μv̄

{
λ2

(
φyy

v̄
− φyy

v

)

+λ2
(

φyvy

v2 − φ̄y v̄y

v̄2

)
+ λ2(eφ̄ − v̄−1)φ̃yy −N2

}
. (4.34)

Due to (4.26), the right-hand side of (4.34) is bounded by

C{|v+ − v−| +√
E(t)}

{
|φ̃|2 + |φ̃y |2 + |φ̃yy |2 + |
yy |2 + |
y |2

}
.
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By collecting all the above estimates for I3 to I8 as well as (4.34), we have, from (4.31) that

(

2

y

2
− v̄
y�

μ

)
t

+
{

(T + 1)
2
y

μv̄
+ λ4φ̃2

yy

μv̄
− 2λ2φ̃yy
y

μv̄

}
+ λ2φ̃2

y

μ
+ {· · · }y

≤ η|
y |2 + Cη

(
sv̄v̄y�

2 + �2
y

)

+ C{√E(t) + |v+ − v−|}
{

2∑
i=0

|∂i
yφ̃|2 +

2∑
i=1

|∂i
y
|2 + |�yy |2

}
, (4.35)

for an arbitrary constant 0 < η < 1. Note that the quadratic term on the left-hand side has a lower 
bound as

λ4φ̃2
yy

μv̄
+ (T + 1)
2

y

μv̄
− 2λ2φ̃yy
y

μv̄
≥ c

(
λ4φ̃2

yy

μv̄
+ (T + 1)
2

y

μv̄

)
,

for a generic positive constant c. Therefore, integrating (4.35) with respect to y and taking η > 0
suitably small, one has

d

dt

(
1

2
‖
y(t)‖2

L2 −
∫
R

v̄
y�

μ
dy

)
+ ‖
y‖2

L2 + ‖φ̃y‖2
H 1

≤ C

∫
R

(
sv̄v̄y�

2 + �2
y

)
dy

+ C{√E(t) + |v+ − v−|}
{
‖�yy‖2

L2 + ‖
y‖2
H 1 + ‖φ̃‖2

H 2

}
. (4.36)

Moreover, multiplying the third equation of (4.8) by φ̃, we obtain that

v̄eφ̄φ̃2 + φ̃2
y

v
+ {· · · }y = −λ2φ̄y

(
1

v
− 1

v̄

)
φ̃y − eφ̄
yφ̃ +N2φ̃. (4.37)

By integrating (4.37) with respect to y and using Cauchy-Schwarz, it follows that

‖φ̃(t)‖2
H 1 ≤ C‖
y(t)‖2

L2 + C
√
E(t)‖φ̃(t)‖2

L2 . (4.38)

Recall (4.5) and (4.6). Then, (4.28) follows from a suitable linear combination of (4.36) and 
(4.38) as well as letting e1 and ε̃1 be small enough. As to the H 2 estimate of φ̃, we note that 
(4.34) gives

‖φ̃y(t)‖2
H 1 ≤ C‖
y(t)‖2

L2 + C{√E(t) + |v+ − v−|}{‖
y(t)‖2
H 1 + ‖φ̃‖2

H 2}. (4.39)

Therefore, (4.29) follows from combining (4.39) and (4.38) and letting e1 and ε̃1 be further small 
enough. The proof for Lemma 4.3 is complete. �



JID:YJDEQ AID:10286 /FLA [m1+; v1.328; Prn:18/03/2020; 12:41] P.38 (1-48)

38 R. Duan et al. / J. Differential Equations ••• (••••) •••–•••
Now we are prepared to derive the higher order energy estimates on [
, �] in Lemma 4.4
and Lemma 4.5 whose proof will be postponed to Section 5.4 in Appendix. In fact, with L2

t H
2
x

estimate of φ̃ on hand, one can regard the terms induced by the self-consistent force φ̃ as the 
inhomogeneous sources.

Lemma 4.4. Under the assumptions of Proposition 4.1, it holds that

‖ũ(t)‖2
L2 +

t∫
0

‖ũy(s)‖2
L2 ds ≤ C‖ũ0‖2

L2 + C

t∫
0

‖[
y,�y, φ̃y](s)‖2
L2 ds, (4.40)

and

‖ũy(t)‖2
L2 +

t∫
0

‖ũyy(s)‖2
L2 ds ≤ C‖ũ0y‖2

L2 + C

t∫
0

‖[ṽ, ṽy, ũy, φ̃y](s)‖2
L2 ds, (4.41)

for all t ∈ [0, M].

Next, we derive the energy dissipation term ‖ṽy‖L2 .

Lemma 4.5. Under the assumptions of Proposition 4.1, it holds that

‖ṽy(t)‖2
L2 +

t∫
0

‖ṽy(s)‖2
L2 ds

≤ C‖[ṽ0y, ũ0]‖2
L2 + C‖ũ(t)‖2

L2 + Ce1

t∫
0

‖ũyy(s)‖2
L2 ds

+ C

t∫
0

{
‖ũ(s)‖2

H 1 + ‖ṽ(s)‖2
L2 + ‖φ̃y(s)‖2

L2

}
ds, (4.42)

for all t ∈ [0, M].

Finally, to close the a priori assumption (4.5), we need to estimate the time derivative φ̃t . In 
fact, we have the following

Lemma 4.6. Under the assumptions of Proposition 4.1, it holds that

‖φ̃t‖2
H 1 ≤ C{‖ũy‖2

L2 + ‖ṽy‖2
L2}, (4.43)

for all t ∈ [0, M].
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Proof. Differentiating the third equation of (4.1) with respect to t and taking the inner product 
of the resultant equation with φ̃t , one has

(veφφ̃t , φ̃t ) + (λ2v−1φ̃ty, φ̃ty) =
(
∂y(−λ2v−2φyṽt ), φ̃t

)
+ (−eφṽt , φ̃t )

=
(
λ2v−2φy(sṽy + ũy), φ̃ty

)
+
(
−eφ(sṽy + ũy), φ̃t

)
, (4.44)

where the first equation of (4.1) has been used for obtaining the second equality. By Cauchy-
Schwarz, it is straightforward to bound the right-hand side of (4.44) by

{η + C
√
E(t)}‖φ̃t‖2

H 1 + {Cη + C|v+ − v−| + C
√
E(t)}{‖ũy‖2

L2 + ‖ṽy‖2
L2}.

Recall (4.5) and (4.6). Thus, (4.43) follows by taking η > 0 suitably small and also letting e1 and 
ε̃1 be small enough. The proof of Lemma 4.6 is then complete. �
Proof of Proposition 4.1. Letting positive constants e1 and ε̃1 be small enough, a suitable linear 
combination of all estimates (4.9), (4.28), (4.40), (4.41), (4.42) and (4.43) yields that

‖[
,�](t)‖2
H 2 + ‖φ̃(t)‖2

H 1 +
t∫

0

D(s)ds ≤ C‖[
0,�0]‖2
H 2 + C‖φ̃(0, ·)‖2

H 1, (4.45)

where D(s) is defined in (1.42). Since e1 and ε̃1 can be further small enough, by (4.29) one has

‖φ̃(t)‖2
H 2 ≤ C‖
y(t)‖2

H 1 , (4.46)

for all t ∈ [0, M]. Then, from (4.45) together with (4.46), one has

‖[
,�, φ̃](t)‖2
H 2 +

t∫
0

D(s)ds ≤ C‖[
0,�0]‖2
H 2,

which proves (4.7). Therefore, the proof of Proposition 4.1 is complete. �
4.3. Global existence and large time behavior

This part is devoted to proving Theorem 1.10. First, the local-in-time existence and uniqueness 
of solutions [
, �, φ̃] to the Cauchy problem on the system (4.3) with initial data [
0, �0] can 
be obtained in a usual way; we omit the details by brevity. Furthermore, by a continuity argument, 
the global existence of the solution [
, �, φ̃] follows from the uniform a priori estimates obtained 
in Proposition 4.1. As a consequence, the solution to (4.1) with the corresponding initial data is 
given by [ṽ, ũ, φ̃] = [
y, �y, φ̃]. As mentioned before, we also omit the proof of uniqueness for 
brevity. Therefore, it remains to show the large time behavior (1.44). To do this, we see from 
(4.1) as well as (1.43) that
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∞∫
0

∣∣∣∣ d

dt
‖[ṽ, ũ, φ̃](t)‖2

L2

∣∣∣∣dt ≤ 2

∞∫
0

{|(ṽ, ṽt )| + |(ũ, ũt )| + |(φ̃, φ̃t )|}dt ≤ C

∞∫
0

D(t)dt ≤ CE0.

Moreover, since it also holds that

t∫
0

‖[ṽ, ũ, φ̃](s)‖2
L2 ds ≤ C

∞∫
0

D(t)dt ≤ CE0,

one can see that ‖[ṽ, ũ, φ̃](t)‖L2 tends to zero as t → ∞. Hence by Sobolev inequality, one has

‖[ṽ, ũ, φ̃](t)‖L∞ ≤ √
2‖[ṽ, ũ, φ̃](t)‖1/2

L2 ‖[ṽy, ũy, φ̃y](t)‖1/2
L2 ≤ CE

1/4
0 ‖[ṽ, ũ, φ̃](t)‖1/2

L2 ,

which goes to zero as t → ∞. This proves (1.44). Therefore, the proof of Theorem 1.10 is 
complete. �
5. Appendix

5.1. KdV-Burgers shock profile

For suitably small δ > 0, the existence of monotone KdV-Burgers shock waves was proved by 
Bona and Schonbek [3]. For our use, one has to show the bounds on derivatives is independent 
of δ.

Lemma 5.1. Let 0 < α < 2. If δ > 0 is suitably small, the equations (1.24), (1.26), and (1.27)
have the smooth solutions n1, u1 and φ1, respectively, which are unique up to a spatial shift and 
satisfy the following properties:

n′
1, u

′
1, φ

′
1 < 0, (5.1)

and ∣∣∣∣ dk

dzk

[
n1 − n1,±, u1 − u1,±, φ1 − φ1,±

]∣∣∣∣≤ Cke
−α|z|, z ≶ 0, (5.2)

for any integer k ≥ 0, where each positive constant Ck is independent of δ.

Proof. The existence and uniqueness of the smooth shock profile with properties (5.1) have been 
proved in [3]. We only show (5.2). Integrating (1.24) from −∞ to z, we have

2
√

T + 1n1 + (T + 1)n2
1 − √

T + 1n′
1 + δn′′

1 = 0. (5.3)

Let q = n′
1. Then, (5.3) is equivalent to the following 1st-order ODE system for [n1, q]:⎧⎨

⎩
n′

1 = q,

q ′ = δ−1
{√

T + 1q − (T + 1)n2
1 − 2

√
T + 1n1

}
.
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One can compute the Jacobian at the far fields (0, 0) and (− 2√
T +1

, 0),

J± =
(

0 1
±2δ−1

√
T + 1 δ−1

√
T + 1

)
,

the eigenvalues

λ−,1 =
√

T + 1 −
√

T + 1 − 8
√

T + 1δ

2δ
,λ−,2 =

√
T + 1 +

√
T + 1 − 8

√
T + 1δ

2δ

associated with J− and the eigenvalues

λ+,1 =
√

T + 1 −
√

T + 1 + 8
√

T + 1δ

2δ
,λ+,2 =

√
T + 1 +

√
T + 1 + 8

√
T + 1δ

2δ

associated with J+. It is straightforward to check that

λ−,1 > 0, λ−,2 > 0, λ+,1 < 0, λ+,2 > 0.

Hence we have

lim
z→−∞

q

n1
= λ−,1 = 4

√
T + 1√

T + 1 +
√

T + 1 − 8
√

T + 1δ
= 2 + O(δ),

lim
z→+∞

q

n1 + 2√
T +1

= λ+,1 = −4
√

T + 1√
T + 1 +

√
T + 1 − 8

√
T + 1δ

= −2 + O(δ).

This implies that, for any 0 < α < 2,

|n1 − n1,±| ≤ Ce−α|z|, z ≷ 0, (5.4)

provided that δ > 0 is suitably small. Next, we estimate the derivatives of n1. Taking the inner 
product of (5.3) with w2

αn′
1 gives

√
T + 1‖n′

1‖2
L2

α
= (δn′′

1,w
2
αn′

1) + (T + 1)

(
n1(n1 + 2√

T + 1
),w2

αn′
1

)
.

From integration by parts, the first inner product term is equal to

−δ(n′
1,wαw′

αn′
1) ≤ Cδ‖n′

1‖2
L2

α
.

By Cauchy-Schwarz, the second one is bounded by

η‖n′
1‖2

L2
α
+ Cη

∥∥∥∥n1(n1 + 2√
T + 1

)

∥∥∥∥2

2
,

Lα
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for η > 0. Therefore, by taking both η > 0 and δ > 0 suitably small, we have

‖n′
1‖L2

α
≤ C

∥∥∥∥n1(n1 + 2√
T + 1

)

∥∥∥∥
L2

α

≤ C.

Here we have used the exponential decay property (5.4) in the last inequality. The higher-order 
derivatives can be treated similarly. The proof of Lemma 5.1 is complete. �
5.2. Error estimates

The following result gives the estimates on errors between the first-order approximation 
[n1, u1, φ1] and the modified one [n1,ε, u1,ε, φ1,ε] defined in (3.1). It can be shown by the same 
energy method as the one used for proving Lemma 5.1. So the proof is omitted for brevity.

Lemma 5.2. Let 0 < α < 2. Assume that both ε > 0 and δ > 0 are suitably small. For any integer 
k ≥ 0, there exists a constant Ck,α > 0 independent of δ and ε such that

∣∣∣∣ dk

dzk

[
n1,ε − n1,ε(±∞) − (n1 − n1,±)

]∣∣∣∣≤ Ck,αεe−α|z|,

∣∣∣∣ dk

dzk

[
u1,ε − u1,ε(±∞) − (u1 − u1,±)

]∣∣∣∣≤ Ck,αεe−α|z|,

∣∣∣∣ dk

dzk

[
φ1,ε − φ1,ε(±∞) − (φ1 − φ1,±)

]∣∣∣∣≤ Ck,αεe−α|z|,

for z ≶ 0. Moreover, let [n2, u2, φ2] := ε−1[n1,ε − n1, u1,ε − u1, φ1,ε − φ1], then it holds that

∣∣∣∣ dk

dzk
[n2, u2, φ2](z)

∣∣∣∣≤ Ck,α, z ∈R. (5.5)

5.3. Explicit formulas of r2 and r3

For completeness, we write down the explicit formulas of r2 and r3 as

r2 = εnR√
T + 1

{
2(T + 1)ε−1(n1,ε − n1) − 1 + 2(2

√
T + 1 − ε)n1,ε

+ 3(T + 1)n2
1,ε + 2δ(1 + εn1,ε)φ

′′
1,ε − εδ(1 + εn1,ε)(φ

′
1,ε)

2
}

+ εδ(2n1,ε + εn2
1,ε)√

T + 1
φ′′

R + εn′
R√

T + 1
− εδφ′

1,ε(1 + εn1,ε)
2

√
T + 1

φ′
R, (5.6)

and
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r3 =ε[(T + 1)(2 + 3εn1,ε) − s2 + ε2δφ′′
1,ε − δ

2ε3(φ′
1,ε)

2]n2
R√

T + 1

+ (T + 1)3/2ε3n3
R + 2ε2δ(1 + εn1,ε)nRφ′′

R√
T + 1

+ ε4δn2
Rφ′′

R√
T + 1

− ε3δφ′
1,εφ

′
R[2nR(1 + εn1,ε) + ε2n2

R]√
T + 1

− ε2δ(φ′
R)2(1 + εn1,ε + ε2nR)2

2
√

T + 1
, (5.7)

respectively.

5.4. Higher order energy estimates

We give the detailed proof of Lemma 4.4 and Lemma 4.5 as follows.

Proof of Lemma 4.4. Taking the inner product of the second equation of (4.1) with ũ with 
respect to y over R, one has

(ũt − sũy, ũ) +
(

T

(
1

v
− 1

v̄

)
y

− μ

(
uy

v
− ūy

v

)
y

, ũ

)
−
(

φy

v
− φ̄y

v̄
, ũ

)
= 0. (5.8)

We estimate the left-hand inner products term by term. The first term is equal to 1
2

d
dt

‖ũ(t)‖2
L2 . 

From integration by parts, the second term is computed as

(
T

(
1

v
− 1

v̄

)
y

− μ

(
uy

v
− ūy

v

)
y

, ũ

)
=
(

−T

(
1

v
− 1

v̄

)
+ μ

(
uy

v
− ūy

v

)
, ũy

)

=
(
μv−1ũy, ũy

)
+
(

(−T + μūy)

(
1

v
− 1

v̄

)
, ũy

)
,

where the first term in the last line above is a good one and the second term is bounded by 
η‖ũy‖2

L2 + Cη‖
y‖2
L2 with an arbitrary constant 0 < η < 1. The third term on the left-hand side 

of (5.8) is bounded by C{‖
y‖2
L2 + ‖ũ‖2

L2 + ‖φ̃y‖2
L2}. Plugging these estimates back into (5.8)

and letting 0 < η < 1 be suitably small, one has

1

2

d

dt
‖ũ(t)‖2

L2 + c‖ũy‖2
L2 ≤ C

(
‖
y‖2

L2 + ‖ũ‖2
L2 + ‖φ̃y‖2

L2

)
. (5.9)

Then (4.40) follows from integrating (5.9) over [0, t].
Next, we show (4.41). Taking the inner product of the second equation of (4.1) with −ũyy

with respect to y over R gives that
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1

2

d

dt
‖ũy‖2

L2 +
(

T

(
1

v
− 1

v̄

)
y

,−ũyy

)
︸ ︷︷ ︸

I9

+
(

μ

(
uy

v
− ūy

v̄

)
y

, ũyy

)
︸ ︷︷ ︸

I10

+
(

φy

v
− φ̄y

v̄
, ũyy

)
= 0︸ ︷︷ ︸

I11

. (5.10)

The inner product terms I9, I10 and I11 above are computed as follows. By Cauchy-Schwarz, 
I9 and I11 can be bounded respectively as

|I9| =
∣∣∣∣T

(−vy

v2 + v̄y

v̄2 ,−ũyy

)∣∣∣∣≤ η‖ũyy‖2
L2 + Cη(‖ṽ‖2

L2 + ‖ṽy‖2
L2),

and

|I11| ≤ η‖ũyy‖2
L2 + Cη(‖
y‖2

L2 + ‖φ̃y‖2
L2),

with an arbitrary constant 0 < η < 1. As to I10, we rewrite it as

I10 =
(
μv−1ũyy, ũyy

)
−
(
μv−2ṽy ũy, ũyy

)
+
(

μūyy

(
1

v
− 1

v̄

)
, ũyy

)

+
(

μūyv̄y

(
1

v̄2 − 1

v2

)
, ũyy

)
−
(

μ
v̄yũy + ūy ṽy

v2 , ũyy

)
. (5.11)

On the right-hand side of (5.11), the first term is a good one, and the second term is bounded as∣∣∣(v−2ṽy ũy, ũyy

)∣∣∣≤ C‖ũy‖L∞‖ṽy‖L2‖ũyy‖L2

≤ C‖ũy‖
1
2
L2‖ṽy‖

1
4
L2‖ũyy‖

3
2
L2‖ṽy‖

3
4
L2

≤ C‖ṽy‖L2‖ũy‖2
L2 + C‖ṽy‖L2‖ũyy‖2

L2

≤ C
√
E(t)

(
‖ũy‖2

L2 + ‖ũyy‖2
L2

)
,

where we have used the Sobolev inequality in the second line and Young’s inequality in the third 
line. Also, the last three terms on the right-hand side of (5.11) are bounded by

C|v+ − v−|
{
‖ũy‖2

L2 + ‖ũyy‖2
L2 + ‖ṽ‖2

L2+‖ṽy‖2
L2

}
.

Plugging those estimates on I9 to I11 back into (5.10) and taking η > 0 suitably small, one has

1

2

d

dt
‖ũy‖2

L2 + c‖ũyy‖2
L2 ≤ C‖[ṽ, ṽy, ũy, φ̃y]‖2

L2 + C{|v+ − v−| +√
E(t)}‖ũyy‖2

L2 . (5.12)

Recall (4.5) and (4.6). Then (4.41) follows from integrating (5.12) over [0, t] and letting e1 and 
ε̃1 be small enough. The proof of Lemma 4.4 is complete. �
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Proof of Lemma 4.5. By taking the inner products of the first and second equations of (4.1)
with −μṽyy and −vṽy respectively and adding the resultant equations together, we obtain that

μ

2

d

dt
‖ṽy‖2

L2 + (ũt − sũy,−vṽy)︸ ︷︷ ︸
I12

+
(

T

(
1

v
− 1

v̄

)
y

,−vṽy

)
︸ ︷︷ ︸

I13

+ (μũy, ṽyy) +
((

μuy

v
− μūy

v̄

)
y

, vṽy

)
︸ ︷︷ ︸

I14

−
(

φy

v
− φ̄y

v̄
, vṽy

)
︸ ︷︷ ︸

I15

= 0. (5.13)

We estimate terms I12 to I15 as follows. Firstly, I12 is computed as

I12 = d

dt
(ũ,−vṽy) + (ũ, ṽt ṽy) + (ũ, vṽty) + (sũy, vṽy)

= d

dt
(ũ,−vṽy) + (ũ,−v̄y ṽt ) + (ũy,−vṽt ) + (sũy, vṽy).

Replacing ṽt by the first equation of (4.1), I12 is further equal to

d

dt
(ũ,−vṽy) + (ũ,−v̄y(sṽy + ũy)) + (ũy,−v(sṽy + ũy)) + s(ũy, vṽy),

where the last three terms are bounded by η‖ṽy‖2
L2 + Cη{‖ũ‖2

L2 + ‖ũy‖2
L2} with an arbitrary 

constant 0 < η < 1. As to I13, it follows that

I13 =
(

−T vy

v2 + T v̄y

v̄2 ,−vṽy

)
= (T v−1ṽy, ṽy) +

(
T v̄y

(
1

v̄2 − 1

v2

)
,−vṽy

)
,

where the first term on the right is good and the second inner product is bounded by η‖ṽy‖2
L2 +

Cη‖ṽ‖2
L2 with an arbitrary constant 0 < η < 1. For I14, one has

I14 =
(

μuyy

v
− μūyy

v̄
, vṽy

)
+ (μũy, ṽyy) +

(−μuyvy

v2 + μūyv̄y

v̄2 , vṽy

)

=
(
μūyy(v

−1 − v̄−1), vṽy

)
+
(−μuyvy

v2 + μūyv̄y

v̄2 , vṽy

)
.

By Cauchy-Schwarz, the first inner product term on the right is bounded as

∣∣∣(μūyy(v
−1 − v̄−1), vṽy

)∣∣∣≤ η‖ṽy‖2
L2 + Cη‖ṽ‖2

L2 .

And the second one is computed as
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(−μuyvy

v2 + μūyv̄y

v̄2 , vṽy

)
= (− μv−1(ūy ṽy + v̄y ũy), ṽy

)
−
(

μūyv̄y

(
1

v2 − 1

v̄2

)
, vṽy

)
− (μv−1ṽy ũy, ṽy). (5.14)

On the right-hand side of (5.14), the last inner product term is bounded as

|(μv−1ṽy ũy, ṽy)| ≤ ‖ũy‖L∞‖ṽy‖2
L2 ≤ C‖ũy‖H 1‖ṽy‖2

L2

≤ C‖ṽy‖L2‖ũy‖2
H 1 + ‖ṽy‖3

L2 ≤ C
√
E(t){‖ũy‖2

H 1 + ‖ṽy‖2
L2},

and the rest terms are bounded by C{|v+ − v−| + √
E(t)}{‖ũy‖2

L2 + ‖ṽ‖2
H 1}. Thus, it follows 

from the above estimates that

|I14| ≤ η‖ṽy‖2
L2 + Cη‖ṽ‖2

L2 + C{|v+ − v−| +√
E(t)}{‖ũy‖2

H 1 + ‖ṽy‖2
L2},

with an arbitrary constant 0 < η < 1. For I15, it holds by Cauchy-Schwarz that

|I15| ≤ η‖ṽy‖2
L2 + Cη{‖ṽ‖2

L2 + ‖φ̃y‖2
L2}.

Plugging those estimates on I12 to I15 back into (5.13) and letting η > 0 be chosen suitably 
small, we obtain that

d

dt

{μ

2
‖ṽy‖2

L2 + (ũ,−vṽy)
}

+ c‖ṽy‖2
L2 ≤ C{‖ũ‖2

H 1 + ‖ṽ‖2
L2 + ‖φ̃y‖2

L2}

+ C{|v+ − v−| +√
E(t)}{‖ṽy‖2

L2 + ‖ũyy‖2
L2}. (5.15)

Recall (4.5) and (4.6). Then (4.42) follows from integrating (5.15) over [0, t] and letting e1 and 
ε̃1 be small enough. The proof of Lemma 4.5 is complete. �
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