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Abstract

We study the well-posedness of Cauchy problems on the upper half space Rn+1+ associated to higher 
order systems ∂tu = (−1)m+1divmA∇mu with bounded measurable and uniformly elliptic coefficients. 
We address initial data lying in Lp (1 < p < ∞) and BMO (p = ∞) spaces and work with weak solutions. 
Our main result is the identification of a new well-posedness class, given for p ∈ (1, ∞] by distributions 
satisfying ∇mu ∈ T

p,2
m , where T p,2

m is a parabolic version of the tent space of Coifman–Meyer–Stein. In 
the range p ∈ [2, ∞], this holds without any further constraints on the operator and for p = ∞ it provides 
a Carleson measure characterization of BMO with non-autonomous operators. We also prove higher order 
Lp well-posedness, previously only known for the case m = 1. The uniform Lp boundedness of propagators 
of energy solutions plays an important role in the well-posedness theory and we discover that such bounds 
hold for p close to 2. This is a consequence of local weak solutions being locally Hölder continuous with 
values in spatial Lp

loc
for some p > 2, what is also new for the case m > 1.
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1. Introduction

1.1. Setup and main result

For fixed positive integers N and m, consider a homogeneous divergence form elliptic opera-
tor L of order 2m with bounded measurable complex coefficients, that is

(Lu)i(t, x) = (−1)m
∑

|α|=|β|=m
1≤j≤N

∂α(a
i,j
α,β(t, x)∂βuj )(t, x) for (t, x) ∈Rn+1+ and i = 1, . . . ,N,

where u = (u1, . . . , uN). We assume that the ellipticity estimates in the sense of the Gårding 
inequality hold uniformly in t > 0 (cf. Section 2.2 for the precise definition and a discussion of re-
lated ellipticity assumptions). A prototype example is the polyharmonic operator L = (−1)m�m. 
We study the associated parabolic equation (or system if N > 1)

∂tui(t, x) = −(Lu)i(t, x) for (t, x) ∈ Rn+1 and i = 1, . . . ,N (1.1)

interpreted in the weak sense (this notion is recalled in Definition 2.1) and are particularly inter-
ested in the well-posedness of the associated Cauchy problem

u ∈ X is a global weak solution to (1.1) and u(0, ·) = u0 ∈ Y (1.2)

for an initial data space Y ⊆ L1
loc(R

n) and some solution space X. Typical choices for Y are the 
Lp spaces and the space of bounded mean oscillations BMO(Rn), the latter of which allows 
rough data, see Section 2.5 for its definition.

We say that (1.2) is well-posed for the pair of semi-normed spaces (Y, X) if the following 
holds:
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(i) For every weak solution u ∈ X of (1.1) there exists u0 ∈ L1
loc(R

n), such that for any compact 
set K ⊆ Rn

lim
t→0

‖u(t, ·) − u0‖L1(K) = 0.

This u0 ∈ L1
loc(R

n) is necessarily unique and we call it the trace of u at t = 0 or the initial 
datum. Note that it suffices to find the trace in some Lp

loc(R
n) for p ≥ 1.

(ii) Given u0 ∈ Y , the Cauchy problem (1.2) can be solved uniquely in X.
(iii) There exists a constant C > 0 with ‖u‖X ≤ C‖u0‖Y for any initial data u0 ∈ Y and the 

corresponding solution u ∈ X.

In their simplest form our well-posedness results can be summarized as follows, cf. Theo-
rems 5.1, 7.6, 7.8, 7.11, 8.6.

Theorem 1.1. There exists ε > 0 depending only on the ellipticity constants, m, N and the di-
mension, such that the Cauchy problem (1.2) is well-posed for

(i) p ∈ (2 − ε, 2 + ε) and Y = Lp(Rn) with X = L∞(0, ∞; Lp(Rn)).
(ii) p ∈ [2, ∞) and Y = Lp(Rn) with X = {u ∈ D ′(Rn+1+ ) | ∇mu ∈ T

p,2
m }.

(iii) p = ∞ and Y = BMO(Rn) with X = {u ∈ D ′(Rn+1+ ) | ∇mu ∈ T
p,2
m }.

Here, T p,2
m denotes a parabolic version of the tent space of Coifman–Meyer–Stein, see Defini-

tion 1.2. In (i) the unique solution satisfies u ∈ C0([0, ∞); Lp(Rn)). Furthermore, (ii) holds also 
for p ∈ (2 − ε, 2) if L is pointwise elliptic, that is the condition

Re

(∑
|α|=|β|=m
1≤i,j≤N

a
i,j
α,β(t, x)ξ

j
β ξ i

α

)
≥ λ‖ξ‖2

is satisfied for some λ > 0, any vector (ξα)|α|=m with entries in CN and almost every
(t, x) ∈ Rn+1+ .

We refer to (ii) and (iii) of Theorem 1.1 as the tent space well-posedness. Below, we survey 
known well-posedness results for both second and higher order autonomous problems and then 
proceed with a thorough discussion of Theorem 1.1 and an explanation of our methods.

1.2. Previous results on non-autonomous Cauchy problems

For non-autonomous second order operators, the issue of existence and uniqueness of solu-
tions with Lp initial data was studied in detail by Auscher, Monniaux, and Portal [7]. Let us first 
recall from [7, §1] that for the heat equation X = L∞(0, ∞; Lp(Rn)) and X = {u | u∗ ∈ Lp(Rn)}
are well-posedness classes for Lp(Rn) initial data with p ∈ (1, ∞), where u∗ denotes the non-
tangential maximal function

u∗ : x �→ sup √ |u(t, y)|.

(t,y) : |y−x|< t
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In the latter case, existence follows from the maximal function characterization of Hardy spaces 
(cf. [38, Chap. III] and the classical work [24]), while the uniqueness is a consequence of the 
maximum principle. The challenge in the case of complex, merely bounded measurable co-
efficients or systems, is that many of the well-known classical methods, like the maximum 
principles, break down and different strategies are needed to approach the problem of unique 
solvability.

In [7] the authors presented novel techniques, which lead to new well-posedness classes also 
for the real equation. First, they settled the energy well-posedness in the space of distributions u
satisfying ‖∇u‖

L2(Rn+1+ )
< ∞ and used the established uniqueness of energy solutions to define 

the family of propagators

{	(t, s) | 0 ≤ s ≤ t < ∞} ⊆ L (L2(Rn)),

corresponding to the semigroup (e−(t−s)L)0≤s≤t<∞ for autonomous operators L, see [7, §3]. The 
propagators were further used to construct solutions with Lp(Rn) initial data, while the main 
step towards the uniqueness of solutions relied on showing that the evolution of solutions with 
controlled growth in the spatial variable is governed by the propagators. The precise condition is

ˆ

Rn

⎛
⎜⎝

bˆ

a

ˆ

B(x,
√

b)

|u(t, y)|2dydt

⎞
⎟⎠

1/2

e−γ |x|2dx < ∞,

where γ < c/(b − a) and the constant c is determined by the ellipticity constants, cf. [7, Theo-
rem 5.1]. With these methods, the authors derived analogous results to case of the heat equation, 
where the non-tangential function was replaced by a parabolic version of the Kenig–Pipher max-
imal function

Ñu(x) := sup
δ>0

⎛
⎜⎝

δ 

δ/2

 

B(x,
√

δ)

|u(t, y)|2dydt

⎞
⎟⎠

1/2

introduced in [29] in the context of elliptic equations, cf. [7, Theorem 5.9, Proposition 5.11] and 
[7, Theorem 5.4, Corollary 5.10]. For the well-posedness in the class X = L∞(0, ∞; Lp(Rn))

or the non-tangential space if p < 2, the uniform Lp(Rn) boundedness of the propagators plays 
a crucial role. The uniform boundedness of propagators is known to hold for instance for coef-
ficients with bounded variation in time, or small perturbations from the autonomous case, see 
Section 6 in [7]. In this work we provide unconditional bounds of the propagators in a range of 
exponents around p = 2. We address this result in the final part of the introduction.

The only available well-posedness results for higher order complex parabolic systems assume 
further regularity of the coefficients. Systems in non-divergence form were extensively studied 
by Solonnikov, who presented the main developments on this subject in his monograph [37]. 
In particular, Solonnikov established unique solvability of the Cauchy problem on [0, T ] × Rn

in certain time-space Hölder and p-Energy classes for systems with coefficients with Hölder 
continuous derivatives, cf. Theorems 4.10 and 5.5 in [37]. The methods used relied on the well-
known technique of freezing the coefficients, dealing with the constant coefficients case first and 
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using the continuity (of the derivatives) of the coefficients to bound the error term. This strategy 
allows not only mixed time-space derivatives, but also domains that are not necessarily bounded 
or cylindrical.

We also mention the work of Dong and Kim [23], who studied the Lp solvability of parabolic 
systems in both divergence and non-divergence form under weaker ellipticity assumptions, but 
additional (small spatial BMO norm) regularity on the coefficients.

1.3. Ansatz

The starting point of this paper was to observe that it is possible to apply the novel approach 
from [7] to the higher order case, as the methods exploit energy estimates. This allows us to 
treat the case of merely bounded coefficients. With begin with an alternative approach to the 
energy well-posedness in the class of distributions satisfying ∇mu ∈ L2(Rn+1+ ) and define the 
family of propagators corresponding to our equation. By careful generalizations of the energy 
estimates and the L2 off-diagonal decay of the propagators from [7], in this work we give the 
tools necessary to extend the results of [7] to the higher order case, which produces new results 
even for the polyharmonic operator.

Combining the aforementioned estimates, we establish the conservation property for propa-
gators

	(t, s)P = P in L2
loc(R

n) for any P ∈ Pm−1.

Here Pm−1 denotes the set of polynomials on Rn of degree less than m. This is new under the 
weak ellipticity assumption and gives an alternative proof for the second order case, where it was 
deduced from the well-posedness results in the non-tangential spaces.

A crucial observation is that under mild growth assumptions the evolution of weak solutions 
to (1.1) at positive times is indeed governed by the propagators and can be proven verbatim 
along the proof for the second order case known from [7]. For any open bounded interval
(a, b) ⊆ (0, ∞) supposing

bˆ

a

ˆ

Rn

|u(t, y)|e−γ |y|2m/(2m−1)

dydt < ∞

with some constant γ > 0 allows to obtain the identity

u(t, ·) = 	(t, s)u(s, ·) := u(s, ·) ◦ 	(t, s)∗

in the sense of distributions for all a < s ≤ t < b, see Theorem 7.1 and Remark 7.2. In partic-
ular, in the prototype example of the polyharmonic operator L = (−1)m�m, we find that the 
propagation of global solutions satisfying

|u(t, x)| � ec|x|2m/(2m−1)

for all x ∈Rn (1.3)

locally in time for some (varying) c > 0, is governed by the semigroup at times t > 0. Precisely, 
we require that for any t0 > 0 there exists a constant c > 0 and a δ-neighborhood of t0 in R+, 
such that (1.3) holds for all t ∈ (t0 − δ, t0 + δ). This exponential growth assumption does not yet 
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imply the full uniqueness withing the class of solutions satisfying such a bound. We will need to 
impose stronger conditions, i.e. restrict ourselves to certain function spaces, in order to uniquely 
identify any potential solution belonging to this class via its trace at t = 0.

1.4. The tent space well-posedness

As the parabolic tent spaces are an object central to this work, we begin with a precise defini-
tion. For the classical introduction to tent spaces, see Coifman, Meyer and Stein [18].

Definition 1.2. Let p ∈ (0, ∞). The parabolic tent space T p,2
m consists of measurable functions 

f : Rn+1+ →C, for which the square function

x �→
⎛
⎜⎝

∞̂

0

 

B(x, 2m
√

t)

|f (t, y)|2dydt

⎞
⎟⎠

1/2

belongs to Lp(Rn). For p = ∞ we define the space T ∞,2
m accordingly via the usual modified 

condition

sup
B : x∈B

⎛
⎜⎝

r2m
B̂

0

 

B

|f (t, y)|2dydt

⎞
⎟⎠

1/2

∈ L∞(Rn).

If we equip T p,2
m with the Lp(Rn) norm of the corresponding object arising in the above 

definition, we obtain a Banach space if 1 < p ≤ ∞. To explain the use of the notion tent
spaces, we recall that in the classical definition from [18], the domain of integration is the cone
Cx = {(t, y) ∈ Rn+1+ | |x − z| < t}. For any closed set F ∈ Rn, the complement of the union 
∪x∈F Cx , resembles a tent over Rn \ F . Further, estimates involving tent spaces are often re-
ferred to as square function estimates (see the discussion after Theorem 6 in the original paper 
[18]). We return to this point of view later on and refer the interested reader to the proof of 
Proposition 6.7, where we highlight this connection.

By Fubini’s Theorem, for all m ∈ N+ it holds T 2,2
m = L2(Rn+1+ ). Hence, the tent space well-

posedness for p = 2 boils down to the energy case and was proven for second order equations in 
[7]. In Lemma 4.2, we show that any global weak solution u to (1.1) satisfying ∇mu ∈ L2(Rn+1+ )

can be written as u = v+P for unique polynomial P ∈Pm−1 and v ∈ C0([0, ∞); L2(Rn)). Thus, 
we obtain that ∇mu ∈ L2(Rn+1+ ) together with the weak decay assumption u(t, ·) ∈ L2(Rn)

for some t > 0 implies uniqueness of solutions of the Cauchy problem with L2(Rn) initial 
data.

It is natural to ask, whether there is a similar condition we can impose on ∇mu in order to 
capture the Lp(Rn) initial data, see also the question risen in the case of the heat equation in 
[7, §1]. In this work we give an affirmative answer to this question in the range p ∈ (1, ∞) and 
cover also the case p = ∞, which turns out to provide the right condition for BMO(Rn) initial 
data.

It was to be expected that solutions to (1.1) admitting Lp(Rn) initial data satisfy ∇mu ∈ T
p,2
m . 

Indeed, for the heat equation different characterizations of Hardy spaces Hp enable to compare 
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‖u∗‖Lp and ‖∇u‖
T

p,2
1

for solutions of the form u(t, ·) = et�f and f ∈ L2(Rn). As mentioned 

above, this is equivalent to finding Hp to Lp estimates for the square function

f �→
⎛
⎜⎝x �→

⎛
⎜⎝

∞̂

0

 

B(x,
√

t)

|∇et�f (t, y)|2dydt

⎞
⎟⎠

1/2⎞
⎟⎠ .

In the non-autonomous setting analogous estimates hold for global weak solutions u to (1.1) of 
the form uf (t, ·) = 	(t, 0)f with f ∈ L2(Rn). In particular, following [7], we derive

‖uf ‖X
p
m

:= ‖Nmuf ‖Lp(Rn) � ‖∇muf ‖
T

p,2
m

, (1.4)

where p ∈ ( n
n+m

, ∞) and u �→ Nmu is the natural adaptation of the non-tangential maximal 

function Ñu above to the homogeneity of the equation (see Section 2.4 for the precise defini-
tions). The converse inequality to (1.4) holds for any global weak solution to (1.1) if p ∈ [1, 2)

and L is strongly elliptic (cf. (2.3)) or p ∈ [2, ∞). In general, this cannot be true for inequality 
(1.4), as it fails for u = P ∈ Pm−1. However, for p > 1 we can show that this is essentially the 
only counterexample.

The case p ∈ [2, ∞]. Our main result for p ∈ [2, ∞] is the following, cf. Theorem 7.6 for p > 2
and Theorem 5.1 together with Lemma 4.2 for p = 2.

Theorem 1.3. Let p ∈ [2, ∞]. For a distribution u ∈ D ′(Rn+1+ ) it is equivalent

(i) u is a global weak solution of (1.1) and ∇mu ∈ T
p,2
m .

(ii) There are unique f ∈ Y and P ∈ Pm−1 (unique up to a constant if p = ∞), such that 
u(t, ·) − P = 	(t, 0)f in L2

loc(R
n) for t > 0,

where Y = BMO(Rn) if p = ∞ or Y = Lp(Rn) if p ∈ [2, ∞). Moreover, it holds

‖∇mu‖
T

p,2
m

∼ ‖f ‖Y .

We can treat the cases p ∈ (2, ∞) and p = ∞ simultaneously, as we exploit the fact that only 
in this range of exponents T p,2

m can be normed by

T
p,2
m � f �→

∥∥∥∥∥ sup
z∈Rn, r>0 :

x∈B(z,r)

⎛
⎜⎝

r2mˆ

0

 

B(z,r)

|f (t, y)|2dydt

⎞
⎟⎠

1/2 ∥∥∥∥∥
Lp(Rn)

.

Now it is easy to see that if ‖∇mu‖
T

p,2
m

< ∞ holds, then ∇mu is square integrable over cylinders 
[0, 1] ×B(x0, 1), where x0 ∈Rn. We use this information, combined with the Poincaré inequality 
and the equation, to obtain u ∈ L2(0, 1; B(x0, 1)) and deduce the existence of a L2

loc(R
n) trace 

u0. As we can control the L2(B(x0, R))-averages of u0 modified by some polynomial PB(x0,R), 
it is convenient to first prove the well-posedness for some Campanato type spaces Y , which we 
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call polynomial Lp and polynomial BMO spaces, see Definitions 2.8 and 2.10. It is non-trivial 
to show that those spaces equal the usual Lp(Rn) and BMO(Rn) spaces up to polynomials, cf. 
Section 2.5. The existence of solutions with initial data in Y is easy due to the L2 off-diagonal 
decay of the propagator and the bound ‖∇muf ‖

T
p,2
m

� ‖f ‖Y is proven analogously to the clas-
sical estimates of C. Fefferman and Stein, cf. [38, Chap. VI, §4.3]. This technique relies on the 
conservation property for polynomials mentioned above.

Recalling that a Borel measure μ on B(Rn+1+ ) satisfying

sup
x∈Rn

sup
r>0

1

rn
μ ((0, r) × B(x, r)) < ∞

is called Carleson, we obtain after rephrasing Theorem 1.3 a Carleson measure characterization 
of BMO(Rn).

Corollary 1.4. For f ∈ L2
loc(R

n) it is equivalent

(i) There exists a global weak solution u to (1.1), for which

dμ(x, t) = |tm∇mu(t2m,x)|2 dxdt

t

is a Carleson measure and the L2
loc(R

n) trace of u is given by f .
(ii) There exists a polynomial P ∈Pm−1 such that f − P ∈ BMO(Rn).

Moreover, ‖∇mu‖
T

∞,2
m

∼ ‖f − P ‖BMO .

In particular, for m = 1, this result complements the well-known Carleson measure charac-
terization of BMO(Rn) by C. Fefferman and Stein (recalled in Proposition 2.7). The variable 
t2m reminds of the scaling properties of our equation and will appear frequently throughout this 
work.

According to Corollary 1.4, any operator L as above leads to an equivalent characterization of 
BMO(Rn) +Pm−1. For m = 1 and some class of coefficients, this was addressed in the survey 
article [31] and similar ideas for the bi-Laplacian appeared earlier in [30]. The BMO(Rn) well-
posedness of parabolic equations is desired, as this allows rough initial data, cf. the famous result 
for the Navier–Stokes equations of Koch–Tataru [32].

The case p ∈ (1, 2]. For p ∈ (1, 2] and any global weak solution u to (1.1) with ‖∇mu‖
T

p,2
m

< ∞, 
we prove the existence of a unique distributional trace u0 and a unique polynomial P ∈ Pm−1, 
for which it holds

sup
t≥0

‖u(t) − P ‖Lp(Rn) � ‖∇mu‖
T

p,2
m

. (1.5)

Thus, by combining the well-posedness result for the class L∞(0, ∞; Lp(Rn)) together with 
the bound ‖∇mu‖

T
p,2
m

� ‖u‖X
p
m

(if L is strongly elliptic) we obtain the following, cf. Theo-
rem 7.11.
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Theorem 1.5. Let 1 ≤ p < r ≤ 2. Assume the pointwise ellipticity bounds (2.3) and that the prop-
agators are uniformly bounded on Lp(Rn). Then for a distribution u ∈ D ′(Rn+1+ ) it is equivalent

(i) It holds ∇mu ∈ T
r,2
m and u is a global weak solution of (1.1).

(ii) There are unique f ∈ Lr(Rn) and P ∈ Pm−1, such that u(t, ·) − P = 	(t, 0)f in Lr(Rn)

for t > 0.

In this case, we have u − P ∈ C0([0, ∞); Lr(Rn)) and

‖f ‖Lr ∼ ‖u − P ‖L∞(Lr ) ∼ ‖u − P ‖Xr
m

∼ ‖∇mu‖
T

r,2
m

.

We could deduce the continuity of the solution with values in Lr(Rn) as we are working in 
the open interval r ∈ (p, 2). For the same conclusion in the range p > 2, see Remark 7.9.

We stress that distinct proofs are needed to treat the cases p ∈ (1, 2] and p ∈ (2, ∞]. For 
p ∈ (1,2] the condition ‖∇mu‖

T
p,2
m

< ∞ implies that ∇mu ∈ L2([ε, ∞] × Rn) for any ε > 0, 

whence it can be deduced u ∈ C ((0, ∞); L2(Rn)) and we use the weak formulation of the equa-
tion (1.1) to find a distributional limit of {u(t)}t>0 as t → 0. As p ≤ 2, to prove (1.5), it is enough 
to bound the Lp norm of weighted L2-averages of u(t) − P for some fixed polynomial P and 
all t > 0, which can be done similarly as in the previous case.

1.5. Uniform boundedness of propagators

Finally, we study the regularity question of weak solutions to (1.1), from which we derive 
new (even in the second order case) results on the boundedness of the propagators. As men-
tioned above, for coefficients satisfying certain growth assumptions in time, such bounds were 
established in [7] for p < 2. The case p > 2 was left open. However, in the autonomous case it 
is well known that the semigroup (e−(t−s)L)0≤s<t<∞ satisfies uniform Lp(Rn)-bounds for each 
exponent p in some (maximal) open interval (p−(L), p+(L)) (cf. [2]). Moreover, we have

p−(L) < q− < 2 < q+ < p+(L)

for some exponents q− and q+, which depend on L only through the order m and the dimension 
n. In the case of propagators associated to non-autonomous operators, one cannot use semigroup 
theory methods to investigate this problem, but we were able to combine our methods with the 
strategy from the recent work of Auscher, Bortz, Egert, and Saari [3] to establish the following 
result, cf. Theorem 8.6.

Theorem 1.6. There exists ε > 0 depending only on the ellipticity constants, m, N and the di-
mension, such that the family of propagators {	(t, s)| 0 ≤ s ≤ t < ∞} is uniformly bounded on 
Lp(Rn) for all p ∈ [1, ∞] with p ∈ (2 − ε, 2 + ε).

The main result of [3] concerns the regularity of local weak solutions to (1.1) for m = 1
and states that they are locally (1/2 − 1/p)-Hölder continuous with values in spatial Lp

loc(R
n)

for any 2 < p < q and some exponent q depending on the ellipticity constants and the dimen-
sions in a non-explicit way. We show in Section 8.2.1 that pointwise bounds of Lp

(Rn) valued 
loc
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solutions by their L2 norms on certain cylinders imply uniform Lp(Rn) bounds on the propa-
gators. This is due to a result from [13] about the boundedness of general linear operators on 
L2(Rn).

We mention that unless the coefficients are real and N = 1, we cannot hope to obtain Hölder 
continuity of local weak solutions with respect to the parabolic distance as in the Moser–Nash 
regularity theory [34,35]. We refer to [3, §1] for a discussion of counterexamples and an overview 
over the subject for m = 1 and rough coefficients. We remark that if N, m ≥ 1 are arbitrary, but 
we impose higher Hölder regularity of the coefficients, equation (1.1) has a unique solution in 
some Hölder class by [37, Theorem 4.10].

The key idea in [3] was to pass to the global setup, that is to a weak solution v of an in-
homogeneous equation on the full space by multiplying the investigated solution with a cut-off 
function. This allows to make sense of the half-time derivative D1/2

t v, whose L2(Rn+1)-norm 
can be then controlled due to the hidden coercivity of the equation on appropriate energy space. 
Then, an abstract interpolation result by Šneı̆berg [36] is used to conclude the higher integra-
bility for p > 2. The desired Hölder continuity and the pointwise bounds in time follow then 
from the results on Campanato spaces. We adapt those methods to the higher order case with the 
difference that, instead of studying the inhomogeneous equation, as in [3], we use the previously 
derived properties of weak solutions to (1.1) and carry them over to the extension v. We obtain 
the following regularity result (cf. Theorem 8.14).

Theorem 1.7. There exists ε > 0 depending only on the ellipticity constants, m, N and the di-
mension, so that any global weak solution u ∈ L2

loc(0, ∞; Hm
loc(R

n)) of (1.1) is locally bounded 
and Hölder continuous in time with values in spatial Lp

loc for any 2 < p < 2 + ε. Moreover, 
u ∈ L

p
loc(0, ∞; Wm,p

loc (Rn)).

We mention that the higher integrability of ∇mu has already been obtained by Giaquinta and 
Struwe for m = 1 [25] and also by Bögelein [14] in the real-valued case, but general m.

1.6. Structure of the paper

In Section 2 we fix the notation, state the ellipticity assumptions, introduce function spaces 
appearing in this work and review the semigroup theory. We continue with the derivation and 
consequences of the a priori energy estimates in Section 3.

In Section 4 we demonstrate that the tent space condition ∇mu ∈ T
p,2
m is sufficient to find and 

control the distributional trace of a global weak solution u. In Section 5 we use obtained trace 
estimates to show the well-posedness of energy solutions and introduce the family of propaga-
tors.

In Section 6 we construct solutions with initial data in Lp with p > 2 or BMO by exploiting 
the L2 off-diagonal decay of the propagators. If p < 2, we need to assume the uniform bounded-
ness of propagators and follow closely [7].

The uniqueness of solutions is addressed in Section 7. We begin with the analogous interior 
representation result as in [7, §5] and consequently establish the tent space well-posedness.

The final section addresses the uniform boundedness assumption for the propagators. First, we 
provide some examples, which again follows [7]. Second, we prove that with no extra assumption 
on the coefficients, the propagators satisfy uniform Lp(Rn) bounds for exponents p in some 
neighborhood of 2, which depends on ellipticity and dimensions only. We also obtain the result 
on Hölder regularity in time mentioned above.
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The Appendix contains the proof of the estimate ‖u‖X
p
m

� ‖∇mu‖T p,2 , as well as its converse, 
if p ≥ 2 or p ∈ (1, 2) and the strong ellipticity estimates hold.

1.7. Remarks

The reader might have noticed that our well-posedness results implicitly exclude the case of 
L1(Rn) initial data. Indeed, this case is rather delicate, cf. [7, §9]. Analogous statements hold as 
well for the higher order case, but for the sake of brevity, we leave their proof as an exercise to 
the interested reader. The case p < 1 is completely open and an optimal condition implying the 
uniform boundedness of propagators is also unknown.

2. Review

2.1. Notation

We denote the positive integers by N+, n ∈ N+ is the spatial dimension and the parabolic 
half-space is given by Rn+1+ = {(t, x) ∈ Rn+1 | t > 0}. Also, (a, b) ⊆ (0, ∞) and � ⊆Rn denote 
open sets and B(x, r) ⊆ Rn the open ball centered at x ∈ Rn with radius r > 0. The Euclidean 
distance of x ∈ Rn to a closed set E ⊆ Rn is denoted by d(x, E) and the distance of two closed 
sets E, F ⊆ Rn by d(E, F). Further, let M denote the number of multi-indices α ∈ Nn of length 
m, that is M = (n+m−1

m

)
. We use standard notation for the partial spatial derivatives ∂α.

In this work we deal with systems, but for readability we usually make no notational difference 
between the cases N = 1 and N > 1, meaning we will write

Lu = (−1)m
∑

|α|=|β|=m

∂α(aα,β(t, x)∂βu)

and, in shorthand notation, L = (−1)mdivmA∇m, while keeping in mind that the coefficient 
matrix A(t, x) = (a

i,j
α,β(t, x))|α|=|β|=m,1≤i,j≤N is a measurable function on Rn+1+ valued in 

CNM×NM . We refer to the constants n, N, m simply as dimensions.
We use standard notions of Lp(�), 1 ≤ p ≤ ∞, and Sobolev spaces Wm,p(�) of complex-

valued functions on �. For a Banach space X(�) of complex-valued functions, let L (X(�))

denote the space of bounded linear operators. Further, we denote by Lp(a, b; X(�)) (or Lp(X)

for (a, b) = (0, ∞) and � = Rn) the Bochner space of X(�)-valued Lp functions on (a, b). 
We write f ∈ L

p
loc(a, b; Xloc(�)) if f ∈ Lp(c, d; X(ω)) for any open cylinder (c, d) × ω with 

a < c < d < b and ω ⊆ �. Spaces C (a, b; Lp(�)), C (a, b; Lp
loc(�)) are defined similarly and if 

the continuity holds up to the endpoints of the interval, we write C ([a, b]; Lp(�)). Additionally, 
C0([0, ∞), Lp(Rn)) consists of those elements of C ([0, ∞); Lp(Rn)), whose Lp-norm vanishes 
as t tends to infinity.

For an open subset U of Rn or Rn+1+ , we denote the space of smooth compactly supported 
functions on U by D(U) and by D ′(U) the space of distributions. The spatial Fourier transform 
Fu defined on the Schwartz space S (Rn), will be sometimes denoted by û. Throughout the 
work, MHL denotes the (uncentered) Hardy–Littlewood maximal operator.

We let Pm−1 denote the space of polynomials on Rn of degree less than m.
When referring to a solution to (1.1) we always mean a weak solution according to the defi-

nition below.
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Definition 2.1. A (local) weak solution of (1.1) on (a, b) ×� ⊆Rn+1+ is a complex-valued func-
tion u ∈ L2

loc(a, b; Hm
loc(�)) such that

bˆ

a

ˆ

�

u(t, x)∂tφ(t, x)dxdt =
∑

|α|=|β|=m

bˆ

a

ˆ

�

aα,β(t, x)∂βu(t, x)∂αφ(t, x)dxdt

holds for all φ ∈ C ∞
c ((a, b) × �). If (a, b) = (0, ∞) and � = Rn, we call u a global weak 

solution.

In this work the constant C > 0 may vary from line to line. Unless stated otherwise, it depends 
only on the ellipticity and dimensions. We write a � b for a, b ∈ R if there is a constant C > 0
with a ≤ Cb. Finally, a ∼ b if a � b and b � a.

2.2. Ellipticity

The coefficients (ai,j
α,β(t, x))|α|=|β|=m,1≤i,j≤N of the operator L = (−1)mdivmA∇m are al-

ways assumed to belong to L∞(Rn+1+ ; C). In particular there exists a � > 0 with

‖|aα,β |‖
L∞(Rn+1+ )

≤ �. (2.1)

Unless otherwise stated, L is elliptic in the sense of the strong Gårding inequality, meaning there 
exists λ > 0 so that

Re
∑

|α|=|β|=m
1≤i,j≤N

ˆ

Rn

a
i,j
α,β(t, x)∂βfj (x)∂αfi(x)dx ≥ λ‖∇mf ‖2

L2(Rn)
(2.2)

holds for almost every t > 0 and for any f ∈ D ′(Rn; CN) with |∇mf | ∈ L2(Rn). We will refer to 
conditions (2.1) and (2.2) as the ellipticity estimates for L and to λ, � as the ellipticity constants.

As we show in Proposition 6.9, any global solution u of (1.1) satisfies ‖∇mu‖T p,2 � ‖u‖X
p
m

for p ≥ 2. We prove this estimate also in the case p ∈ [1, 2) under the following ellipticity 
assumption. We say that L satisfies the strong ellipticity condition if there exists λ > 0 so that 
for any ξ ∈CNM and almost every (t, x) ∈Rn+1+ it holds that

Re

(∑
|α|=|β|=m
1≤i,j≤N

a
i,j
α,β(t, x)ξ

j
β ξ i

α

)
≥ λ‖ξ‖2. (2.3)

It is immediate that the strong ellipticity condition (2.3) implies the strong Gårding inequality 
(2.2). The converse is not true except if m = 1 and N = 1. For constant coefficients (2.2) is by 
a Fourier transform argument equivalent to (2.3) for the specific choice ξj

β := ξβηj for η ∈ CM

and η ∈ CN . See [9, §0.4] and [5, §1] for a discussion of the relation between different notions 
of ellipticity.
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2.3. Sobolev and Lions spaces

We review some of the classical results concerning distributions with integrable derivatives. 
First, recall that integrability of higher order derivatives implies that the distribution itself is 
locally integrable (cf. [22, Corollary 2.1]). We deduce from [33, §1.1.11] the following version 
of the Poincaré inequality.

Lemma 2.2. Let p ≥ 1 and u ∈ D ′(B(0, 1)) be a distribution with derivatives of order m in 
Lp(B(0, 1)). Let ω be an open set with ω ⊆ B(0, 1). Then, there exists a polynomial P ∈ Pm−1

P(x) =
∑

|α|≤m−1

(u,φα)xα,

so that

m∑
k=0

‖∇k(u − P)‖Lp(B(0,1)) ≤ C‖∇mu‖Lp(B(0,1)). (2.4)

Here, the constant C and the functions φα ∈ D(ω) do not depend on u.

As a consequence of (2.4) we obtain for all r > 0

min
P∈Pm−1

(
m∑

k=0

rk−m‖∇k(u − P)‖Lp(B(0,r))

)
≤ C‖∇mu‖Lp(B(0,r)).

We also note the Gagliardo–Nirenberg inequality.

Lemma 2.3 ([17, Theorem 1.5.2]). Let m ∈ N , p, r ∈ [1, ∞] and u ∈ Lp(Rn) ∩ Lr(Rn) with 
the distributional derivatives satisfying ∇mu ∈ Lp(Rn). Then for integer 0 ≤ k ≤ m, θ ∈ [ k

m
, 1]

(except θ = 1 if m −k− n
2 ∈N) and any multi-index γ ∈Nn with |γ | = k it holds ∂γ u ∈ Lq(Rn), 

for q given by

1

q
= k

n
+ θ

(
1

p
− m

n

)
+ (1 − θ)

1

r
.

Moreover,

‖∂γ u‖Lq �n,m ‖∇mu‖θ
Lp‖u‖1−θ

Lr .

The Gagliardo–Nirenberg inequality will be used frequently throughout this work. To estab-
lish (higher) integrability of the intermediate derivatives, we will mostly refer to the case when 
θ = k

m
and the exponent q is given by

1 = k 1 + m − k 1
.

q m p m r
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The weak formulation of the parabolic equation (1.1) uses the distributional derivative ∂tu of a 
weak solution and its higher order spatial derivatives. In particular, integrability of ∇mu provides 
additional information about the distribution ∂tu. From this, we can deduce some regularity of 
u, as the next result states.

Lemma 2.4 ([19, Chap. XVIII, §2-3]). Let V and H be complex, separable Hilbert spaces and 
V ′ be the antidual of V . Assume that V is dense in H such that V ↪→ H ↪→ V ′ and H is dense 
in V ′. Consider the inhomogeneous space

W(a,b;V,V ′) := {u | u ∈ L2(a, b;V ), ∂tu ∈ L2(a, b;V ′)}.

Then every h ∈ W(a, b; V, V ′) is equal almost everywhere to a continuous function of [a, b] to 
H . Moreover, for any v ∈ W(a, b; V, V ′) the function t �→ 〈h(t), v(t)〉 is absolutely continuous 
over [a, b] with distributional derivative

d

dt
〈h(t), v(t)〉 = 〈h′(t), v〉V ′,V + 〈v′(t), h(t)〉V ′,V .

We will frequently apply Lemma 2.4 with V = Hm
0 (�), H = L2(�) and V ′ = H−m(�) for 

any open � ⊆ Rn and refer to the spaces W(a, b; V, V ′) from the above definition as (inhomo-
geneous) Lions spaces. To explain the choice of vocabulary, we note that following [7] we could 
introduce the (homogeneous) space

Ẇm(0,∞) := {u ∈ D ′(Rn+1+ ) | ∇mu ∈ L2(0,∞;L2(Rn)), ∂tu ∈ L2(0,∞; Ḣ−m(Rn))},

which, however, does not fit into the setting from Lemma 2.4. Nevertheless, it can be shown 
(see [7, Lemma 3.1] for a proof in the second order case) that every u ∈ Ẇm(0, ∞) can be 
uniquely decomposed in u = v + P with v ∈ Ẇm(0, ∞) ∩ C0([0, ∞); L2(Rn)) and P ∈ Pm−1. 
This decomposition shows the existence of the trace of any weak solution u to (1.1) with
∇mu ∈ L2(L2). Here, we do not address the homogeneous spaces explicitly, as we present an 
alternative proof of this part of the well-posedness results. The advantage of our method is that 
it applies to the case p < 2 with the tent space condition ∇mu ∈ T

p,2
m .

2.4. Tent and Kenig-Pipher spaces

In this short section we introduce and remark on spaces, which play a crucial role in the 
Lp(Rn) well-posedness theory we develop in this work. They are variants of spaces presented in 
[7, §2], where due to the structure of our problem, the homogenity needed to be changed from √

t to 2m
√

t . For further details we refer to the paper of Coifman, Meyer and Stein [18] (for tent 
spaces) as well as [7] and references therein.

The parabolic tent spaces T p,2
m adapted to the order of our equation were introduced in Defi-

nition 1.2. In addition, we remark that those spaces are reflexive if 1 < p < ∞ and in this regime, 
the duality (T p,2

m )′ = T
p′,2
m holds, where 1/p′ + 1/p = 1 and the duality is given by the L2 inner 

product on Rn+1+ . Moreover, we have the following crucial observation.

Remark 2.5. By [18, Theorem 3] an equivalent norm on T p,2
m for 2 < p < ∞ is given by
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T
p,2
m � f �→

∥∥∥∥ sup
x∈B

⎛
⎜⎝

r2m
B̂

0

 

B

|f (t, y)|2dydt

⎞
⎟⎠

1/2 ∥∥∥∥
Lp

.

We proceed with the analogy of non-tangential maximal functions, which play a crucial role in 
the Hardy space theory. Here, we use a parabolic version of the non-tangential maximal function, 
introduced by Kenig and Pipher in [29] in the context of elliptic equations.

Definition 2.6. For 0 < p ≤ ∞ let Xp
m be the space of functions u ∈ L2

loc(R
n+1+ ), for which the 

non-tangential maximal function

Nmu(x) := sup
δ>0

⎛
⎜⎝

δ 

δ/2

 

B(x,
2m√

δ)

|u(t, y)|2dydt

⎞
⎟⎠

1/2

belongs to Lp(Rn). We write ‖u‖X
p
m

:= ‖Nmu‖Lp < ∞.

The space Xp
m is a Banach space for 1 ≤ p ≤ ∞.

2.5. Campanato type spaces BMOm(Rn) and Lp
m(Rn)

We first recall the space of functions bounded mean oscillations of John and Nirenberg [28]. 
We say that f ∈ L1

loc(R
n) belongs to BMO(Rn), if the sharp function

f #(x) = sup
B�x

 

B

|f (y) − fB |dy

belongs to L∞(Rn), where fB := ffl
B

f dx. Examples of BMO(Rn) functions are for example 
constants and log |p| for any polynomial p, we refer to the books [26,38] for details. By the 
John–Nirenberg Lemma a seminorm on BMO(Rn) is given by

f �→ ‖f ‖BMO := sup
x∈Rn

sup
r>0

inf
c∈C

⎛
⎜⎝  

B(x,r)

|f (y) − c|2 dy

⎞
⎟⎠

1/2

.

We recall the well-known Carleson measure characterization of BMO(Rn) by C. Fefferman and 
Stein.

Proposition 2.7 ([38, Chap. VI, §4.3]). A Borel measure μ on B(Rn+1+ ) satisfying

‖μ‖C := sup
x∈Rn

sup
r>0

1

|B(x, r)|
rˆ

0

ˆ

B(x,r)

dμ < ∞

is called a Carleson measure. For a locally integrable function f the following holds:
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(i) Assume f ∈ BMO(Rn), then dμ(x, t) = |t∇v(t2, x)|2 dxdt
t

is a Carleson measure, where 
v(t, x) = et�f (x) is the solution to the heat equation with initial datum f . Moreover,

‖μ‖C = sup
x∈Rn

sup
r>0

1

|B(x, r)|
r2ˆ

0

ˆ

B(x,r)

|∇v(t, y)|2dydt �n ‖f ‖2
BMO.

(ii) Assume that f satisfies the growth condition

ˆ

Rn

|f (x)|
(1 + |x|)n+1 dx < ∞. (2.5)

If for v as above dμ(x, t) = |t∇v(t2, x)|2 dxdt
t

is a Carleson measure, then f ∈ BMO(Rn)

and ‖f ‖BMO �n ‖μ‖1/2
C .

Proposition 2.7 allows to compare the T ∞,2 norm of the gradient of the solution to the Cauchy 
problem ∂tv = �v, v0 = f , given by the propagator v(t, x) = et�f (x) = 	(t, 0)f (x), with the 
BMO(Rn) norm of initial data. We will derive a generalization of this result, where the heat 
semigroup is replaced by the family of propagators associated to our equation (1.1). We also 
show that the growth condition (2.5) is not necessary.

Since polynomials P ∈ Pm−1 are trivially solutions of (1.1) and satisfy ‖∇mP ‖
T

p,2
m

= 0, we 
adjust the BMO-type space as follows.

Definition 2.8. We say that a function f ∈ L2
loc(R

n) belongs to the class BMOm(Rn) if

‖f ‖BMOm
:= sup

x∈Rn

sup
r>0

inf
P∈Pm−1

⎛
⎜⎝  

B(x,r)

|f (y) − P(y)|2 dy

⎞
⎟⎠

1/2

< ∞.

The BMOm(Rn) space was first introduced by Campanato in [15], who investigated the reg-
ularity of such functions in dependence of the power of the factor r−1 in front of the integral. His 
estimates in [15] rapidly lead to the conclusion that BMOm(Rn) equals the BMO(Rn) space 
modulo Pm−1. The complete result appears in [27, Theorem 1].

Proposition 2.9 ([27, Theorem 1]). Let f ∈ BMOm(Rn). Then there exists a unique polyno-
mial P ∈ Pm−1 satisfying P(0) = 0, so that f − P ∈ BMO(Rn). Moreover, there is a constant
C = Cn,m > 0 such that

‖f ‖BMOm ≤ ‖f − P ‖BMO ≤ C‖f ‖BMOm.

Analogously, we introduce the polynomial Lp spaces for p > 2.



11102 W. Zatoń / J. Differential Equations 269 (2020) 11086–11164
Definition 2.10. Let p > 2. We say that a function f ∈ L2
loc(R

n) belongs to Lp
m(Rn) if

‖f ‖L
p
m

:=
∥∥∥∥ sup

B�x

inf
P∈Pm−1

⎛
⎝ 

B

|f (y) − P(y)|2 dy

⎞
⎠

1/2 ∥∥∥∥
Lp

< ∞.

Proposition 2.11. Let p ∈ (2, ∞) and f ∈ L
p
m(Rn). There exists a unique polynomial P ∈ Pm−1, 

so that f − P ∈ Lp(Rn). Moreover, there is a constant C = Cn,m,p > 0 such that

C−1‖f ‖L
p
m

≤ ‖f − P ‖Lp ≤ C‖f ‖L
p
m
.

Before proving Proposition 2.11, let us collect some remarks, which we use without comment 
later on.

(i) For p ∈ (2, ∞) and f ∈ L2
loc(R

n), the relations f ∈ L
p
m(Rn) and f ∈ BMOm(Rn) can 

be equivalently expressed in terms of the polynomial sharp function f #,m by requiring
f #,m ∈ Lp(Rn) or f #,m ∈ L∞(Rn), correspondingly. Here,

f #,m(x) := sup
B�x

inf
P∈Pm−1

⎛
⎝ 

B

|f (y) − P(y)|2 dy

⎞
⎠

1/2

.

(ii) For each ball B = B(x0, r) and f ∈ L2
loc(R

n) the infimum

inf
P∈Pm−1

⎛
⎝ 

B

|f (y) − P(y)|2 dy

⎞
⎠

1/2

is attained for the polynomial given by the orthogonal projection Px0,r (f ) of f onto Pm−1

with respect to the scalar product (f, g) �→ ffl
B(x0,r)

f gdx.

(iii) The minimizing polynomial Px0,r (f ) for f ∈ L2
loc(R

n) on B(x0, r) satisfies

‖Px0,r (f )‖L∞(B(x0,r)) �
 

B(x0,r)

|f (x)|dx

with some constant C > 0 depending on m and n.

Above points remain true if we introduce a weight ω, that is a non-negative, bounded, radi-
ally symmetric weight function on B(0, 1) satisfying 

´
ω = 1 and 0 < c < ω on B(0, 1/2), and 

rescale it appropriately on each ball B . For the proof of Proposition 2.11, we need the following 
result. The case p = ∞ implies Proposition 2.9.
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Lemma 2.12. Let p ∈ (2, ∞] and f ∈ L2
loc(R

n). Then there exists P ∈ Pm−1 such that

‖(f − P)#,1‖Lp =
∥∥∥∥ sup

B�x

inf
c∈C

⎛
⎝ 

B

|(f − P)(y) − c|2 dy

⎞
⎠

1/2 ∥∥∥∥
Lp

� ‖f #,m‖Lp . (2.6)

Proof. Clearly, it is enough to prove

(f − P)#,1(x) � f #,m(x) < ∞
for some polynomial P ∈ Pm−1 and almost every x ∈ Rn. This requires comparing the coeffi-
cients of the minimizing polynomials on different balls and is an easy consequence of the proof 
of [27, Theorem 1]. We only sketch the main steps. First, the assumption gives us

Cx0,r0(f ) = sup
r≥r0

inf
P∈Pm−1

⎛
⎜⎝  

B(x0,r)

|f (y) − P(y)|2 dy

⎞
⎟⎠

1/2

< ∞

for all x0 ∈ Rn and r0 > 0. We write Px0,r (f ) as

Px0,r (f )(y) =
∑

|α|≤m−1

cx0,r
α (y − x0)

α

for some coefficients 
{
c
x0,r
α | |α| ≤ m − 1

} ⊆ C. Using the bound on the minimal polynomials 
we easily arrive then at the crucial estimate

∑
|α|≤m−1

∣∣∣cx0,r
α − cx0,2r

α

∣∣∣ r |α| � Cx0,r (f ).

Thus, for α �= 0, we obtain a Cauchy sequence and find the limiting coefficients for x0 and 
r . Repeating of the arguments shows the independence of the coefficients of the radius, while 
the x0 dependence is accumulated in the constant, if we center the limiting polynomial at the 
origin. �
Proof of Proposition 2.11. Let p ∈ (2, ∞) and f ∈ L

p
m(Rn). We know (f − P)#,1 ∈ Lp(Rn)

for some polynomial P ∈Pm−1 given by Lemma 2.12. Consider

Cx0,r := sup
R≥r

⎛
⎜⎝  

B(x0,R)

∣∣(f − P)(y) − (f − P)B(x0,R)

∣∣2 dy

⎞
⎟⎠

1/2

.

Then

Cx0,r � r
− n

p ‖(f − P)#,1‖Lp . (2.7)

Indeed, assume x ∈ B(x0, r), then Cx ,r ≤ (f − P)#,1(x) and integrating over B(x0, r) gives
0
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|B(x0, r)|
1
p Cx0,r ≤ ‖(f − P)#,1‖Lp .

Comparing the means (f − P)B(x0,r) and (f − P)B(x0,2r) and the decay from (2.7) imply the 
convergence of (f − P)B(x0,r) as r tends to infinity. Again, the limit does not depend on x0 and 
denote it by d0. Define g := f − P − d0. Then it holds for every r > 0

sup
x0∈Rn

⎛
⎜⎝  

B(x0,r)

|g|2dx

⎞
⎟⎠

1/2

� r
− n

p ‖(f − P)#,1‖Lp � r
− n

p ‖f #,m‖Lp . (2.8)

On the other hand, we have g#(x) ≤ g#,1(x) for every x ∈Rn, thus

‖g#‖Lp � ‖f #,m‖Lp < ∞. (2.9)

We now demonstrate that estimates (2.8) and (2.9) imply g ∈ Lp(Rn). Our proof is based on 
the following consequence of [38, Chap. IV, §2].

Lemma 2.13 ([38, Chap. IV, §2]). Let g be a bounded tempered distribution on Rn and suppose 
that h ∈ H1(Rn). Then

∣∣∣∣
ˆ

Rn

g(x)h(x)dx

∣∣∣∣�
ˆ

Rn

g#(x)MHLh(x)dx.

Note that in [38] this lemma was stated with the Hardy–Littlewood maximal function re-
placed by the grand maximal operator MF for any fixed finite collection F of seminorms 
on the Schwartz space (for definition see [38, Chap. III, §1.2]). We can, however, estimate 
MFh ≤ CMHLh, see [38, Chap. II, §2.1]. We also recall that any bounded, compactly sup-
ported function h with 

´
h = 0 belongs to H1(Rn) (see [38, Chap. III, §5, Remark 5]).

Claim. Let h ∈ C ∞
c (Rn). Then it holds for q ∈ (1, 2) with 1

p
+ 1

q
= 1

∣∣∣∣
ˆ

Rn

g(x)h(x)dx

∣∣∣∣� ‖f #,m‖Lp‖h‖Lq .

Proof of the claim. Consider a sequence of mollifiers (ηε)ε>0, where ηε = ε−nη(·/ε) for some 
non-negative η ∈ C ∞

c (Rn) supported in B(0, 1) and satisfying ́ η = 1. Set gε := g∗ηε for ε > 0. 
Then gε defines a bounded tempered distribution, as we can show gε ∈ L∞(Rn).

Indeed, for any x ∈ Rn we have the uniform estimate

|gε(x)| �η

1

εn

∣∣∣∣
ˆ

g(y)dy

∣∣∣∣�
⎛
⎜⎝  

|g(y)|2dy

⎞
⎟⎠

1/2

(2.8)
� ε

− n
p ‖f #,m‖Lp .
B(x,ε) B(x,ε)
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Moreover, for h ∈ C ∞
c (Rn) choose some R > 0 with supph ⊆ B(0, R) and write

hR = h − hB(0,R)1B(0,R).

Then hR ∈ H1(Rn) and so by Lemma 2.13∣∣∣∣
ˆ

Rn

gε(x)hR(x)dx

∣∣∣∣� ‖g#
ε‖Lp‖MHLhR‖Lq . (2.10)

By the boundedness of the Hardy–Littlewood maximal function, there exists Cq > 0 so that

‖MHLhR‖Lq ≤ Cq‖hR‖Lq ≤ Cq

(
‖h‖Lq + |B(0,R)| 1

q |hB(0,R)|
)

�q,n ‖h‖Lq (2.11)

holds independently of R > 0. Furthermore, we have for all x ∈ Rn and ε > 0

g#
ε (x) = (ηε ∗ g)# (x) � ηε ∗ g#(x) (2.12)

and, consequently, g#
ε ∈ Lp(Rn) with the uniform bound

sup
ε>0

‖g#
ε‖Lp � sup

ε>0
‖ηε ∗ g#‖Lp � ‖g#‖Lp . (2.13)

We now prove (2.12). By Fubini’s Theorem

(ηε ∗ g)# (x) � sup
B(x0,ρ)�x

 

B(x0,ρ)

 

B(0,ε)

η
(y

ε

) ∣∣∣∣g(z − y) −
 

B(x0,ρ)

g(z − y)dz

∣∣∣∣dy dz.

We use Fubini’s Theorem, then translate variables and take the supremum inside the first 
integral to arrive at

(ηε ∗ g)# (x) ≤ sup
B(x0,ρ)�x

 

B(0,ε)

η
(y

ε

)
sup

B(x̃0,ρ̃)�x−y

 

B(x̃0,ρ̃)

∣∣∣∣g(z) −
 

B(x̃0,ρ̃)

g(z)dz

∣∣∣∣dzdy

� 1

εn

ˆ

B(0,ε)

η
(y

ε

)
g#(x − y)dy = ηε ∗ g#(x).

Putting (2.10), (2.11) and (2.13) together we have for all R > 0 and ε > 0∣∣∣∣
ˆ

Rn

gε(x)hR(x)dx

∣∣∣∣� ‖g#‖Lp‖h‖Lq . (2.14)

On the other hand, since g ∈ L2
loc(R

n) we have

ˆ
n

g(x)h(x)dx = lim
ε→0

ˆ
n

gε(x)h(x)dx.
R R
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Let ε0 > 0 be small enough so that supph ⊆ B(0, ε−1
0 ). For ε < ε0, we consider the decom-

position h = h1/ε + hB(0,1/ε)1B(0,1/ε) and estimate using Fubini’s Theorem

∣∣∣∣
ˆ

B(0,1/ε)

gε(x)hB(0,1/ε)dx

∣∣∣∣� ε
n
q ‖h‖Lq

 

B(0,ε)

η
(y

ε

) ˆ

B(0,1/ε)

∣∣g(x − y)
∣∣dxdy

= ε
n
q
−n‖h‖Lq

ˆ

B(0,ε)

ηε

 

B(−y,1/ε)

∣∣g(z)
∣∣dzdy

(2.8)
� ε

n
q
−n

ε
n
p ‖h‖Lq ‖f #,m‖Lp

ˆ
ηε(y)dy

= ‖f #,m‖Lp‖h‖Lq .

Concluding,

ˆ

Rn

g(x)h(x)dx = lim
ε→0

ˆ

Rn

gε(x)h(x)dx

= lim sup
ε→0

⎛
⎝ ˆ

Rn

gεh1/εdx +
ˆ

Rn

gεhB(0,1/ε)1B(0,1/ε)dx

⎞
⎠

� ‖f #,m‖Lp‖h‖Lq .

This proves the claim. �
Finally, we argue by density of the test functions in Lp(Rn) and conclude by the Claim that 

g = f − P ∈ Lp(Rn) and there exists a constant dependent on m, n and p such that

‖f − P ‖Lp ≤ C‖f #,m‖Lp .

Uniqueness of P follows from the fact that the only p-integrable polynomial is the zero poly-
nomial. Notice that f #,m(x) = (f − P)#,m(x) and

(f − P)#,m(x) ≤ (MHL|f − P |2)1/2(x).

As p > 2, the maximal function MHL is bounded on Lp/2(Rn), hence

‖f #,m‖Lp ≤ C‖f − P ‖Lp . �
2.6. Semigroup theory for autonomous operators

Undoubtedly, semigroups play a special role in the context of autonomous parabolic systems, 
so let us review some of their essential properties. There is an extensive existing literature on this 
subject. What follows can be found for example in [9, §0.1, §0.4] (sectorial operators and their 
functional calculus) and [20,2].
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Let L = (−1)mdivmA∇m be a time-independent operator with bounded measurable coeffi-
cients satisfying the strong Gårding inequality (2.2). The ellipticity assumption implies that L is 
maximal accretive on L2(Rn), thus −L generates a C0-semigroup of contractions (e−tL)t≥0 on 
L2(Rn).

The semigroup (e−tL)t≥0 satisfies Davies–Gaffney L2 off-diagonal estimates, that is there 
exist constants C, c > 0 such that for all E, F ⊆ Rn closed and disjoint, t > 0 and f ∈ L2(Rn)

‖1Ee−tL(1F f )‖L2 ≤ Ce
−c
(

d(E,F )

t1/(2m)

) 2m
2m−1

‖1F f ‖L2 .

Estimates of this form occur to be crucial for the results in the aforementioned literature and so 
will they be in this work. We shall follow the method by Davies [20] to prove the off-diagonal 
estimates for our propagators.

By the solution of Kato’s square root conjecture in [5], the domain of the operator L1/2 is 
given by the inhomogeneous Sobolev space Hm(Rn) and we have the uniform bound

sup
t>0

‖∇me−tLu‖L2 � sup
t>0

‖L1/2e−tLu‖L2 � ‖L1/2u‖L2 � ‖∇mu‖L2 . (2.15)

By [5, Remark 3.2], for every polynomial P ∈ Pm−1 the equality e−tLP = P holds in 
L2

loc(R
n).

We summarize some well-established facts about the Lp theory for the semigroup e−tL (cf. 
[2]). Let p−(L) and p+(L) be the infimum and correspondingly supremum over all p ∈ [1, ∞]
such that supt>0 ‖e−tL‖L (Lp) < ∞. Further, let q−(L) and q+(L) be the infimum and corre-
spondingly supremum over all q ∈ [1, ∞] such that supt>0 ‖√t∇me−tL‖L (Lq) < ∞. Then it 
holds

(i) (p−(L), p+(L)) = (1, ∞) if n ≤ 2m (in this case the semigroup is given by a kernel with 
Gaussian bounds),

(ii) [ 2n
n+2m

, 2n
n−2m

] ⊆ (p−(L), p+(L)) if n > 2m,
(iii) q−(L) = p−(L),
(iv) q+(L) = ∞ if n = 1,
(v) q+(L) > 2 and p+(L) ≥ q+(L)∗m, where q �→ q∗ is the Sobolev exponent mapping given 

by q∗ = nq
n−q

if q < n and q∗ = ∞ otherwise. Thus, if n > mq we have p+(L) ≥ nq
n−mq

.

For p ∈ (q−(L), q+(L)) the Riesz transforms ∇mL−1/2 are bounded on Lp(Rn). Further, for ex-
ponents p−(L) < p ≤ q < q+(L) and k = 0, . . . , m, we have the Lp −Lq off-diagonal estimates 
of the form

‖1Et
k

2m ∇ke−tL(1F f )‖Lq ≤ Ct
n

2m
( 1

q
− 1

p
)
e
−c
(

d(E,F )

t1/(2m)

) 2m
2m−1

‖1F f ‖Lp .

We will return to the Lp theory in Section 8.1 and the Appendix.

3. A priori energy estimates

This section follows [7, §3.2, §4.1]. We begin with local energy estimates for weak solutions 
of (1.1). In the parabolic setting such estimates are known to be a crucial tool in proving the exis-
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tence of weak solutions. A similar result (the autonomous case) can be found in [16, Proposition 
3.2]. Our proof relies on the iteration scheme by Barton [10, Theorem 3.10].

Proposition 3.1. Let 0 ≤ a < c < d < b ≤ ∞, δ > 1, R > 0 and x0 ∈ Rn. Suppose that u is a 
local weak solution of (1.1) in (a, b) × B(x0, δR). Then it holds

u ∈ C ([c, d];L2(B(x0, r)))

for any 0 < r < δR and there exists a constant C > 0 depending on ellipticity and dimensions, 
such that for all 0 < r < R, integer 0 ≤ k ≤ m and a < ã < c, we have, with Br := B(x0, r),

‖u(d, ·)‖2
L2(Br )

≤ C

(
1

(R − r)2m
+ 1

d − c

) dˆ

c

‖u(s, ·)‖2
L2(BR)

ds,

(c − ã)

dˆ

c

‖∇ku(s, ·)‖2
L2(Br )

ds ≤ C

(
(d − c)

(R − r)2k
+ (R − r)2m−2k

) dˆ

c

‖u(s, ·)‖2
L2(BR)

ds.

Proof. We first test the equation with a cut-off function to find for 0 < r < R and a′ ∈ (a, d)

‖u(d, ·)‖2
L2(Br )

+ λ

dˆ

a′
‖∇mu(s, ·)‖2

L2(Br )
ds (3.1)

≤ ‖u(a′, ·)‖2
L2(BR)

+
m−1∑
i=1

C

(R − r)2m−2k

dˆ

a′
‖∇ku(s, ·)‖2

L2(BR\Br )
ds.

Proof of (3.1). Let η ∈ C ∞
c (Rn) be a real-valued, non-negative function supported in BR , equal 

1 on Br with ‖∇kη‖L∞ ≤ C
(R−r)k

, for k = 0, . . . , m. Then for any integer 0 ≤ k ≤ m

‖∇k(η2mu)‖L2((a′,d)×Rn) �n,m

∑
0≤l≤k

(
C

R − r

)k−l

‖∇ lu‖L2((a′,d)×BR) < ∞,

so η2mu ∈ L2(a′, d; Hm
0 (BR)). As u is a local weak solution on (a, b) × B(x, δR), we can 

use the density of test functions on (a′, d) × BR in L2(a′, d; Hm
0 (BR)) to conclude ∂tu ∈

L2(a′, d; H−m(BR)). Thus, ∂t (η
2mu) ∈ L2((a′, d); H−m(BR)) and Lemma 2.4 implies η2mu ∈

C ([a′, d]; L2(BR)). Moreover, the map c → ‖η2mu(c, ·)‖2
L2 is absolutely continuous in c ∈

[a′, d] and we calculate

I := ‖η2mu(d, ·)‖2
L2 − ‖η2mu(a′, ·)‖2

L2 = −2Re

dˆ

a′
〈A(t, ·)∇mu(t, ·),∇m

(
η4mu(t, ·)

)
〉dt

where the inner pairing is the usual L2 scalar product. By Leibnitz rule this equals further
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I = −2Re

dˆ

a′

∑
|α|=|β|=m

⎡
⎢⎣ˆ
BR

aα,β∂βu

⎛
⎝η2m∂α(η2mu) +

∑
γ<α

cα,γ ∂α−γ (η2m)∂γ (η2mu)

⎞
⎠dx

⎤
⎥⎦dt

The second term in the round brackets can be written as 
∑

γ<α η2m�α,γ ∂γ u where �α,γ are 
functions supported in BR \ Br and ‖�α,γ ‖L∞ ≤ C(R − r)−(|α|−|γ |), which leads to

I = −2Re

dˆ

a′

∑
|α|=|β|=m

⎡
⎢⎣ˆ
BR

aα,β(t, x)(η2m∂βu)

⎛
⎝∂α(η2mu) +

∑
γ<α

�α,γ ∂γ u

⎞
⎠dx

⎤
⎥⎦dt

Next, rewrite η2m∂βu, so that the term ∂β(η2mu) appears. Ellipticity bounds imply then

‖η2mu(d, ·)‖2
L2 − ‖η2mu(a′, ·)‖2

L2 + 2λ

dˆ

a′
‖∇m(η2mu)(s, ·)‖2

L2(BR)
ds

��,n,m

dˆ

a′
‖∇m(η2mu)(s, ·)‖L2(BR\Br )

(
m−1∑
k=0

(R − r)−(m−k)‖∇ku(s, ·)‖L2(BR\Br )

)
ds

+
bˆ

a′

m−1∑
k=0

(R − r)−(2m−2k)‖∇ku(s, ·)‖2
L2(BR\Br)

ds

Finally, we use the Cauchy inequality on the first summand, choosing the overall constant in 
front of the factor 

´ d

a′ ‖∇m(η2mu)(s, ·)‖2
L2(BR)

ds on the right hand side to be smaller than λ. 
Subtracting this quantity on both sides gives the claim. �

We remark that the proof shows

‖u(d, ·)‖2
L2(Bρ)

+ λ

dˆ

a′
‖∇mu(s, ·)‖2

L2(Bρ)
ds (3.2)

� ‖u(d, ·)ψ(·)‖2
L2(Br )

+ λ

dˆ

a′
‖∇m(u(s, ·)ψ(·))‖2

L2(Br )
ds

≤
dˆ

a′

m−1∑
k=0

C�,λ,n,m

(r − ρ)2m−2k
‖∇ku(s, ·)‖2

L2(Br\Bρ)
ds + ‖u(a′, ·)‖2

L2(Br )

for any 0 < ρ < r < R and cut-off function ψ with radii-dependent decay as specified above. We 
still need to deal with the intermediate derivatives. This type of inequality was encountered in 
[10, Theorem 3.10] in the context of higher order autonomous elliptic equations and Barton used 
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an iteration over the annuli to show that the terms coming from the intermediate derivatives can 
be neglected. The same reasoning as in the proof of [10, Theorem 3.10] shows the self improving 
property of our inequality (3.2), namely we obtain

Claim. Assume that (3.2) holds for any 0 < ρ < r < R and some a < a′ < d < b. Then there is 
a constant C dependent on ellipticity and dimensions, such that if 0 < r < R then u satisfies the 
stronger inequalities

(i)
´ d

a′ ‖∇mu(s, ·)‖2
L2(Br )

ds ≤ C
(R−r)2m

´ d

a′ ‖u(s, ·)‖2
L2(BR\Br)

ds + C‖u(a′, ·)‖2
L2(BR)

.
(ii) For integer 0 ≤ j ≤ m,

dˆ

a′

ˆ

Br

|∇j u|2dxds ≤ C

(R − r)2j

dˆ

a′

ˆ

BR

|u|2dxds + C(R − r)2m−2j‖u(a′, ·)‖2
L2(BR)

.

(iii) ‖u(d, ·)‖2
L2(Br )

≤ C
(R−r)2m

´ d

a′ ‖u(s, ·)‖2
L2(BR)

ds + C‖u(a′, ·)‖2
L2(BR)

.

Let us finish the proof of Proposition 3.1. Integrating the estimate (i) over a′ ∈ [c, d] and 
applying Fubini’s Theorem gives us

dˆ

c

(s − c)

ˆ

Br

|∇mu|2dxds =
dˆ

c

dˆ

a′

ˆ

Br

|∇mu|2dxdsda′

≤ C

(R − r)2m

dˆ

c

dˆ

a′

ˆ

BR\Br

|u|2dxdsda′ + C

dˆ

c

ˆ

BR

|u|2dxda′

≤ C

(
(d − c)

(R − r)2m
+ 1

) dˆ

c

ˆ

BR

|u|2dxds.

That is for any a < ã < c we obtain

(c − ã)

dˆ

c

ˆ

Br

|∇mu|2dxds ≤ C

(
(d − c)

(R − r)2m
+ 1

) dˆ

c

ˆ

BR

|u|2dxds.

The bound for the intermediate derivatives follows in the same way if we integrate (ii).
Finally, we integrate (iii) in a′ to arrive at

‖u(d, ·)‖2
L2(Br )

≤ C

(
1

(R − r)2m
+ 1

d − c

) dˆ
‖u(s, ·)‖2

L2(BR)
ds. �
c
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When studying the Lp(Rn) well-posedness theory, it will be possible to reduce some proofs 
to the case p > 2 by duality. For this reason we introduce the backwards in time equation, the 
propagator for which will turn out to be the adjoint of the propagator for some equation of type 
(1.1).

Definition 3.2. Let T > 0 and Ã ∈ L∞(Rn+1+ ; CMN×MN) satisfy the ellipticity estimates. We 
say u ∈ L2

loc(0, T ; Hm
loc(�)) is a local weak solution to the backwards in time equation up to 

time T > 0,

∂su(s, x) = (−1)mdivmÃ(s, x)∇mu on (0, T ) × �, (3.3)

if for any φ ∈ C ∞
c ((0, T ) × �) it holds

−
T̂

0

ˆ

�

u(t, x)∂tφ(t, x)dxdt =
T̂

0

ˆ

�

Ã(t, x)∇mu(t, x)∇mφ(t, x)dxdt.

Remark 3.3. We see directly from the weak formulation above that if u is a weak solution of 
(3.3) on (0, T ) ×�, then u(T − t, x) is a local weak solution of (1.1) on (0, T ) ×� with A(t, x) =
Ã(T − t, x). Thus, we obtain the continuity in time of such solutions with values in Hm

loc(�), as 
well as the analogous quantitative energy estimates from Proposition 3.1.

The local energy estimates can be used to derive reversed Hölder estimates. For this, note that 
(0, ∞) ×Rn, equipped with the quasi-distance

d((t, x), (s, y)) := max{|t − s|1/(2m), |x − y|}

and the Lebesgue measure, is a space of homogeneous type. We denote BR(t, x) = [t −R2m, t +
R2m] × B(x, R).

Lemma 3.4. Let q = 2 + 4m
n

. Then there exists a constant Cλ,λ,m,n > 0, such that for all global 
weak solutions u to (1.1), (t, x) ∈ (0, ∞) × Rn and all (4r)2m ∈ (0, t) the following inequality 
holds

⎛
⎜⎝  

Br (t,x)

|u(s, y)|qdyds

⎞
⎟⎠

1/q

≤ C

⎛
⎜⎝  

B4r (t,x)

|u(s, y)|2dyds

⎞
⎟⎠

1/2

. (3.4)

Proof. This follows from Lemma 2.3 an Proposition 3.1. For the full argument, see the proof of 
[7, Lemma 4.1]. �

Similarly as in [7, §4.1], the reversed Hölder equality above holds for an improved exponent 
q̃ > q , which is an application of a Gehring’s Lemma type argument for spaces of homogeneous 
type, see [12]. For the exponent on the right hand side we can even choose any p ∈ [1, 2] (for a 
proof of this self-improving property in the setting of spaces of homogeneous type we refer to 
[11, Theorem B1]).
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Corollary 3.5. There exists C > 0 and q̃ > 2 + 4m
n

both dependent on the ellipticity and di-
mensions, such that for any global weak solution u of (1.1), every (t, x) ∈ (0, ∞) × Rn and all 
(4r)2m ∈ (0, t), we have

⎛
⎜⎝  

Br (t,x)

|u(s, y)|2dyds

⎞
⎟⎠

1/2

≤
⎛
⎜⎝  

Br(t,x)

|u(s, y)|q̃ dyds

⎞
⎟⎠

1/q̃

≤ C

⎛
⎜⎝  

B4r (t,x)

|u(s, y)|dyds

⎞
⎟⎠ .

4. Traces of tent space solutions

We show that global weak solutions u to (1.1) satisfying ‖∇mu‖
T

p,2
m

< ∞ possess a distribu-
tional trace, which, up to a polynomial, lies in Lp or BMO space. If p ∈ (1, 2] we also deduce 
a bound on the L∞(Lp)-norm of the solution modified by the same polynomial.

Lemma 4.1. Let p ∈ [1, 2] and u be a global weak solution of (1.1) with S = ‖∇mu‖
T

p,2
m

< ∞. 
Then it holds ‖∇mu‖L2((ε,∞)×Rn) < ∞ for all ε > 0. Further, there exists a unique distributional 
trace of u at t = 0.

Proof. We first claim

‖∇mu‖L2((ε,∞)×Rn) � ε
n

2m
( 1

2 − 1
p

)
S.

For p = 2 there is nothing to show. For p < 2 we write for ε > 0

‖∇mu‖L2((ε,∞)×Rn) =
⎛
⎜⎝ ˆ

Rn

∞̂

ε

 

B(x, 2m
√

t/4)

|∇mu|2dydtdx

⎞
⎟⎠

1/2

=

⎛
⎜⎜⎝ ∑

z∈ 2m√ε

4
√

n
Zn

ˆ

Q(z)

∞̂

ε

 

B(x, 2m
√

t/4)

|∇mu|2dydtdx

⎞
⎟⎟⎠

1/2

,

where for z ∈ 2m
√

ε

4
√

n
Zn we denoted by Q(z) the cube z+ 2m

√
ε

4
√

n
(0, 1)n. We write cQ(z) for the center 

of Q(z) and realize for any t > ε and x ∈ Q(z)

B(x,
2m
√

t/4) ⊆ B(cQ(z),
2m
√

t/2) ⊆ B(x,
2m
√

t),

hence it holds

‖∇mu‖L2((ε,∞)×Rn) �

⎛
⎜⎜⎝ ∑

z∈ 2m√ε√ Zn

ˆ

Q(z)

∞̂

ε

 

B(cQ(z),
2m
√

t/2)

|∇mu|2dydtdx

⎞
⎟⎟⎠

1/2
4 n
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� ε
n

2m
1
2

⎛
⎜⎜⎝ ∑

z∈ 2m√ε

4
√

n
Zn

∞̂

ε

 

B(cQ(z),
2m
√

t/2)

|∇mu|2dydt

⎞
⎟⎟⎠

1/2

� ε
n

2m
1
2

⎛
⎜⎜⎝ ∑

z∈ 2m√ε

4
√

n
Zn

⎛
⎜⎜⎝

∞̂

ε

 

B(cQ(z),
2m
√

t/2)

|∇mu|2dydt

⎞
⎟⎟⎠

p/2⎞
⎟⎟⎠

1/p

� ε
n

2m
( 1

2 − 1
p

)

⎛
⎜⎜⎝ ∑

z∈ 2m√ε

4
√

n
Zn

ˆ

Q(z)

⎛
⎜⎝

∞̂

ε

 

B(x, 2m
√

t)

|∇mu|2dydt

⎞
⎟⎠

p/2

dx

⎞
⎟⎟⎠

1/p

� ε
n

2m
( 1

2 − 1
p

)
S,

where in the third line we needed the embedding of the sequence spaces �p ↪→ �2 as p < 2. The 
weak formulation of the equation (1.1) implies ∂tu ∈ L2(ε, ∞; H−m(Rn)). Let ν ∈ C ∞((0, ∞))

satisfy ν = 1 on (0, 1) an ν = 0 on (2, ∞). Applying Lemma 2.4 for intervals [ε, 2] and any 
ε ∈ (0, 1), we obtain for every ψ ∈ C ∞

c (Rn)

(u(ε, ·),ψ)L2 = (u(ε, ·),ψν(ε))L2 = −
∞̂

ε

(∂tu,ψν)dt −
2ˆ

1

(u,ψ∂tν)dt.

Thus we find for 0 < δ < ε < 1

|(u(ε, ·),ψ)L2 − (u(δ, ·),ψ)L2 | =
∣∣∣∣∣∣

∞̂

ε

(A∇mu(t),∇mψ1(δ,ε)(t)ν(t))dt

∣∣∣∣∣∣
� ‖∇mu‖

T
p,2
m

‖∇mψ1(δ,ε)(t)ν(t)‖
T

p′,2
m

.

Simple estimates with help of the Hardy–Littlewood maximal function yield, as p ≤ 2,

‖∇mψ1(δ,ε)(t)ν(t)‖
T

p′,2
m

� |ε − δ|‖∇mψ‖
Lp′

(Rn)
,

thus there exists a distributional limit u0 ∈ D ′(Rn), as claimed. �
Lemma 4.2. Let p ∈ (1, 2] and u be a global weak solution of (1.1) with S = ‖∇mu‖

T
p,2
m

< ∞
and distributional trace u0. Then there exists a unique polynomial P ∈ Pm−1 with u0 − P ∈
Lp(Rn) and

sup‖u(t) − P ‖Lp(Rn) � S.

t≥0
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Proof. Consider the weight ω = η2 for some non-negative, radially symmetric function η ∈
C ∞

c (B(0,1/32m)). We assume 
´

ω = 1 and 0 < c = ω on B(0, 1/42m). We first show for x0 ∈
Rn, r > 0 and t ∈ (r, 2r)

 

B(x0,
2m
√

r)

∣∣∣u(t, y) − Pω

x0,
2m
√

r
(u(t, ·))(y)

∣∣∣2 ω

(
y − x0

2m
√

r

)
dy �

2rˆ

r/2

 

B(x0,
2m
√

s)

|∇mu|2dys, (4.1)

where Pω

x0,
2m
√

r
denotes the corresponding orthogonal projection on Pm−1 from Section 2.5 with 

respect to the weighted scalar product.
By scaling and translation it suffices to consider x0 = 0 and r = 1. The minimizing polynomial 

can be replaced by any other p ∈ Pm−1, for instance p = P(1), where

P(t)(x) =
∑

|α|≤m−1

(u(t, ·),φα)xα

is defined for every t > 0 with functions φα ∈ D(B(0, 1/2)) as in Lemma 2.2. The crucial obser-
vation is that the coefficients of P(t) are absolutely continuous over the interval [1/2, 2]. Indeed, 
the distributional derivative of cα is given by −(A∇mu(t, ·), ∇mφα)L2(B(0,1/2)) and thus belongs 
to L1(1/2, 2). Therefore, for each 0 ≤ |α| ≤ m − 1 and any t ∈ (1, 2),

|cα(t) − cα(1)| �
⎛
⎜⎝

2ˆ

1/2

ˆ

B(0,1)

|∇mu|2dxds

⎞
⎟⎠

1/2

(4.2)

with constant depending only on φα , the ellipticity and dimensions. Estimate (4.1) follows now 
directly from the local energy estimates (cf. Proposition 3.1), the Poincaré inequality from 
Lemma 2.2 and (4.2). As we consider the weighted scalar product, the same arguments show 
that also the coefficients of Pω

x0,
2m
√

r
(u(t, ·)) are absolutely continuous over [r, 2r] and we have

 

B(x0,
2m
√

r/4)

∣∣∣u(t, y) − Pω

x0,
2m
√

r
(u(r, ·))(y)

∣∣∣2 dy �
2rˆ

r/2

 

B(x0,
2m
√

s)

|∇mu|2dys. (4.3)

By definition, we observe Pω

x0,
2m
√

r
(Pω

x0,
2m√2r

) = Pω

x0,
2m√2r

and the known bounds on minimal 

polynomials together with (4.3) lead to the estimate

‖Pω

x0,
2m
√

r
(u(r, ·)) − Pω

x0,
2m√2r

(u(2r, ·))‖L∞(B(0, 2m
√

r)) �

⎛
⎜⎝

2rˆ

r/2

 

B(x0,
2m
√

s)

|∇mu|2dys

⎞
⎟⎠

1/2

� r
− n

2m
1
p S.
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Analogously as in Lemma 2.12 and Proposition 2.11, we obtain a limiting polynomial as r tends 
to ∞, which does not depend on the center of the ball. We thus get for any x0 ∈ Rn and t > 0

 

B(x0,
2m
√

t/4)

|u(t, y) − P(y)|2 dy �
∞̂

t/2

 

B(x0,
2m
√

s)

|∇mu|2dys. (4.4)

From here, we obtain with Fubini’s Theorem and Hölder inequality,

‖u(t) − P ‖Lp(Rn) ≤

∥∥∥∥∥∥∥
⎛
⎜⎝  

B(·, 2m
√

t/4)

|u(t) − P |2dy

⎞
⎟⎠

1/2∥∥∥∥∥∥∥
Lp(Rn)

� S.

Thus supt>0 ‖u(t) − P ‖Lp(Rn) � S. As any weak-* limit must coincide with the distributional 
one, we conclude that u0 − P ∈ Lp(Rn). The polynomial must clearly be unique, as the only 
p-integrable polynomial is the zero polynomial. �

We now turn to the case p ∈ (2, ∞].

Lemma 4.3. Let p ∈ (2, ∞] u be a global weak solution u to (1.1) with S = ‖∇mu‖
T

p,2
m

< ∞. 

Then u has an L2
loc(R

n) trace u0 at t = 0 and there exists a unique (up to a constant if p = ∞) 
polynomial P ∈ Pm−1 such that

‖u0 − P ‖Y � S. (4.5)

Here, Y = Lp(Rn) if p ∈ (2, ∞) or Y = BMO(Rn) if p = ∞.

Proof. Our assumptions imply for every r > 0 and x0 ∈Rn

sup
R≥r

⎛
⎜⎝

R2mˆ

0

 

B(x0,R)

∣∣∇mu
∣∣2 dy

⎞
⎟⎠

1/2

=: Cx0,r (|∇mu|) � r
− n

p ‖∇mu‖
T

p,2
m

. (4.6)

Indeed, recall Remark 2.5 and restrict the integration domain to the ball B(x0, r). In particular, 
∇mu ∈ L2(0, T ; L2(B(x0, R))) for any T , R > 0 and x0 ∈ Rn.

To obtain the L2
loc(R

n) trace of u at t = 0 it suffices to show u ∈ L2(0, 1; Hm(B(x0, 1))) for 
any x0 ∈ Rn. Indeed, Lemma 2.4 implies as at the beginning of the proof of Proposition 3.1 that 
u ∈ C ([0, 1]; L2(B(x0, 1/2))).

By translation, it is enough to assume x0 = 0. We adapt the arguments from Lemma 4.2. 
Lemma 2.2 implies for almost every t ∈ (0, 1) and any k ∈ {0, . . . , m}

‖∇k(u(t, ·) − P(t))‖L2(B(0,1)) ≤ C‖∇mu(t, ·)‖L2(B(0,1)) (4.7)
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with the polynomial P(t)(x) =∑|α|≤m−1(u(t, ·), φα)xα . As ∇mu ∈ L2(0, 1; L2(B(0, 1))), we 
deduce that the coefficients of P(t) are absolutely continuous over [0, 1]. For each 0 ≤ |α| ≤
m − 1, there exists cα(0) ∈ C such that for any t ∈ (0, 1),

|cα(t) − cα(0)| ≤ �

tˆ

0

ˆ

B(0,1/2)

|∇mu||∇mφα|dxds �

⎛
⎜⎝

1ˆ

0

ˆ

B(0,1)

|∇mu|2dxds

⎞
⎟⎠

1/2

(4.8)

with constant depending only on φα , the ellipticity and dimensions. Define the polynomial P(0)

by P(0)(x) =∑0≤|α|≤m−1 cα(0)xα . Combining (4.7) and (4.8) gives

m∑
k=0

‖∇k(u − P(0))‖L2(0,1;B(0,1)) � C0,1(|∇mu|). (4.9)

We continue with showing that the trace u0 lies in the desired space. Consider a weight ω as 
in Lemma 4.2. It suffices to show

‖(u0)
#,m
ω ‖Lp � ‖∇mu‖

T
p,2
m

,

where we introduced the weighted sharp function

f #,m
ω (x) = sup

B(x0,r)�x

inf
P∈Pm−1

⎛
⎜⎝ 1

rn

ˆ

B(x0,r)

|f (y) − P(y)|2 ω

(
y − x0

r

)
dy

⎞
⎟⎠

1/2

.

It is of course enough to prove the pointwise inequality, which after translation and rescaling 
reads

inf
P∈Pm−1

⎛
⎜⎝ ˆ

B(0,1)

|u0(y) − P(y)|2 ω(y)dy

⎞
⎟⎠

1/2

� C0,1(|∇mu|).

We show

⎛
⎜⎝ ˆ

B(0,1)

|u0(y) − P(0)(y)|2 ω(y)dy

⎞
⎟⎠

1/2

� C0,1(|∇mu|) (4.10)

for the polynomial P(0) ∈ Pm−1 obtained above. We have by (4.9) (u − P(0))η ∈ L2(0, 1;
Hm

0 (B(0, 1))) and, using ∇mu ∈ L2(0, 1; L2(B(0, 1))) and the equation, also ∂t (u − P(0))η ∈
L2(0, 1; H−m(B(0, 1))). Thus, by Lemma 2.4 the map

[0,1] � t → ‖(u(t, ·) − P(0))η‖2
2
L (B(0,1))
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is absolutely continuous. The function φ(t) = 1 − t is C 1 on [0, 1], so we may estimate

ˆ

B(0,1)

|u0 − P(0)|2 ωdy = −
1ˆ

0

∂t

⎛
⎜⎝(1 − t)

ˆ

B(0,1)

|u(t, y) − P(0)(y)|2 ω(y)dy

⎞
⎟⎠dt

=
1ˆ

0

ˆ

B(0,1)

|u(t, y) − P(0)(y)|2 ω(y)dydt

− 2Re

1ˆ

0

(1 − t)〈∂tu(t, ·), (u(t, ·) − P(0))ω〉H−m(B(0,1)),Hm
0 (B(0,1))dt.

The first summand is bounded by (4.9). For the second one, we approximate (1 − t) by a 
sequence of smooth compactly supported functions on (0, 1), use the equation (1.1) and pass to 
the limit to obtain

∣∣∣∣
1ˆ

0

(1 − t)〈∂tu, (u − P(0))ω〉dt

∣∣∣∣�
m∑

k=0

1ˆ

0

ˆ

B(0,1)

|∇mu||∇k(u − P(0))||∇m−kω|dxdt

(4.9)
�

1ˆ

0

ˆ

B(0,1)

|∇mu|2dxdt.

This finishes the proof. �
In Proposition 6.3 we prove the converse inequality to (4.5). If p < 2, this type of estimate 

will be shown to hold under some extra assumptions on the operator L.

5. Energy well-posedness and the propagators

We demonstrate that in the energy case, Lemma 4.2 easily leads to the uniqueness of solutions.

Theorem 5.1. The Cauchy problem (1.2) is well-posed for Y = L2(Rn) and

X = {u ∈ D ′(Rn+1+ ) | ∇mu ∈ L2(Rn+1+ )}.

For any u0 ∈ L2(Rn) and T > 0, the unique global weak solution u ∈ X with trace u0 satisfies

u ∈ C0([0,∞);L2(Rn)) ∩ L2(0, T ;Hm(Rn))

and ‖u(t, ·)‖L2 is decreasing. We have the global estimates

‖u0‖L2 = ‖u‖L∞(L2) ≤ √
2�‖∇mu‖L2(L2) ≤

√
�‖u0‖L2 . (5.1)

λ
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Proof. Uniqueness. Let u be a global weak solution of (1.1) with ∇mu ∈ L2(L2) and assume 
that the L1

loc(R
n) trace u0 of u exists and belongs to L2(Rn). Then u0 equals the distributional 

trace and the polynomial P from Lemma 4.2 is the zero polynomial. We obtain from inequality 
(4.4) for every t ≥ 0

‖u(t)‖2
L2(Rn)

�
∞̂

t/2

ˆ

Rn

|∇mu|2dys. (5.2)

Thus, u ∈ L2(0, T ; Hm(Rn)) for any T > 0 and the norm ‖u(t)‖L2(Rn) is decreasing and vanish-
ing at infinity. Consequently, we deduce from the weak formulation ∂tu ∈ L2(a, b; H−m(Rn))

for any 0 ≤ a < b < ∞, so by Lemma 2.4 the map [a, b] � t → ‖u(t)‖2
L2 is absolutely continuous 

with

‖u(a)‖2
L2 − ‖u(b)‖2

L2 = 2Re

bˆ

a

ˆ

Rn

A(t, x)∇mu(t, x)∇mu(t, x)dxdt.

Here, we could treat u as a test function by continuity. The global estimates follow now easily 
by taking limits and using the ellipticity bounds. Finally, (5.1) provides uniqueness.

Existence. Given u0 ∈ L2(Rn), a solution with L2(Rn) trace u0 can be constructed by finite 
dimensional Galerkin approximations, see for example [19, Chap. XVIII, §3.1-3]. Another con-
structive proof is based on an approximation of the coefficient matrix A by piecewise constant in 
time matrices and uses the semigroup theory. This has been done in the second order case in [7, 
Theorem 3.11]. �

In Theorem 5.1 we could also start from any time s ≥ 0 and initial data us ∈ L2(Rn) to obtain 
the unique weak solution us(t, ·) to (1.1) on (s, ∞) × Rn satisfying ∇mu ∈ L2(s, ∞; L2) and 
us(s, ·) = us . This gives rise to the central object of our study, the propagator 	(t, s), defined for 
0 ≤ s ≤ t < ∞ by

	(t, s)us(x) := us(t, x), whenever (t, x) ∈ [s,∞) ×Rn.

By Theorem 5.1, the propagators are contractions on L2(Rn) and it is easily shown by unique-
ness of solutions that 	(t, t) = I holds for t ≥ 0 and 	(t, s)	(s, r) = 	(t, r) is true on L2(Rn), 
whenever 0 ≤ r ≤ s ≤ t . Moreover, for any s ≥ 0 we have

[s,∞) � t �→ 	(t, s) ∈ C0([s,∞);L (L2)). (5.3)

Definition 5.2. With the above notation, we call

{	(t, s) | 0 ≤ s ≤ t < ∞} ⊆ L (L2) (5.4)

the family of propagators associated to (1.1).
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If the coefficient matrix is given on the entire space Rn+1, we could define the propagators 
also for negative times. Similarly, recalling Remark 3.3, we easily obtain existence of propagators 
for the backward equation (3.3),

{	̃(t, T )| − ∞ < t ≤ T } ⊆ L (L2). (5.5)

We set 	̃(t, T ) = 	(T − t, 0) if t ∈ (−∞, T ], where 	(t, s) is defined as above for the matrix 
A(t, x) := Ã(T − t, x) on (−∞, T ) and constant otherwise (we study the backwards equation 
on [0, T ], so the precise extension of A to t > T is irrelevant for later applications).

As announced before, the adjoints of (5.4) on a finite time interval can be expressed by the 
backwards propagators to (3.3) for special choice of Ã.

Lemma 5.3. Let T > 0 and fix some coefficient matrix A. Consider the associated family (5.4)
and the backwards propagators (5.5) for Ã = A∗ (the conjugate transpose) defined up to time 
T > 0. Then it holds

	̃(t, T ) = 	(T , t)∗ for every 0 ≤ t ≤ T .

Thus for all h ∈ L2(Rn), t �→ 	(T , t)∗h is strongly continuous from [0, T ] into L2(Rn), and, 
consequently, t �→ 	(T , t)h is weakly continuous from [0, T ] into L2(Rn).

Proof. An easy consequence of Lemma 2.4 and the weak formulation. See [7, Proposition 
3.17]. �

The following L2 off-diagonal bounds are a replacement for kernel bounds and will, for ex-
ample, allow us to extend the family (5.4) to a broad class of functions.

Proposition 5.4. The family of propagators from (5.4) satisfies L2 off-diagonal estimates. That 
is, there exist constants c, C > 0 depending only on the ellipticity and dimensions, such that for 
all closed sets E, F ⊆ Rn, any function f ∈ L2(Rn) and 0 ≤ s < t < ∞ it holds

‖1E	(t, s)(1F f )‖L2 ≤ C exp

{
−c

(
d(E,F )

(t − s)1/(2m)

) 2m
2m−1

}
‖1F f ‖L2 . (5.6)

Proof. Without loss of generality we assume s = 0 and use the time consistency of the propa-
gators otherwise. Indeed, 	(t, s)h can be expressed as 	s(t − s, 0)h where 	s arises from the 
matrix A(t, x) = A(t + s, x), satisfying the same ellipticity bounds as A.

Let E, F be two closed sets with d = d(E, F) > 0. Note that there is nothing to show if 
d(E, F) = 0, provided we choose C ≥ 1. Consider the function h : Rn → [0, d/2] given by

h(x) = min {max{0;d(x,F ) − d/4};d/2} .

In particular, h = 0 on the d/4-neighborhood of F and h = d/2 on the d/4-neighborhood of 
E. Let η ∈ C ∞

c (Rn) be a non-negative function supported in the unit ball with 
´

η = 1 and set 
ηε = ε−nη(·/ε) for ε > 0. Finally, let us define φ := h ∗ ηd/8. Then φ is smooth, non-negative 
and satisfies φ|F = 0, φ|E = d/2 and ‖∂αφ‖L∞ � d1−|α| for any multi-index α.
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Let κ > 0 be a parameter to be specified later and consider the conjugated propagator

	κφ(t,0) : L2(Rn) � f �→ eκφ	(t,0)(e−κφf ).

We derive an L2 bound for this operator in dependence on t, d and κ . First notice that 
u(t) = e−κφ	κφ(t, 0)f = 	(t, 0)(e−κφf ) is a global energy solution of (1.1), which belongs 
to L2(0, T ; Hm(Rn)) for any T > 0 and ∂t	

κφ(t, 0)f ∈ L2(0, ∞; H−m(Rn)). Hence, by 
Lemma 2.4, we have for almost every t > 0

d

dt
‖	κφ(t,0)f ‖2

L2 = d

dt
‖eκφu(t)‖2

L2 = 2Re〈∂t (e
κφu(t)), eκφu(t)〉H−m(Rn),Hm(Rn).

On the other hand, A∇mu ∈ L2(0, T ; L2) for T > 0, so, by continuity, e2κφu can be used as 
a test function and we have for almost every t > 0

d

dt
‖w(t)‖2

L2 = −2Re〈A(t, ·)∇m(e−κφw(t)),∇m
(
eκφw(t)

)〉,
where we put w(t) = eκφu(t) = 	κφ(t, 0)f ∈ L2(Rn). We further calculate, similarly as in 
Proposition 3.1, using the product rule

d

dt
‖w(t)‖2

L2 = − 2Re
∑

|α|=|β|=m

ˆ
aα,β(e−κφ∂βw)

⎛
⎝eκφ∂αw +

∑
γ<α

eκφ�α,γ ∂γ w

⎞
⎠dx

− 2Re
∑

|α|=|β|=m

ˆ
aα,β

⎛
⎝∑

ξ<β

e−κφ�β,ξ ∂
ξw

⎞
⎠
⎛
⎝eκφ∂αw +

∑
γ<α

eκφ�α,γ ∂γ w

⎞
⎠dx,

where this time �α,γ ∈ C∞(Rn) satisfy ‖�α,γ ‖L∞ �
∑

(l,s) : l≥1, l+s=|α|−|γ | κld−s . The expo-
nential factors cancel and we use the ellipticity estimates to obtain

d

dt
‖w(t)‖2

L2 ≤ − 2λ‖∇mw(t)‖2
L2 + C‖∇mw(t)‖L2

m−1∑
k=0

⎛
⎝ ∑

(l,s) : l≥1, l+s=m−k

κld−s

⎞
⎠‖∇kw(t)‖L2

+ C

m−1∑
k=0

⎛
⎝ ∑

(l,s) : l≥1, l+s=m−k

κ2ld−2s

⎞
⎠‖∇kw(t)‖2

L2

for some C > 0 dependent on ellipticity and dimensions. We estimate the norms of the inter-
mediate derivatives with the Gagliardo–Nirenberg inequality, see Lemma 2.3, and use Cauchy’s 
inequality to absorb the highest order factors in the negative term, which we then drop, to arrive 
at

d

dt
‖w(t)‖2

L2 �
m−1∑
k=0

⎛
⎝ ∑

(l,s) : l≥1, l+s=m−k

(κld−s)
2m

m−k

⎞
⎠‖w(t)‖2

L2 .
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Notice that w(0) = f , so, by Grönwall’s inequality, there exists a constant C > 0, such that 
we have for any κ > 0

‖	κφ(t,0)f ‖2
L2 ≤ eC

(
κ2m+∑m

k=2
(∑

l,s≥1, l+s=k(κ
ld−s )2m/k

))
t‖f ‖2

L2,

where we sum over s ≥ 1 after taking the corresponding factor for s = 0, namely κ2m, out from 
the sum. Let us assume without loss of generality that f is supported in F . Then it holds e−κφf =
f and 1E	(t, 0)f = e−κd/2	κφ(t, 0)f , hence, by above,

‖1E	(t,0)f ‖2
L2 ≤ e−cκd(E,F )eC

(
κ2m+∑m

k=2
∑

l,s≥1, l+s=k(κ
ld−s )2m/k

)
t‖f ‖2

L2 .

Since the above estimate holds for any κ > 0, we can choose the one for which the expression 
−cκd + Cκ2mt attains its minimum. We let κ = c̃(d/t)1/(2m−1) for an appropriate c̃. Secondly, 
we observe that up to a constant κd = (d2m/t

)1/(2m−1)
and κ2mt = (d2m/t

)1/(2m−1)
, whence

(κld−s)2m/kt = (κ2mt)l/k(d2m/t)−s/k =
(

d2m

t

) 1
2m−1

l
k
− s

k

.

Taking the restrictions on parameters s and l into account we see (1/(2m − 1))l/k − s/k ≤ 0, 
which allows us to conclude that whenever d2m/t ≥ 1, then the off-diagonal estimate (5.6) is 
true for some constants C, c > 0. We eventually enlarge C ≥ 1, such that C exp(−c) ≥ 1 holds 
and so (5.6) remains true if d2m/t < 1. �

An application of the Riesz–Thorin interpolation between the result from Proposition 5.4 and 
uniform L (Lp(Rn)) bounds of the propagators gives us the following.

Lemma 5.5. Let 1 ≤ q ≤ ∞ and assume

sup
0≤s≤t<∞

‖	(t, s)‖L (Lq) < ∞.

(i) If q ∈ [1, 2), then for all r ∈ (q, 2] there exists a constant αr > 0 such that for any closed 
sets E, F ⊆ Rn and 0 ≤ s < t < ∞ we have for f ∈ Lr(Rn)

‖1E	(t, s)(1F f )‖L2 � (t − s)−
n

2m
( 1

r
− 1

2 ) exp

{
−αr

(
d(E,F )

(t − s)1/(2m)

) 2m
2m−1

}
‖1F f ‖Lr .

(ii) If q ∈ (2, ∞], then for all r ∈ (2, q] there exists a constant αr > 0 such that for any closed 
sets E, F ⊆ Rn and 0 ≤ s < t < ∞ we have for f ∈ L2(Rn)

‖1E	(t, s)(1F f )‖Lr � (t − s)−
n

2m
( 1

2 − 1
r
) exp

{
−αr

(
d(E,F )

(t − s)1/(2m)

) 2m
2m−1

}
‖1F f ‖L2 .

Proof. This is a consequence of the reversed Hölder estimates from Corollary 3.5, bounds from 
Proposition 5.4 and the assumption. See [7, Lemmas 4.9 and 4.11] for details. �
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We finish this section addressing inhomogeneous autonomous equations and presenting a type 
of Duhamel’s principle for the propagators.

Lemma 5.6. Let L0 = (−1)mdivmA(x)∇m be an autonomous elliptic operator. For f ∈ L2(L2), 
h ∈ L2(Rn) and t > 0 we define

u(t, ·) := e−tL0h +RL0f (t, ·),
where

RL0f (t, ·) :=
∑

|β|=m

tˆ

0

e−(t−s)L0∂βfβ(s, ·)ds

is the L2(L2) = T
2,2
m → X2

m bounded map from Proposition 9.4. Then u(0) = h in L2(Rn), 
∇mu ∈ T

2,2
m and it holds for all φ ∈ C ∞

c (Rn),

〈u, ∂tφ〉 = 〈A∇mu,∇mφ〉 + 〈f,∇mφ〉.

Proof. Uniqueness is immediate by Theorem 5.1, if we look at the difference of two poten-
tial solutions. For existence, with Proposition 9.4 on hand, it is routine to check the claim for 
f ∈ D(Rn+1+ ). The quoted result ensures in particular that ‖∇mRL0f ‖L2(L2) � ‖f ‖L2(L2). For 
general f , we rely on the approximation by test functions. See [7, Lemma 6.12] for details. �
Corollary 5.7. Let L0 = (−1)mdivmA(x)∇m be an autonomous elliptic operator. Then the prop-
agators from (5.4) can be represented in L2(Rn) by

	(t,0)h = e−tL0h +
tˆ

0

e−(t−s)L0 divm

(
(A(s, ·) − A)∇m	(s,0)h

)
ds,

where h ∈ L2(Rn).

Proof. The statement follows directly from Lemma 5.6, the decomposition A = (A − A) + A

and uniqueness of energy solutions from Theorem 5.1. �
6. Existence of weak solutions for rough initial data

6.1. Initial data with controlled growth in L2
loc(R

n)

Thanks to their off-diagonal decay properties, we can use the propagators to construct global 
weak solutions to (1.1) with rough initial data. Our first result leads to a straightforward extension 
of those operators to Campanato-type Lp spaces from Section 2.5.

Lemma 6.1. Let f ∈ L2
loc(R

n) be such that for any x0 ∈ Rn there exists C > 0 and N ∈N with

‖f ‖L2(B(x ,r) ≤ CrN

0
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for all r ≥ 1. Then 	(t, 0)f exists in C ([0, ∞); L2
loc(R

n)). Precisely, fix some B0 = B(x0, r) and 
let Bk := B(x0, 2kr) for k ∈ N . Then for any K ⊆ Rn compact, the limit

lim
k→∞1K	(t,0)(1Bk

f )

exists in L2(Rn) for all times t ∈ [0, ∞), depends continuously on t ∈ [0, ∞) and is independent 
of the initial choice of x0 ∈ Rn and r > 0.

Moreover, the function uf : (t, x) �→ 	(t, 0)f (x) is a global weak solution of (1.1) and satis-
fies limt→0 uf (t, ·) = f in L2

loc(R
n).

Proof. The claim follows from Lemma 5.4 and Proposition 3.1 by localization. The L2
loc con-

vergence to the trace follows by Lemma 5.4 and Lebesgue Dominated Convergence. �
In particular, for any polynomial P and f ∈ Lp(Rn) with p ∈ [2, ∞] or f ∈ BMO(Rn), a 

global weak solution of the parabolic equation (1.1) with L2
loc(R

n) initial data f + P can be 
obtained with Lemma 6.1 by

(t, x) �→ 	(t,0)(f + P)(x).

Our next result is the conservation property for polynomials P ∈ Pm−1, according to which 
we can rewrite the above solution in the L2

loc(R
n) sense as

(t, x) �→ 	(t,0)(f )(x) + P(x).

Proposition 6.2. Let 0 ≤ s ≤ t < ∞ and P ∈ Pm−1. Then 	(t, s)P = P in L2
loc(R

n).

Proof. Without loss of generality assume s = 0. For any 0 < t < ∞ and P ∈ Pm−1, Lemma 6.1
implies that 	(t, 0)P is well-defined in L2

loc(R
n). It is easy to see that on any compact set K ⊆

Rn we have

1K	(t,0)P = lim
R→∞1K	(t,0)(χRP ) in L2(Rn),

where χR := χ(·/R) is a smooth cut-off function with 1B(0,1) ≤ χ ≤ 1B(0,2).
We aim to show that for any K ⊆ Rn compact

1KP = lim
R→∞1K	(t,0)(χRP ) in L2(Rn).

Claim. For any h ∈ Cc(Rn) it holds

〈	(t,0)P,h〉L2 = lim
R→∞〈	(t,0)(χRP ),h〉L2 = 〈P,h〉L2 .

Proof of the claim. If we denote by 	̃ is the propagator associated to the matrix Ã(s, x) given 
by A∗(t − s, x) if s ∈ (−∞, t] and A∗(0, x) otherwise, then

〈	(t,0)(χRP ),h〉L2 = 〈χRP,	(t,0)∗h〉L2 = 〈χRP, 	̃(t,0)h〉L2 ,
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according to Lemma 5.3 and the definition of the adjoint propagators. By the energy well-
posedness from Theorem 5.1 it holds

(
s �→ uh(s, ·) := 	̃(t − s,0)h

)
∈ W(0, t;Hm(Rn),H−m(Rn))

and also χRP ∈ W(0, t; Hm(Rn), H−m(Rn)) as it is independent of t . Therefore, Lemma 2.4
applies and we can write

〈χRP,uh(0)〉L2 = 〈χRP,uh(t)〉L2 −
tˆ

0

〈∂suh(s),χRP 〉H−m(Rn),Hm(Rn)ds. (6.1)

We next use uh ∈ W(0, t; Hm(Rn), H−m(Rn)) to approximate χRP in L2(0, t; Hm(Rn)) by a 
sequence of test functions (s, x) �→ (ηε(s)χR(x)P (x))ε>0 to arrive at

I := −
tˆ

0

〈∂suh(s),χRP 〉H−m(Rn),Hm(Rn)ds

=
tˆ

0

ˆ

B(0,2R)

A∗(t − s, x)∇muh(s, x)∇m(χRP )(x)dxds.

Assume without loss of generality supph ⊆ B(0, 1). Then, denoting the degree of P by d ,

|I | �
tˆ

0

ˆ

B(0,8)

|∇muh(s, x)||∇m(χRP )(x)|dxds

+
∞∑

k=3

tˆ

0

ˆ

Bk+1\Bk

|∇muh(s, x)||∇m(χRP )(x)|dxds

�P,χ Rd−m

tˆ

0

ˆ

B(0,8)

|∇muh(s, x)|dxds + Rd−m
∞∑

k=3

tˆ

0

ˆ

Bk+1\Bk

|∇muh(s, x)|dxds.

Here we put Bk = B(0, 2k). Since d < m, the first term tends to zero as R → ∞. We need to show 
the finiteness of 

∑∞
k=3

´ t

0

´
Bk+1\Bk

|∇muh|dxds. For this we use the following refined version of 
the estimates from Proposition 3.1 (we keep the same notation).

For any 0 < r < R, 0 < ζ < ξ < min(R − r, r) and the annuli S(r, ζ ) = B(x0, r + ζ ) \
B(x0, r − ζ ) it holds

dˆ
′

‖∇mu(s, ·)‖2
L2(S(r,ζ ))

ds � 1

(ξ − ζ )2m

dˆ
′

‖u(s, ·)‖2
L2(S(r,ξ))

ds + ‖u(a′, ·)‖2
L2(S(r,ξ))

. (6.2)
a a
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Estimate (6.2) is achieved by covering the annulus S(r, ζ ) with finitely many slightly overlapping 
balls and use the already known estimates.

Back to our setting, (6.2) and off diagonal estimates for the propagators allow to estimate for 
k ≥ 3

tˆ

0

ˆ

Bk+1\Bk

|∇muh|dxds
(6.2)
� 2

kn
2

⎛
⎜⎝2−2m(k−1)

tˆ

0

ˆ

S(2k+2k−1,2k)

|uh|2dxds + ‖h‖2
L2(S(2k+2k−1,2k))

⎞
⎟⎠

1/2

� 2
k(n−2m)

2 exp

⎛
⎝−c

(
22m(k−2)

t

)1/(2m−1)
⎞
⎠‖h‖L2,

up to constants depending on t, n, m, λ and �. Thus, the whole series converges,

∞∑
k=3

tˆ

0

ˆ

Bk+1\Bk

|∇muh|dxds < ∞.

Passing to the limit as R → ∞ in (6.1) we conclude with uh(t) = h that

lim
R→∞〈(χRP ),uh(0)〉L2 = lim

R→∞〈(χRP ),uh(t)〉L2 = 〈P,h〉L2 . �
If 1 < p < 2 then f ∈ Lp(Rn) does not imply f ∈ L2

loc(R
n), so the results obtained so far 

do not ensure the existence of weak solutions with such an initial data. Indeed, as we will see, 
the theory for the cases 1 < p < 2 and 2 ≤ p ≤ ∞ differs a lot and we so present the existence 
results in separate sections.

Proposition 6.3. Let f ∈ BMO(Rn) or p ∈ [2, ∞) and f ∈ Lp(Rn). For any polynomial P ∈
Pm−1 the function

(
t �→ uf +P (t, ·) := 	(t,0)f + P

) ∈ L2
loc(0,∞;Hm

loc(R
n))

defines a global weak solution to (1.1), satisfying limt→0 uf +P (t, ·) = f + P in L2
loc(R

n). It 
holds

∇muf +P = ∇muf ∈ T
p,2
m

with p ∈ [2, ∞) if f ∈ Lp(Rn), or with p = ∞ if f ∈ BMO(Rn). Further, we have

‖f ‖Y ∼ ‖∇muf ‖
T

p,2
m

with Y = Lp(Rn) or Y = BMO(Rn) correspondingly.
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Proof. Clearly, in both of the considered cases, Lemma 6.1 combined with Proposition 6.2 en-
sures the validity of the first half of our claim, that is for any polynomial P ∈Pm−1,

uf +P := 	(t,0)f + P

is a global weak solution to (1.1) with L2
loc(R

n) trace at t = 0 given by f + P .
Note first that ∇mP = 0, so we indeed have ∇muf +P = ∇muf .
Recalling the uniqueness statements from Propositions 2.9 and 2.11 we only need to show

‖f #,m‖Lp ∼ ‖∇muf ‖
T

p,2
m

for any p ∈ (2, ∞], whenever the left hand side is finite. We prove here the bound

‖∇muf ‖
T

p,2
m

� ‖f #,m‖Lp ,

as the converse inequality has been proven in Lemma 4.3, without assuming that uf is given by 
the propagator. With the equivalent norm on T p,2

m from Remark 2.5, it will be enough to show 
that for any ball B(x0, r) it holds

⎛
⎜⎝

r2mˆ

0

 

B(x0,r)

|∇muf |2dydt

⎞
⎟⎠

1/2

� Cx0,r (f ) := sup
R≥r

inf
p∈Pm−1

⎛
⎜⎝  

B(x0,R)

|f (y) − p(y)|2 dy

⎞
⎟⎠

1/2

.

(6.3)
Our proof of (6.3) follows the idea of the classical Carleson measure estimates quoted in 

Proposition 2.7 (i). Let B = B(x0, r) and 2B = B(x0, 2r). Consider Q2B = Px0,2r (f ), the mini-
mizing polynomial for f on 2B . We introduce the decomposition

f = f1 + f2 + Q2B,

where

f1 = 12B(f − Q2B) and f2 = 1Rn\2B(f − Q2B).

Due to the conservation property from Proposition 6.2 it is ∇m	(t, 0)(Q2B) = ∇m(Q2B) = 0 in 
L2

loc(R
n) and we only need to estimate the parts corresponding to f1 and f2. To this end note 

that f1 ∈ L2(Rn) implies

|B|−1/2‖∇m	(t,0)f1‖L2(L2) � |B|−1/2‖f1‖L2 � Cx0,r (f )

with constants depending only on the ellipticity and the dimension.
For f2, let us first recall an inequality from the proof of Proposition 3.1 (here with the param-

eters b = r2m, 0 < a′ < b, R = 2r). For any h ∈ L2(Rn) supported in Rn \ 2B it holds

bˆ

a′
‖∇m	(s,0)h‖2

L2(B)
ds �

bˆ

a′

1

r2m
‖	(s,0)h‖2

L2(2B\B)
ds + ‖	(a′,0)h‖2

L2(2B)
.
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The continuity in time of energy solutions implies lima′→0 ‖	(a′, 0)h‖L2(2B) = ‖h‖L2(2B) = 0. 
We can take the limit as a′ tends to zero on both sides of the above inequality to obtain

r2mˆ

0

‖∇m	(s,0)h‖2
L2(B)

ds �
r2m 

0

‖	(s,0)h‖2
L2(2B)

ds.

Setting h = f2 and Bk := B(x0, 2kr) we thus have

⎛
⎜⎝

r2mˆ

0

 

B

|∇m	(s,0)f2(y)|2dyds

⎞
⎟⎠

1/2

�
∑
k≥1

⎛
⎜⎝

r2m 

0

 

2B

|	(s,0)(f21Bk+1\Bk
)(y)|2dyds

⎞
⎟⎠

1/2

.

For k ∈N and s ∈ (0, r2m), we estimate with the off-diagonal bounds from Proposition 5.4

 

B

|∇m	(s,0)(f21Bk+1\Bk
)|2dy � exp

(
−c

(
(2kr)2m

s

)1/(2m−1)
)

|B|−1‖f − Q2B‖2
L2(Bk+1)

,

where we used that d(Bk+1 \ Bk, B) = 2kr − r ≥ 2k−1r . Moreover, we have

|2B|−1‖f − Q2B‖2
L2(Bk+1)

≤ 2nkCx0,r (f )2 + |2B|−1‖Px0,2k+1r (f ) − Q2B‖2
L2(Bk+1)

.

Since Px0,2k+1r (f ) stays invariant under the projection Px0,2r , we estimate for y ∈ Bk+1

|Px0,2k+1r (f ) − Q2B |(y) �m 2k(n+m)Cx0,r (f )

with constants independent on r . So, there exists N ∈N with

|2B|−1‖f − Q2B‖2
L2(Bk+1)

� 2NkCx0,r (f )2.

Finally,

⎛
⎜⎝

r2mˆ

0

 

B

|∇m	(s,0)f2(y)|2dyds

⎞
⎟⎠

1/2

�
∑
k≥1

⎛
⎜⎝

r2m 

0

exp
(
−c22mk/(2m−1)

)
2NkCx0,r (f )2ds

⎞
⎟⎠

1/2

� Cx0,r (f ),

where we used s ∈ (0, r2m) to dispense with the ratio (r2m/s) in the exponential. This gives 
(6.3). �

The following proposition contains the higher order counterpart of the existence results [7, 
Corollaries 5.5 and 7.2] for the Cauchy problem (1.2) for Y = Lp(Rn) with p ∈ [2, ∞] and 
spaces X = X

p
m and X = L∞(0, ∞; Lp(Rn)).
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Proposition 6.4. Let p ∈ [2, ∞] and f ∈ Lp(Rn). Consider the solution uf (t, ·) = 	(t, 0)f to 
(1.1) obtained in Proposition 6.3. Then the following are true.

(i) uf ∈ X
p
m(Rn) and ‖f ‖Lp ∼ ‖uf ‖X

p
m

.
(ii) Under the uniform boundedness assumption

sup
0≤s≤t<∞

‖	(t, s)‖L (Lp) < ∞, (UBC[p])

it holds uf ∈ L∞(0, ∞; Lp(Rn)) and ‖f ‖Lp ∼ ‖uf ‖L∞(Lp).

Before we proceed to the proof, we point out that the condition in (ii) is necessary, in the sense 
that we have for any p ∈ [1, ∞]

ess sup
0≤s≤t<∞

‖	(t, s)‖L (Lp) ≤ C < ∞ =⇒ sup
0≤s≤t<∞

‖	(t, s)‖L (Lp) ≤ C < ∞.

We argue as follows. Suppose p ∈ (1, ∞) and let f, g ∈ D(Rn) ⊆ L2(Rn). With q ∈ (1, ∞)

being the dual exponent to p, it holds for almost every 0 ≤ s ≤ t < ∞ by assumption

∣∣〈	(t, s)f, g〉∣∣≤ C‖f ‖Lp‖g‖Lq .

Recall from (5.3) and Lemma 5.3 that the maps

[s,∞) � t �→ 〈	(t, s)f, g〉 and [0, t] � s �→ 〈	(t, s)f, g〉

are continuous. Hence, the previous bound holds for every 0 ≤ s ≤ t < ∞ and so, by density, 
the propagator 	(t, s) ∈ L (L2) admits a unique continuous extension to Lp(Rn). In addition, it 
holds uniformly in 0 ≤ s ≤ t < ∞ that

‖	(t, s)‖L (Lp) ≤ C.

For p = 1 the same reasoning works if we consider f ∈ D(Rn) and g ∈ L∞(Rn) with com-
pact support and for p = ∞ we just reverse the roles of f and g.

Proof. Clearly, in (ii) there is nothing to prove. Claim (i) can be seen directly if p ∈ (2, ∞]. 
Indeed, let uf (t, ·) = 	(t, 0)f with f ∈ Lp(Rn) and p ∈ (2, ∞]. For any x ∈ Rn and r > 0
introduce the annuli Sk(x, r) = B(x, 2k+1r) \ B(x, 2kr) for k ≥ 1 and S0(x, r) = B(x, 2r).

Then, for any δ > 0, we decompose

f = f1
S0(x,

2m√
δ)

+
∑
k≥1

f1
Sk(x,

2m√
δ)

.

As we have already seen, the L2 off-diagonal bounds allow to estimate with some Nn,m ∈N
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⎛
⎜⎝

δ 

δ/2

 

B(x,
2m√

δ)

|	(t,0)f (y)|2dydt

⎞
⎟⎠

1/2

�
∑
k≥0

2kN exp
(
−c2

2mk
2m−1

)⎛⎜⎝  

B(x,2k+1 2m√
δ)

|f (y)|2dy

⎞
⎟⎠

1/2

�
(
MHL|f |2

)1/2
(x).

Thus, since p > 2, we conclude Nm(uf ) ∈ Lp(Rn) with

‖uf ‖X
p
m

= ‖Nm(uf )‖Lp � ‖f ‖Lp .

In particular it holds for p ∈ (2, ∞) (we exclude p = ∞, for which ‖∇muf ‖
T

p,2
m

∼ ‖f ‖BMO )

‖uf ‖X
p
m

� ‖∇muf ‖
T

p,2
m

. (6.4)

The reversed inequality

‖f ‖Lp � ‖uf ‖X
p
m

can be also proven directly by the off-diagonal bounds combined with a Fatou-type argument, 
see [7, Lemma 4.6 (ii)]. This then implies for p ∈ (2, ∞]

‖∇muf ‖
T

p,2
m

� ‖uf ‖X
p
m
. (6.5)

However, both arguments break down if p = 2, because they require the Lp/2 boundedness of 
the maximal function. The estimates (6.4) and (6.5) remain true though, even if p = 2 and we 
state the results in Section 6.3. �
6.2. Initial data in Lp(Rn) with p < 2

Lemma 6.3 does not cover Lp(Rn) initial data if p < 2. In this case even the existence of 
solutions in the non-tangential space requires the boundedness assumption on the propagators. 
For the second order case of the results in this section, see [7, Corollary 5.10].

Lemma 6.5. Let p ∈ (1, 2] and u ∈ X
p
m be a global weak solution to (1.1). Then u ∈

L∞(0, ∞; Lp) and

‖u‖L∞(Lp) � ‖u‖X
p
m
.

Proof. Assume u ∈ X
p
m is a global weak solution to (1.1). For t > 0, Fubini’s Theorem and 

Hölder’s inequality for p < 2 give

‖u(t, ·)‖p
Lp ≤

ˆ

Rn

⎛
⎜⎝  

B(y, 2m
√

t/2)

|u(t, x)|2dx

⎞
⎟⎠

p/2

dy.
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We estimate with help of the a priori energy bounds from Proposition 3.1

⎛
⎜⎝  

B(y, 2m
√

t/2)

|u(t, x)|2dx

⎞
⎟⎠

1/2

�

⎛
⎜⎝

t 

t/2

 

B(y, 2m
√

t)

|u(t, x)|2dx

⎞
⎟⎠

1/2

.

Thus, ‖u(t, ·)‖p
Lp � ‖Nmu‖p

Lp holds for every t > 0. �
Let us observe the following. If (1.2) is well-posed for (Lp(Rn), Xp

m), then there exists a 
continuous solution map uf : Lp(Rn) � f �→ uf ∈ X

p
m, which by Lemma 6.5 satisfies

‖uf ‖L∞(Lp) � ‖f ‖Lp(Rn).

From such L∞(Lp) bounds we are able to deduce that the evolution of uf at positive times 
must be governed by the propagators, see Corollary 7.3 in the next section. Combined with the 
estimate above, this gives a heuristical explanation, why it is meaningful for p < 2 to assume 
a uniform boundedness condition for the propagators. We introduce the uniform boundedness 
condition as follows

sup
0≤s≤t<∞

sup
h∈C ∞

c (Rn),
‖h‖Lp(Rn)≤1

‖	(t, s)h‖Lp(Rn) < ∞. (UBC[p])

The same reasoning applies to the well-posedness in X = {u ∈ D ′(Rn+1) | ∇mu ∈ T
p,2
m }, see 

Lemma 4.2.
The following result is the higher order analogue of [7, Lemma 4.10].

Lemma 6.6. Let p ∈ [1, 2) and assume (UBC[p]) holds. Then for all f ∈ Lp(Rn) the function 
uf : (t, x) �→ 	(t, 0)f is a global weak solution of (1.1) and uf ∈ L∞(0, ∞; Lp).

Moreover, for all r ∈ (p, 2), it holds

‖uf ‖L∞(Lr ) � ‖uf ‖Xr
m

� ‖f ‖Lr .

Proof. Let f ∈ Lp(Rn). By (UBC[p]), uf is well-defined in L∞(0, ∞; Lp(Rn)). We first need 
to show uf ∈ L2

loc(0, ∞; Hm
loc(R

n)). Suppose first f ∈ L2(Rn) ∩ Lp(Rn). We then have for any 
τ > 0 and x ∈Rn by Proposition 3.1

‖	(τ,0)f ‖2
L2(B(x, 2m

√
τ/2))

�
τ 

τ/2

 

B(x, 2m
√

τ)

|uf (s, y)|2dyds.

By Vitali’s Covering Lemma, there is a finite number Kn,m such that for any τ > 0 there exist 
points {νi | i ∈N, 1 ≤ i ≤ K} ∈ B(0, 2m

√
τ), such that

B(x, 2m
√

τ) ⊆
K⋃

B(x + νi,
2m

√
τ/24m+1).
i=1
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The rescaling factor is chosen so that the new radii r = 2m
√

τ/24m+1 satisfy (4r)2m ≤ τ/2. Hence, 
for any k = 0, . . . , 4m − 1 and tk = τ/2 + 2kr2m the balls {Br(t, x + νi)}1≤i≤K satisfy the as-
sumptions of the reversed Hölder estimates of Corollary 3.5. Hence, we obtain

‖	(τ,0)f ‖L2(B(x, 2m
√

τ/2)) �
K∑

i=1

4m−1∑
k=0

⎛
⎜⎝  

B4r (tk,x+νi )

|uf (s, y)|pdyds

⎞
⎟⎠

1/p

�τ ‖f ‖Lp .

Thus, by density of L2(Rn) ∩ Lp(Rn) in Lp(Rn) with respect to the Lp-norm, 	(t, 0)f can 
be defined for every f ∈ Lp(Rn) and any t > 0 as an object in L2

loc(R
n) and satisfies

‖1B(0,R)	(t,0)f ‖L2 �R,t ‖f ‖Lp

for any R > 0, t > 0. From here, a routine application of Proposition 3.1 shows

‖∇k	(t,0)f ‖L2(K) �K ‖f ‖Lp (6.6)

on any compact K ⊆ Rn+1+ and integer 0 ≤ k ≤ m. We now show that uf satisfies (1.1) in the 
sense of distributions on Rn+1+ . Let ε > 0 and fε ∈ Lp(Rn) ∩ L2(Rn) with ‖f − fε‖Lp < ε. 
Then ufε is a global solution of (1.1) and we estimate for φ ∈ D(Rn+1+ )

∣∣∣∣∣∣−
∞̂

0

ˆ

Rn

uf ∂tφdydt +
∞̂

0

ˆ

Rn

A∇muf ∇mφ

∣∣∣∣∣∣dydt

≤
∞̂

0

ˆ

Rn

|uf − ufε ||∂tφ|dydt + �

∞̂

0

ˆ

Rn

|∇m(uf − ufε )||∇mφ|dydt

� ‖uf − ufε‖L∞(Lp) + ‖∇m(uf − ufε )‖L2(supp(∇mφ))

(6.6)
� ‖f − fε‖Lp < ε.

Finally, let r ∈ (p, 2). For x ∈ Rn, δ > 0 and κ ∈ (p, r), we have with Lemma 5.5 and the 
decomposition f = f1

S0(x,
2m√

δ)
+∑k≥1 f1

Sk(x,
2m√

δ)
, for some N = Nn,m ∈ N

⎛
⎜⎝

δ 

δ/2

 

B(x,
2m√

δ)

|	(t,0)f (y)|2dydt

⎞
⎟⎠

1/2

�
∑
k≥0

2kN exp
(
−c2

2mk
2m−1

)⎛⎜⎝  

B(x,2k+1 2m√
δ)

|f (y)|κdy

⎞
⎟⎠

1/κ

�
(
MHL|f |κ)1/κ

(x).

By the Lr/κ(Rn) boundedness of the Hardy–Littlewood maximal function, we conclude

‖uf ‖Xr � ‖f ‖Lr . �

m
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6.3. Comparability of ‖∇mu‖
T

p,2
m

and ‖u‖X
p
m

- results

For reference, we collect here statements on the validity of

‖u‖X
p
m

∼ ‖∇mu‖
T

p,2
m

(6.7)

for global weak solutions u of (1.1). All proofs were moved to the Appendix (cf. Section 9.2) 
being technical adaptations of the estimates from [7, §7] to the higher order case.

Proposition 6.7. Let p ∈ ( n
n+m

, ∞) and f ∈ L2(Rn). Suppose uf (t, ·) = 	(t, 0)f is such that 

∇muf ∈ T
p,2
m . Then u ∈ X

p
m and

‖uf ‖X
p
m

� ‖∇muf ‖
T

p,2
m

.

The proof of Proposition 6.7 requires three ingredients. Namely, we begin with the represen-
tation formula from Corollary 5.7, argue that the claim is true for L0 = (−1)m�m and use the 
properties of the integral operator RL0 from Proposition 9.4.

The reversed inequality holds without the assumption on the form of the solution. For p < 2
our methods require the stronger ellipticity assumption (2.3).

Proposition 6.8. Assume p ∈ [1, 2) and that L satisfies the strong ellipticity bounds (2.3). If 
u ∈ X

p
m is a global weak solution to (1.1), then ∇mu ∈ T

p,2
m and

‖∇mu‖
T

p,2
m

� ‖u‖X
p
m
.

Proposition 6.9. Assume that 2 ≤ p ≤ ∞ and u ∈ X
p
m is a global weak solution to (1.1). Then

‖∇mu‖
T

p,2
m

� ‖u‖X
p
m
.

All of the above estimates were known at least for the second order case and some of them 
for the higher order autonomous case. In the next section, we contribute further bounds, namely

(i) We can treat arbitrary solutions satisfying ∇mu ∈ T
p,2
m (and not only those given by the 

propagators applied to an Lp(Rn) function as in Proposition 6.7) and obtain

‖u0 − P ‖Lp ∼ ‖u − P ‖X
p
m

∼ ‖∇mu‖
T

p,2
m

if p ∈ [2, ∞) and

‖u0 − P ‖Lp � ‖u − P ‖L∞(Lp) � ‖∇mu‖
T

p,2
m

if p ∈ (1, 2], where the polynomial P ∈Pm−1 is unique.
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(ii) Under the strong ellipticity assumption (2.3), if p ∈ (1, 2) and (UBC[p]) holds, then

‖u0 − P ‖Lq ∼ ‖u − P ‖L∞(Lq) ∼ ‖u − P ‖X
q
m

∼ ‖∇mu‖
T

q,2
m

is true for all q ∈ (p, 2) and a unique polynomial P ∈ Pm−1.

7. Uniqueness results and tent space well-posedness

7.1. Interior uniqueness

The following local representation result is the main step towards the uniqueness results and 
is based on [7, Theorem 5.1].

Theorem 7.1. Let u be a local weak solution of (1.1) on (a, b) × Rn and c > 0 be the constant 
from (5.6). Assume that for some γ < c

24m/(2m−1)(b−a)1/(2m−1) it holds

M :=
ˆ

Rn

⎛
⎜⎝

bˆ

a

ˆ

B(x,
2m√

b)

|u(t, y)|2dydt

⎞
⎟⎠

1/2

e−γ |x|2m/(2m−1)

dx < ∞. (7.1)

Then u(t, ·) = 	(t, s)u(s, ·) for a < s ≤ t < b in the sense of

ˆ

Rn

u(s, x)	(t, s)∗h(x)dx =
ˆ

Rn

u(t, x)h(x)dx whenever h ∈ Cc(R
n). (7.2)

Proof. For the proof in the second order case, see [7, Theorem 5.1]. Inspection of the proof 
reveals that with the local energy estimates from Proposition 3.1, the same argumentation applies 
in the higher order setting. �
Remark 7.2. In the setting of Theorem 7.1 it holds with σ = 2m

2m−1

bˆ

a

ˆ

Rn

|u(t, y)|e−2σ−1γ |y|2m/(2m−1)

dydt �b,γ M �b,γ

bˆ

a

ˆ

Rn

|u(t, y)|e−21−σ γ |y|2m/(2m−1)

dydt.

This follows from the inequality

|a + b|σ ≤ 2σ−1(|a|σ + |b|σ ) for all a, b ∈R

and, for the first estimate, the Hölder inequality or a covering argument combined with Corol-
lary 3.5 for the second estimate. We carried out this argument in the proof of Lemma 6.6.

Let us present a simple application of Theorem 7.1.
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Corollary 7.3. Let p ∈ [1, ∞] and u be a global weak solution of (1.1) with u ∈ L∞(Lp) or 
u ∈ X

p
m. Then for any 0 < s < t < ∞

u(t, ·) = 	(t, s)u(s, ·)
holds in the sense of (7.2).

Proof. This is an immediate consequence of e−c|x|2m/(2m−1) ∈ Lp′
(Rn) for any c > 0 and 1 ≤

p′ ≤ ∞ given by 1
p

+ 1
p′ = 1, a covering argument and Remark 7.2. �

We make the following observation. The interior representation result considers only interior
times and states how the solutions propagate for such times. It is a separate task to identify the 
trace of the solution and show that the propagation formula can be extended to s = 0. Let us 
outline the strategy for proving well-posedness of the Cauchy problem (1.2) for Y = Lp(Rn)

with 1 ≤ p ≤ ∞ and a seminormed space (X, ‖ · ‖X).
Step 1. Start with global weak solution u to (1.1) and prove the existence of the Lq

loc(R
n)

trace u0 at t = 0 for some q ∈ [1, ∞). For this, use the bound ‖u‖X < ∞ and the equation.
Step 2. Use the control ‖u‖X < ∞ to check the assumption (7.1) and conclude for any time 

t > 0 and sequence of times (tn)n∈N ⊆ (0, t) with tn → 0 the representation

ˆ

Rn

u(tn, x)	(t, tn)∗h(x)dx =
ˆ

Rn

u(t, x)h(x)dx whenever h ∈ Cc(R
n). (7.3)

Step 3. Proceed to the limit as n tends to infinity in (7.3) rigorously using the convergence 
from Step 1. and the properties of the propagators. This gives u(t, ·) = 	(t, 0)u0(·).

Step 4. Prove that u0 ∈ Y and that the unique solution obtained depends continuously on its 
trace. This amounts to showing

‖u0‖Y ∼ ‖u‖X.

Example 7.4. Let X = L∞(L2) and u ∈ X be a global weak solution to (1.1). To obtain the 
unique representation of u by the propagators, we follow the strategy above. By the continuity 
results of Proposition 3.1

sup
t>0

‖u(t, ·)‖L2 < ∞. (7.4)

Step 1. By weak compactness of L2(Rn) and (7.4), there is a sequence (tn)n∈N ⊆ (0, 1) with 
tn → 0 and u0 ∈ L2(Rn) with

u(tn, ·) ⇀ u0 in L2(Rn) as n → ∞.

Step 2. See Corollary 7.3.
Step 3. Given (7.3), use the weak convergence from the Step 1 and strong L2(Rn) continuity of 
[0, t] � t �→ 	(t, tn)∗h from Lemma 5.3. We obtain u(t, ·) = 	(t, 0)u0.
Step 4. Follows immediately from Theorem 5.1. At the same time this step shows the uniqueness 
of the trace.
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Summarizing, for p = 2 we obtain the following well-posedness results.

Theorem 7.5. For a distribution u ∈ D ′(Rn+1+ ) it is equivalent

(i) u is a global weak solution of (1.1) and ∇mu ∈ L2(L2).
(ii) u is a global weak solution of (1.1) and u − P ∈ L∞(L2) for some polynomial P ∈ Pm−1.

(iii) u is a global weak solution of (1.1) and u − P ∈ X2
m for some polynomial P ∈ Pm−1.

(iv) There are unique f ∈ L2(Rn) and P ∈ Pm−1, so that u(t, ·) − P = 	(t, 0)f in L2(Rn) for 
t > 0.

In this case, u − P is the energy solution with trace f obtained in Theorem 5.1 and satisfies 
therein stated bounds. Moreover, ‖∇mu‖

T
2,2
m

∼ ‖u − P ‖X2
m

∼ ‖u − P ‖L∞(L2) ∼ ‖f ‖L2(Rn).

Proof. Points (i), (ii) an (iv) are equivalent by Lemma 4.2, Example 7.4 and Theorem 5.1. 
Lemma 6.5 proves the implication (iii) to (ii) and (ii) follows from (iv) by Proposition 6.7. �
7.2. Tent space solutions 2 < p ≤ ∞

We now approach the tent space well-posedness for p > 2. The next result is of course true 
for p = 2, if we let Y = L2(Rn) + Pm−1 and set ‖f + P ‖Y := ‖f ‖L2 , see Theorem 5.1 or 
Theorem 7.5.

Theorem 7.6. Let p ∈ (2, ∞]. For a distribution u ∈ D ′(Rn+1+ ) it is equivalent

(i) u is a global weak solution of (1.1) and ∇mu ∈ T
p,2
m .

(ii) There is a unique f ∈ Y such that u(t, ·) = 	(t, 0)f in L2
loc(R

n) for t > 0,

where Y = BMOm(Rn) if p = ∞ or Y = L
p
m(Rn) if p ∈ (2, ∞). Moreover, it holds

‖∇mu‖
T

p,2
m

∼ ‖f ‖Y .

Proof. We only need to show (i) implies (ii), as the other direction was proven in Proposition 6.3. 
Let p ∈ (2, ∞] and suppose u is a global weak solution of (1.1) with S = ‖∇mu‖

T
p,2
m

< ∞.

Step 1. By Lemma 4.3, there exists a unique L2
loc(R

n) trace f of u at t = 0 and it holds f ∈ Y

as claimed. Step 2. For the interior uniqueness, recall that with the notation from Lemma 4.3, it 
holds Cx0,r (|∇mu|) � r

− n
p S. Arguing as for (4.10) in Lemma 4.3 (with φ(t) = t), we obtain for 

x0 ∈ Rn, r > 0 and t ∈ (0, r2m)

ˆ

B(x0,r)

∣∣u(t, y) − Pω
x0,r

(u(t, ·))(y)
∣∣2 ωx0,r (y)dy � Cx0,r (|∇mu|)2. (7.5)

We argue as before that the coefficients cx0,r
α (t) of Pω

x0,r
(u(t, ·)) are absolutely continuous 

over [0, r2m] and there are some constants cx0,r
α (0) ∈ C with
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|cx0,r
α (t) − cx0,r

α (0)| �ω r−m

r2mˆ

0

 

B(x0,r)

∣∣∇mu(t, x)
∣∣dxdt � Cx0,r (|∇mu|).

Recalling the L2
loc(R

n) convergence u(t, ·) → f as t → 0, we see that the coefficients cx0,r
α (0)

correspond to the ones of Px0,r (f ). Thus we have for y ∈ B(x0, r) and t ∈ [0, r2m],
∣∣Px0,r (u(t, ·))(y) − Px0,r (f )(y)

∣∣� Cx0,r (|∇mu|). (7.6)

Furthermore, by Proposition 2.11 if p ∈ (2, ∞) or Proposition 2.9 if p = ∞, the means ffl
B(x0,r)

|f | dx grow at most polynomially in |x0| and so do ‖Px0,r (f )‖L∞(B(x0,r)). Combin-
ing this fact with (7.5) and (7.6) shows that u satisfies the integrability condition (7.1) from 
Theorem 7.1 on any cylinder (0, b) × B(x, 2m

√
b) with 0 < b < ∞. Consequently, u(t, ·) =

	(t, s)u(s, ·) for any 0 < s ≤ t < ∞, in the sense that for h ∈ Cc(Rn)

ˆ

Rn

u(s, x)	(t, s)∗h(x)dx =
ˆ

Rn

u(t, x)h(x)dx. (7.7)

Step 3. We need to show that representation (7.7) holds up to the boundary, that is, for s = 0. 
To this end, fix t > 0 and let (sk)k∈N ⊆ (0, t) be a sequence converging to zero. By averaging,

ˆ

Rn

u(sk, x)	(t, sk)∗h(x)dx =
ˆ

Rn

 

B(x, 2m
√

t/2)

u(sk, y)	(t, sk)∗h(y)dydx. (7.8)

We will apply the Lebesgue Dominated Convergence Theorem to the sequence (gk)k∈N with

gk(x) :=
 

B(x, 2m
√

t/2)

u(sk, y)	(t, sk)∗h(y)dy.

First of all, we have 	(t, sk)∗h → 	(t, 0)∗h in L2(Rn) as k → ∞ (Lemma 5.3) and additionally 
the L2

loc(R
n) convergence u(t, ·) → f as t → 0 holds. Thus, as k tends to infinity

gk(x) →
 

B(x, 2m
√

t/2)

f (y)	(t,0)∗h(y)dy

for every x ∈ Rn. Applying L2 off-diagonal bounds and (7.5) together with (7.6) gives us

|gk(x)| ≤
∞∑

j=1

⎛
⎜⎝  

2m
√

|u(sk, y)|2dy

⎞
⎟⎠

1/2

‖1
B(x, 2m

√
t)
	(t, sk)

∗(1
Sj (x, 2m

√
t)
h)‖L2
B(x, t/2)
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�
∞∑

j=1

⎛
⎜⎝ ˆ

B(x, 2m
√

t)

|u(sk, y)|2ω
x, 2m

√
t
(y)dyds

⎞
⎟⎠

1/2

e
−c̃22m/(2m−1)j

(
t

t−sk

)1/(2m−1)

× ‖1
Sj (x, 2m

√
t)
h‖L2

�
∞∑

j=1

(
C

x, 2m
√

t
(|∇mu|) + ‖P

x, 2m
√

t
(f )‖

L∞(B(x, 2m
√

t))

)
e−c̃22m/(2m−1)j ‖1

Sj (x, 2m
√

t)
h‖L2 .

Since

sup
x∈Rn

C
x, 2m

√
t
(|∇mu|) � t−n/(2mp)‖∇mu‖

T
p,2
m

,

the term in the brackets grows at most polynomially in |x| and so it is integrable when multiplied 

by e−α|x| 2m
2m−1 with arbitrary α > 0. So, we can proceed as in the proof of Theorem 7.1 to see that 

there exists N ∈N and a constant c > 0 such that for 0 < α < ct−1/(2m−1)

|gk(x)| � |x|Ne−α|x|2m/(2m−1)‖h‖L2

uniformly in k ∈ N (the constant does depend on t). Thus, the sequence (gk)k∈N has an inte-
grable dominant. We pass to the limit as k tends to infinity in (7.8) and obtain that the function

x �→
 

B(x, 2m
√

t/2)

f (y)	(t,0)∗h(y)dy

is integrable for every t > 0 and

ˆ

Rn

 

B(x, 2m
√

t/2)

f (y)	(t,0)∗h(y)dydx =
ˆ

Rn

u(t, x)h(x)dx. (7.9)

If we can show the integrability of x �→ f (x)	(t,0)∗h(x) then an application of Fubini’s 
Theorem finishes the proof. For this we argue in the same style as above, since due to f ∈
BMOm(Rn) or f ∈ L

p
m(Rn) if p ∈ (2, ∞), we can control the averages (

ffl
B(x, 2m

√
t)

|f (y)|2)1/2

by some polynomial in |x|. Thus we can swap the integrals in (7.9) and obtain

ˆ

Rn

f (x)	(t,0)∗h(x)dx =
ˆ

Rn

u(t, x)h(x)dx. (7.10)

Let Bk := B(0, 2k) for k ∈ N . Then, by Lebesgue Dominated Convergence, it holds for the left 
hand side of (7.10)
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ˆ

Rn

f (x)	(t,0)∗h(x)dx = lim
k→∞

ˆ
1Bk

f (x)	(t,0)∗h(x)dx

= lim
k→∞

ˆ
	(t,0)(1Bk

f )(x)h(x)dx

=
ˆ

	(t,0)f (x)h(x)dx.

Here we used that 1Bk
(x)f ∈ L2(Rn), as well as Lemma 6.1 together with the fact that supp h

is compact. Combined with (7.10), this implies 	(t, 0)f (x) = u(t, x) in L2
loc(R

n) for 0 < t <

∞. �
Theorem 7.6 leads to the following Carleson measure characterization of BMO(Rn).

Corollary 7.7. For f ∈ L2
loc(R

n) it is equivalent

(i) There exists a global weak solution u to (1.1), for which

dμ(x, t) = |tm∇mu(t2m,x)|2 dxdt

t

is a Carleson measure and the L2
loc(R

n) trace of u is given by f .
(ii) There exists a polynomial P ∈Pm−1 such that f − P ∈ BMO(Rn).

Moreover, ‖∇u‖
T

∞,2
m

∼ ‖f − P ‖BMO .

By Proposition 6.9 and Theorem 7.6 we further see the Cauchy problem (1.2) is well-posed 
for X = X

p
m and Y = Lp(Rn) if p ∈ (2, ∞). If p = ∞, with this method, we only obtain a trace 

in BMO(Rn). However, copying the slice spaces estimates in the proof of [7, Theorem 5.4]
gives f ∈ L∞(Rn). Hence, X∞

m is a well-posedness class for L∞(Rn).
Under the uniform boundedness assumption on the propagators, another Lp(Rn) well-

posedness class is given by L∞(Lp). This is true also for p = ∞, but we neglect this case 
below to avoid distinguishing different cases.

Theorem 7.8. Let p ∈ (2, ∞). Suppose that (UBC[p]) holds. Then for a distribution u ∈
D ′(Rn+1+ ) it is equivalent

(i) u is a global weak solution of (1.1) and ∇mu ∈ T
p,2
m .

(ii) u is a global weak solution of (1.1) and u − P ∈ L∞(Lp) for some polynomial P ∈Pm−1.
(iii) u is a global weak solution of (1.1) and u − P ∈ X

p
m for some polynomial P ∈ Pm−1.

(iv) There are unique f ∈ Lp(Rn) and P ∈ Pm−1, so that u(t, ·) − P = 	(t, 0)f in L2
loc(R

n)

for t > 0.

In this case, u − P is the solution with trace f obtained in Proposition 6.4 and it holds

‖∇mu‖ p,2 ∼ ‖u − P ‖ p ∼ ‖u − P ‖L∞(Lp) ∼ ‖f ‖Lp(Rn).
Tm Xm
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Proof. Points (i), (iii) and (iv) are equivalent without assuming (UBC[p]), see Theorem 7.6, 
Propositions 6.4 and 6.9. Also, (iv) implies (ii) by (UBC[p]), so we only need to show the con-
verse. We proceed as in Example 7.4. For the third step, we need to show

‖	(t, s)∗h − 	(t,0)∗h‖
Lp′ → 0 (7.11)

as s → 0 for every h ∈ Cc(Rn). This is seen by localization and Hölder’s inequality combined 
with off-diagonal estimates and L2 continuity results, cf. [7, Proposition 5.11]. �
Remark 7.9. Let p ∈ (2, ∞) and suppose (UBC[p]). Then for all r ∈ (2, p) the global weak 
solution uf (t, ·) = 	(t, 0)f with f ∈ Lr(Rn) belongs to C0([0, ∞); Lr(Rn)).

Proof. We interpolate between r = 2, where the conclusion is true, and r = p, where (UBC[p])
holds. Precisely, let f ∈ Lr(Rn) and g ∈ D(Rn) be such that ‖g − f ‖Lr < ε. We estimate for 
any 0 ≤ s < t < ∞ and θ ∈ (0, 1) with 1

r
= θ

2 + 1−θ
p

,

‖	(t,0)f − 	(s,0)f ‖Lr ≤ ‖	(t,0)(f − g) − 	(s,0)(f − g)‖Lr + ‖	(t,0)g − 	(s,0)g‖Lr

� ε + ‖	(t,0)g − 	(s,0)g‖1−θ
Lp ‖	(t,0)g − 	(s,0)g‖θ

L2

� ε + ‖g‖1−θ
Lp ‖	(t,0)g − 	(s,0)g‖θ

L2 .

The claim follows easily. �
7.3. Tent space solutions 1 ≤ p < 2

As outlined in Section 6.2, we need to assume (UBC[p]). However, even with (UBC[p]), we 
could not prove the continuous dependence of the solution on the data in the sense of

‖∇muf ‖
T

p,2
m

� ‖f ‖Lp .

Contrary to the case p > 2, our only general estimate in this direction is the result of Proposi-
tion 6.8. On the other hand, the only available bound the non-tangential norm of the solution by 
the initial data requires enlarging the exponent slightly to r ∈ (p, 2).

We arrive at the same conclusion, when considering the class L∞(0, ∞; Lp(Rn)). Indeed, as 
in the third step of the proof of Theorem 7.8, we need to show

‖	(t, s)∗h − 	(t,0)∗h‖
Lp′ → 0

as s → 0 for every h ∈ Cc(Rn). Our previous proof was based on the Hölder inequality, since 
p > 2, and L2 convergence results for the propagators. This does not apply here, but provided 
the propagators are uniformly bounded for some 1 ≤ q < p < 2, we can again use interpolation 
between 2, where the convergence is true and q , where the uniform bounds hold. We obtain the 
following.

Theorem 7.10. Let 1 ≤ p < r < 2. Suppose (UBC[p]) holds. Then for a distribution u ∈
D ′(Rn+1+ ) it is equivalent
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(i) u is a global weak solution of (1.1) in L∞(0, ∞; Lr(Rn)).
(ii) u is a global weak solution of (1.1) in Xr

m.
(iii) There is a unique f ∈ Lr(Rn) such that u(t, ·) = 	(t, 0)f in Lr(Rn) for t > 0.

In this case u ∈ C0([0, ∞); Lr(Rn)) and ‖f ‖Lr ∼ ‖u‖L∞(Lr ) ∼ ‖u‖Xr
m

.

Proof. See Lemma 6.6 and Example 7.4, complemented by the comment above. The continuity 
result is proven as in Remark 7.9. �
Theorem 7.11. Let 1 ≤ p < r < 2. Assume the strong ellipticity bounds (2.3) and (UBC[p]). 
Then for a distribution u ∈ D ′(Rn+1+ ) it is equivalent

(i) u is a global weak solution of (1.1) and ∇mu ∈ T
r,2
m .

(ii) There is unique f ∈ Lr(Rn) and P ∈ Pm−1, such that u(t, ·) − P = 	(t, 0)f in Lr(Rn) for 
t > 0.

In this case, all statements of Theorem 7.10 are true for u − P and

‖f ‖Lr ∼ ‖u − P ‖L∞(Lr ) ∼ ‖u − P ‖Xr
m

∼ ‖∇mu‖
T

r,2
m

.

Proof. By Lemma 4.2 (i) implies that statements of Theorem 7.8 are true for the solution modi-
fied by a polynomial, hence (ii) follows. Proposition 6.8 leads to the converse implication. �
8. Uniform boundedness of the propagators and Hölder continuity of solutions

The uniform boundedness of propagators plays a peculiar role in the well-posedness theory 
from Section 7. In the remaining part of this work we study for which operators L and exponents 
p ∈ [1, ∞] the (UBC[p]) assumption is true. We begin with a few examples in the spirit of [7].

8.1. Examples

8.1.1. Kernel bounds
A sufficient condition for (UBC[p]) to hold is that the propagators satisfy kernel bounds. By 

this we mean that their Schwartz kernels k(t, s, ·, ·) are measurable functions on Rn ×Rn with

|k(t, s, x, y)| ≤ c1(t − s)−
n

2m exp

⎛
⎝−c2

( |x − y|2m

(t − s)

) 1
2m−1

⎞
⎠ , (8.1)

for some positive constants c1, c2 > 0, all 0 ≤ s < t < ∞ and almost all x, y ∈ Rn. For any 
f ∈ L2(Rn) and 0 ≤ s < t < ∞ we then have the integral representation

	(t, s)f =
ˆ

k(t, s, x, y)f (y)dy,

which can be extended to hold for all f ∈ Lp(Rn), p ∈ [1, ∞]. Here are some examples of 
operators, for which (8.1) holds
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(i) L = (−1)m�m for any m, n ∈ N+ and more general for any L with constant coefficients, 
see [8, Proposition 45].

(ii) L an autonomous operator and n ≤ 2m, see [20,9].
(iii) L an autonomous operator coefficients small in BMO(Rn) norm, [8, Proposition 47].
(iv) In the autonomous case, condition (8.1) is stable under small L∞(Rn)-perturbations of the 

coefficients, see [8, Proposition 43].
(v) m = N = 1 and the (not necessarily autonomous) coefficients of L are real, see [1].

For N ≥ 1 in the autonomous case see the references in the introduction of [8]. In particular, in 
all above listed cases all of the derived well-posedness results hold and, for any p ∈ (1, ∞), the 
convergence to the trace holds in Lp(Rn).

8.1.2. Coefficients in BV (L∞) for p < 2
In Sections 8.1.2 and 8.1.3 we formulate the higher order counterparts of the results of [7, §6]. 

The methods are identical. As in [7] we address here the case p < 2 only.

Definition 8.1. We say that A ∈ L∞(Rn; CNM×NM) belongs to the class M(�, λ, q, M) for 
some q ∈ [1, 2) and M : [2, q ′) → (0, ∞), if it satisfies the ellipticity estimates with constants 
λ, � > 0 and for all s ∈ [2, q ′) we have

sup
t>0

‖√t∇me−tL∗
0‖L (Ls) ≤ M(s) < ∞, (8.2)

where L0 denotes the autonomous operator arising from A.

Condition of the form of (8.2) was first introduced in Section 2.6 and is substantial in the proof 
of the boundedness of M̃L in Proposition 9.1. Every operator L0 will satisfy (8.2) for some q
and M , which can be chosen to depend on the ellipticity constants and dimensions only, see the 
off-diagonal estimates of Section 2.6 and the connection between the special exponents for L0
and L∗

0, which we discuss in the proof of Proposition 9.1.

Definition 8.2. We say that A : (0, ∞) → L∞(Rn; CNM×NM) has bounded variation in time, 
denoted A ∈ BV (L∞), if

‖A‖BV (L∞) := sup

{ ∞∑
k=0

‖A(tk+1, ·) − A(tk, ·)‖L∞ | (tk)k∈N ⊆ [0,∞) non-decreasing

}
< ∞.

Proposition 8.3. Suppose A ∈ BV (L∞) admits ellipticity constants λ, � > 0. Fix some q ∈
[1, 2) and M : [2, q ′) → (0, ∞) be such that for all bounded intervals I ⊆ (0, ∞) it holds

AI (·) :=
 

I

A(s, ·)ds ∈ M(�,λ, q,M).

Then for p ∈ (max{1; pc}, 2), where pc = max{ nq
n+mq

; 2n
n+mq ′ } as in Proposition 9.1, (UBC[p])

holds and the bound depends on the ellipticity, dimensions, the function M , p, q and ‖A‖BV (L∞).
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Proof. After approximation of A with piecewise constant in time matrices, the proof exploits the 
explicit form of energy solutions in this case. Crucial tent space estimates are derived with help 
of Proposition 9.1. The detailed reasoning is identical as in [7, Theorem 6.9, Lemma 6.7]. We 
only give references needed to adjust the proof to the higher order setting. Consider w = e−tL0f

for L0 autonomous and f ∈ Lp(Rn) ∩ L2(Rn). Then estimate

‖∇mw‖
T

p,2
m

� ‖f ‖Lp

is true by [16, Corollary 3.5 (ii)] for p ∈ (q−(L0), q+(L0)). This condition is fulfilled by the 
assumption on q , cf. the discussion in the proof of Proposition 9.1. In this range of exponents, 
the vertical square function estimates remain true for higher order operators, see [2, p. 96]. �
8.1.3. Small perturbations for p < 2

Let us recall from Corollary 5.7 that for the considered operator L and autonomous L0 =
(−1)mdivmA(x)∇m it holds

	(t,0)h = e−tL0h +
tˆ

0

e−(t−s)L0divm(A(s, ·) − A)∇m	(s,0)h ds (8.3)

on L2(Rn). If ‖A − A‖
L∞(Rn+1+ )

is small, then by the boundedness of the maximal integral 
operators from Appendix 9.1, we are able to see that the uniform Lp(Rn) boundedness of the 
family (e−tL0)t>0 is inherited by (	(t, 0))t>0.

Proposition 8.4. Let A ∈ L∞(Rn+1+ ; CNM×NM) admit ellipticity constants λ, � > 0. Suppose 
there exists A ∈ M(�, λ, q, M) with q ∈ [1, 2) and M : [2, q ′) → (0, ∞), such that for some 
p ∈ (max{1; 2n

n+mq ′ }, 2)

ε := ‖A − A‖L∞ <
1

‖M̃L0‖L (T
p,2
m )

,

then (UBC[p]) holds.

Proof. This is an easy adaptation of the proof of [7, Theorem 6.14]. �
Remark 8.5. Similarly to Proposition 8.4 we can treat the case A ∈ C ([0, T ]; L∞(Rn)) and 
A(s, ·) ∈ M(�, λ, q, M) for all s ∈ [0, T ], to derive the uniform boundedness of propagators up 
to time T .

Indeed, we partition the interval [0, T ], according to the uniform continuity of A, and let 
A(tk, ·) play the role of A in Proposition 8.4 on the corresponding interval [tk, tk+1). The details 
can be found in [7, Theorem 6.15].
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8.2. Uniform boundedness of the propagators for |p − 2| small

For a homogeneous higher order elliptic operator L = (−1)mdivmA(t, x)∇m, introduced in 
Section 2.2, let IA be the maximal interval of exponents p ∈ [1, ∞], such that (UBC[p]) holds, 
that is {	(t, s)| 0 ≤ s ≤ t < ∞} is uniformly bounded on Lp(Rn). Since 2 ∈ IA, IA �= ∅. In this 
section we will prove that also the interior of IA is non-empty. With methods based on the ideas 
from [3], we show the following.

Theorem 8.6. There exists ε > 0 depending only on ellipticity and dimensions, such that for all 
p ∈ [1, ∞] with p ∈ (2 − ε, 2 + ε) the family {	(t, s)| 0 ≤ s ≤ t < ∞} is uniformly bounded on 
Lp(Rn).

Comparing this result with item (ii) in Section 2.6, let us underline that we do not have a 
quantitative description of ε.

8.2.1. Reduction to the bound on parabolic cylinders
We show how the uniform boundedness of the propagators follows from local estimates.
Step 1. Reduction to the case p > 2.
We argue by duality. If p ∈ (max{1; 2 − ε

1+ε
}, 2), then its dual exponent, determined by 1 =

1
p

+ 1
p′ , satisfies p′ ∈ (2, 2 + ε). Recall from Lemma 5.3 that for 0 ≤ s < t < ∞ the adjoint 

	(t, s)∗ equals 	̃(t − s, 0) on L2(Rn), where 	̃ is the propagator associated to the matrix Ã(s, x)

given by A∗(t − s, x) if s ∈ (−∞, t] and A∗(0, x) otherwise. The new matrix satisfies the same 
ellipticity estimates as A, uniformly in 0 < t < ∞. Thus, by density, we obtain

sup
0≤s<t

‖	(t, s)‖L (Lp) = sup
0≤s<t

‖	̃(t − s,0)‖L (Lp′
)
< ∞,

if the claim is true for p′. This bound holds uniformly in t > 0.
Step 2. Reduction to the case s = 0.
By uniqueness of energy solutions we know that 	(t, s) = 	̃(t − s, 0) for 	̃ the propagator 

associated to the matrix Ã(t, ·) = A(t + s, ·) for t > 0. Thus it is enough to obtain bounds of 
{	̃(t, 0) | 0 < t < ∞}.

Step 3. Reduction to L2 − Lp off-diagonal estimates.
In [13, Proposition 2.1.ii] Blunck and Kunstmann showed that an L2 − Lp off-diagonal esti-

mate for any linear operator R on L2(Rn) of the form

∥∥1
B(x, 2m

√
t)
R1

B(y, 2m
√

t)

∥∥
L2→Lp � t

n
2m

( 1
p

− 1
2 )

g

(
d(x, y)

2m
√

t

)
(8.4)

is enough to deduce the bound ‖R‖L (Lp) ≤ C
∑∞

k=0(k + 1)λg(k) with some constants C, λ > 0
independent of the operator R, the function g and the parameter t > 0. Here, we assume that 
g : R≥0 → R>0 is decreasing with h = − logg convex and lim infa→∞ h(a)/a > 0. We will 
apply this result with g(a) := e−ca2m/(2m−1)

to R = 	(t, 0). Note also that in (8.4) we can replace 
d(x, y) by d(B(x, 2m

√
t), B(y, 2m

√
t)) on the expense of some additional constants.

Step 4: Reduction to the L2 − Lp bounds on parabolic cylinders.
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Recall from 5.4 the L2 off-diagonal estimates

∥∥1
B(x, 2m

√
t)
	(t,0)1

B(y, 2m
√

t)

∥∥
L2→L2 � g

(
d(B(x, 2m

√
t),B(y, 2m

√
t))

2m
√

t

)
,

with g(a) := e−ca2m/(2m−1)
for some constant c > 0. By interpolation, to obtain (8.4), we only 

need to show the localized L2 − Lp bound

∥∥1
B(x, 2m

√
t)
	(t,0)

∥∥
L2→Lp � t

n
2m

( 1
p

− 1
2 )

, (8.5)

with constants independent of x ∈ Rn and t > 0. Since for f ∈ L2(Rn), ‖	(t, 0)f ‖L2 ≤ ‖f ‖L2

holds uniformly in t > 0, inequality (8.5) follows from the following estimate

sup
s∈(t/2,2t)

⎛
⎜⎝  

B(x, 2m
√

t)

|	(s,0)f |pdy

⎞
⎟⎠

1/p

�

⎛
⎜⎝  

(t/4,4t)

 

B(x,2 2m
√

t)

|	(s,0)f |2dy

⎞
⎟⎠

1/2

.

By scaling and translation, we only need to consider the case t = 1 and x = 0. Summarizing, if 
we denote u(t, x) = 	(t, 0)f (x), then our goal is to prove the existence of some ε > 0 depending 
on ellipticity and dimensions only, such that for all 2 < p < 2 + ε and f ∈ L2(Rn) the following 
bound is true

sup
s∈(1/2,2)

⎛
⎜⎝  

B(0,1)

|u(s, y)|pdy

⎞
⎟⎠

1/p

�

⎛
⎜⎝  

(1/4,4)

 

B(0,2)

|u(s, y)|2dy

⎞
⎟⎠

1/2

. (8.6)

8.2.2. Outline of the method
By multiplying u with a cut-off function χ ∈ C ∞

c (Rn+1+ ) we obtain a function v ∈
L2(R; L2(Rn)), which now solves some inhomogeneous equation weakly on the whole space 
Rn+1, where we extend A(t, x) = A(0, x), if t < 0. Local information about u on suppχ car-
ries over to v and vice versa. It is therefore enough to prove the bound (8.6) for v. The global 
setting, that is v ∈ L2(Rn+1), allows us to extract valuable information from the time derivative. 
Formally,

∂tv = D
1/2
t HtD

1/2
t v,

where D1/2
t = F−1(|τ |1/2F) is the half derivative in t and Ht = F−1(iτ/|τ |F) is the one di-

mensional Hilbert transform. For the rest of the section, F denotes the n +1 dimensional Fourier 
transform.

By standard interpolation, we realize that v ∈ L2(R; Hm(Rn)) and ∂tv ∈ L2(R; H−m(Rn))

imply D1/2
t v ∈ L2(Rn+1). Using an abstract result of Šneı̆berg (see [36] or [2, Lemma 5.16]), we 

show higher integrability of v and D1/2
t v, that is v, D1/2

t v ∈ Lp(Rn+1) and use the Campanato 
characterization of the Hölder continuity to conclude.
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8.2.3. Abstract results
In this section we introduce the formal setting for the proof of (8.6). We adapt the definition 

of energy spaces from [3] to the higher order case.

Definition 8.7. Let p ∈ [1, ∞). Let H 1/2,p = H 1/2,p(R; Lp(Rn)) denote the potential space 
consisting of such f ∈ Lp(Rn+1), for which D1/2

t f ∈ Lp(Rn+1). We equip this space with 
norm

‖f ‖H 1/2,p := (‖f ‖p

Lp(Rn+1)
+ ‖D1/2

t f ‖p

Lp(Rn+1)
)1/p.

Further, we define the p-energy space Ep := Lp(R; Wm,p(Rm)) ∩H 1/2,p(R; Lp(Rn)) and equip 
it with norm ‖f ‖Ep

:= (‖f ‖p

Lp(R;Wm,p)
+ ‖D1/2

t f ‖H 1/2,p )1/p .

By the Gagliardo–Nirenberg inequality (Lemma 2.3) and ellipticity it holds for w ∈ Hm(Rn)

Re
ˆ

A(t, x)∇mv(x)∇mv(x)dx ≥ λ‖∇mv‖2
L2(Rn)

≥ λ̃‖v‖2
Hm(Rn) − ‖v‖2

L2(Rn)
for a. e. t ∈R,

(8.7)
where λ̃ > 0 is some new constant dependent on the order m, dimension n and the ellipticity 
constant λ. Estimate (8.7) together with the Lax–Milgram Lemma implies the following.

Lemma 8.8. The operator L := ∂t + (−1)mdivmA∇m + 2, initially defined on C ∞
c (Rn+1) ex-

tends to a bounded, invertible operator E2 → E′
2 through the pairing

〈L u,v〉 :=
ˆ

Rn+1

A∇mu∇mv + HtD
1/2
t uD

1/2
t v + 2uvdxdt.

Furthermore, the norm of L and the norm of its inverse depend only on the ellipticity and the 
dimensions.

Proof. See [3, Lemma 3.2]. �
We borrow from [3] a parabolic Sobolev embedding theorem.

Lemma 8.9. Let 1 < p < n + 2 and p∗ > p be determined by 1
p∗ = 1

p
− 1

n+2 . Then Ep ↪→
Lp∗

(Rn+1) with

‖u‖Lp∗
(Rn+1) � ‖∇u‖Lp(Rn+1) + ‖D1/2

t u‖Lp(Rn+1).

Proof. Note that Ep ↪→ Ẽp := Lp(R; W 1,p(Rn)) ∩ H 1/2,p(R; Lp(Rn)), which is the energy 
space used in [3]. The result follows by [3, Lemma 3.4]. �
Corollary 8.10. Let 1 < p < n + 2 and p∗ > p be determined by 1

p∗ = 1
p

− 1
n+2 . Suppose v ∈

Ep . Then for all integer 0 ≤ k ≤ m and pk ≥ p given by 1
pk

= m−k
m

1
p∗ + k

m
1
p

, it holds ∇kv ∈
Lpk (Rn+1) with
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‖∇kv‖Lpk (Rn+1) � ‖v‖
m−k
m

Lp∗
(Rn+1)

‖∇mv‖
k
m

Lp(Rn+1)
� ‖v‖Ep .

Proof. This is an application of the Gagliardo–Nirenberg inequality from Lemma 2.3 applied 
slice-wise, followed by the Hölder inequality (in time) and Lemma 8.9. �

The interval for p in the last lemma is not optimal, but we are not bothered by this fact since 
the application of the Šneı̆berg’s Lemma does not give us a quantitative information about the 
intervals for p we wish to work with.

Lemma 8.11. The energy spaces (Ep) and their duals ((Ep)′) form complex interpolation scales. 
Precisely, let ε > 0 and 1 + ε < p0 ≤ p1 < 1 + ε−1. For θ ∈ (0, 1) the complex interpolation 
identity is true

[Ep0,Ep1]θ = Epθ and [(Ep0)
′, (Ep1)

′]θ = (Epθ )
′, where

1

pθ

= 1

p0
+ 1

p1

and the equivalence constants depend only of ε and the dimensions.

Proof. The proof is a simple adaptation of the reasoning from [4, Lemma 6.1], so we skip the 
details. �

Lemma 8.11 allows to apply the Šneı̆berg’s result on bounded operators acting on complex 
interpolation scales, which in our setting translates into

Proposition 8.12. There exists an ε > 0, such that for all 1 < p < ∞ satisfying |p − 2| < ε

the operator L := ∂t + (−1)mdivmA∇m + 2 : E2 → (E2)
′ extends to a bounded and invertible 

operator Ep → (Ep′)′. The inverse agrees with the one for p = 2 on (E2)
′ ∩ (Ep′)′. The norm 

of the inverse and the value of ε depend only on the ellipticity and the dimensions.

Proof. Given Lemmas 8.8 and 8.11 the proof is identical as in [3, Lemma 7.1]. �
8.2.4. Hölder regularity of solutions

Suppose u ∈ L2
loc(0, ∞; Hm

loc(R
n)) is a global weak solution to (1.1). Let χ ∈ C ∞

c (Rn+1+ ) be 
supported in the cylinder (3/8, 4) × B(0, 3/2), satisfy χ ≤ 1 and χ = 1 on (1/2, 2) × B(0, 1). 
Define v(t, x) := χ(t, x)u(t, x) for (t, x) ∈ Rn+1. The following properties for v are direct con-
sequences of the a priori energy estimates for u (see Section 3)

(i) v ∈ L2(R; Hm(Rn)).
(ii) ∂tv ∈ L2(R; H−m(Rn)).

(iii) v ∈ Lq(Rn+1) for 1 ≤ q ≤ 2 + 4m
n

.

By (i) and (ii), we have D1/2
t v ∈ L2(Rn+1), see [19, Chap. XVIII, §1, Theorem 6]. Thus, v ∈ E2.

By a repetitive use of the product rule, we deduce that v = χu solves

L v = ∂tv + (−1)mdivmA∇mv + 2v = 2v + f + divmF +
m−1∑ ∑

∂ξFξ , (8.8)

k=1 |ξ |=k
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in the weak sense, where the involved functions are f = u∂tχ + cmA∇mu∇mχ , F = (Fα)|α|=m

with Fα =∑|β|=m aα,β

∑
γ<β cβ,γ ∂γ u∂β−γ χ and the Fξ satisfy

‖Fξ‖L2(Rn+1) � ‖u‖L2((3/8,4);Hm(B(0,3/2)) � ‖u‖L2((1/4,4)×B(0,2)),

see the local energy estimates in Proposition 3.1.

Lemma 8.13. Assume 2 < p < min{2 + ε, 2 + 4
m(n+2)−2 } for ε > 0 from Proposition 8.12. Then 

the right hand side of equation (8.8) belongs to (Ep′)′ and it holds

∥∥∥∥2v + f + divmF +
m−1∑
k=1

∑
|ξ |=k

∂ξFξ

∥∥∥∥
(Ep′ )′

� ‖u‖L2((1/4,4)×B(0,2))

with constant depending on the ellipticity and dimensions. Therefore, by Proposition 8.12,

‖v‖Ep =
∥∥∥∥∥L −1

⎛
⎝2v + f + divmF +

m−1∑
k=1

∑
|ξ |=k

∂ξFξ

⎞
⎠
∥∥∥∥∥

Ep

� ‖u‖L2((1/4,4)×B(0,2)).

This lemma holds also for p < 2 satisfying |p − 2| < ε, but since the knowledge of v ∈ Ep

does not seem to be any helpful if p < 2, we omit this case here.

Proof. Fix 2 < p < n + 2. By Corollary 8.10 we find that for 1
p′ ∗ = 1

p′ − 1
n+2

(Lp′ ∗
)′ + Lp(R;W−m,p(Rm)) ↪→ (Ep′)′.

Clearly, the dual exponent q to p′ ∗ satisfying 1 = 1
q

+ 1
p′ ∗ , is q = p∗, where 1

p∗ = 1
p

+ 1
n+2 .

Let us list what do we know about the integrability of the involved functions.

(i) f ∈ Lp(Rn+1) for 1 ≤ p ≤ 2 with

‖f ‖Lp(Rn+1) �p ‖u‖L2((1/4,4)×B(0,2)).

This is Hölder’s inequality combined with the energy estimates from Proposition 3.1.
(ii) v ∈ Lq(Rn+1) for 1 ≤ q ≤ 2 + 4m

n
with

‖v‖Lq(Rn+1) �q ‖u‖L2((1/4,4)×B(0,2)).

This is possible thanks to the reversed Hölder estimates from Corollary 3.5 and a covering 
argument.

(iii) For each |α| = m, the function Fα can be rewritten as

Fα =
∑

|β|=m

aα,β

∑
γ<β

c̃β,γ ∂γ (u∂β−γ χ)

and for any γ appearing in the sum, |γ | = k < m, we apply Corollary 8.10 in order to get
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‖∂γ (u∂β−γ χ)‖L2k (Rn+1) � ‖u∂β−γ χ‖
m−k
m

L2∗
(Rn+1)

‖∇m(u∂β−γ χ)‖
k
m

L2(Rn+1)

� ‖u‖L2((1/4,4)×B(0,2)),

where 1
2k

= 1
2 − m−k

m
1

n+2 ≤ 1
2 − 1

m
1

n+2 < 1
2 . Last estimate uses 2∗ = 2 + 4

n
< 2 + 4m

n
to 

bound ‖u∂β−γ χ‖L2∗
(Rn+1) by Proposition 3.5.

(iv) Let φ ∈ Ep′ . As q = p′ < 2, by Corollary 8.10, for integer 0 ≤ k ≤ m and corresponding 
exponents qk it holds ‖∇kφ‖Lqk (Rn) � ‖φ‖Ep′ . Note that p′ < qm−1 < · · · < q1 < p′ ∗ and 

so for integer 0 ≤ k ≤ m − 1 we have by Hölder’s inequality ∇kφ ∈ L
qm−1
loc (Rn+1) with the 

bound

‖∇kφ‖Lqm−1 ([c,d]×B(0,R)) � ‖∇kφ‖Lqk ([c,d]×B(0,R))

with constants depending on the size of the cylinder, as well, as p′, m and k.

Keeping those considerations in mind, we will now conclude

2v + f + divmF ∈ Lp∗(Rn+1) + Lp(R;W−m,p(Rm)).

First, introduce the restriction 2 < p ≤ 2∗, which implies 1
p∗ ≥ 1

2∗ + 1
n+2 = 1

2 , that is p∗ ≤ 2. 

Then 2v + f ∈ Lp∗(Rn+1) by (i) and (ii). Further, let us add the assumption 2 < p ≤ 2m−1, that 
is 1

p
≥ 1

2 − 1
m

1
n+2 . By (iii), (iv) and the fact that χ is compactly supported, we have for any 

γ < β , |β| = m

‖∂γ (u∂β−γ χ)‖
L2m−1 (Rn+1)

� ‖u‖L2((1/4,4)×B(0,2)).

Thus, for each |α| = m, the compactly supported distribution Fα satisfies Fα ∈ L2m−1(Rn+1). 
For p ≤ 2m−1 we then have Fα ∈ Lp(Rn+1), and so divmF ∈ Lp(R; W−m,p(Rm)) with

‖divmF‖Lp(R;W−m,p(Rm)) � ‖u‖L2((1/4,4)×B(0,2)).

Finally, under the assumptions we posed on p, it holds (p′)m−1 ≥ 2. For any multi-index 
|ξ | ≤ m − 1 and ψ ∈ Ep′ ∩ D(Rn+1) we then have

|〈∂ξFξ ,ψ〉D ′(Rn+1),D ′(Rn+1)| � ‖Fξ‖L2(Rn+1)‖∇|ξ |ψ‖L2(suppχ)

(iv)

� ‖Fξ‖L2(Rn+1)‖ψ‖Ep′ ,

as χ is compactly supported. This shows Fξ ∈ (Ep′)′ and

‖Fξ‖(Ep′ )′ � ‖u‖L2((1/4,4)×B(0,2)).

This finishes the first part of the claim. Above reasoning shows also

∥∥∥∥2v + f + divmF +
m−1∑ ∑

∂ξFξ

∥∥∥∥
(E2)

′
� ‖u‖L2((1/4,4)×B(0,2)).
k=1 |ξ |=k
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Recalling that v ∈ E2 solves (8.8) weakly, we have v = L −1|(E2)′ . By Proposition 8.12 we thus 
have

v = L −1|(Ep′ )′

⎛
⎝2v + f + divmF +

m−1∑
k=1

∑
|ξ |=k

∂ξFξ

⎞
⎠ ∈ Ep ∩ E2.

The norm bound follows the derived estimates. �
From here, arguing as in the proof of [3, Theorem 8.1], Proposition 8.12, a fractional Poincaré 

inequality [3, Lemma 6.4] and the well-known embedding of Campanato spaces into the space 
of Hölder continuous functions lead to (8.6).

Note that we have only been using the local energy estimates on u from Proposition 3.1 and 
their consequences, so the proof applies to any global weak solution u. We have obtained

Theorem 8.14. Let u ∈ L2
loc(0, ∞; Hm

loc(R
n)) be a global weak solution of (1.1) and let

2 < p < min

{
2 + ε,2 + 4

m(n + 2) − 2

}

for ε > 0 from Proposition 8.12. Then it holds u ∈ L∞
loc(0, ∞; Lp

loc(R
n)) ∩C α

loc(0, ∞; Lp
loc(R

n))

with α = 1/p − 1/2. We have the estimates

sup
s∈(t/2,2t)

⎛
⎜⎝  

B(x, 2m
√

t)

|u(s, y)|pdy

⎞
⎟⎠

1/p

�

⎛
⎜⎝  

(t/4,4t)

 

B(x,2 2m
√

t)

|u(s, y)|2dy

⎞
⎟⎠

1/2

and

sup
s,s′∈(t/2,2t)

tα

⎛
⎜⎝  

B(x, 2m
√

t)

|u(s′, y) − u(s, y)|p
|s′ − s|αp

⎞
⎟⎠

1/p

�

⎛
⎜⎝  

(t/4,4t)

 

B(x,2 2m
√

t)

|u(s, y)|2dy

⎞
⎟⎠

1/2

for all (t, x) ∈ Rn+1+ . Moreover, we have the p-integrability of the derivatives, in particular, it 
holds ∇mu ∈ L

p
loc(R

n+1+ ) with

⎛
⎜⎝  

(t/2,2t)

 

B(x, 2m
√

t)

|√s∇mu(s, y)|pdy

⎞
⎟⎠

1/p

�

⎛
⎜⎝  

(t/4,4t)

 

B(x,2 2m
√

t)

|u(s, y)|2dy

⎞
⎟⎠

1/2

.

All constants depend only on the ellipticity and the dimensions.
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9. Appendix

9.1. Integral operators M̃L and RL

Let L be an autonomous elliptic operator as in Section 2.6. Following [7, Proposition 2.5], we 
see that the maximal integral operator

M̃Lf (t, ·) =
tˆ

0

∇me−(t−s)Ldivmf (s, ·)ds,

initially defined as a mapping from L1(0, ∞; (H 2m(Rn))M) to L∞
loc(L

2), extends to a bounded 
functional on L2(L2). This is a non-trivial result, which uses the consequences of the Kato square 
root conjecture (2.15) and a regularity result by de Simon [21]. We remind that L2(L2) = T

2,2
m

and derive an extension of M̃L to some of the tent spaces T p,2
m if p �= 2. This is used in Sec-

tion 8.1. We closely follow [7, Proposition 2.8].

Proposition 9.1. Let q = q+(L∗)′ ∈ [1, 2) be as introduced in 2.6, that is

sup
t>0

‖√t∇me−tL∗‖L (Ls) < ∞ for all 2 ≤ s < q ′.

Then M̃L extends to a bounded operator on T p,2
m for all p ∈ (pc, ∞], where

pc = max

{
nq

n + mq
; 2n

n + mq ′

}
≤ max

{
1; 2n

n + 2m

}
.

We believe that the exponent pc in Proposition 9.1 is not optimal and through the analogy to 
the second order case can possibly by taken as the Sobolev exponent pc = nq

n+mq
, if one disposes 

of an improved version of [6, Theorem 3.1].

Proof. We rely on the work [6] about the boundedness of integral operators on tent spaces, which 
already contains the case of higher order operators. As in [7], we want to apply [6, Theorem 3.1]
with β = 0 for p ≤ 2 and [6, Proposition 4.2] for p ≥ 2. For this we need to show the Lr − L2

decay of the operator-valued integral kernel

∇me−(t−s)Ldivm

of M̃L, which means an off-diagonal Lr − L2 bound with the decay of order

(t − s)−1− n
2m

( 1
r
− 1

2 )(1 + d(E,F )2m

t − s
)−M,

for some M > 0. We first remark that the second factor decays much slower than the exponential 
function appearing in the off-diagonal estimates and we have

t∇me−tLdivm = √
t∇me− 1

2 tL(
√

t∇me− 1
2 tL∗

)∗,
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where each factor has L2 off-diagonal bounds by Section 2.6. This argument provides the neces-
sary conditions for [6, Proposition 4.2]. For p ≤ 2 the desired decay follows then by interpolation 
once we have shown for all q̃ ∈ (q, 2].

sup
t>0

‖t1+ n
2m

( 1
q̃
− 1

2 )∇me−tLdivm‖L (Lq̃ ,L2) < ∞.

Let us write t1+ n
2m

( 1
q̃
− 1

2 )∇me−tLdivm = AtBtCt with At = √
t∇me− 1

3 tL uniformly bounded 

on L2(Rn) as just mentioned, Bt = t
n

2m
( 1

q̃
− 1

2 )
e− 1

3 tL and Ct = √
te− 1

3 tLdivm. Recall from Sec-
tion 2.6 the relations between the exponents q±(L) and p±(L) associated to the semigroup. From 
this we deduce the Lq̃ −L2 boundedness of Bt . Indeed, we know p+(L∗) ≥ nq ′

n−mq ′ if q ′ < n
m

and 

is infinite otherwise. This implies p−(L) ≤ nq
n+mq

< 2n
n+mq ′ if q ′ < n

m
and p−(L) = 1 otherwise, 

in both cases p−(L) ≤ q < q̃ , which suffices to conclude the boundedness. Finally q̃ > q and the 
assumption give the boundedness of Ct on Lq̃ . Putting all this together we obtain the claim. �
Remark 9.2. A sufficient condition for the assumption of Proposition 9.1 to hold with q ′ = ∞ is 
that the semigroup (e−tL∗

)t>0 has a kernel (bt )t>0 satisfying

‖∇mbt‖L∞(Rn) ≤ ct−
1
2

for some constant c > 0. This follows directly from the Young’s inequality

‖g ∗ h‖Lp � ‖g‖Lp‖h‖L1

for g ∈ Lp(Rn) and h ∈ L1(Rn).

Example 9.3. The condition from Remark 9.2 is satisfied for L = (−1)m�m for any dimension 
n and order m ≥ 1. Indeed, the case m = 1 is trivial, since we consider the standard Gaussian 
kernel. The higher order is handled by estimating oscillatory integrals. See [30, Lemma 2.4]
for the proof in case m = 2 and adjust the powers to get the full result. Alternatively see the 
references in Section 8.1.1 (i).

For f = (fβ)|β|=m such that fβ ∈ L1(0, ∞; Hm(Rn)) let us also consider

RLf (t, ·) :=
∑

|β|=m

tˆ

0

e−(t−s)L∂βfβ(s, ·)ds.

It is immediate that RL defines a continuous map into L∞
loc(L

2). At least formally we see

∇mRL = M̃L.

This equality can be made rigorous in T p,2
m for p > pc.

Proposition 9.4. For any p ∈ (0, ∞] the operator RL extends to a bounded linear map from 
T

p,2
m to Xp

m and it holds M̃L = ∇mRL on T p,2
m if pc < p < ∞.
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Proof. The proof is a one-to-one copy of the one of [7, Propositions 2.12 and 2.13], relying on 
the L2 off-diagonal estimates from Section 2.6 and the Schur’s Lemma. We omit the details. �
9.2. Comparability of ‖∇mu‖

T
p,2
m

and ‖u‖X
p
m

- proofs

We provide here the proof of the statements in Section 6.3.

Proof of Proposition 6.7.

Claim. The statement is true for L0 = (−1)m�m.

Proof of the claim. Instead of attempting a direct calculation, we remind that the kernel of the 
heat semigroup (e−tL0)t≥0 satisfies kernel bounds (direct calculation, see Section 8.1.1 (i) with 
help of the Fourier transform) and so p+(L0) = ∞. We note that by a change of variables the 
condition ‖∇muf ‖

T
p,2
m

< ∞ for p ∈ (0, ∞) is exactly

Sh,L0,0f (x) :=
⎛
⎜⎝

∞̂

0

ˆ

B(x,t)

|(t∇)me−t2mL0f (y)|2 dydt

tn+1

⎞
⎟⎠

1/2

∈ Lp(Rn).

The claim follows then for any p ∈ (0, ∞) by the equivalent characterizations of Hardy spaces 
associated to autonomous homogeneous operators from [16], precisely Theorems 1.8, 1.4 and 
Corollary 3.11 with k = 1. For this we only need to show that the Lp(Rn) norm of the non-
tangential function Nh,L0f used in [16] dominates the one we used in the definition of Xp

m for 
any f ∈ L2(Rn). For f ∈ L2 and v = e−t (−1)m�m

f it is defined for every x ∈ Rn

Nh,L0f (x) =
⎛
⎜⎝sup

s>0

 

B(x,s)

|v(s2m,y)|2dy

⎞
⎟⎠

1/2

.

For β > 0 let us also introduce the non-tangential maximal function with changed angle

N β
h,L0

f (x) =
⎛
⎜⎝sup

s>0

 

B(x,βs)

|v(s2m,y)|2dy

⎞
⎟⎠

1/2

.

By Vitali’s Covering Lemma we obtain

‖N β
h,L0

f ‖Lp(Rn) ≤ Cn,β‖Nh,L0f ‖Lp(Rn),

for β ≥ 1, any f ∈ L2(Rn) and p ∈ (0, ∞) (we provide details of this argument in the proof of 
Lemma 6.6). If we replace s in those definitions by 2m

√
t , we easily estimate



W. Zatoń / J. Differential Equations 269 (2020) 11086–11164 11153
Nmv(x) = sup
δ>0

⎛
⎜⎝

δ 

δ/2

 

B(x,
2m√

δ)

|v(t, y)|2dydt

⎞
⎟⎠

1/2

≤ βnN β
h,L0

f (x)

for all x ∈ Rn with β = 2m
√

2. Thus, ‖v‖X
p
m

� ‖∇mv‖
T

p,2
m

holds as desired. �
We turn towards the non-autonomous case. The representation formula from Corollary 5.7

gives

uf (t, ·) = e−tL0f (·) +
tˆ

0

e−(t−s)L0divm(A(s, ·) − A)∇mus(t, ·) ds

with A being a matrix generating L0. Using that the integral operator RL0 is T p,2
m → X

p
m

bounded by Proposition 9.4 for any p ∈ (0, ∞], we estimate

‖uf ‖X
p
m

� ‖v‖X
p
m

+ ‖RL0‖L (T
p,2
m ,X

p
m)

‖A − A‖
L∞(Rn+1+ )

‖∇muf ‖
T

p,2
m

� ‖∇mv‖
T

p,2
m

+ ‖∇muf ‖
T

p,2
m

with constants depending on ellipticity and dimensions. On the other hand, observe that the 
representation formula also gives us the bound

‖∇mv‖
T

p,2
m

� ‖∇muf ‖
T

p,2
m

+ ‖M̃L0‖L (T
p,2
m )

‖A − A‖L∞‖∇muf ‖
T

p,2
m

.

Thus, by boundedness of M̃L0 on T
p,2
m when p ∈ ( n

n+m
, ∞), we conclude ‖u‖X

p
m

�
‖∇mu‖

T
p,2
m

. �
Proof of Proposition 6.8. Let p ∈ [1, 2) and suppose that the operator L satisfies the strong 
ellipticity bounds (2.3). Further, let u ∈ X

p
m be a global weak solution to (1.1). We will show that 

∇mu ∈ T
p,2
m and

‖∇mu‖
T

p,2
m

� ‖u‖X
p
m
.

We follow the main idea of [16, Proposition 3.9] with appropriate adjustments, which are basi-
cally the same as those met in case m = 1 by the authors of [7]. Thus, we work with a different 
non-tangential function as in [16], construct special cut-off functions and rely on the a priori 
energy bounds from Proposition 3.1. Let β > 0 be a parameter to be determined later and

Nm,βu(x) := sup
δ>0

⎛
⎜⎝

β2mδ2m 

δ2m

 

B(x,βδ)

|u(t, y)|2dydt

⎞
⎟⎠

1/2

.

By a covering argument we see that ‖Nmu‖Lp ∼β ‖Nm,βu‖Lp (see the proof of Lemma 6.6). 
Let σ > 0. We will denote
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E := {x ∈Rn | Nm,β ≤ σ
}

and introduce

E∗ :=
{
x ∈ E | |B(x, r) ∩ E| ≥ 1

2
|B(x, r)| for all r > 0

}
.

Set also B := Rn \ E and B∗ := Rn \ E∗. For 0 < ε < R < ∞ we consider the truncated cones

	ε,R,α(x) := {(t, y) ∈Rn+1+ | t ∈ (ε,R) and |y − x| < αt}

and define the saw-tooth region based at E∗ by setting Rε,R,α(E∗) = ∪x∈E∗	ε,R,α(x). Note that 
this set is unbounded. By a change of variables we know that

ˆ

E∗

∞̂

0

 

B(x,
2m√t

2 )

|∇mu(t, y)|2dydtdx ∼
ˆ

E∗

∞̂

0

 

B(x, s
2 )

|sm∇mu(s2m,y)|2 dyds

s
dx.

To estimate the second integral we note that by Fubini’s Theorem and 
´
E∗∩B(y,r)

1/rndx �n 1
we have

ˆ

E∗

R̂

2ε

 

B(x, s
2 )

|sm∇mu(s2m,y)|2 dyds

s
dx �

ˆ

R2ε,R,1/2(E∗)

|sm∇mu(s2m,y)|2 dyds

s

for every ε > 0 and R > 0. We will estimate the last expression and let ε → 0 and R → ∞
eventually. The strategy is as follows. With help of a cut-off function supported in a slightly 
bigger saw-tooth region, Rε,2R,1(E∗), we will replace the domain of integration by the entire 
space Rn+1+ . In the next step (and this is the only point where we use the stronger assumption) 
we will use the strong ellipticity condition (2.3) and the fact that u is a global weak solution 
to be able to integrate by parts. We will be left with terms containing the time derivative of 
compactly supported functions, which will either force the corresponding integral to vanish or 
will give us sufficient decay in time to control the remaining term. The other integrals we will 
need to deal with will contain derivatives of u of different orders integrated over the difference 
set Rε,2R,1(E∗) \ R2ε,R,1/2(E∗). We handle those terms using the local energy estimates from 
Proposition 3.1.

Consider the function χ : Rn+1+ → [0, 1] given by

χ(t, y) =
(

1 − η

(
8dt (y,E∗)

t

))
η

(
7

2

t

ε

)(
1 − η

(
7

2

t

R

))
,

where η ∈ C ∞(R, [0, 1]) satisfies η ≡ 0 on [0, 5] and η ≡ 1 on [7, ∞). Also, we denoted by 
dt (y, E∗) = νt/8 ∗d(·, E∗)(y) a smooth modification of the Euclidean distance function d(y, E∗)
with some standard mollifier νε(·) = ν(·/ε). We defined χ such that
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(i) suppχ ∈ Rε,2R,1(E∗) and 0 ≤ χ ≤ 1,
(ii) χ ≡ 1 on R2ε,R,1/2(E∗),

(iii) χ ∈ C ∞(Rn+1+ ) with

|∂tχ(t, y)| � 1

t
and |∇kχ(t, y)| � 1

tk
for all k = 0, . . . ,m.

Property (iii) follows from simple calculations and the properties of the support of χ and η. We 
only point out that for every (t, y) ∈ Rε,2R,1(E∗) there is x ∈ E∗ with |x − y| < t and so

|∇dt (y,E∗)| �ν

t + t/8

t/8
� 1.

Similarly for any multi-index α ∈ Nn, |∂αdt (y, E∗)| � t1−|α|. By the Dominated Convergence 
Theorem we also calculate

∣∣∣∣ d

dt
dt (y,E∗)

∣∣∣∣=
∣∣∣∣n1

t
dt (y,E∗) + 8

t2

8n

tn

ˆ
∇ν

(
8x

t

)
· y d(y − x,E∗)dy

∣∣∣∣
�n 1.

Claim. For 0 < ε � R it holds (t, y) �→ u(t2m, y)χ2(t, y) ∈ L2(ε, 2R; Hm(Rn)).

Let us first observe the following. We constructed χ such that it separates R2ε,R,1/2(E∗) from 
Rn \Rε,2R,1(E∗), but changing the scalar factors in the definition we obtain the same claim for 
χ̃ separating Rε,2R,1(E∗) and Rn \Rε/2,4R,2(E∗). Thus ∇mu(t2m, x) ∈ L2(Rε,2R,1(E∗)).

By density, u(t2m, y)χ2(t, y) can be then used as a test function. Clearly,

I =
ˆ

R2ε,R,1/2(E∗)

|sm∇mu(s2m,y)|2 dyds

s
≤

ˆ

Rn+1+

|χ(s, y)sm∇mu(s2m,y)|2 dyds

s
,

hence by the strong ellipticity assumption (2.3)

I � 1

λ
Re

ˆ

Rn+1+

s2mχ2(s, y)A(s2m,y)∇mu(s2m,y) · ∇mu(s2m,y)
dyds

s
.

We now use the product rule and then the equation to obtain

I �λ,m Re
ˆ

Rn+1+

A(t, y)∇mu(t, y) · ∇m(χ2(
2m
√

t, y)u(t, y))dydt

− Re
∑

|α|=|β|=m

∑
γ<α

cγ,α

ˆ

Rn+1

aα,β(t, y)∂βu(t, y) ∂α−γ (χ2(
2m
√

t, y)) ∂γ u(t, y)dydt
+
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��,m,n A + B +
m−1∑
k=0

Ck,

where

A =
∣∣∣∣
ˆ

R+

〈
∂t (χ(t, y)u(t2m,y)),χ(t, y)u(t2m,y)

〉
H−m(Rn),Hm(Rn)

dt

∣∣∣∣,

B =
∣∣∣∣
ˆ

Rn+1+

∂t (χ(t, y))u(t2m,y)χ(t, y)u(t2m,y)dydt

∣∣∣∣,

Ck =
∑

|α|=|β|=m

∑
γ<α,|γ |=k

ˆ

Rn+1+

t2m|∂βu(t2m,y)||∂α−γ (χ2(t, y))||∂γ u(t2m,y)|dydt

t
.

Since χ is compactly supported in time, we obtain

A ∼
∞̂

0

∂t‖χ(t, ·)u(t2m, ·)‖2
L2

= 0.

By properties (i)-(iii) of χ , B is bounded by

B �
ˆ

Rε,2R,1(E∗)\R2ε,R,1/2(E∗)

|u(t2m,y)|2 dydt

t
.

Thus, we need to carefully estimate the integrals close to the boundary of the truncated cones. 
We have

Rε,2R,1(E∗) \ R2ε,R,1/2(E∗) ⊆ B̃ε,R(E∗) = B̃ε(E∗) ∪ B̃R(E∗) ∪ B̃′(E∗),

where we denote B̃ω(E∗) := {(t, y) ∈ [0, ∞) ×Rn | t ∈ (ω, 2ω) and d(y, E∗) < t} for ω > 0, and 
B̃′(E∗) := {(t, y) ∈ [0, ∞) × Rn | t ∈ (ε, 2R) and t/2 ≤ d(y, E∗) < t}. Note also that Hölder’s 
inequality gives

C0 �

⎛
⎜⎝ ˆ

B̃ε,R(E∗)

|tm∇mu(t2m,y)|2 dydt

t

⎞
⎟⎠

1/2⎛
⎜⎝ ˆ

B̃ε,R(E∗)

|u(t2m,y)|2 dydt

t

⎞
⎟⎠

1/2

,

as well as, for k = 1, . . . , m − 1,

Ck �

⎛
⎜⎝ ˆ

˜ε,R ∗

|tm∇mu(t2m,y)|2 dydt

t

⎞
⎟⎠

1/2⎛
⎜⎝ ˆ

˜ε,R ∗

|tk∇ku(t2m,y)|2 dydt

t

⎞
⎟⎠

1/2

.

B (E ) B (E )



W. Zatoń / J. Differential Equations 269 (2020) 11086–11164 11157
Because of their similar structures, we estimate B and Ck simultaneously using local energy 
estimates. First, for any (t, y) ∈ B̃ω(E∗) there is an x ∈ E∗ with |x − y| < t and, by definition, 
|E ∩ B(y, 2t)| ≥ |E ∩ B(x, t)| ≥ 1

2 |B(x, t)| = 1
2ωnt

n. By Fubini’s Theorem and for ω = ε or 
ω = R we estimate

ˆ

B̃ω(E∗)

|u(t2m,y)|2 dydt

t
�

ˆ

B̃ω(E∗)

⎛
⎜⎝ ˆ

E∩B(y,2t)

t−ndx

⎞
⎟⎠ |u(t2m,y)|2 dydt

t

�
2ωˆ

ω

ˆ

E

 

B(x,2t)

|u(t2m,y)|2 dydxdt

t

�
ˆ

E

4ωˆ

ω

 

B(x,4ω)

|u(t2m,y)|2 dydt

t
dx

�
ˆ

E

42mω2mˆ

ω2m

 

B(x,4ω)

|u(s, y)|2 dyds

s
dx

�
ˆ

E

sup
ω>0

42mω2m 

ω2m

 

B(x,4ω)

|u(s, y)|2dydsdx =
ˆ

E

|Nm,4(x)|2dx.

Similarly, applying the local energy estimates from Proposition 3.1 we obtain

ˆ

B̃ω(E∗)

|tk∇ku(t2m,y)|2 dydt

t
�
ˆ

E

22mω2mˆ

ω2m

 

B(x,4ω)

|s k
2m ∇ku(s, y)|2 dyds

s
dx

�
ˆ

E

ω2k

ω4m
ω2m−2k

22mω2mˆ

ω2m/2

 

B(x,8ω)

|u(s, y)|2dydsdx

�
ˆ

E

sup
ω>0

82mω2m 

ω2m/2

 

B(x,8ω)

|u(s, y)|2dydsdx

�
ˆ

E

|Nm,8(x)|2dx,

for any k = 1, . . . , m. In the last step we used again a covering argument. To estimate the inte-
grands on B̃′(E∗), let us consider the Whitney decomposition {B(xk, rk)}k of B∗. This covering 
has the properties
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(i) B∗ = ∪kB(xk, rk);
(ii) There are constants c1, c2 ∈ (0, 1) such that, for all k,

c1d(xk,E
∗) ≤ rk ≤ c2d(xk,E

∗).

(iii) There is a constant c3 > 0 such that, for all x ∈ B∗, 
∑

k 1B(xk,rk)(x) ≤ c3.

We then estimate, performing a change of variables

ˆ

B̃′(E∗)

|u(t2m,y)|2 dydt

t
�
∑

k

2rk(
1
c1

+1)ˆ

rk(
1
c2

−1)

ˆ

B(xk,rk)

|u(t2m,y)|2 dydt

t

�
∑

k

rn
k

22mr2m
k ( 1

c1
+1)2m 

r2m
k ( 1

c2
−1)2m

 

B(xk,
c2

1−c2
2m
√

s)

|u(s, y)|2dyds.

Since E∗ ⊆ E, we have d(xk, E) ≤ d(xk, E∗) ≤ rk
c1

≤ c2
c1(1−c2)

2m
√

s, for any s ≥ r2m
k ( 1

c2
− 1)2m. 

Thus there is an x′
k ∈ E with B(xk, 

c2
(1−c2)

2m
√

s) ⊆ B(x′
k, 

c2
(1−c2)

( 1
c1

+ 1) 2m
√

s) and we can deduce

ˆ

B̃′(E∗)

|u(t2m,y)|2 dydt

t
�
∑

k

rn
k

22mr2m
k ( 1

c1
+1)2m 

r2m
k ( 1

c2
−1)2m

 

B(x′
k,

c2
(1−c2)

( 1
c1

+1) 2m
√

s)

|u(s, y)|2dyds

�
∑

k

rn
k sup

x∈E

|Nm,βu(x)|2 � |B∗| sup
x∈E

|Nm,βu(x)|2

for some β ≥ 8 big enough, depending on m, c1 and c2 only. To estimate

ˆ

B̃′(E∗)

|tk∇ku(t2m,y)|2 dydt

t

we only need to apply Proposition 3.1 and due to the proper scaling we arrive at the same bound. 
Thus, there is a β > 0, depending on σ and in particular independent of ε > 0 and R > 0, so that

ˆ

R2ε,R,1/2(E∗)

|sm∇mu(s2m,y)|2 dyds

s
�
ˆ

E

|Nm,βu(x)|2dx + |B∗| sup
y∈E

|Nm,βu(y)|2.

We now complete the proof, following [7, Theorem 7.3]. Taking limits ε → 0 and R → ∞
we get
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ˆ

E∗

∞̂

0

 

B(x,
2m√t

2 )

|∇mu(t, y)|2dydtdx �
ˆ

E

|Nm,βu(x)|2dx + |B∗|σ 2.

Denoting gN(σ ) = ∣∣{x ∈ Rn |Nm,βu(x) > σ }∣∣ and

gS(σ ) =
∣∣∣∣∣
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x ∈ Rn

∣∣∣∣
⎛
⎜⎜⎜⎝

∞̂

0

 

B(x,
2m√s

2 )

|∇mu(t, y)|2dydt

⎞
⎟⎟⎟⎠

1/2

> σ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
∣∣∣∣∣

we have |B∗| � |B| = gN(σ ) and 
´
E

|Nm,βu(x)|2dx ≤ 2 ́ σ

0 tgN(t)dt . Putting this together,

gS(σ ) � |B∗| + 1

σ 2

ˆ

E∗

∞̂

0

 

B(x,
2m√t

2 )

|∇mu(t, y)|2dydtdx

� |B∗| + 1

σ 2

ˆ

E

|Nm,βu(x)|2dx � gN(σ ) + 1

σ 2

σ̂

0

tgN(t)dt.

Note that we have not used p < 2 yet. Let us conclude

∞̂

0

σp−1gS(σ )dσ �
∞̂

0

σp−1gN(σ )dσ +
∞̂

0

σp−3

σ̂

0

tgN(t)dtdσ

�
∞̂

0

σp−1gN(σ )dσ.

This gives ‖∇mu‖
T

p,2
m

� ‖Nm,βu‖Lp � ‖u‖X
p
m

. We are left with proving the claim from above.

Claim. For 0 < ε � R it holds (t, y) �→ u(t2m, y)χ2(t, y) ∈ L2(ε, 2R; Hm(Rn)).

Proof of the claim. First, partition [ε, 2R] into finitely many intervals [δ2m, β2mδ2m]. Then, 
Fubini’s Theorem and a priori energy estimates are applied as in the estimate of

ˆ

B̃ω(E∗)

|tk∇ku(t2m,y)|2 dydt

t
,

k = 0, . . . , m, to see (t, y) �→ u(t2m, y)χ2(t, y) ∈ L2(δ2m, β2mδ2m; Hm(Rn)). For the L2(L2)

norm, as p < 2, the obtained bound reads
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ˆ

E

|Nm,βu(x)|2dx =
ˆ

E

|Nm,βu(x)|p|Nm,βu(x)|2−pdx

≤ σ 2−p

ˆ

E

|Nm,βu(x)|pdx < ∞. �

Proof of Proposition 6.9. Suppose 2 ≤ p ≤ ∞ and u ∈ X
p
m is a global weak solution to (1.1)

with ‖u‖X
p
m

< ∞. By Remark 2.5, it holds ‖f ‖
T

p,2
m

�p ‖C(|f |)‖Lp , so it suffices to show

C(|∇mu|)(y) = sup
B�y

⎛
⎜⎝

r2mˆ

0

 

B

|∇mu(t, x)|2dtdx

⎞
⎟⎠

1/2

�
(
MHL(Nmu)2

)1/2
(y) (9.1)

for y ∈Rn. To achieve this, we show for any ball B(x0, R)

R2mˆ

0

ˆ

B(x0,R)

|∇mu(t, x)|2dxdt �
ˆ

B(x0,6R)

|Nm(u)(x)|2dx.

This estimate also proves the Proposition in case p = 2. Let us first underline the fact that u is 
assumed to be a global weak solution, whence it satisfies u ∈ L2

loc(0, ∞; Hm
loc(R

n)).
Let x0 ∈ Rn, ε > 0 and R > 0. We choose χ to be a smooth cut-off function in time with 

χ ≡ 1 on [2ε, R2m], supported in [ε, (2R)2m] and satisfying

|∂tχ(t)| � 1

ε
if t ∈ [ε,2ε]

and

|∂tχ(t)| � 1

R2m
if t ∈ [R2m, (2R)2m].

Let also φ ∈ C ∞
c (Rn) be such that φ ≡ 1 on B(x0, R) and φ ≡ 0 on Rn \ B(x0, 2R). We require 

‖∂αφ‖L∞ � R−|α| for all |α| ≤ m. Then ψ := u(χφ)2m ∈ L2(ε, (2R)2m; Hm
0 (B(x0, 2R)) is an 

admissible test function and an application of Lemma 2.4 leads to

0 =2Re

(2R)2mˆ

ε

ˆ

B(x0,2R)

∂t (χ
2m)φ4mχ2m|u|2dxdt

− 2Re

(2R)2mˆ

ε

ˆ

B(x0,2R)

A∇mu∇m(uχ4mφ4m)dxdt.
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Here, we used ∂tψ = (χφ)2m∂tu +φ2mu∂tχ
2m in L2(0, ∞; H−m(B(x0, 2R))). Let us denote 

the first summand from above by J . The same calculation as done for (3.1) in Proposition 3.1
(notice that φ has proper decay) leads to

I :=
∞̂

0

χ4m

ˆ

Rn

|∇m(uφ2m)|2dxdt

�λ,�,m,n |J | +
m−1∑
k=0

∞̂

0

χ4m

R2m−2k

ˆ

B(x0,2R)\B(x0,R)

|∇ku|2dxdt

=: |J | +
m−1∑
k=0

Ik,

where clearly Ik = ´∞
0 χ4m/R2m−2k

´
Rn |∇ku|2dxdt .

We first bound |J |. Up to constants depending on m, it holds by our assumptions on χ

|J | �
∣∣∣∣

∞̂

0

ˆ

Rn

∂tχ(t)1B(x0,2R)(x)|u(t, x)|2dxdt

∣∣∣∣

� 1

ε

2εˆ

ε

ˆ

Rn

|u(t, x)|21B(x0,2R)(x)dxdt + 1

R2m

(2R)2mˆ

R2m

ˆ

Rn

|u(t, x)|21B(x0,2R)(x)dxdt

=
ˆ

Rn

2ε 

ε

 

B(y,
2m√2ε)

|u(t, x)|21B(x0,2R)(x)dxdtdy

+
ˆ

Rn

(2R)m 

Rm

 

B(y,2R)

|u(t, x)|21B(x0,2R)(x)dxdtdy,

where the last equality follows by Fubini’s Theorem. We realize that, up to a constant,

|J | �
ˆ

Rn

|Nm((t, y) �→ u(t, y)1[0,(2R)2m](t)1B(x0,2R)(y))(x)|2dx.

If p = 2 this implies |J | � ‖u‖X2
m

. If p ∈ (2, ∞], we make use of the triangular inequality to 

state that B(x, 2m
√

δ) ∩ B(x0, 2R) �= ∅ for some δ < 2(2R)2m implies x ∈ B(x0, 6R), thus

||Nm((t, y) �→ u(t, y)1[0,(2R)2m](t)1B(x0,2R)(y))||2
L2(Rn)

�
ˆ

|Nm(u)(x)|2dx. (9.2)
B(x0,6R)
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We turn to our main estimate. Let us observe that we could have also chosen te support of 
φ to be contained in some B(x0, r) for r < 2R and require that φ = 1 on B(x0, r) for some 
r < r . This would change the factor R−(2m−2k) in Ik to (r − r)−(2m−2k). We thus have for all 
0 < r < r ≤ 2R the following inequality

∞̂

0

χ4m

ˆ

B(x0,r)

|∇mu|2dxdt �
m−1∑
k=0

1

(r − r)2m−2k

∞̂

0

χ4m

ˆ

B(x0,r)\B(x0,r)

|∇ku|2dxdt

+
ˆ

B(x0,6R)

|Nm(u)|2dx.

Regarding the second summand as a constant, we repeat the iteration procedure from Propo-
sition 3.1 (see the Claim therein) based on the technique by Barton (cf. [10]). As a result we end 
up with

∞̂

0

χ4m

ˆ

B(x0,R)

|∇mu|2dxdt � 1

R2m

∞̂

0

χ4m

ˆ

B(x0,2R)

|u|2dxdt +
ˆ

B(x0,6R)

|Nm(u)|2dx, (9.3)

where the constants depend only on ellipticity and dimensions. Thus, we are left with estimating 

Ĩ0 = 1
R2m

´ (2R)2m

ε

´
B(x0,2R)

|u|2dxdt . We choose K = Kε ∈N such that 2K−1ε < (2R)2m ≤ 2Kε

and average in space to obtain

Ĩ0 ≤ 1

R2m

K∑
k=1

2kεˆ

2k−1ε

ˆ

Rn

|u(t, x)1B(x0,2R)(x)|2dxdt

= 1

R2m

ˆ

Rn

K∑
k=1

2kεˆ

2k−1ε

 

B(y,
2m√

2kε)

|u(t, x)1B(x0,2R)(x)|2dxdtdy

� 1

R2m

ˆ

Rn

K∑
k=1

2kε

2kε 

2k−1ε

 

B(y,
2m√

2kε)

|u(t, x)1B(x0,2R)(x)|2dxdtdy

� 1

R2m

(
K∑

k=1

2kε

)ˆ
Rn

|Nm((t, y) �→ u(t, y)1[0,(2R)2m](t)1B(x0,2R)(y))(x)|2dx.

Using (9.2) and

K∑
k=1

2kε ≤ 2K+1ε < 4(2R)2m

we obtain from (9.3)
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R2mˆ

2ε

ˆ

B(x0,R)

|∇mu(t, x)|2dxdt �
ˆ

B(x0,6R)

|Nm(u)(x)|2dx (9.4)

with constants independent on ε > 0 and R > 0. We first let ε → 0. If p = 2 then R → ∞
finishes the proof. In other case, we divide both sides of (9.4) by Rn and obtain to obtain the 
claimed estimate (9.1), which finishes the proof by the boundedness of the Hardy–Littlewood 
maximal function. �
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