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Abstract

In this work we consider a two-components reaction-diffusion system of KPP type with heat losses posed
in a straight cylinder and equipped with fast decaying initial data. We derive a criteria condition — expressed
in term of the sign of a suitable elliptic eigenvalue — for extinction and for propagation of the solutions.
In the case of propagation we derive a spreading speed property and we obtain an asymptotic expansion
in the large times for the location of the front, that is strongly related with the minimal wave speed of the
travelling waves. We also obtain decay estimates for the solutions ahead the front.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Let Q be a given bounded and smooth domain of RY, for some given integer N > 1. In
this work we consider the following reaction-diffusion system, posed on the straight cylinder
Y =R x , for the unknown functions u and v:

E-mail address: arnaud.ducrot@univ-lehavre.fr.

https://doi.org/10.1016/j.jde.2020.07.044
0022-0396/© 2020 Elsevier Inc. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2020.07.044&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2020.07.044
http://www.elsevier.com/locate/jde
mailto:arnaud.ducrot@univ-lehavre.fr
https://doi.org/10.1016/j.jde.2020.07.044

218 A. Ducrot / J. Differential Equations 270 (2021) 217-247

?)_L; — DAu=—B(y)uv,
(1.1)

v Ap—
o v=B()uv — u(y)v.

This problem is posed for time ¢ > 0 and for (x, y) € 2. The operator A stands for the standard
Laplace operator on the cylinder ¥, namely A = ;X—zz + Ay, where Ay denotes the Laplace oper-

ator on the cross section Q of the cylinder. Herein f: Q — R and i : @ — R are two given
smooth functions while D > 0 is a given parameter.
This reaction-diffusion system is supplemented with the following boundary condition

ou av
— =0, —=—0o®)v, fort >0, (x,y) €dX =R x 9R2. (1.2)
av av
In the above boundary conditions, v denotes the outward unit normal vector to the boundary
0¥ =R x 902 and % denotes the normal derivative. And, o : 92 — R denotes a given smooth
function.
In this work we are concerned with the quenching and spreading behaviour of the solutions
of the above system of equations when it is supplemented by the following initial data:

u(0,x,y) =uo(x,y) =1, v(0,x,y) =volx,y), (1.3)

wherein vy : £ — R is a non-trivial smooth non-negative function with compact support.

The above problem arises in various applicative fields, such as in chemistry, the combustion
theory and in epidemiology.
To see this, consider an — isothermal — auto-catalytic chemical reaction arising in the cylinder ¥
of the form

A+B-2 08B

Herein A, B denote chemical reactants while k; corresponds to the reaction rate. Then, setting
u and v respectively the concentration of the chemical reactants A and B and assuming there is
no chemical flux through the boundary of the cylinder X, the spatio-temporal evolution of u and
v is given by System (1.1)-(1.2) with B(y) = k1, u(y) =0 and o (y) = 0 while D denotes the
normalized diffusion rate corresponding to the ratio between the molecular diffusion of A and B.
Moreover observe that the initial conditions, as described in (1.3), mean that the reactor is initially
uniformly filled with the substance A and a localized amount of the chemical B is added. We
refer to Billingham and Needham in [4] for the existence of one-dimensional travelling waves
for such a problem, but also for more general system modelling cubic auto-catalytic reactions
(see also the work of Chen and Qi in [8] for results on the case of general order reaction). This
problem on a cylinder with an additional shear flow has been considered by Hamel and Ryzhik
in [22] and, the authors derived the existence of multi-dimensional travelling wave solutions. We
also refer to Chen and Qi [7] who derived a spreading speed property for the one-dimensional
problem in the case where 0 < D < 1 and, they also provide a refined analysis of the location of
the reaction front.



A. Ducrot / J. Differential Equations 270 (2021) 217-247 219

One may also consider two-step chemical reactions of the form

A+B-S2Band B C, (1.4)

wherein A, B and C are chemical reactants while k; and k; correspond to the rate of the first
and the second reaction respectively. By setting u and v respectively the concentration of the
chemical reactants A and B and still assuming there is no chemical flux through the boundary of
the cylinder X, the evolution of # and v is given by System (1.1)-(1.2) with B(y) = k1, u(y) = k>
and o (y) = 0. Here again D denotes the normalized diffusion rate corresponding to the ratio of
the diffusion rates of A and B. Note also that in the case where the section of the cylinder €2 is
an heterogeneous medium, the rates of each reaction may depend on y € Q. This justifies why
we consider, in this work, that the functions 8 and 1 may possibly depend on y.

The above chemical reaction scheme, namely (1.4), also arises in population dynamics and
more particularly in epidemiology. In that setting, the substances A, B and C respectively corre-
spond to the densities of susceptible, infected and removed individuals and, the reaction rates k|
and k> stand for the contamination and removed rates respectively. We refer to the original works
of Kermack and McKendrick in [14-16] and to the monograph of Murray [27] for more details
about this kinetic reaction scheme in the framework of epidemiology. The diffusion coefficient
D denotes, in this context, the normalized diffusion rate of the populations, namely the ratio
between the diffusivity rates of susceptible and infected individuals. Note that it can be different
from 1 if the epidemic influences the spatial motion of the infected individuals. The existence
of one-dimensional travelling waves for such a problem has been studied by Hosono and Ilyas
in [25] (see also [13] for results on a similar system with age structure). Note also that if the
medium is heterogeneous, it is relevant to assume that the functions 8 and © may depend on y.
Let us mention that the existence of multi-dimensional travelling waves — on a straight cylinder
— for this model with heterogeneous functions  and u has been studied by Giletti in [18] for
arbitrary diffusion coefficient D > 0. We also refer to Ducrot and Giletti [12] for a study of the
one-dimensional problem with D = 0 in a periodic environment and to [6] for the study of the
spreading speed of a similar system with age structure. In this aforementioned work [12], the
existence of waves and the large time convergence to wave profiles have been studied. In addi-
tion, let us mention that in this population dynamics framework, the Robin boundary condition
(o (y) # 0) for the v-component may also be relevant. It can be interpreted as an infected removal
rate at the boundary due to control policies for individuals reaching the boundary of the domain.

Let us finally mention that System (1.1) with 8(y) = 1 and u(y) = 0 also describes the con-
centration of a chemical reactant A, u, and its temperature, v, of a one-step chemical reaction
A — Bj; when the term v, arising in the product uv, is replaced by the Arrhenius reaction.
Within this framework, system (1.1) corresponds to the usual thermo-diffusive reaction-diffusion
system modelling flame propagation and, the diffusion coefficient, D, denotes the inverse of
the so-called Lewis number, the ratio between the thermal and reactant diffusivity. We refer to
Matkowsky and Sivashinsky in [26]. Moreover in that context, the Robin type boundary condi-
tions for v describe the heat losses through the boundary of .

Problem (1.1)-(1.2), posed on a straight cylinder with g(y) =1, u(y) =0and o(y) =g >0
has also been widely considered in the literature. We refer to the work of Berestycki et al. in [3]
where the authors study this problem with an addition shear flow. They derive several properties
of the solutions including flame extinction, blow-off and propagation. While extinction and blow-
off properties has been studied for rather general initial data, their results for propagation are
concerned with initial temperature profile, namely vy, that do not have a too fast decay at infinity,
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and roughly speaking when this decay rate is similar to the one of a travelling wave associated
to a non-minimal (super-critical) wave speed. This does not cover the case where the function
vo is compactly supported, which is the topic of the present manuscript. In the aforementioned
work, the authors also prove the existence of multi-dimensional travelling wave solutions for this
problem in the case D = 1. This result has been generalized for an arbitrary diffusion coefficient
D > 0 by Hamel and Ryzhik in [21].

In this work, as mentioned above, we focus on the case where the initial temperature profile,
namely vg in (1.3), has a very fast decay at infinity. Here it is assumed to be compactly supported.
Roughly speaking we shall show that under some threshold condition to avoid flame extinction,
the solution exhibits a propagating behaviour into the cylinder and, we shall furthermore provide
refined information on the location of the reaction front, that is related to what we shall call the
minimal wave speed c* (see (1.6) below).

In order to describe the asymptotic behaviour of Problem (1.1)-(1.3) let us introduce, A € R,
the principal eigenvalue of the elliptic problem on the bounded section €2:

Ap(y) =Ayo(y) + (B(Y) — u(y) ¢(y) in 2,
Vo) - 7 (y) = —o(0e(y), y € 0%, (1.5)
9 €C(Q)NC?(Q) with >0 on Q.

Here N g (y) denotes the outward unit normal vector to 92 at y € 9€2. We also consider ¢ €
c? (Q), a principle eigenvector of the above spectral problem. Observe that A has the following
variational expression:

A= inf / vy Rdy + / () — BNy + / o (NY2S(y) .
Q Q

yeH (Q), [¥l2=1
Q2

wherein S(dy) denotes the volume surface element of 9£2.

The above defined number A will act as a threshold for the dynamical behaviour of (1.1)-(1.3).
In order to describe our main results, we shall assume, throughout this work, that both production
and heat losses are effective, in the following sense.

Assumption 1.1. We assume that the function f: Q — Ry, 1 :Q — R, and 0 : 9Q — R
satisfies

1Bl > 0and ||l Lo () + o]0y > 0.

Using the above assumption, our first result reads as the following uniform boundedness prop-
erty.

Proposition 1.2 (Uniform boundedness). Let Assumption 1.1 be satisfied. Then the solution pair,
(u, v), of (1.1)-(1.3) is uniformly bounded in time.

According to the author’s knowledge, when Assumption 1.1 fails to hold true, and in particular
when there is no heat loss (namely 1 =0 and o = 0), the boundedness for the solution mostly
remains an open problem. It has been proved by Chen and Qi in [7] in the one-dimensional case
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and when the diffusion parameter D satisfies 0 < D < 1. For a similar problem posed on the
whole space R¥, it has been proved by Herrero et al. [23] that the solutions are bounded in the
case where D < 1, while for general value of the diffusion rate D the best upper-bound for the
solutions has been obtained by Collet and Xin in [9] and, in that case, the v-component is —
uniformly in space — less that O (In(Int)) as t — oo.

As mentioned above, the parameter A, the principal eigenvalue of (1.5), will act as a threshold
for the asymptotic behaviour of the solution of (1.1)-(1.3). We now split our main results accord-
ing to the sign of A. Roughly speaking, the condition A < 0 will lead us to extinction while the
condition A > 0 will ensure the propagation of the local initial disturbance vy.

Our next result is concerned with the case where A < 0. In that case, spatial propagation does
not occur and the flame uniformly quenches as time becomes large. Our result reads as follows.

Theorem 1.3 (Extinction). Let Assumption 1.1 be satisfied. Assume that A < 0. Then, if (u, v)
denotes a solution of (1.1)-(1.3) then

tlim v(t, x, y) = 0 uniformly for (x, y) € .
—00

This result has been proved by Berestycki et al. in [3] when B(y) =1, u(y) =0 and
o(y) =g > 0 in the case where A < 0. Here we somehow extend this result by considering
heterogeneous functions 8, u and o but also the limit case A = 0. Here the result is stated for
some specific initial data as described in (1.3). However, the proof of this result, given below,
can easily be extended to the more general case where 0 <up < 1 and vy is a bounded function
on X.

We now assume that A > 0 and we define ¢* > 0 by

c* =2VA. (1.6)

This quantity ¢* will be hereafter refereed to as the minimal wave speed (of (1.1)-(1.2)). It cor-
responds to the minimal wave speed for travelling wave solutions for all the specific situations
mentioned above. Let us also mention that for all these problems, travelling wave solutions do
exist for all wave speed ¢ > ¢* and do not admit wave solution for ¢ < ¢*. Moreover, due to
the heat losses, the travelling wave profiles exhibit a particular shape. The u-component of the
waves — monotonically — connects the equilibrium # = 1 to an other (spatially homogeneous)
equilibrium u > 0 while the v-component of the waves has a pulse shape profile that connects
the equilibrium v = 0 to itself.

In this context, A > 0, our main result, stated below, proves that when the heat losses are
effective (see Assumption 1.1 above) the solution of Problem (1.1)-(1.3) spreads and propagates
the local initial disturbance throughout the spatial domain with the speed ¢* defined above and,
similarly to the Fisher-KPP equation, the front is located at the abscissa x(¢) = c*t — Ci* Int as
t — 0o. We refer to [5,10,19] and the references therein for results on the Fisher-KPP scalar
equation (see also [20] for similar results on the KPP equation in a periodic medium). We also
refer to the work of Chen and Qi in [7] where a similar result has been obtained for the one-
dimensional solution of Problem (1.1)-(1.2) without effective heat loss, namely with 8(y) =1,
u(y) =0and o (y) =0, and when the diffusion coefficient satisfies D € (0, 1].
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Now our spreading result reads as follows.

Theorem 1.4 (Spreading). Let Assumption 1.1 be satisfied. Assume furthermore that A > 0. Let
(u, v) denote the solution of Problem (1.1)-(1.3). Consider the function ¢ = ¢ (t) given by

3
¢(t)=c"t — —Int fort>0. 1.7
c
Then the following properties hold true.

(i) (Outer spreading for u) There exist constants M > 0, y > 0 and xo > 0 large enough such
that the function u satisfies

1= M7 =8O <4y (1, x, ) < 1,

forallt > 0 large enough, |x| > xo + {(t) and for any y € Q.
(ii) (Inner spreading for u) One also has

limsup sup u(t,x,y) < 1.
1=>00 |x|=¢(r)
yeQ

(iii) (Propagation for v and decay estimates ahead the front) There exist constants K > 1,
o > 0 and xo > 0 large enough such that

K™ (x| = 2(0) e TR <y ¢, x, ),

for all time t > 0 large enough, y € Q and |x| € [xo +¢@), x0+¢@)+ Q\/;] and,

v(t,x,y) < K (x| =gy e” 7 KO,
for all time t > 0 large enough, y € Q and |x| € [xo + ¢(2), 00).

Remark 1.5. The above propagating result does not explicitly require Assumption 1.1, that is
used here to ensure the boundedness of the solutions, as stated in Proposition 1.2. In particu-
lar, with no heat loose, namely |||z (@) + llo ||z @g) = 0, the bounded solutions (with initial
conditions ug = 1 and vg non-trivial and compactly supported) enjoy the same propagating be-
haviour. The boundedness of such solutions holds when D < 1, by using similar heat kernel
estimates as in [7,23], while this remains an open question when D > 1.

As a special case of the above result, we recover the notion of spreading speed for the u-
component in the spirit of the work of Aronson and Weinberger [1] for scalar reaction-diffusion
equations. In our case this property reads as follows:

lim sup {|1 —u(t,x,y)| +v(, x,y)} =0, Ve > c*,

t—)Ole‘th

ye
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and,

limsup sup u(t,x,y) <1, Ve € [0,c*).
t—00 |x|<ct
yeQ

As far as the inner propagating zone is concerned, namely for |x| < ¢t for some 0 < ¢ <
c*, we expect that the solution looks like a travelling wave profile associated with the minimal
wave speed. This means that we expect that the solution, (u, v), satisfy, for all 0 < ¢ < ¢* and
uniformly for (x, y) € [—ct, ct] x Q

u(t,x,y)~uandv(t,x,y) ~0fort>1,

for some constant u € (0, u*] Here u* > 0 is defined as the unique solution of the equation
A(u*) = 0 where A(s) denotes the principal eigenvalue of the following problem on

AV () = Ay () + (B() — u(3)) ¥ (y) in L,
VY () -7 () =—a (MY (), y €I

At this stage, we are not able to prove the above inner propagating behaviour that remains an
open problem.

This manuscript is organized as follows. In Section 2 we prove the uniform boundedness
of the solutions as well the extinction of the solutions when A <0, namely Proposition 1.2 and
Theorem 1.3. Section 3 is devoted to the derivation of preliminary estimates that will be crucially
used in Section 4 for the proof of Theorem 1.4.

2. Proof of Proposition 1.2 and Theorem 1.3

This section is concerned with the proof of the boundedness of the solution of (1.1)-(1.3). We
shall also prove Theorem 1.3.

2.1. Proof of Proposition 1.2

Now let us first observe that, since vy # 0, one already knows, by applying the comparison
principle to each equation separately, that

0<u(t,x,y)<landv(t,x,y)>O0forall >0andz=(x,y) € X. (2.8)

In order to prove Proposition 1.2 we need to show that the function v is also uniformly bounded.
This point is discussed in the following proposition.

Proposition 2.1. Under the same assumptions that the ones of Theorem 1.4, there exists some
constant M > 0 such that

v(t,x,y) < A//}for allt >0and (x,y) € 3.
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Proof. In order to prove the above result (and thus Proposition 1.2), let us consider % eR and
peC (Q) with ¢ > 0, a principal eigenpair of the problem

Ayp — u(y)p = —ig in Q with Ve - 7 = —0 (y) on K.

Observe that, due to Assumption 1.1, one has x> 0.
Consider the functions U = U (¢, x) and V = V (¢, x) defined by

U(r,x>=fu(r,x,y>¢(y>dy and V(r,x>=/v<t,x,y>¢<y>dy.

Q Q

Then the functions U and V satisfy

v _av +AV = / d 29)
TR B(y)uve (y)dy, @.
and,
AU 92U
5 ~ P32 =D/o(y)u¢(y)S(dy) —Df (u(y) )u¢>(y)dy
IQ Q
- f B (y)dy.

As a consequence, since u < 1, there exists some constant ® > 0 such that, for all # > 0 and
x € R, one has

v 9%v tiveo 8U+D82U
9t ox2 ot ax2’

Now, for each p € [1, oc], we consider the so-called locally uniform Lebesgue space L (R)
defined by

L{R) = {w eLl (R): sup [¥lLre—1x41) < OO} ,

xeR

that becomes a Banach space when endowed with the norm || - || LP([R) defined by
1¥1Lr ) = Sup 1l re—1.x41), Y € LER).

We refer to the work of Arrieta et al. in [2] and the references cited therein for more details on
these spaces and, for results on the heat kernel within this functional framework and in particular
for the smoothing property (2.11) below.

Next, since U is bounded and > 0, Theorem 3.8 in [11] applies and ensures that for each p > 1
there exists some constant R, such that for all T > 7 > 0 the following estimate holds true
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T
1P
1V gt = RE [+ 1V gy + (7 =007
T

From this estimate, applying Lemma 7 in [24], for each p € (1, c0) there exist two constants
Ao(p) and I'g(p) and a sequence {t }r>0 C [0, 0o) such that #p = 0 and for each k > 0:

(i) 1 <tgq1 —tx < Ao(p),
) 1V Mrwy < Rp+ 1,

i) S IV ) p g, df < To(p).

Now we fix a value p > % and, with the above notation, for all ¢ € [#, tx+1] with k > 1, (2.9)

yields the following formulation

t
vy =T @)y g / ) pos s (2.10)

k-1

wherein {e’ 33‘} o denotes the heat semigroup and the function F' (¢, x) is defined by
1>
F(t,x)= / B(y)uve (y)dy.
Q

We now recall the following smoothing property of the heat semigroup in L% (R):
for each t > 0 one has e’ 9 LY(R) c L*®(R) and, there exists some constant K > 0 such that

1
M|y S K (1) W lgmy. V> 0, v € LIR), 2.11)

Hence, we infer from (2.10) that, for all ¢ € [tk, tk+1],
_ 1
IV ey <K (1 =)™ ) IV (1)l gy

t

+ / K (1 +(t —s)*ﬁ) £ (s, Il pr )ds-

Tk—1

Observe now that one also has

F(t,x) < 1Bllziey V(6. %) and | F(t )l oy < 1B@ 1 U )y gy

Hence, due to Holder inequality, one obtains, by setting ¢! =1 — p~!, that for all 7 € [, fx41]
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IV, )lLem) <2K (Rp +1)

S

1
t q [ e+t

_1\4
FRBls | [ (1 a=975) as || [ Ve, e
k—1 k—1
<2K (R, +1)
1
Ao(p) 4
L _1\4
+ QRN Kiflme | [ (14077) a
0

Since p > % then % < 1 and, the function ¢ = ||V (2, )|l L(R) is bounded on [0, 00). Finally,

since ¢ > 0 on €, the application of the parabolic Harnack inequality to the v-equation in
(1.1)-(1.2) completes the proof of the proposition. O

2.2. Proof of Theorem 1.3

Equipped with Proposition 1.2 we are able to complete the proof of Theorem 1.3. To that aim,
recalling Assumption 1.1, we assume throughout this section that

A <0, 2.12)

In view of the boundedness property, stated in Proposition 1.2, and parabolic estimates, in
order to complete the proof of Theorem 1.3 it is sufficient to prove the following claim.

Claim 2.2. Any bounded entire solutions, (,v) = (,v) (t,x,y) of (1.1)-(1.2) with 0 <u <1
and v > 0 satisfies v = 0.

Proof. Consider ¢ = ¢(y) > 0 a principal eigenvector of (1.5). To prove this claim, set w =
w(t, x) the non-negative and bounded function defined by

w(r, x) =/3(t,x,y)¢(y)dy, reR, xeR.
Q

Consider a sequence {(#, x4)},>0 C R x R such that

lim w(t,,x,)= sup w(t,x),
n—00 (t,w)eRxR

as well as the sequences of functions u,, v, defined on R x ¥ and w,, defined on R x R by
(”nv Un) (t,x, Y) = (ﬁvm (t +tl’lsx +xn» )’) and wn(t»x) = w([ +tnsx +xn)~

Because of parabolic regularity, one may assume, possibly along a subsequence that is not re-
labelled, that (u,, v;,) = (Uoo, Voo), a8 B — 00, locally uniformly for (z,z) € R x ¥ wherein
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the limit functions, 1, and v, satisfy System (1.1)-(1.2) on R x ¥ together with w,, — wxo
locally uniformly for (¢, x) € R x R and

Woo(t, X) := / Voo (t, X, V)@ (¥)dy, for (£,x) e R x R,
Q (2.13)

Woo(0,0) = sup weo(t,x)= sup w(t,x).
(t,x)eRxR (t,x)eRxR

Let us prove that weo(f, x) = 0. Note that the function w, satisfies

0Woo Bzwoo

= - o = A + / B(3) oo (tiso — De(y)dy, V(t,x) €R x R. (2.14)
Q

Hence since 1o, < 1 then

Moo Pwoeo
ot ax2

< Awg, V(t,x) e R x R.

As a first consequence, if A <0 then weo(t, x) =0.

It remains to consider the limit case A = 0. In order to prove that w (¢, x) = 0, we argue by
contradiction by assuming that ws, > 0 and we £ 0. Note that this implies that v, % 0 and
therefore v, > 0 and, since § #£ 0, u, < 1. Next we infer from (2.14) that w, satisfies

ow 8Zw
—X 2 <0, VY(t,x) eR xR,
ot ax2
and the strong maximum principle yields a contradiction with the second condition in (2.13)
above.
Thus we conclude that wo(#, x) = 0. And, as a consequence, we obtain that

0=ww(0,0)= sup w(,x).
(t,x)eRxR

Hence w = 0 and, since ¢ > 0, we also get v = 0, that completes the proof of the claim and thus,
that of Theorem 1.3. O

3. Preliminary estimates

This section is devoted to the derivation of preliminary estimates that will be used to prove
Theorem 1.4 in the next section. Our first concerned is related to the derivation of estimates for
the solutions of the following one-dimensional non-autonomous linear equation posed on a half
line:

9 92 3 9z 2
oL oz c——— _Z—(E) z=0,1t>0, x>0,
at  0x?2 2(t +19) ) 0x 2

2(t,00=0, t > 0,
2(0,x) =zo(x), x >0,

(3.15)
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wherein the initial data, zq, is a non-trivial, non-negative, smooth and compactly supported func-
tion on R while ¢ > 0 and 79 > 0 are given constants. Our result reads as follows.

Proposition 3.1. Let ¢ > 0 be given and fixed. Then there exists fy > 0 large enough such that,
for all ty > 1o, the solution 7 = z(t, x) of (3.15) enjoys the following properties:

(i) For each x > 0, one has litm infz(z, x) > 0.
—00

(ii) There exist some constant CT > 0 and some time t > 0 large enough such that:

2(t,x) < Ctx <1+ )e—%, Vx>0, 1>7. (3.16)

1
Jith

The proof of Proposition 3.1 (i) can be found in [19] (see also [10]). The proof of (ii) is also
mostly proved in the aforementioned works in the sense that (3.16) is proved for x = O (/1) and
t > 1. However such a ‘local’ estimate will not be sufficient for the purpose of this work and
we shall need a uniform estimate, as stated above. Similarly to [19,10], our proof of this uniform
estimate makes use of self-similar variables and semigroup estimates.

In order to prove (ii) let us introduce some functional framework that will be used in its proof.
We introduce the weight function p : Ry — R defined by

2
p(E) =exp (%)

H:=1%= [(p € L2(0,00) : /Py € L2(0, oo)} :

as well as the weighted space

endowed with the usual norm denoted by ||.||2,, and defined by

l@ll2.0 = lIv/PellL2(0,00), Yo € H.
It becomes a Hilbert space when endowed with the usual inner product

[ee]

(w, v}, = / P& uE)v(E)dE. V(. v) € H x H.

0
We also introduce the weighted Sobolev spaces, for each integer m > 1,

dku

H;" = {u € H™(0, 0) : aek

€L’ Vk=0, m} :
Next let us consider the linear operator .4 : Dom (A) C H — H defined by
Dom (A) = H N H; (0, 00),

4, d do d?¢ &dg
1 —— T 427
Ap=p a (pd§>+(p d§2+2d§+(p’ Vo € Dom (A).
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Then the following lemma holds true:
Lemma 3.2. The linear operator A:Dom (A) C H — H satisfies the following properties:

(a) It generates a strongly continuous analytic, compact and positive semigroup on H denoted
by {e[A}tzO

(b) The operator —A is a self adjoint operator with the null space generated by the simple
eigenvector ¢ defined by

2

¢0(&) = (24/7) e T, £ > 0.

The quadratic form associated to —A, denoted by Q : Dom (Q) := HO1 0,000 H ; — Ry
and defined by

Qp) = (S) U do® goz@)} de, (3.17)
()
satisfies
{0.¢),| = Q@) +11g13 . Yo € Dom (). (3.18)
and,
Q@) = llel3 ,. ¥g € Dom (Q) N {go)™" . (3.19)

Herein we have set ((po)l ={YyeH: (Y,p),=0}
(¢) The linear operator Ay, defined as the part of A in Hy := (@o)*, that is

Dom (A;) = {¢ € Dom (A) Ag € H,},
Aso = Agp, Yo € Dom (Ay),

has a spectral bound smaller than —1 and it enjoys the maximal parabolic regularity, in
the sense that for each p € (1, 00) there exists some constant M, > 0 such that for each
f € LP(0,00; Hy), each t > 0, one has

t

/e(t—l).As F(hdl < Mp”f”Lp(O,OOQH.r)'
0 WLP(0,00; Hy)NLP (0,00;Dom (Ay))

Here Dom (Ay) is endowed with the norm of the graph.
(d) The following estimates hold true for each ¢ € Dom (A):

(U -Ae,9),, (3.20)
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for each power B € (%, 1) there exists some constant Cg > 0 such that

d
H & (o'7%0) H < Cp|(=A)7 9|, Yo &Dom ((—A)F), (3.21)

and, for each § > 0, o € [0, 1] there exists some constant My (§) > 0 such that

<Myt %e =91 v > 0. (3.22)

H( As)Te L(Hy) —

This Lemma can be found in [10] (see Lemma 2.4, Remark 2.5 and 2.6 in this paper).
Equipped with this lemma we are able to prove Proposition 3.1 (ii). To that aim let us fix ¢ > 0
and 79 > 0 such that 1y > = and consider the self-similar variables T > 0 and £ > 0 defined by

1 t+1 d& X
T =1In an = .
fo NI

Next set A = % and consider the function w = w(z, §) defined by
w(t, €)= e 2eM7(t, x). (3.23)
It satisfies the following equation

ow_ 4 -3 0,£>0
— =Aw —¢ge"I—, fort > >
a‘[’ e aé’ 9 9
1 (3.24)

w(z,0) =0 and w(0, &) = wo(£) 1= *z0(x) = €6 {2 (féé) '

Here we have set ¢ : i Ty 3 . Note that the condition ty > = re-writes as ¢ € (0, 1).

Next in order to prove (ii) we will prove the following estlmate for the function w.

9

Lemma 3.3. Let w be the solution of (3.24). Then there exists some constant C > 0 such that for
allt>2and & >0

1 e_%
w8 = E{p(&) m}

Before going to the proof of this lemma, let us observe that the above estimate and (3.23)
ensure that, for all ¢ large enough (so that 7 > 2) and all x > 0, one has

z(t,x) < Ce_“e%“g‘ [1 +e_%]

_ t+1ty x to
<ceix |00 I+ }
1o «/H—to[ t+1

Hence Proposition 3.1 (ii) follows.
It remains to prove Lemma 3.3.
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Proof of Lemma 3.3. Throughout this proof C > 0 denotes any constant independent of £ and
7 that may change from place to place.
First multiplying (3.24) by pw and integrating over (0, co) leads us to

o]

. 9
Ilelﬁ,p + Qw(r,.) = —¢ge 2 /pw—wdé. (3.25)

1d
2dr JE
0

Next (3.18) yields, for all T > 0,

1d _z _z
S w3, + (1—ee™?) Quir.) e Hw(r. I3 ,.

Recalling that ¢ € (0, 1) and Q > 0, integrating the above inequality ensures that there exists
some constant C > 0 such that

lw(z, )II3, <C. VT =0. (3.26)

Now we shall decompose the function w according to the orthogonal space splitting H, & H; by
introducing the — orthogonal — spectral projectors

Hep = (@, 90)p o and Iy = Iy — T,
H.=TI.(H) = (go), Hy=TI,(H) = (go)".

Hence we decompose the function w as follows
w(t,.) = we(T)po + ws (7, .) with w.(7) := (w(z, .), o), , ws(7,.) = w(z,.).
With this notation, note that (3.26) re-writes as
we (@) + lws(x, )3, < C, YT >0, (3.27)

Next note that function wj satisfies the equation

ow —ro Ow
ars — Asws = —ge 2 HSE(T, ')7 T> O’ E > O’ (328)
wS(O, 0 =T wp.

Multiplying the above equation by pw; and integrating on (0, co) yields, for all T > 0,

d 2 _T Jw
d_”ws ”2,,0 + Q(ws) = —ge” 2 (wy, [Iy—) .
§ p

Next observe that one also has

ow , owy
wg, My — :wc(t)<ws, (ﬂo)p+ Wy, — | >
& [, 0
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so that using (3.18) and (3.27) one gets, for some constant C > 0,

I Jw
wy, [Ty —
S N ag )

As a consequence, one obtains that w; satisfies

<C+ Q(wy), YT >0.

d _t _r
Eﬂwsll%,p + (1 —¢ge 2) Q(wy) <eCe 1.

Hence we infer from (3.19) and the above inequality that there exists some constant still denoted
by C > 0 such that

lws(z. )13, < Ce™2, ¥ > 0. (3.29)

Moreover one also gets

f Q(wy(z, Ndr < C,

that implies, due to the above exponential bound for wy, that

f H BwY

In order to provide more refined estimates for the function w, we shall use the fractional powers
of the linear operator —.4; and, for that purpose, we introduce, for each « € (0, 1], the Banach
space H¥ := Dom ((—A,)*) endowed with the usual graph norm defined by

dr <C. (3.30)

lella := [ (A @], . Vo< H.

Note that, as a consequence of (3.29) and (3.30), we have

1
wg € L* (o, 00: Hf). (3.31)

Now we make use of the constant variation formula to represent the function wy as follows, for
eacht >0and 79 >0,

T
I+
ws (T + 10, .) = ™A wy (10, .)—/ee 22 TDA E(l+r0,.)dl. (3.32)
0

In order to derive further estimates for the function wy, we claim that there exists some constant
C > 0 such that
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Jw
H Iy (5 g <C [1 + s (1, .)||%] VI >0 (3.33)
To see this, observe that one has
3 / a s /
M1, 5 (56 =we(@g(E) & 52 (1:6) = we( {on. o), e0(®)
—%Qﬁ@> > 3
g (0 90) 90®):

so that, since w, is bounded (see (3.27)), one obtains that, for some constant C > 0, one has

, VT >0.
2,p

Now, observe that, due to (3.20), there exists some constant C > 0 such that

ow
_(Ts )

I
o5

<C 1+H3&(T )
2,,0_ aé .

&

1
a <Cligll, forall € Hy,

2.p

and, the claim follows.
Now we chose § = 41_1 and we apply (3.22) — with o = % — to the representation formula (3.32)
starting at 79 = 0. Hence, using (3.27), we obtain that there exists some constant C > 0 such that

forall T >0
¥ Fet

-7
s (2, )1y <€ ﬂﬂ+/ o
S EC e

()

Q

"o

Next using (3.33) we get, for all T > 0,

T

3 3
e" 1t r e~attil
lws (7, )1 < C 1+57+/———wa%mjmm
2 ('L' _1)7 2

T2
0

Next we infer from Holder inequality that for all © > O:

emit
llws (T,~)||% §C|: +e_%:|

1

1 % 0o
e 373 4
+C —d! lws (@, )7d!
13 2
0 0

1 .
Hence, recalling (3.31), we obtain that wy € L™ (1, 00, Hf) and, (3.33) ensures that Hs%—lg €
L*®(1, 00, Hy).
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We now make use of these estimates to bootstrap the above argument. To that aim we choose
and fix B € (%, 1). Using once again the semigroup representation (see (3.32) starting at 7o = 1)
as well as (3.22) one gets, for each 7 > 0,

3. T 3.3
s+t <C | [ om0y @
(el =C =t | = e L,
3 T 3_.3
e it 671t+31 L
<C 7 + (r—l)ﬁe 2d!
L 0
r 3
V.
<C etﬁ +e_7j|.

Finally (3.21) yields the existence of some constant C > 1 such that, for each 7 > 2 and & > 0,
one has

_z
<Ce 2,

‘% (Vo®uw,) .6

and, the result follows by integrating the above inequality with respect to the £-variable. 0O
4. Proof of Theorem 1.4

The aim of this section is to prove Theorem 1.4. Hence throughout this section we assume
that Assumption 1.1 is satisfied. We also assume that A > 0 and we recall the definition of the
minimal wave speed ¢* defined in (1.6). Next we set

A= % —VA. (4.34)

And, in this section we fix a function ¢ = ¢(y) > 0 on £, a principal eigenvector of (1.5).

The strategy of this proof consists in a bootstrap argument. Estimate (2.8) provides a first
upper-estimate for u, namely u < 1, that will be used to derive, in a first step, a upper-estimate
for v on a suitable domain. This upper-bound for v will be used, in a second step, to obtain a
suitable lower-estimate for u. In a third step, the latter lower-estimate (for u) will allow us to
obtain a lower-estimate for v. As consequence, the proof of Theorem 1.4 involves three main
preliminary steps that are detailed below and a fourth and last step to complete the proof of the
theorem.

First step: construction of an upper-estimate for v
In this first step, we provide a decay estimate of the function v ahead the front and we prove the
right hand-side estimate for v stated in Theorem 1.4 (iii). Here we shall focus on the derivation
of this estimate in the case where x > 0. The case where x < 0 can be handled similarly.

To reach this goal, we fix a value a > 0 and we choose and fix a smooth and compactly
supported function zg : R4 — R such that
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z0(a) > 0and zo(x + a)p(y) = vo(x, y), Y(x,y) € [0, 00) x Q.

Here recall that the above conditions can be fulfilled since v is compactly supported.
We consider Problem (3.15) with the parameter ¢*, the initial data z¢ and a fixed value 7y > 0

large enough such that
~ 3
to > max | to, gl R (4.35)

where £ is provided by Proposition 3.1. We denote by z = z(¢, x) the corresponding solution of
Problem (3.15) and we consider the function X = X (¢) defined by

3 t+ 1
X(=c't—"n ;LOO, t>0. (4.36)

Now we shall construct a super-solution for v on the domain x > X (¢) and ¢ > 0. To proceed,
consider the function w = w(¢, x, y) defined by

wt,x,y)=v(t,x+X(#),y).

Next since u < 1, observe that it satisfies the following differential inequality

ow

L{w](t,x,y) <0, fort >0, (x,y) € X4 :=R; x Q,
3 oc(y)w, fort >0, (x,y)€edXy =R, x 9,
v

wherein L denotes the parabolic differential operator on X defined by

? A * & ! B )
=——A—|c"—— | —— - .
ot c*(t+19) ) ox Y)Y

Consider the function w = w(t, x, y) defined by

L

w(t,x,y)=z(t,x+a)p(y), t >0, x>0, y e Q.

Now first observe that, due to the choice of zg, one already has

w(0, x,y) =zo(x + @)p(y) > vo(x,y) ¥x >0, y € Q.

Next observe also that one has for all > 0 and (x, y) € X,

) 3_8_2_<*_;>i_<c*)2 Cxta)=0
P T a2 ¢ c*(t +19) ) ox 2 dhrma)=

ow

oc(yY)w,t>0, (x,y)€dX4.
av



236 A. Ducrot / J. Differential Equations 270 (2021) 217-247

Moreover, since zo(a) > 0, Proposition 3.1 (i) ensures that inf;~¢z(f,a) > 0. Hence, due to
Proposition 2.1, v, hence w, is bounded and there exists some constant M > 1 large enough such
that

Mz(t,a)¢(y) = w(t,0,y), Vi >0, y € Q.
Thus the parabolic comparison principle applies and ensures that
v(t,x + X (1), y) <Mz(t,x +a)p(y), forallt >0, x >0, y e Q.

Next, Proposition 3.1 (ii) ensures that there exists some constant K > 0 large enough such that

v(t, x+X(t),y) <K(x+1)e 7, forallt >0, x>0, yeQ. 4.37)

This provides a suitable decay estimate for the function v ahead the front and completes the proof
of the right hand-side estimate stated in Theorem 1.4 (iii). This concludes our first step.

Second step: construction of a lower-estimate for u

In this second step we shall prove estimate (i) stated in Theorem 1.4. As in the previous step, we
shall only focus on the case x > 0. The case x < 0 follows from the same construction. We now
make use of (4.37) above to derive a lower-estimate for the function u on the set x > X (¢) and
t > 0. To that aim, observe that the function u satisfies the following differential inequality

M[ul(t,x,y) >0V(x,y) €[X(),00) x 2, t >0,

9
a—” —0fors>0and (x, y) € [X (1), 00) X .
Vv

Herein M denotes the parabolic operator defined by

M= % — DA+ g(x — X(1)), with g(x) = ||BllLo@) K (x + l)e_%,
We are looking for a sub-solution on ¢ > 0 and x > X (¢) as follows
u(t,x)=1— e @O=X0),
where I' > 0 and « > 0 are constants that will be chosen below. To that aim, observe that one has

Mlul =T [—aX'() + Da? [ e 0=X®) 4 g(x — X (1)) = Tglx — X ()¢~ X )

< e AU =X®) [F (—ac* + Sa + Da2>
< 0

C*

+ 1Bz K ((x — X (@) + 1)6(0‘_"2)(X—X(t))i|'

Recalling the choice of 7y in (4.35), there exists « € (O, %) small enough such that
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3
—ac* + 2 + Da? < 0.
c*to

Next choose I' > 1 large enough such that
3a <
r <—0l6‘>‘< + - + Daz) + 1Bl Lo () K sup(¢ + 1)6(01 2 ){ < 0.
o =0

We conclude, with this choice of the parameters I' and «, that M[u](¢, x) < O for any ¢t > 0 and
x > X(¢t) while u(0,x) <ug(x) =1 forall x > X(0) =0 and u(¢t, X(¢)) =1 —I" < 0. Thus,
recalling that u > 0, the parabolic comparison principle applies and ensures that

u(t,x,y) > max (g(t,x), 0), Yt >0, V(x,y) €[X(),00) x Q. (4.38)

Recalling that u < 1 for ¢ > 0, this completes the proof of Theorem 1.4 (i) and thus, our second
step.

Third step: construction of a lower-estimate for v

In this third step, we derive a suitable lower-estimate for the function v in order to complete
the lower-bound stated in Theorem 1.4 (iii). As above we only prove the estimate for the case
x > 0. To that aim we shall make use of the second step above. Due to (4.38), let us consider
some constant K > 0 such that

bK =1,

and such that forall 7 > 0, (x, y) € X.

K +
Ut,x,y) =ult,x+X(#),y) > Alx) = <1— m) , (4.39)

wherein the exponent + stands for the positive part. This lower-estimate for u will be more
tractable than the exponential estimate derived above because of Lemma 4.1 below. Indeed this
specific function will allow us to make use of explicit computations with simple functions. More-
over in order to slightly simplify the computation we assume without loose of generality that

b=1sothat K =1. (4.40)

Now in order to construct our lower-bound, consider the function W (z, x, y) defined by

W(t,x,y) =0 vt x + X (), y), (4.41)

where ¢ > 0 denotes a principle eigenvector of (1.5). Recalling that A is defined in (1.5), the
function W > 0 satisfies the equation

IW Vy 3 IW
— =AW 22V W (- ——— | — 1-U)— AW =0,
Py paltl (c C*(IHO)) oy TIBOX ) — Al

for ¢t > 0 and (x, y) € X together with
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ow
8—=0f0rt>0and(x,y)e]Rx8§2.
v

Due to (4.39), recalling that W > 0 and U <1 and by setting b = || 8[| ~(q), the function W
satisfies the following differential inequality

aw Vi . 3 W
— —AW-2—V,W— " —— ) — +[b(1-AKX)) = A]W >0,
ot @ c*(t +19)) 0x

on (0, 00) x ¥ together with the homogeneous Neumann boundary condition on (0, 00) x dX.
From now on, we consider the parabolic operator L defined by

0

v}'w * 0
L:——A—ZTVy—<c 2 b1 — A@) — A,

at ot +to)) dx

so that the above computations re-write as follows. The function W satisfies the following prob-
lem

L[W](t,x,y) >0, fort >0and (x,y) € X,

ow 4.42
a—:Ofort>0and(x,y)e]Rx8§2. ( )
v

Now to derive a suitable lower-estimate for the function v, we shall construct a sub-solution for
the parabolic operator L. Our construction relies on the properties of the generalized principal
eigenvector for the equation

—Ué’(x) +(1-Ax))Us(x) =0, x eR, (4.43)
and it is summarized in the following two lemmas.

Lemma 4.1. Recalling (4.40) (namely K = 1), the function Uy, € C2(R) defined by

et ifx <0,

Vi) = {(x +Dcosh (1) ifx 20

is a solution of the second order equation (4.43) satisfying the following properties Uy > 0,
U:’t > 0. More specifically we have

UL (x) 1 [ 1 ( x )]

= 1+ tanh{ —— ) |, Vx>0,
Ug(x) 1+x x+1 x+1
U
Up(x)

1, Vx <0,

and there exists xo > 1 such that
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Then using the function Uy presented in the above lemma, one may turn to the construction of
a suitable sub-solution for the parabolic operator L. To that aim, we shall construct a sub-solution
W = W(t, x) of the form

W(t,x)=e " Uy(x)Z(t, x).

Using the above form, note that W is a sub-solution for L means that Z satisfies

9z 9z 2U/x)az 3 [(Ug(x) *> az}
Rl 2z )z 22, (4.44)
ot dx2 Usg(x) 0x  20*(t + 1) Ui (x) ox

The idea of our construction comes from the work of Gallay in [17] where the asymptotic self-
similar behaviour of the equation below is described

9z 9%z

Y72 ¥
ot ax2 VY%

wherein the advection term y is an exponentially small perturbation at x = oo of yy given by

) 2ifx <0,

X) =

70 2ifx >0

In that case, Gallay proved in [17] that solution of the above problem equipped with suitable
initial data decays as t — oo like the 3-dimensional heat kernel. It more precisely looks like

3/2 L P U
t77°Z (t, 7 2x )~ P(t"2x)as t —> 00,

2

with W(§) =1if £ <0 and e™ T if £ > 0. Here to construct of sub-solution of (4.44), we shall
work with the self-similar variables (t, &) described below and we shall look for the sub-solution
as a suitable perturbation of the function ¥ = W(§).

As mentioned above to perform our analysis we make use of the self-similar variables given
by

1 t+1 d& X
T =1n an = .
fo N2 )]

To that aim, note that checking the condition L [ ] < 0 on a suitable set, re-writes by setting
Z(t,x)= Z(r, &) as

T [z] (t,6) <0, (4.45)

wherein the operator Lis given by

- 2U x) 9 3 Ué(x) . _
R )as+ﬁ[(w(x>_k>

>
I—
Q\
vl
|
|
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while £ denotes the elliptic operator

_ e
T

With these notations, the construction of our sub-solution is described in the next lemma.

Lemma 4.2. There exist ag > 0, Bo > 0, yo and 19 > 0 large enough such that the function

- {a(r) +B(DEifE <0
Z(t,€) = 2
(a(r) +B(D)E —y(T)E?) e T ifE >0,
with
a(r) = (1+¢75). Br)=Boe™T and y(x) = e,

is of class C'([0, 00) x R), 8522 € L ((0, 00) x R) and satisfies the following differential in-
equality

L[Z)(x.§) <0, V(z.§) €U,
wherein we have set
U={(1.6)€[0,00) x R: T >19and Z(t,&) > 0}.
Before going to the proof of Lemma 4.2, that is postponed, let us first complete the proof

of the lower-estimate for the function v as stated in Theorem 1.4 (iii). To that aim, let us first
observe that from the above construction, the function

W, x)= e_)\*qu(x)Z(t, x) with Z(t,x) = 2(1, &),

satisfies L[W](t, x) < 0 on the set U given by

X
U=1(@, x)e(, R:t>T, < <o* ,
{( x) € (0, 00) x > Q*(T)_m_é?(f)}
with T is large enough such thatt > T < t=1In H{% > 10 while
244 T
04(1) = _o) <0and o*(7) = y (1) + VA +da(r)y (v) =0 <e1> as T — 00.
B(1) 2y (1)

Moreover W is zero on the lateral boundaries of the I/. Now, since v > 0 (hence W > 0), let us
choose ¢ > 0 small enough such that

W(T,x,y)=eW(T,x), VxeUN{t=T}, Vy e Q.
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Next, recalling that W is independent of y € 2 and that W satisfies (4.42), the parabolic com-
parison principle applies and ensures that

W(t,x,y)=eW(t, x), YV((t,x),y) el x Q.

Recalling (4.41) this re-writes as

v(t, x + X (1), y) > ep(MW(t,x), Y((t,x),y) €U x Q.

Finally, since Uz(x) > M (1 + x) for all x > O for some constant M > 0 and «(7) > %, the
lower-bound in Theorem 1.4 (iii) follows by noting that the set ¢/ contains growing interval of
the form |x| = O (/1) for all £ >> 1.

To complete this third step, it remains to prove Lemma 4.2.

Proof of Lemma 4.2. Here recall that, since b = 1 (see (4.40)) one has A* < 1 and choose oo >
0, Bo > 0 and yy > 0 such that

3
20%

(1 - )\*) ag + ag < 24/t (4.46)

and

R o0X0

NN

Bo (4.47)

Herein xg is defined in Lemma 4.1.
Next note the function @ = () satisfies

o)
> <a(r) <ag, YT >0.

For notational simplicity, in this proof we write Z(t, &) = Z(¢, x) instead of Z(z, £). Next set
0+(1) <0 and @*(t) > 0 the solution of the equation Z(z, £) =0, that is

2
0«(1) = _@ and o*(1) = y (1) +\/,3(T) +4a(t)y () _0 (e

B(1) 2y (1)

z
4) as T — OQ.

We now study the quantity Z[Z](r, &) for 0, (7) <& < 0*(7) and t > 1 large enough and we
split this analysis into three regions for the variable &.

U,x) 1 for x <0, we have for all T > 0 and

For o.(t) <& <0 and 7 > 1: Recalling that 0.0 =

0x(1) =§ <0,
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LIZ](z, &) =d'(v) + B/ (7)€ — %ﬂ(r)

. 3
— Jipe32
Vioe22B(0) +

(=2 @+ g0+ e a0
= — T3¢ — Poe 8 —2Jiofo

_I_

3 c _1
e [(1 —A) (@(r) + Boe™28) +1, zﬂoe_f:| .

Recalling that A* < 1 and @ < «g, we get for all T > 1 and g4(t) <& <0

30[0
20%*

T1Z1(z, &) < — ‘f—Se—% +0(e™™) = 24/i0Bo + @0 + o (1 =A%)

Now recalling (4.46) there exists t; large enough such that

LIZI(z,&) <0, VT > 11, V£ € [04(1), 0].

For 0 <& < 0*(1), & close to 0 and 7 > 1: Let us introduce

2

_&
eo(6)=e” ¥ and ¢, (§) =&"ep(§), n e N\ {0},
and observe that one has
1 3
Leg= —Eeo, Leg = —ep and Ley =2eg — 562,

so that one has

3 3 1 3
<£+ 5) ey = e, <£+ 5) el = Eel and <£+ 5) ey =2e,

while

2

eh(€) = —%60(5), ¢ (&) = (1 - %) eo(®), &y(&) = (zg -

53

7) eo(§).

Hence we get

ey "OLIZI(r, &) =d/(v) + B'(1)E — ¥ (D& — [a(T) + ﬁ(r)g =2y (v)]

2

L 2U! 2
_ Jiges 22 [—a(r)% +B() (1 - E—) Y@ (25 _s

Uy (x)

/

3 Uﬁ(x)

_ 2
3 Uﬁ(x)[oc(f)+ﬂ(f)$ y(1)€7]

52

)

3 1,3 § 1 2 &
+mt0 e I:—ot(r)z +,3(T)( —7>—V(T)< 5_?

(4.48)
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that yields, uniformly for0 <& <landall t > 1,
Uj)
o ©LIZ(r, $)<——e S+0@ %) —a) +Vige: ——a(t)E
10 Uz (x)
2 £ a0
{/3 (-5~ 23- W@}

Recalling the definition of xp in Lemma 4.1 and that x = ﬂe%é , this yields

Vi

s 0
a(t) 0e U0

[ xUé(x):|
(1) =—a(r) | 1— <0,

Uz (x)
as soon as x > xg, while for x € [0, xo] one has

L UL(x) Ul (x)
B Yy f
a(1) + +/1pe? .00 < 0.0

X0.
As a consequence one gets, forallt > land 0 <& <1,

—1 ~ @) _z _z
€y (E)L[Z](Tf)i—ﬁe 5+ 0(e2)

2U/()C) Q40X 52 36(
f 0X0 0
— V1o AT {—2\/5—#,30(1—7)—2570—2”\/5}.

Recalling (4.47), fix & € (0, 1] such that

52 3+ xoA*
o (1 - Z) ~ 20— 00 > 0. % € (0.6l

Thus coupling the above estimates ensures that there exists 7o > 0 large enough such that
L[Z](z,§) <0, V& € [0, ], VT = 1.

For &y <& < p*(7) and 7 > 1: Note that from the above computation, for 7 > 0 and &) < &, we

have
T U/ U/
SLOLIZI, g)___ge—5+[x 1) }ﬂ(r)er2 « )( t(x))

Uﬁ(x) Uﬁ(x)
B xUé(x) . 2Ué(x) 1 xUé(x) 5
—(0l+5$) |:1— U:(x) — Ve p U, () - _5+—Un(x) r(0)§
3 Ug(x)[ 2
2 Up () o+ ps—vyé

3 -4 o af g2 g
e (- 8) o (- D))
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Hence recalling the definition of x¢ in Lemma 4.1, one has

U} (x)
Us(x)

<x

<1, ¥x = xo,

| =

so that, since x = A/toe%é > e %EO, there exists t3 > 0 large enough such that

1 Ui
27 U0

IA

<1, V& =&, VT > 13.

We infer from the above estimates that, for all T >> 1 and all £ < & < 0*(t) = O(e™/*) we have

o ®LIZI(, €)<——Oe S+0(e” [060/2+/3(T)€]
T T 3
s—%e—uow—zwwf g le0/2+ B8]
_Z 3 _T (07 _T
S—l—ge S+ 0(e” 4)+2A*°1/26 2|:2—§(L+,30€ 2}
<—@e_§+0(e_%).

- 10

Finally the study of the three regions provided above yields the expected estimate

LIZ)(z,§) <0, VT3> 1, V& € [04(7), 0" (D)1,
that completes the proof of the lemma. O

Fourth step: end of the proof of Theorem 1.4

Here recall that we have already proved, in the previous steps, statements (i) and (iii) in Theo-
rem 1.4. Indeed (i) follows from the second step while (iii) follows from the firth and the third
steps. To complete the proof of Theorem 1.4, it remains to check that (i) also holds true. And,
this point follows from the parabolic maximum principle applied to the u-equation. To see this,
let us observe that (iii) ensures that

liminfminwv (¢, £¢(¢), y) > 0. (4.49)
t—00 ye§

Here ¢ is the function introduced in (1.7). From this property, we claim that the following holds
true:

limsupsupu (¢, ¢(t),y) < 1. (4.50)

t—00 y€§
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As a consequence, since u(t,x,y) < 1forallt > 1, (x,y) € ¥ and, since u satisfies
u _DAu <0, fort>1and (x,y) €[—¢(1), ()] x Q,
%20’ fort>1and (x,y) € 0%,

the parabolic maximum principle applies and ensures that for all # > 1 one has
sup u(t,x,y) SmaX< sup u(l,x,y);  sup M(S,iC(S),y))~
(. El=C(0.5(D]xQ (el=¢(.e(IxQ l<s<t, yeQ
Hence the result follows due to (4.50). This completes the proof of Theorem 1.4 (ii) and thus the
proof of the theorem provided the proof of (4.50).

In order to prove (4.50), we argue by contradiction by assuming that there exist a sequence
{tn}n>0 tending to co and a sequence {y, },>0 C 2 such that

u (tn, ¢(tn), yn) = lasn — oo.
Next consider the sequence of functions u, and v, defined by

(unvvn) (t»xa )’)Z(M,U) (t+tnsx+§(t+tn)a )’)

Note that one has u,(0, 0, y,) — 1 as n — oo. Furthermore the functions u, and v, satisfies

ouy, N 3 ouy, DA 5()

— |- - Up = — UpUy,

o1 (t+1y) ) ox n YthnUn

dvy % 3 vy

= _ - )2 Ay, = — ,
91 <C C*(t+tn)) 9% Un = B(Y)unn — 1(y)Vn
u dv

8vn = 81;1 +o (v, =0.

Since the sequences {u,} and {v,} are uniformly bounded (see Proposition 1.2), possibly along
a subsequence not relabelled, one may assume that

(up, vp)(t, x,¥) = (Uoo, Vo) (2, x, ¥) locally uniformly for (¢, (x, y)) € R x 3.

Hence, if we furthermore assume, up to a subsequence not relabelled, that y, — yo € Q then
the limit function (4o, Vo) satisfies the following problem for all r € R

d ad
oo xZMeo DAux = —B(y)uooVoo ON X,
ot ox

d d

oo _ C*& — Aveo = B(¥)UooVoo — (y)Vso ON X,
ot ox

9 9
oo _ 2% 4 6 (y)ve =0 on 3,
ov av
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together with 1, (0,0, yoo) = 1, oo < 1 and v55(0,0, y) >0 forall y € Q (see (4.49)). Because
of the Neumann boundary condition for #~, yoo € €2, and we conclude from the strong maximum
principle that uso (¢, x, y) = 1. This implies that 8(y)v(f, x,y) =0, for all r € R and (x, y) €
Y. Since B(y) # 0 then vy (0, 0, yp) = 0 for some yo € Q, that contradicts the above property
of Vso, Namely vo (0, 0, y) > O for all y € Q. This completes the proof of (4.50).
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