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This paper deals with the heat equation posed in a bounded regu-
lar domain Ω of R

N (N � 2) coupled with a dynamical bound-
ary condition of reactive–diffusive type. In particular we study the
problem

{ ut − �u = 0 in (0,∞) × Ω,

ut = kuν + l�Γ u on (0,∞) × Γ,

u(0, x) = u0(x) on Γ,

where u = u(t, x), t � 0, x ∈ Ω , Γ = ∂Ω , � = �x denotes the
Laplacian operator with respect to the space variable, while �Γ de-
notes the Laplace–Beltrami operator on Γ , ν is the outward normal
to Ω , and k and l are given real constants, l > 0. Well-posedness is
proved for data u0 ∈ H1(Ω) such that u0|Γ ∈ H1(Γ ). We also study
higher regularity of the solution.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction and main results

We deal with the evolution problem consisting in the standard heat equation posed in a bounded
domain, supplied with a dynamical (or Wentzell) boundary condition. The precise problem is

⎧⎨
⎩

ut − �u = 0 in (0,∞) × Ω,

ut = kuν + l�Γ u on (0,∞) × Γ,

u(0, x) = u0(x) on Ω.

(1)
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Here u = u(t, x), t � 0, x ∈ Ω , where Ω is a C∞ regular bounded domain of R
N (N � 2) and Γ = ∂Ω .

The first equation states the law of standard diffusion or heat conduction in Ω , and � = �x denotes
the Laplacian operator with respect to the space variable. In the boundary equation (1)2, the value of
u is assumed to be the trace of the function u defined for x ∈ Ω , �Γ denotes the Laplace–Beltrami
operator on Γ , ν is the outward normal to Ω , and k ∈ R and l > 0 are given constants; the term kuν

represents the interaction domain–boundary, while l�Γ u stands for a boundary diffusion.
A number of authors have studied parabolic problems with dynamical boundary conditions like

(1)2. Note that we can replace ut by �u in this boundary condition which leads to the form known as
generalized Wentzell boundary condition. The problem has been mostly studied the case when there
is no Laplacian term on the boundary condition, i.e., when l = 0. In particular, when k � 0 problem (1)
is well-posed. See [1,12,15–19,24,25] in the case k < 0 which represents a dissipative interaction; the
non-interactive case k = 0 is rather trivial. However, when k > 0 we are in the presence of a reactive
interaction and problem (1) is ill-posed, as shown in the recent papers [3] and [33]. See also [2] and
[32] for the related case k = k(x).

The question we address in this paper is the following one: is the situation improved by adding to
the dynamical boundary condition a Laplace–Beltrami correction term with l > 0? The interest of such
a correction both for the modeling of parabolic and hyperbolic problems has been recently pointed
out in [23]. In particular (1) describes (see [23, p. 465]) a heat conduction process in Ω with a heat
source on the boundary which can depend on the heat flux around the boundary and on the heat
flux across it. The case of dissipative interaction, k < 0, has been studied in [9,10,20] (see also [7,8]
and [28]). It turns out from the quoted papers that problem (1) is well-posed in the framework of
L p(Ω) × L p(Γ ), 1 � p � ∞. This is to be expected since both terms in the right-hand side of the
boundary condition have the “favorable sign”. The aim of this paper is to solve the system in the
reactive case k > 0, that is in the usually ill-posed case. The estimates of the quoted papers did not
allow to cover this case.

A first step in this study has been performed by the authors of the present paper in [34], where we
consider the Laplace equation instead of the heat equation as domain equation. The modified prob-
lem admits a simple functional framework; the paper helped the authors understand the dynamical
boundary condition (1)2 and allowed us to formulate the conjecture that turns out to be correct, but
the arguments used there do not work for the heat equation. Indeed, a new estimate is needed to
deal with problem (1), which cannot be obtained in the framework of L2(Ω) × L2(Γ ).

We want to show that problem (1) is well-posed in an appropriate setting. We propose to work in
the space

H = {
(u, v) ∈ H1(Ω) × H1(Γ ): u|Γ = v

}
, (2)

where u|Γ denotes the trace of u on Γ , with the natural topology inherited by H1(Ω)× H1(Γ ). Here
and in the sequel, we denote for any s ∈ R, Hs(Ω) and Hs(Γ ) the Sobolev spaces of complex-valued
distributions respectively on Ω and Γ (see [27] or [31]). For the sake of simplicity we shall identify,
when useful, H with is isomorphic counterpart {u ∈ H1(Ω): u|Γ ∈ H1(Γ )} through the identification
(u, u|Γ ) �→ u, so we shall write, without further mention, u ∈ H for functions defined on Ω .

Our main result is the following

Theorem 1. For any u0 ∈ H problem (1) has a unique solution u = u(u0) such that

u ∈ C
([0,∞); H1(Ω)

) ∩ C1((0,∞); H1(Ω)
) ∩ C

(
(0,∞); H3(Ω)

)
,

u|Γ ∈ C
([0,∞); H1(Γ )

) ∩ C1((0,∞); H1(Γ )
) ∩ C

(
(0,∞); H3(Γ )

)
. (3)

Moreover,
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∥∥∇u(t)
∥∥2

L2(Ω)
+ ∥∥dΓ u|Γ (t)

∥∥2
L2(Γ )

+ ∥∥u|Γ (t)
∥∥2

L2(Γ )

� e2λ0t(‖∇u0‖2
L2(Ω)

+ ‖dΓ u0|Γ ‖2
L2(Γ )

+ ‖u0|Γ ‖2
L2(Γ )

)
(4)

for all t � 0, where λ0 � 0 is a constant depending on Ω . Finally, the family of maps {u0 �→ u(u0)(t), t � 0}
extends to an analytic quasi-contractive semigroup in H, and consequently

u ∈ C∞(
(0,∞) × Ω

)
. (5)

The solutions are in principle complex-valued but it is clear that for real-valued data the solution
is likewise real-valued. As usual, more regular solutions are obtained for more regular initial data
satisfying usual compatibility conditions. This is the content of the following regularity result.

Theorem 2. If u0 ∈ H2n+1(Ω) and u0|Γ ∈ H2n+1(Γ ) for some n ∈ N, and

(
�iu0

)
|Γ = k

(
�i−1u0

)
ν

+ l�Γ

((
�i−1u0

)
|Γ

)
, for all i = 1, . . . ,n, (6)

then

u ∈ C
([0,∞); H2n+1(Ω)

) ∩ C1([0,∞); H2n−1(Ω)
) ∩ · · · ∩ Cn([0,∞); H1(Ω)

)
,

u|Γ ∈ C
([0,∞); H2n+1(Γ )

) ∩ C1([0,∞); H2n−1(Γ )
) ∩ · · · ∩ Cn([0,∞); H1(Γ )

)
. (7)

Finally, if u0 ∈ C∞(Ω) and (6) hold for all i ∈ N, then

u ∈ C∞([0,∞) × Ω
)
. (8)

The proofs of Theorems 1 and 2 rely on the study of the resolvent problem with eigenvalue-
dependent boundary condition, that is

{−�u + λu = h in Ω,

−kuν − l�Γ u + λu = h on Γ,
(9)

where λ ∈ C and h ∈ H . Such type of problems has been studied by some authors, starting from the
classical papers (see [13,14]) to more recent ones (see [4] and the bibliography therein). Our result
concerning problem (9) is Theorem 3 below. Finally, we study the limit behavior of the solution u
when l → 0+ (vanishing boundary dissipation). See Theorem 6 below.

The paper is organized as follows. In Section 2 we recall some well-known facts and we state
some preliminaries. In Section 3 we analyze the elliptic problem (9), while in Section 4 we apply the
results obtained to problem (1). In Section 5 we analyze the limit behavior when l → 0+ , while the
final section contains some comments on future developments.

2. Preliminaries and functional setting

Notation. We simply denote by xy the duality product between vectors x, y ∈ C
N , that is

xy =
N∑

xi yi when x = (x1, . . . , xN ), y = (y1, . . . , yN ). (10)

i=1
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Moreover ‖ · ‖p , 1 � p � ∞, denotes the norm in L p(Ω) and also the norm in L p(Ω;R
N ) since no

confusion is expected. We denote by ‖ · ‖p,Γ the norm in L p(Γ ) and also, when p = 2, the L2 norm
for square integrable 1-forms on Γ .

Laplace–Beltrami operator. We recall here, for the reader’s convenience, some well-known facts on
the Laplace–Beltrami operator �Γ . We refer to [26] or [31] for more details and proofs. We start by
fixing some notation. Clearly, Γ is a Riemannian manifold endowed with the natural metric inherited
from R

N , given in local coordinates by (gij)i, j=1,...,N−1. We denote by dσ the natural volume element
on Γ , given in local coordinates by

√
g dy1 . . .dyN−1, where g = det(gij). We denote by ∇Γ the Rie-

mannian gradient and by dΓ the total differential on Γ . We use the notation (·,·) for the Riemannian
(complex) inner product of vectors while (·|·) is used for the natural (complex) scalar product on 1-
forms on Γ associated to the metric. Then, it is clear that (dΓ u|dΓ v) = (∇Γ u,∇Γ v) for u, v ∈ C1(Γ ),
so the use of vectors or forms in the sequel is optional.

The Laplace–Beltrami operator �Γ can be at first defined on C∞(Γ ) by the formula

−
∫
Γ

(�Γ u)v dσ =
∫
Γ

(dΓ u|dΓ v)dσ (11)

for any u, v ∈ C∞(Γ ), and it is given in local coordinates by

�Γ u = g−1/2
N−1∑
i, j=1

∂

∂ yi

(
gij g1/2 ∂u

∂ y j

)
, (12)

where (gij) = (gij)
−1 as usual. Clearly, by (12), �Γ can be considered as a bounded operator from

Hs+2(Γ ) to Hs(Γ ), for any s ∈ R. Consequently, formula (11) extends by density to u, v ∈ H1(Γ ),
where the integral in the left-hand side has to be interpreted in the distributional sense, as �Γ u ∈
H−1(Γ ).

Remark. In the sequel, the notation dσ will be dropped from the boundary integrals; we hope that
the reader will be able to put in the appropriate integration elements in all formulas.

Since �Γ 1 = 0 the operator is not injective, but by (11) we have

∫
Γ

(−�Γ u + u)u = ‖dΓ u‖2
L2(Γ )

+ ‖u‖2
L2(Γ )

(13)

so that the operator L := −�Γ + 1 is a topological and algebraic isomorphism between H1(Γ ) and
H−1(Γ ). Moreover, by elliptic regularity (see [31, p. 309]), L−1 : Hk−1(Γ ) → Hk+1(Γ ), k = 0,1,2, . . . ,
is bounded, so L : Hk+1(Γ ) → Hk−1(Γ ) is an isomorphism. By interpolation, L−1 : Hs(Γ ) → Hs+2(Γ )

for all s ∈ R, s � −1, giving the inverse of L : Hs+2(Γ ) → Hs(Γ ). By duality, this fact holds for all
real s.

Dirichlet-to-Neumann operator. We will also need some well-known facts about this operator that
will be used at some technical points. We refer to [27] for details and proofs. For any u ∈ Hs(Γ ),
s ∈ R, the non-homogeneous Dirichlet problem

{
�v = 0 in Ω,

v = u on Γ ,
(14)
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has a unique solution v ∈ Hs+1/2(Ω), here denoted by v = Du. Moreover D is a bounded operator
from Hs(Γ ) to Hs+1/2(Ω) for all real s, and v has a normal derivative vν ∈ Hs−1(Γ ). The operator
u �→ vν , known as the Dirichlet-to-Neumann operator, is bounded from Hs(Γ ) to Hs−1(Γ ), and it
will be denoted in the sequel by A. For all u, v ∈ C∞(Γ ), integrating by parts twice we have

∫
Γ

Auv =
∫
Ω

∇(Du)∇(Dv) =
∫
Γ

uAv (15)

which, by density, holds for all u, v ∈ H1(Γ ).

Functional setting. In the sequel we equip H1(Γ ) with the equivalent norm in (13), so we denote

(u, v)H1(Γ ) =
∫
Γ

uv +
∫
Γ

(dΓ u|dΓ v), ‖u‖2
H1(Γ )

= (u, u)H1(Γ ) (16)

for all u, v ∈ H1(Γ ). Moreover, since −�Γ + 1 : H2(Γ ) → L2(Γ ) is an isomorphism we can equip
H2(Γ ) with the equivalent norm

(u, v)H2(Γ ) =
∫
Γ

uv +
∫
Γ

�Γ u�Γ v, ‖u‖2
H2(Γ )

= (u, u)H2(Γ ) (17)

for all u, v ∈ H2(Γ ). Moreover, we denote as usual

‖u‖2
H1(Ω)

= ‖u‖2
2 + ‖∇u‖2

2. (18)

The space H . We now introduce, as anticipated in the introduction, the space H given in (2), which
by the Trace Theorem is a closed subset of H1(Ω) × H1(Γ ), hence a Hilbert space with respect
to the scalar product inherited from H1(Ω) × H1(Γ ). For the sake of simplicity, we shall drop the
notation u|Γ , when clear, so we shall write ‖u‖2,Γ ,

∫
Γ

u, and so on, for elements of H , through the
already mentioned identification (u, u|Γ ) �→ u. We equip H with an equivalent norm which simplifies
our calculations. This is the content of the following

Lemma 1. We set, for any u, v ∈ H,

(u, v)H =
∫
Ω

∇u∇v +
∫
Γ

(dΓ u|dΓ v) +
∫
Γ

uv, ‖u‖2
H = (u, u)H . (19)

Then ‖ · ‖H is equivalent in H to the standard norm inherited by H1(Ω) × H1(Γ ).

Proof. We just have to show that if we drop ‖ · ‖2 in the standard norm of H1(Ω) × H1(Γ ) we get
an equivalent norm. This follows by a Poincaré-type inequality which says (see [35, Theorem 4.4.6] in
the real-valued case, the extension to the complex-valued one being trivial) that

∥∥∥∥u −
∫
Γ

u

∥∥∥∥
2∗

� C1‖∇u‖2 for all u ∈ H1(Ω),

where C1 = C1(N,Ω) > 0, 2∗ is the Sobolev critical exponent, i.e. 2∗ = 2N/(N − 2) when N � 3,
1 � 2∗ < ∞ when N = 2. Consequently, since Ω is bounded and Γ is compact, we get
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‖u‖2 �
∥∥∥∥u −

∫
Γ

u

∥∥∥∥
2
+

∥∥∥∥
∫
Γ

u

∥∥∥∥
2
� C1‖∇u‖2 + λN(Ω)

∫
Γ

|u|

� C2
(‖∇u‖2 + ‖u‖2,Γ

)
(20)

where λN denotes the usual Lebesgue measure in R
N and C2 = C2(N,Ω) > 0. This estimate completes

the proof. �
The space V . We need a further space

V = {
(u, v) ∈ H2(Ω) × H2(Γ ): u|Γ = v

}
(21)

which is naturally embedded in H , and it is a Hilbert space with respect to the scalar product and
norm inherited from H2(Ω) × H2(Γ ). As before we equip it with a suitable scalar product which
induces a norm equivalent to that one.

Lemma 2. If we set, for any u, v ∈ V ,

(u, v)V =
∫
Ω

�u�v +
∫
Γ

�Γ u�Γ v +
∫
Γ

uv, ‖u‖2
V = (u, u)V , (22)

then ‖ · ‖V is equivalent in V to the standard norm inherited by H2(Ω) × H2(Γ ).

Proof. It simply follows by elliptic regularity estimates. Indeed, for any u ∈ H2(Ω) we have (see [27,
p. 202])

‖u‖H2(Ω) � C3
(‖�u‖2 + ‖u|Γ ‖H3/2(Γ )

)
and consequently, since H2(Γ ) is continuously embedded in H3/2(Γ ), for any u ∈ V we get

‖u‖H2(Ω) � ‖�u‖2 + ‖u‖H2(Γ ) (23)

which by (17) completes the proof. �
3. Elliptic theory

This section is devoted to study the solvability of the coupled elliptic system (9) when l > 0, k ∈ R,
λ ∈ C and h ∈ H .

Definition. By a solution of problem (9) we mean a function u ∈ V such that (9)1 holds true in L2(Ω),
while (9)2 holds true in L2(Γ ).

Space V was just introduced in (21). Before stating the main result of this section we introduce,
for any s � 1, the further space

Hs = {
(u, v) ∈ Hs(Ω) × Hs(Γ ): u|Γ = v

}
. (24)

Clearly, being closed in the product space Hs(Ω) × Hs(Γ ), Hs is a Hilbert space equipped with the
norm inherited norm, which we denote by ‖ · ‖Hs . Moreover, it is naturally embedded in H and
H1 = H , H2 = V (more precisely, ‖ · ‖H1 and ‖ · ‖H are merely equivalent, like ‖ · ‖H2 and ‖ · ‖V ).
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Our result concerning (9) is the following

Theorem 3. There is a positive constant λ0 , depending on l, k, Ω , N, such that for λ ∈ C, Reλ � λ0 and any
h ∈ H problem (9) has a unique solution u ∈ V , which also belongs to H3 . Moreover, if h ∈ Hs for some s � 1,
then u ∈ Hs+2 .

Finally, there is C4 = C4(l,k,Ω, s, λ) > 0 such that

‖u‖Hs+2 � C4‖h‖Hs for all h ∈ Hs. (25)

In order to solve elliptic problems via the variational method it is useful to introduce a sesquilinear
form, which leads to weak solutions. The most natural way to perform this procedure for problem (9)
would be to multiply (at least formally) the equation −�u + λu = h by a test function φ ∈ C∞(Ω)

and integrate over Ω to get

−
∫
Ω

�uφ + λ

∫
Ω

uφ =
∫
Ω

hφ.

Integrating by parts, when u ∈ H2(Ω),∫
Ω

∇u∇φ −
∫
Γ

uνφ + λ

∫
Ω

uφ =
∫
Ω

hφ.

Then, using the boundary equation in (9) we get (when k �= 0)

∫
Ω

∇u∇φ + 1

k

∫
Γ

hφ − λ

k

∫
Γ

uφ + l

k

∫
Γ

�Γ uφ + λ

∫
Ω

uφ =
∫
Ω

hφ.

Finally, by (11) we arrive to

∫
Ω

∇u∇φ − l

k

∫
Γ

(dΓ u|dΓ φ) − λ

k

∫
Γ

uφ + λ

∫
Ω

uφ = −1

k

∫
Γ

hφ +
∫
Ω

hφ. (26)

Now, it is easy to check that the sesquilinear form in the left-hand side of (26) is indefinite in the
case k > 0, so this procedure does not produce useful estimates. Thus, one has to look for a positive
definite sesquilinear form, at least for Reλ large enough. This is exactly the content of the following
two lemmas. The first one introduces the sesquilinear form which turns out to be appropriate.

Lemma 3. Let h ∈ H. Then u ∈ V solves problem (9) if and only if

aλ(u, v) = (h, v)H for all v ∈ V , (27)

where the sesquilinear form aλ on V is defined by the formula

aλ(u, v) =
∫
Ω

�u�v + l

∫
Γ

�Γ u�Γ v + λ

∫
Ω

∇u∇v + (λ + l)

∫
Γ

(dΓ u|dΓ v)

− l

∫
Γ

�Γ uvν + k

∫
Γ

uν�Γ v − k

∫
Γ

uν vν − k

∫
Γ

uν v + λ

∫
Γ

uv. (28)

Moreover in this case u ∈ H3(Ω) and u|Γ ∈ H3(Γ ).
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Proof. It is divided into several steps.
(i) Claim. If u ∈ V is a solution of (9), then u ∈ H3(Ω) and u|Γ ∈ H3(Γ ). To recognize that our

claim is true we use elliptic regularity both on Ω and Γ as follows. Since u ∈ H2(Ω) we have uν ∈
H1/2(Γ ) by the Trace Theorem (see [27, Chapter I, Théorème 9.4]). So, being h|Γ ∈ H1(Γ ) and u|Γ ∈
H1/2(Γ ), from (9)2 it follows that −�Γ u + u|Γ ∈ H1/2(Γ ), so that using the isomorphism property of
−�Γ + 1 recalled in Section 2 we conclude that u|Γ ∈ H5/2(Γ ). Consequently, using elliptic regularity
for nonhomogeneous Dirichlet problems [27, p. 202] we obtain by (9)1 that u ∈ H3(Ω).

From this, and using the Trace Theorem (recalled above) again, we get uν ∈ H3/2(Ω). Using (9)2
again we then get −�Γ u + u|Γ ∈ H1(Γ ), so as before u|Γ ∈ H3(Γ ), completing the proof of our first
claim.

(ii) Claim. If u ∈ V is a solution of (9), then formula (27) holds. By the first claim we have �u ∈
H1(Ω). Moreover, by (9)1 we get

(�u)|Γ = λu|Γ − h|Γ ∈ H1(Γ ). (29)

Consequently, we get that �u ∈ H , so from (9)1 we have

(−�u, v)H + λ(u, v)H = (h, v)H for all v ∈ H . (30)

By using the definition of (·,·)H given in (19) in the left-hand side terms of formula (30) we write it
more explicitly as

∫
Ω

∇(−�u)∇v +
∫
Γ

(
dΓ (−�u)|dΓ v

) −
∫
Γ

�uv

+ λ

∫
Ω

∇u∇v + λ

∫
Γ

(dΓ u|dΓ v) + λ

∫
Γ

uv = (h, v)H . (31)

Now, using (29) we can write (9)2 in the form

(�u)|Γ = kuν + l�Γ u|Γ . (32)

Plugging (32) into (31) we get

∫
Ω

∇(−�u)∇v − k

∫
Γ

(dΓ uν |dΓ v) − l

∫
Γ

(dΓ �Γ u|dΓ v) − k

∫
Γ

uν v

− l

∫
Γ

�Γ uv + λ

∫
Ω

∇u∇v + λ

∫
Γ

(dΓ u|dΓ v) + λ

∫
Γ

uv = (h, v)H (33)

for all v ∈ H . Now we restrict to test functions v ∈ V , we integrate by parts the first integral in (33)
and we use (11) in the first one to get

∫
Ω

�u�v −
∫
Γ

�uvν − k

∫
Γ

(dΓ uν |dΓ v) + l

∫
Γ

�Γ u�Γ v − k

∫
Γ

uν v

− l

∫
�Γ uv + λ

∫
∇u∇v + λ

∫
(dΓ u|dΓ v) + λ

∫
uv = (h, v)H . (34)
Γ Ω Γ Γ
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Plugging (32) once again in the second integral in the left-hand side of (34) and (11) in the third and
sixth ones we finally get (27).

(iii) To complete the proof, we now suppose that (27) holds for some u ∈ V . We have to prove
that u solves (9). Integrating by parts in the third integral in (28) and in the first one in (19) we can
then write (27) as

∫
Ω

�u�v + l

∫
Γ

�Γ u�Γ v − λ

∫
Ω

u�v + λ

∫
Γ

uvν + (λ + l)

∫
Γ

(dΓ u|dΓ v)

− l

∫
Γ

�Γ uvν + k

∫
Γ

uν�Γ v − k

∫
Γ

uν vν − k

∫
Γ

uν v + λ

∫
Γ

uv

= −
∫
Ω

h�v +
∫
Γ

hvν +
∫
Γ

(dΓ h|dΓ v) +
∫
Γ

hv (35)

for all v ∈ V . Using (11) we can write (35) as

∫
Ω

�u�v + l

∫
Γ

�Γ u�Γ v − λ

∫
Ω

u�v + λ

∫
Γ

uvν − λ

∫
Γ

u�Γ v

− l

∫
Γ

�Γ uv − l

∫
Γ

�Γ uvν + k

∫
Γ

uν�Γ v − k

∫
Γ

uν vν − k

∫
Γ

uν v + λ

∫
Γ

uv

= −
∫
Ω

h�v +
∫
Γ

hvν −
∫
Γ

h�Γ v +
∫
Γ

hv, (36)

that is, by grouping the terms with respect to the test function,

∫
Ω

(�u − λu + h)�v +
∫
Γ

(−l�Γ u − kuν + λu − h)(−�Γ v + vν + v) = 0. (37)

The form of (37) suggests now how to proceed. Indeed if we restrict to test functions v ∈ C∞
c (Ω),

at least to get (9)1, we get that �(−�u + λu − h) = 0 in distributional sense, which is not (9)1. Then
it is more useful to start by proving (9)2. With this aim, we restrict (37) to test functions Dv , where
v ∈ H2(Γ ), to get

∫
Γ

(−l�Γ u − kuν + λu − h)(−�Γ v + Av + v) = 0, (38)

where A denotes the Dirichlet-to-Neumann operator already introduced.
We now claim that by (38) it follows that

∫
Γ

(−l�Γ u − kuν + λu − h)φ = 0 for all φ ∈ L2(Γ ), (39)

from which clearly one has that (9)2 holds in L2(Γ ). To prove our claim it is enough to recognize
that, given an arbitrary φ ∈ L2(Γ ), the problem
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−�Γ v + Av + v = φ (40)

has a solution w ∈ H2(Γ ), which turns out to be unique. Hence, our claim is nothing but a refinement,
in this particular case, of a previous result of the authors [34, Lemma 1] which says that given l̃ > 0
and k̃ ∈ R there is Λ � 0 such that for Λ � Λ the problem

−l̃�Γ v − k̃Av + Λv = φ (41)

has unique solution v ∈ H2(Γ ) for any φ ∈ L2(Γ ). In particular, our claim is proved if we prove that,
when k̃ < 0, then we can take Λ = 1. To prove this fact we argue as in the quoted paper, writing (41)
in the more explicit form

−
∫
Γ

k̃Avψ + l̃

∫
Γ

(dΓ v|dΓ ψ) + Λ

∫
Γ

vψ =
∫
Γ

φψ for all ψ ∈ H1(Γ ), (42)

and then we apply Lax–Milgram theorem (see [11, p. 376]) to the sesquilinear form

a(v,ψ) = −
∫
Γ

k̃Avψ + l̃

∫
Γ

(dΓ v|dΓ ψ) + Λ

∫
Γ

vψ, v,ψ ∈ H1(Γ ),

which is trivially Hermitian (by (15)) and continuous. To recognize that it is also coercive for Λ � 1
we simplify the argument of [34]. Indeed, since k̃ < 0 we have by (15)

a(v, v) = −k̃
∥∥∇(Dv)

∥∥2
2 + l̃‖dΓ v‖2

2,Γ + Λ‖v‖2
2,Γ � min{l̃,Λ}‖v‖2

H1(Γ )
,

so that the form is coercive whenever Λ > 0. Then, from Lax–Milgram theorem we get the existence
of a solution v ∈ H1(Γ ) of (41). By the isomorphism property of −�Γ + 1 recalled in Section 2 it
then follows that v ∈ H2(Γ ), completing the proof of our claim.

Now, to prove (9)1, we use (9)2 in (37) to get∫
Ω

(�u − λu + h)�v = 0 for all v ∈ V , (43)

which clearly implies (9)1 since for any ψ ∈ L2(Ω) there are v ∈ V such that �v = ψ , for example
by taking the unique solution v ∈ H2(Ω) ∩ H1

0(Ω) with homogeneous Dirichlet boundary conditions.
The proof is then complete. �

The following key estimate shows that the sesquilinear form (28) is appropriate.

Lemma 4. There are positive constants λ0 and C5 , depending on l, k, Ω , N, such that for all λ ∈ C, Reλ � λ0
we have

Re aλ(u, u) � C5‖u‖2
V for all u ∈ V .

Proof. By (28) we have

aλ(u, u) = ‖�u‖2
2 + l‖�Γ u‖2

2,Γ + λ‖∇u‖2
2 + (λ + l)‖dΓ u‖2

2,Γ + λ‖u‖2
2,Γ

− l

∫
�uuν + k

∫
uν�Γ u − k‖uν‖2

2,Γ − k

∫
uνu
Γ Γ Γ
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and then

Re aλ(u, u) = ‖�u‖2
2 + l‖�Γ u‖2

2,Γ + Re λ‖∇u‖2
2 + (Re λ + l)‖dΓ u‖2

2,Γ

+ Re λ‖u‖2
2,Γ + (k − l)

∫
Γ

Re[�Γ uuν ] − k‖uν‖2
2,Γ − k

∫
Γ

Re[uνu]

� ‖�u‖2
2 + l‖�Γ u‖2

2,Γ + Re λ‖∇u‖2
2 + (Re λ + l)‖dΓ u‖2

2,Γ

+ Re λ‖u‖2
2,Γ − (|k| + l

)∫
Γ

|�Γ u||uν | − |k|‖uν‖2
2,Γ − |k|

∫
Γ

|uν ||u|. (44)

By Young inequality we estimate

|k|
∫
Γ

|uν ||u| � |k|
2

‖uν‖2
2,Γ + |k|

2
‖u‖2

2,Γ , (45)

and, given any ε > 0 to be fixed later, by weighted Young inequality

(|k| + l
)∫
Γ

|�Γ u||uν | � (|k| + l)ε

2
‖�Γ u‖2

2,Γ + |k| + l

2ε
‖uν‖2

2,Γ . (46)

Plugging (45) and (46) into (44), we get

Re aλ(u, u) � ‖�u‖2
2 +

[
l − (|k| + l)ε

2

]
‖�Γ u‖2

2,Γ + Re λ‖∇u‖2
2

+
(

Reλ − |k|
2

)
‖u‖2

2,Γ + (Re λ + l)‖dΓ u‖2
2,Γ

−
( |k| + l

2ε
+ 3

2
|k|

)
‖uν‖2

2,Γ . (47)

Then, by choosing ε = l/(|k| + l), we get

Re aλ(u, u) � ‖�u‖2
2 + l

2
‖�Γ u‖2

2,Γ + Reλ‖∇u‖2
2 +

(
Re λ − |k|

2

)
‖u‖2

2,Γ

+ (Re λ + l)‖dΓ u‖2
2,Γ − C6‖uν‖2

2,Γ , (48)

where C6 = C6(k, l) = (
(|k|+l)2

2l + 3
2 |k|). To estimate the last term in the right-hand side of (48), we

note that by the embedding H7/4(Ω) ↪→ H3/2(Ω) and by the Trace Theorem there is C7 = C7(Ω) > 0
such that

‖uν‖2
2,Γ � C7‖u‖2

H7/4(Ω)
for all u ∈ H2(Ω).

Consequently, by interpolation inequality (see [27]),

‖uν‖2
2,Γ � C7‖u‖1/2

1 ‖u‖3/2
2 for all u ∈ H2(Ω).
H (Ω) H (Ω)
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Using weighted Young inequality we then get, for any δ > 0 (to be fixed below),

‖uν‖2
2,Γ � C7

4δ
‖u‖2

H1(Ω)
+ 3C7δ

4
‖u‖2

H2(Ω)
for all u ∈ H2(Ω).

By applying (20) and (23) in the last formula, we get

‖uν‖2
2,Γ � C8

δ

(‖∇u‖2
2 + ‖u‖2

2,Γ

) + C8δ
(‖�u‖2

2 + ‖�Γ u‖2
2,Γ + ‖u‖2

2,Γ

)
(49)

for all u ∈ V , where C8 = C8(Ω) > 0. Plugging (49) into (48) we derive

Re aλ(u, u) � (1 − C6C8δ)‖�u‖2
2 + l

4
(2 − 4C6C8δ/l)‖�Γ u‖2

2,Γ

+ (Reλ − C6C8/δ)‖∇u‖2
2 + (Re λ + l)‖dΓ u‖2

2,Γ

+
[

Re λ − |k|
2

− C6C8(δ + 1/δ)

]
‖u‖2

2,Γ . (50)

Choosing δ = δ0 = min {2, l}/(4C6C8) we rewrite (50) as

Re aλ(u, u) � 1

2
‖�u‖2

2 + l

4
‖�Γ u‖2

2,Γ + (Re λ − C6C8/δ0)‖∇u‖2
2

+ (Re λ + l)‖dΓ u‖2
2,Γ +

[
Reλ − |k|

2
− C6C8(δ0 + 1/δ0)

]
‖u‖2

2,Γ . (51)

Now, by setting

λ0 = max
{

C6C8/δ0, |k| + 2C6C8(δ0 + 1/δ0)
}
, (52)

we clearly have, when Reλ � λ0, that

Re λ − C6C8/δ0 � 0 and Reλ − |k|
2

− C6C8(δ0 + 1/δ0) � λ0/2,

so by (51) we finally obtain

Re aλ(u, u) � 1

2
‖�u‖2

2 + l

4
‖�Γ u‖2

2,Γ + λ0

2
‖u‖2

2,Γ .

By setting C5 = min{ 1
2 , l

4 ,
λ0
2 } and using (22) the proof is complete. �

Remark 1. It is clear from the proof that λ0 � 4/l and C5 � l/4, so that λ0 → +∞ and C5 → 0 as
l → 0+ . This instability property will be confirmed in Remark 2.

We can now give the

Proof of Theorem 3. By Lemma 3, problem (9) can be equivalently written as (27). The sesquilinear
form aλ in V is trivially continuous and, by Lemma 4, it is also coercive when Reλ � λ0. We then
apply Lax–Milgram theorem (see [11, p. 376]) to get the existence of a unique solution u of (9) in V .
By Lemma 3 we also have u ∈ H3.
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We now suppose that h ∈ Hs , s > 1. To recognize that u ∈ Hs+2 we apply the same bootstrap
procedure applied in Lemma 3. More precisely, we shall prove that for any n ∈ N0 we have

u ∈ Hmin{s+2,n+7/2}(Ω) and u|Γ ∈ Hmin{s+2,n+4}(Γ ), (53)

from which our claim follows for n large enough. We prove (53) by induction on n. To prove that (53)
holds when n = 0 we recognize that, by (9)1,

�u = λu − h ∈ Hmin{s,3}(Ω) and u|Γ ∈ H3(Γ )

so by elliptic regularity (see [27, p. 202]) we have

u ∈ Hmin{s+2,5,7/2}(Ω) = Hmin{s+2,7/2}(Ω),

which is the required regularity on Ω when n = 0. By the Trace Theorem (see [27, Chapter I,
Théorème 9.4]) we then have uν ∈ Hmin{s+1/2,2}(Γ ). Hence, since kuν ∈ Hmin{s+1/2,2}(Γ ), λu ∈ H3(Γ )

and h ∈ Hs(Γ ), by (9)2 we have

−l�Γ u|Γ ∈ Hmin{s,s+1/2,2,3}(Γ ) = Hmin{s,2}(Γ )

and consequently −�Γ u|Γ + u|Γ ∈ Hmin{s,2}(Γ ). By the isomorphism property of −�Γ + 1 recalled in
Section 2 we then get u|Γ ∈ Hmin{s+2,4}(Γ ) which completes the proof when n = 0. To complete the
induction process we now suppose that (53) holds. Arguing as in the case n = 0 by (9)1 we get

�u = λu − h ∈ Hmin{s,n+7/2}(Ω) and u|Γ ∈ Hmin{s+2,4+n}(Γ )

so by elliptic regularity u ∈ Hmin{s+2,n+9/2}(Ω). By the Trace Theorem we then have uν ∈
Hmin{s+1/2,n+3}(Γ ), so by using (9)2, −�Γ u + u|Γ ∈ Hmin{s,n+3}(Γ ). As before u|Γ ∈ Hmin{s+2,n+5}(Γ ),
completing the induction process.

Finally, to prove (25) we set up the operator Aλ : D(Aλ) → Hs , where

D(Aλ) = {
(u, v) ∈ Hs+2: (�u)|Γ = kuν + l�Γ v

}
and

Aλ

(
u

v

)
=

( −�u + λu
−kuν − l�Γ v + λv

)
.

One easily sees that D(Aλ) is closed in Hs+2, so it is a Hilbert space with respect to the scalar
product inherited by it. Moreover Aλ is bounded, and u ∈ Hs+2 solves (9) if and only if u ∈ D(Aλ)

and Aλu = h. By previous analysis Aλ is bijective, so (25) follows by the Closed Graph Theorem. �
4. Analysis of problem (1)

We will use here the results of the previous section to analyze problem (1), thus proving Theo-
rems 1 and 2. We start by setting up the unbounded operator A : D(A) ⊂ H → H by

D(A) = {
(u, v) ∈ H3: (�u)|Γ = kuν + l�Γ v

}
(54)

and
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A

(
u

v

)
=

(
�u

kuν + l�Γ v

)
. (55)

Our main results are a consequence of the following one.

Theorem 4. Operator A generates an analytic semigroup {S(t), t � 0} in H, and

∥∥S(t)
∥∥

L(H)
� eλ0t for all t � 0, (56)

where λ0 is the positive number given in Theorem 3, so {S(t), t � 0} is quasi-contractive.

Proof. We introduce the unbounded operator B in H by D(B) = D(A) and B = A − λ0 I . Then, given
any u ∈ D(B), we have that u solves (9) when λ = λ0 and h = −Bu. Hence, by (27),

(Bu, u)H = −(h, u)H = −aλ0(u, u) for all u ∈ D(B). (57)

Then, by Lemma 4 we get that Re(Bu, u)H � 0, for all u ∈ D(B), i.e. B is a dissipative operator in H .
Moreover, by Theorem 3, R(I − B) = H . We then apply [29, Theorem 4.6, p. 16] to get that D(B) is
dense in H . Moreover, given any u ∈ D(B), by Lemma 4 and (57) we have

Re(−Bu, u)H = Re aλ0(u, u) � C5‖u‖2
V , (58)

while by (57) and the continuity of aλ0

∣∣Im(−Bu, u)H
∣∣ �

∣∣aλ0(u, u)
∣∣ � C9‖u‖2

V (59)

for some C9 = C9(k, l, N,Ω) > 0. Combining (58) and (59) we get that −B is a densely defined m-
sectorial operator in H . We then apply semigroup theory (see for example [22, Theorem 5.9, p. 37])
which shows that B generates an analytic contraction semigroup {T (t), t � 0} in H , and consequently
A generates an analytic semigroup {S(t), t � 0}, given by S(t) = eλ0t T (t), t � 0, so clearly (56) fol-
lows. �

Now we can give the proofs of our main results.

Proof of Theorem 1. By Theorem 4 the operator A generates the analytic, and hence differentiable,
quasi-contractive semigroup {S(t), t � 0} in H . Then, by semigroup theory (see [29, §4.1]) given any
u0 ∈ H there is a unique solution

u ∈ C
([0,∞); H

) ∩ C1((0,∞); H
)

(60)

of the abstract Cauchy problem

{
u′(t) = Au(t), t > 0,

u(0) = u0.
(61)

Clearly, (60) is nothing but (53), and (61) is the abstract form of problem (1). Moreover, (4) is
nothing but (56) due to Lemma 3. Next, by using the differentiability property of the semigroup
{S(t), t � 0} and [29, §2.4] we get that u ∈ C∞((0,∞); H) and consequently Bu = Au − λ0u =
u′ − λ0u ∈ C∞((0,∞); H). By (25) (when s = 1) then we get that u ∈ C∞((0,∞); H3). A standard
bootstrap procedure then gives that u ∈ C∞((0,∞); H2n+1) for all n ∈ N. By Morrey’s theorem (see
for example [5, Corollaire IX.13]) we then get that (5) holds. �
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Proof of Theorem 2. We introduce, by recurrence on n ∈ N, the space

D
(

Bn) = {
u ∈ D

(
Bn−1): Bu ∈ D

(
Bn−1)} (62)

endowed with the graph norm

‖u‖2
D(Bn) =

n∑
i=0

∥∥Diu
∥∥2

H .

By Theorem 3 it is immediate to recognize that

D
(

Bn) = {
u ∈ H2n+1:

(
�iu

)
|Γ = k

(
�i−1u

)
ν

+ l�Γ

(
�i−1u

)
|Γ , i = 1, . . . ,n

}
, (63)

and that the graph norm is equivalent to the norm of H2n+1 introduced in Section 3. Since B is a
dissipative operator in H and R(I − B) = H we are able to apply the procedure outlined in the proof
of [5, Théorème VII.5] (see also [6, Chapter 1]) in the real case, which works as well in the complex
one. Consequently, since u0 ∈ D(Bn), we get

u ∈ C
([0,∞); D

(
Bn)) ∩ C1([0,∞); D

(
Bn−1)) ∩ · · · ∩ Cn([0,∞); H

)
which, by previous remark, is nothing but (7). Finally, if u0 ∈ C∞(Ω) and (6) holds for all i ∈ N we
apply previous analysis, for any n ∈ N, together with Morrey’s theorem to get (8). �
5. Limit behavior as l → 0+

This section is devoted to study the limit behavior of the solution of problem (1) when l → 0+ .
The motivation of this study is to understand what happens to the solution of (1) when the Laplace–
Beltrami term, which makes it well-posed, becomes more and more negligible. The limit problem, at
least formally, is given by

⎧⎨
⎩

ut − �u = 0 in Q = (0,∞) × Ω ,

ut = kuν on [0,∞) × Γ ,

u(0, x) = u0(x) in Ω ,

(64)

which has been studied in [33] (see also [3]). We want to show here how the ill-posed problem (64)
is approximated by well-posed problems like (1). We recall the following definition and result from
that paper. In what follows we restrict to the real-valued case.

Definition 1. (See [33, Definition 1].) Given u0 ∈ H1(Ω) we say that

u ∈ C
([0, T ); H1(Ω)

)
, T > 0, (65)

is a weak solution of (64) if

u(0) = u0 (66)

and
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−
T∫

0

∫
Ω

uϕt +
T∫

0

∫
Ω

∇u∇ϕ + 1

k

T∫
0

∫
Γ

uϕt = 0 (67)

for all ϕ ∈ C∞
c ((0, T ) × Ω).

Theorem 5. (See [33, first part of Theorem 1].) If N � 2 there is u0 ∈ C∞(Ω) satisfying the compatibility
conditions

�nu0 = k
(
�n−1u0

)
ν

on Γ for all n ∈ N,

such that problem (64) has no weak solutions.

The first step in our analysis is the following

Lemma 5. Theorem 5 holds also if (65) is weakened to

u ∈ C w
([0, T ); H1(Ω)

)
, (68)

that is it concerns also weakly continuous solutions.

Proof. Looking at the proof in the quoted paper one immediately sees that the continuity of u was
used only at two places: at first in order that (67) makes sense, and at second to recognize that the
functions t �→ 〈u(t),Φ ′

n〉 are continuous in [0, T ), where 〈·,·〉 denotes an equivalent scalar product in
H1(Ω) and Φ ′

n , n ∈ N, are eigenfunctions of a suitable eigenvalue problem, which belong to C∞(Ω).
Both facts continue to hold when (65) is weakened to (68). �

We can now state the main result of this section.

Theorem 6. Let u0 ∈ H1(Ω) be an initial datum such that problem (64) has no weak solutions u ∈
C w([0, T ); H1(Ω)) for any T > 0, and denote by ul the solution of (1) corresponding to u0 and l given by
Theorem 1.1 Then, for any T > 0, we have

max
t∈[0,T ]

∥∥ul(t)
∥∥

H1(Ω)
→ ∞ as l → 0+. (69)

Proof. We suppose by contradiction that (69) fails for some fixed T > 0. Then there is a sequence
ln → 0+ , such that

∥∥un
∥∥

C([0,T ];H1(Ω))
� C10 for all n ∈ N, (70)

where we denoted un = uln for simplicity, and C10 = C10(T , u0,Ω) > 0. Since, by Theorem 1, we
have un ∈ C∞((0,∞) × Ω) we are allowed, for any t ∈ (0, T ), to multiply the heat equation by a test
function v ∈ C∞

c (Ω) and to integrate by parts to get

∣∣∣∣
∫
Ω

un
t (t)v

∣∣∣∣ �
∥∥un(t)

∥∥
H1(Ω)

‖∇v‖2. (71)

1 Which is real-valued since u0 is real-valued.
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By a standard density argument (71) holds true for all v ∈ H1
0(Ω) and then, by (70), we get the

second estimate we need, that is

∥∥un
t

∥∥
L∞((0,T );H−1(Ω))

� C10 for all n ∈ N. (72)

By (70) we get that, up to a subsequence,

un → u weakly∗ in L∞(
(0, T ); H1(Ω)

)
. (73)

Moreover, by combining (70) with (72) and using the compactness of the embedding H1(Ω) ↪→
L2(Ω) ↪→ H−1(Ω) we also get, by the Aubin–Lions compactness lemma, that

un → v strongly in C
([0, T ]; H−1(Ω)

)
. (74)

Moreover, by (73) we get that un → u weakly∗ in L∞((0, T ); H−1(Ω)), while by (74) un → v in the
same sense, so u = v . Then we can combine (73)–(74) to

un → u weakly∗ in L∞(
(0, T ); H1(Ω)

)
and strongly in C

([0, T ]; H−1(Ω)
)
. (75)

We now claim that u is a weak solution of (64) in the class (68). Once this claim is proved the
proof is complete, since we are in contradiction with Theorem 5 as extended by Lemma 5. By applying
[30, Theorem 2.1], we get

u ∈ C w
([0, T ]; H1(Ω)

)
. (76)

Moreover, by (75) it immediately follows that (66) holds. Multiplying the heat equation in (1) by a
test function ψ ∈ C∞

c (0, T ) × Ω , integrating by parts in Ω , using the boundary condition in (1), using
(11) and finally integrating by parts in time twice we get that un satisfies the distribution identity

−
T∫

0

∫
Ω

unϕt +
T∫

0

∫
Ω

∇un∇ϕ + 1

k

T∫
0

∫
Γ

unϕt − ln
k

T∫
0

∫
Γ

un�Γ ϕ = 0 (77)

for all ϕ ∈ C∞
c ((0, T ) × Ω). By (75) we can pass to the limit as n → ∞ in (77), and we get that u

satisfies (67), completing the proof of our claim. �
Remark 2. Theorem 6 shows that the instability property of λ0 = λ0(l) pointed out in Remark 1 does
not depend on our estimates obtained in Lemma 4. Indeed, suppose by contradiction that there is
λ̃0 = λ̃0(l,k,Ω, N) > 0 such that for all λ ∈ C, Reλ � λ̃0 we have

Re aλ(u, u) � C5‖u‖2
V for all u ∈ V , and lim

l→0+
λ̃0 < ∞

when k,Ω and N are fixed. Then there is a sequence ln → 0+ such that λ̃0(ln) � λ < ∞ for all n ∈ N.
By repeating our proofs with λ̃0 instead of λ0 we get

∥∥uln(t)
∥∥2

H1(Ω)
� e2λT ‖u0‖2

H

for t ∈ [0, T ], T > 0 fixed, which contradicts (69).
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6. Open problems and final remarks

Although Theorems 1–2 give existence and uniqueness of solutions to problem (1) in a Hilbert
framework, building a satisfactory theory for C∞ initial data, many interesting problems are still
open, both of theoretical and applied nature.

1. We are not able to produce a satisfactory regularity theory in even order spaces H2n , n � 1, which
is particularly bad for n = 1. A new estimate in V would be necessary.

2. The extension of the analysis to more general problems, like the ones considered by [9,10] has
still to be done. In particular, Lemma 3 has to be properly extended.

3. Our arguments, which are based on Lax–Milgram theorem, cannot be extended to the case of
Banach spaces. Now, it would be natural to consider the case of u0 ∈ W 1,p(Ω), u0|Γ ∈ W 1,p(Γ ).

4. We do not give explicit representation formulas of the solution u, even for regular data. In par-
ticular we are not able to apply the Fourier method, which would be based on the study of the
eigenvalue problem

{−�u = λu in Ω ,

−kuν − l�Γ u = λu on Γ .
(78)

The elliptic theory developed in Section 3 allows to prove in a simple way that

Σ := {
λ ∈ C: (78) has a nontrivial solution u ∈ V

}
is at most countable, but it is far from giving an exhaustive spectral theory, since the operator A
or equivalently Aλ is not symmetric in H . Actually formula (26) suggests some symmetry of the
operator Aλ , but in a framework of Krein spaces. This study is left to specialists in Krein spaces
theory.
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