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We consider the Benjamin–Bona–Mahony (BBM) equation on the
one-dimensional torus T = R/(2πZ). We prove a Unique Continu-
ation Property (UCP) for small data in H1(T) with nonnegative zero
means. Next we extend the UCP to certain BBM-like equations, in-
cluding the equal width wave equation and the KdV–BBM equation.
Applications to the stabilization of the above equations are given.
In particular, we show that when an internal control acting on a
moving interval is applied in the BBM equation, then a semiglobal
exponential stabilization can be derived in Hs(T) for any s � 1.
Furthermore, we prove that the BBM equation with a moving con-
trol is also locally exactly controllable in Hs(T) for any s � 0 and
globally exactly controllable in Hs(T) for any s � 1 in a sufficiently
large time depending on the Hs-norms of the initial and terminal
states.
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1. Introduction

We are concerned here with the Benjamin–Bona–Mahony (BBM) equation

ut − utxx + ux + uux = 0 (1.1)

that was proposed in [2] as an alternative to the Korteweg–de Vries (KdV) equation
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ut + uxxx + ux + uux = 0 (1.2)

as a model for the propagation of one-dimensional, unidirectional small amplitude long waves in
nonlinear dispersive media. In the context of shallow-water waves, u = u(x, t) represents the dis-
placement of the water surface at location x and time t . In this paper, we shall assume that x ∈ R or
x ∈ T = R/(2πZ) (the one-dimensional torus). Eq. (1.1) is often obtained from (1.2) in the derivation
of the surface equation by noticing that, in the considered regime, ux ∼ −ut , so that uxxx ∼ −utxx .
The dispersive term −utxx has a strong smoothing effect, thanks to which the well-posedness theory
of (1.1) is dramatically easier than that of (1.2) (see [2,3,42] and the references therein). Numerics
often involve the BBM equation, or the KdV–BBM equation (see below), because of the regularization
provided by the term −utxx . On the other hand, (1.1) is not integrable and it has only three invariants
of motion [13,33].

In this paper, we investigate the Unique Continuation Property (UCP) of BBM and its applications
to a control problem for (1.1). We say that the UCP holds in some class X of functions if, given any
nonempty open set ω ⊂ T, the only solution u ∈ X of (1.1) fulfilling

u(x, t) = 0 for (x, t) ∈ ω × (0, T ),

is the trivial one u ≡ 0. Such a property is very important in Control Theory, as it is equivalent to the
approximate controllability for linear PDE, and it is involved in the classical uniqueness/compactness
approach in the proof of the stability for a PDE with a localized damping. The UCP is usually proved
with the aid of some Carleman estimate (see e.g. [45]). The UCP for KdV was established in [47]
by the inverse scattering approach, in [11,39,45] by means of Carleman estimates, and in [4] by a
perturbative approach and Fourier analysis. For BBM, the study of the UCP is only at its early age. The
main reason is that both x = const and t = const are characteristic lines for (1.1). Thus, the Cauchy
problem in the UCP (assuming e.g. that u = 0 for x � 0, and solving BBM for x � 0) is characteristic,
which prevents from applying Holmgren’s theorem, even for the linearized equation. The Carleman
approach for the UCP of BBM was developed in [8] and in [46]. Unfortunately, Theorems 3.1–3.4
in [8] are not correct without further assumptions, as noticed in [49]. On the other hand, the UCP
in [46] for the BBM-like equation

ux − utxx = p(x, t)ux + q(x, t)u, x ∈ (0,1), t ∈ (0, T ),

where p ∈ L∞(0, T ; L∞(0,1)) and q ∈ L∞(0, T ; L2(0,1)), requires u(1, t) = ux(1, t) = 0 for t ∈ (0, T )

and

u(x,0) = 0 for x ∈ (0,1). (1.3)

(Note, however, that nothing is required for u(0, t).) Because of (1.3), such a UCP cannot be used for
the stabilization problem. More can be said for a linearized BBM equation with potential functions de-
pending only on x. It was proved in [30] that the only solution u ∈ C([0, T ], H1(0,1)) of the linearized
BBM equation

ut − utxx + ux = 0, x ∈ (0,1), t ∈ (0, T ), (1.4)

u(0, t) = u(1, t) = 0, t ∈ (0, T ) (1.5)

fulfilling ux(1, t) = 0 for all t ∈ (0, T ) is the trivial one u ≡ 0. It is worth noticing that the proof of
that result strongly used the fact that the solutions of (1.4)–(1.5) are analytic in time. On the other
hand, several difficult UCP results based on spectral analysis are given in [48,49] for the system

ut − utxx = [
α(x)u

]
x + β(x)u, x ∈ (0,1), t ∈ (0, T ), (1.6)

u(0, t) = u(1, t) = 0, t ∈ (0, T ). (1.7)
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As noticed in [49], the UCP fails for (1.6)–(1.7) whenever both α and β vanish on some open set
ω ⊂ T, so that the UCP depends not only on the regularity of the functions α and β , but also on their
zero sets. Bourgain’s approach [4] for the UCP of KdV or of the nonlinear Schrödinger equation (NLS)
is based on the fact that the Fourier transform of a compactly supported function extends to an entire
function of exponential type. The proof of the UCP in [4] rests on estimates at high frequencies using
the intuitive property that the nonlinear term in Duhamel formula is perturbative. As noticed in [29],
that argument does not seem to be applicable to BBM. Actually, if we follow Bourgain’s idea for the
linearized BBM equation

ut − utxx + ux = 0 (1.8)

on R, and assume that some solution u vanishes for |x| > L and t ∈ (0, T ), then its Fourier transform
in x, denoted by û(ξ, t), is readily found to be

û(ξ, t) = exp

( −itξ

ξ2 + 1

)
û(ξ,0), ξ ∈R, t ∈ (0, T ).

The consideration of high frequencies is useless here. By analytic continuation, the above equation
still holds for all ξ = ξ1 + iξ2 ∈ C \ {±i}. Picking any t > 0, ξ1 = 0 and letting ξ2 → 1− , we readily
infer that ∂n

ξ û(i,0) = 0 for all n � 0, so that û(·,0) ≡ 0 and hence u ≡ 0. Note that

∂n
ξ û(i, t) =

∞∫
−∞

u(x, t)(−ix)nex dx, (1.9)

and that it can be shown by induction on n that all the moments Mn(t) = ∫ ∞
−∞ u(x, t)xnex dx van-

ish on (0, T ), so that u ≡ 0. Unfortunately, we cannot modify the above argument to deal with the
UCP for the full BBM equation, as the nonlinear term has no reason to be perturbative at the “small”
frequencies ξ = ±i. We point out that a moment approach, inspired by the paper [7] that was con-
cerned with the UCP for the Camassa–Holm equation (see also [14]), was nevertheless applied in [29]
to prove the UCP for the Kadomtsev–Petviashvili (KP)–BBM-II equation.

In this paper, we shall apply the moment approach to prove the UCP for a generalized BBM equa-
tion

ut − utxx + [
f (u)

]
x = 0,

where f : R → R is smooth and nonnegative. The choice f (u) = u2/2 gives the so-called Morrison–
Meiss–Carey (MMC) equation (also called equal width wave equation, see [13,32]). Incorporating a
localized damping in the above equation, we obtain the equation

ut − utxx + [
f (u)

]
x + a(x)u = 0, x ∈ T,

whose solutions are proved to tend weakly to 0 in H1(T) as t → ∞. Note that similar results were
proved in [19] with a boundary dissipation.

Bourgain’s approach, in its complex analytic original form, can be used to derive the UCP for the
following BBM-like equation

ut − utxx + ux + (u ∗ u)x = 0

in which the (nonlocal) term (u ∗ u)x is substituted to the classical nonlinear term uux in BBM.
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For the original BBM equation (1.1), we shall derive a UCP for solutions issuing from initial data
that are small enough in H1(T) and with nonnegative mean values. The proof, which is very remi-
niscent of La Salle invariance principle, will combine the analyticity in time of solutions of BBM, the
existence of three invariants of motion, and the use of some appropriate Lyapunov function.

The second part of this work is concerned with the controllability of the BBM equation. Consider
first the linearized BBM equation with a control force

ut − utxx + ux = a(x)h(x, t), (1.10)

where a is supported in some subset of T and h stands for the control input. It was proved in [30,49]
that (1.10) is approximatively controllable in H1(T). It turns out that (1.10) is not exactly controllable in
H1(T) [30]. This is in sharp contrast with the good control properties of other dispersive equations
(on periodic domains, see e.g. [22,44] for KdV, [9,20,21,40,41] for the nonlinear Schrödinger equation,
[24,25] for the Benjamin–Ono equation, [31] for Boussinesq system, and [12] for Camassa–Holm equa-
tion). The bad control properties of (1.10) come from the existence of a limit point in the spectrum.
Such a phenomenon was noticed in [43] for the beam equation with internal damping, in [23] for
the plate equation with internal damping, in [30] for the linearized BBM equation, and more recently
in [38] for the wave equation with structural damping.

It is by now classical that an “intermediate” equation between (1.1) and (1.2) can be derived
from (1.1) by working in a moving frame x = −ct with c ∈R \ {0}. Indeed, letting

v(x, t) = u(x − ct, t) (1.11)

we readily see that (1.1) is transformed into the following KdV–BBM equation

vt + (c + 1)vx − cvxxx − vtxx + v vx = 0. (1.12)

It is then reasonable to expect the control properties of (1.12) to be better than those of (1.1), thanks
to the KdV term −cvxxx in (1.12). We shall prove that Eq. (1.12) with a forcing term a(x)k(x, t)
supported in (any given) subdomain is locally exactly controllable in Hs(T) for any s � 1 in time
T > (2π)/|c|. Going back to the original variables, it means that the equation

ut + ux − utxx + uux = a(x + ct)h(x, t) (1.13)

with a moving distributed control is exactly controllable in Hs(T) for any s � 1 in (sufficiently) large
time. Actually, the control time is chosen in such a way that the support of the control, which is
moving at the constant velocity c, can visit all the domain T. Using the same idea, it has been proved
recently in [28] that the wave equation with structural damping is null controllable in large time
when controlled with a moving distributed control.

The concept of moving point control was introduced by J.L. Lions in [26] for the wave equation.
One important motivation for this kind of control is that the exact controllability of the wave equation
with a pointwise control and Dirichlet boundary conditions fails if the point is a zero of some eigen-
function of the Dirichlet Laplacian, while it holds when the point is moving under some conditions
easy to check (see e.g. [5]). The controllability of the wave equation (resp. of the heat equation) with
a moving point control was investigated in [5,17,26] (resp. in [6,18]).

Thus, the appearance of the KdV term −cvxxx in (1.12) results in much better control properties.
We shall see that

(i) there is no limit point in the spectrum of the linearized KdV–BBM equation, which is of “hyper-
bolic” type;

(ii) a UCP for the full KdV–BBM equation can be derived from Carleman estimates for a system of
coupled elliptic–hyperbolic equations.
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It follows that one can expect a semiglobal exponential stability when applying a localized damping
with a moving support. We will see that this is indeed the case. Combining the local exact control-
lability to the semiglobal exponential stability result, we obtain the following theorem which is the
main result of the paper.

Theorem 1.1. Assume that a ∈ C∞(T) with a 	= 0 is given and that c ∈ R \ {0}. Let s � 1 and R > 0 be given.
Then there exists a time T = T (s, R) > 2π/|c| such that for any u0, uT ∈ Hs(T) with

‖u0‖Hs � R, ‖uT ‖Hs � R, (1.14)

there exists a control h ∈ L2(0, T ; Hs−2(T)) such that the solution u ∈ C([0, T ]; Hs(T)) of

ut − utxx + ux + uux = a(x + ct)h(x, t), x ∈ T, t ∈ (0, T ),

u(x,0) = u0(x), x ∈ T

satisfies

u(x, T ) = uT (x), x ∈ T.

The paper is scheduled as follows. In Section 2 we recall some useful facts (global well-posedness,
invariants of motion, time analyticity) about BBM. In Section 3 we establish the UCP for BBM. In
Section 4 we prove the UCP for other BBM-like equations, including the MMC equation and the BBM
equation with a nonlocal term. Section 5 is concerned with the UCP for the KdV–BBM equation. The
KdV–BBM equation is first split into a coupled system of an elliptic equation and a transport equation.
Next, we prove some Carleman estimates with the same singular weights for both the elliptic and the
hyperbolic equations, and we derive the UCP for KdV–BBM by combining these Carleman estimates
with a regularization process. Those results are used in Section 6 to prove the exact controllability
of KdV–BBM and the semiglobal exponential stability of the same equation with a localized damping
term.

2. Well-posedness, analyticity in time and invariants of motion

Throughout the paper, for any s � 0, Hs(T) denotes the Sobolev space

Hs(T) = {
u : T →R; ‖u‖Hs := ∥∥(

1 − ∂2
x

) s
2 u

∥∥
L2(T)

< ∞}
.

Its dual is denoted by H−s(T).
Let us consider the initial value problem (IVP)

ut − utxx + ux + uux = 0, x ∈ T, t ∈R, (2.1)

u(x,0) = u0(x). (2.2)

Let A = −(1 − ∂2
x )−1∂x ∈ L(Hs(T), Hs+1(T)) (for any s ∈ R) and W (t) = et A for t ∈ R. We put

(2.1)–(2.2) in its integral form

u(t) = W (t)u0 +
t∫

W (t − s)A
(
u2/2

)
(s)ds. (2.3)
0
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For s � 0 and T > 0, let

Xs
T = C

([−T , T ]; Hs(T)
)
.

Note that for u ∈ X s
T , u solves (2.1) in D′(−T , T ; Hs−2(T)) and (2.2) if, and only if, it fulfills (2.3) for

all t ∈ [−T , T ]. The following result will be used thereafter.

Theorem 2.1. (See [3,42].) Let s � 0, u0 ∈ Hs(T) and T > 0. Then there exists a unique solution u ∈ X s
T

of (2.1)–(2.2) (or, equivalently, (2.3)). Furthermore, for any R > 0, the map u0 �→ u is real analytic from
B R(Hs(T)) into X s

T .

Some additional properties are collected in the following

Proposition 2.2. For u0 ∈ H1(T), the solution u(t) of the IVP (2.1)–(2.2) satisfies u ∈ Cω(R; H1(T)). More-
over the three integral terms

∫
T

u dx,
∫
T
(u2 + u2

x)dx and
∫

T (u3 + 3u2)dx are invariants of motion (i.e., they
remain constant over time).

Proof. Let us begin with the invariants of motion. For u0 ∈ H1(T), u ∈ X1
T for all T > 0, hence

ut = −(
1 − ∂2

x

)−1
∂x

(
u + u2

2

)
∈ X2

T .

Therefore, all the terms in (2.1) belong to X0
T . Scaling in (2.1) by 1 (resp. by u) yields after some

integrations by parts

d

dt

∫
T

u dx = 0

(
resp.

d

dt

∫
T

(
u2 + u2

x

)
dx = 0

)
.

For the last invariant of motion, we notice (following [33]) that

(
1

3
(u + 1)3

)
t
−

(
u2

t − u2
xt + (u + 1)2uxt − 1

4
(u + 1)4

)
x
= 0.

Integrating on T yields (d/dt)
∫

T (u + 1)3dx = 0. Since (d/dt)
∫
T
(3u + 1)dx = 0, we infer that

d

dt

∫
T

(
u3 + 3u2)dx = 0.

Let us now prove that u ∈ Cω(R; H1(T)). Since u ∈ C1(R; H1(T)), it is sufficient to check that for any
u0 ∈ H1(T) there are some numbers b > 0, M > 0, and some sequence (un)n�1 in H1(T) with

‖un‖H1 � M

bn
, n � 0, (2.4)

such that

u(t) =
∑
n�0

tnun, t ∈ (−b,b). (2.5)
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Note that the convergence of the series in (2.5) holds in H1(T) uniformly on [−rb, rb] for each r < 1.
Actually, we prove that u can be extended as an analytic function from Db := {z ∈C; |z| < b} into the
space H1

C
(T) := H1(T;C), endowed with the Euclidean norm

∥∥∥∥∑
k∈Z

ûkeikx

∥∥∥∥
H1

=
(∑

k∈Z

(
1 + |k|2)|ûk|2

) 1
2

.

We adapt the classical proof of the analyticity of the flow for an ODE with an analytic vector field
(see e.g. [15]) to our infinite dimensional framework. For u ∈ H1

C
(T), let Au = −(1 − ∂2

x )−1∂xu and
f (u) = A(u + u2). Since |k| � (k2 + 1)/2 for all k ∈ Z, ‖A‖L(H1

C
(T)) � 1/2. Pick a positive constant C1

such that

∥∥u2
∥∥

H1 � C1‖u‖2
H1 for all u ∈ H1

C
(T).

We define by induction on q a sequence (uq) of analytic functions from C to H1
C
(T) which will

converge uniformly on DT , for T > 0 small enough, to a solution of the integral equation

u(z) = u0 +
∫

[0,z]
f
(
u(ζ )

)
dζ = u0 +

1∫
0

f
(
u(sz)

)
z ds.

Let

u0(z) = u0, for z ∈ C,

uq+1(z) = u0 +
∫

[0,z]
f
(
uq(ζ )

)
dζ, for q � 0, z ∈C.

Claim 1. uq(z) = ∑
n�0 zn vq

n for all z ∈C and some sequence (vq
n) in H1

C
(T) with

∥∥vq
n

∥∥
H1 � M(q,b)

bn
for all q,n ∈N, b > 0.

The proof of Claim 1 is done by induction on q � 0. The result is clear for q = 0 with M(0,b) =
‖u0‖H1 , since v0

0 = u0 and v0
n = 0 for n � 1. Assume that Claim 1 is proved for some q � 0. Then, for

any r ∈ (0,1) and any b > 0,

∥∥zn vq
n

∥∥
H1 � M(q,b)rn for |z| � rb,

so that the series
∑

n�0 zn vq
n converges absolutely in H1

C
(T) uniformly for z ∈ Drb . The same holds

true for the series
∑

n�0 zn(
∑

0�l�n vq
l vq

n−l). It follows that

f
(
uq(ζ )

) = A

(∑
n�0

ζn vq
n +

∑
n�0

ζn
( ∑

0�l�n

vq
l vq

n−l

))

converges uniformly for ζ ∈ Drb . Thus
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uq+1(z) = u0 +
∫

[0,z]

∑
n�0

ζn A

(
vq

n +
∑

0�l�n

vq
l vq

n−l

)
dζ

=
∑
n�0

zn vq+1
n

where

vq+1
0 = u0,

vq+1
n = 1

n
A

(
vq

n−1 +
∑

0�l�n−1

vq
l vq

n−1−l

)
for n � 1.

It follows that for n � 1

∥∥vq+1
n

∥∥
H1 � ‖A‖

n

(
M(q,b)

bn−1
+ nC1

M2(q,b)

bn−1

)
� M(q + 1,b)

bn

with

M(q + 1,b) := sup
{‖u0‖H1 ,b‖A‖(M(q,b) + C1M2(q,b)

)}
.

Claim 1 is proved.

Claim 2. Let T := (2‖A‖(1 + 4C1‖u0‖H1 ))−1 . Then ‖uq − u‖L∞(DT ;H1
C
(T)) → 0 as q → ∞ for some u ∈

C(DT ; H1
C
(T)).

Let ZT = C(DT ; H1
C
(T)) be endowed with the norm |||v||| = sup|z|�T ‖v(z)‖H1 . Let R > 0, and for

v ∈ B R := {v ∈ ZT ; |||v||| � R}, let

(Γ v)(z) = u0 +
∫

[0,z]
f
(

v(ζ )
)

dζ.

Then

|||Γ v||| � ‖u0‖H1 + T ‖A‖(|||v||| + C1|||v|||2) � ‖u0‖H1 + T ‖A‖(R + C1 R2),
|||Γ v1 − Γ v2||| � T ‖A‖(|||v1 − v2||| +

∣∣∣∣∣∣v2
1 − v2

2

∣∣∣∣∣∣) � T ‖A‖(1 + 2C1 R)|||v1 − v2|||.

Pick R = 2‖u0‖H1 and T = (2‖A‖(1 + 2C1 R))−1. Then Γ contracts in B R . The sequence (uq), which is
given by Picard iteration scheme, has a limit u in Z T which fulfills

u(z) = u0 +
∫

[0,z]
f
(
u(ζ )

)
dζ, |z| � T .

In particular, u ∈ C1([−T , T ]; H1(T)) (the uq(z) being real-valued for z ∈ R) and it satisfies ut = f (u)

on [−T , T ] together with u(0) = u0; that is, u solves (2.1)–(2.2) in the class C1([−T , T ]; H1(T)) ⊂ X1
T .

Claim 3. u(z) = ∑
n�0 zn vn for |z| < T , where vn = limq→∞ vq

n for each n � 0.
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From Claim 1, we infer that for all n � 1

vq
n = 1

2π i

∫
|z|=T

z−n−1uq(z)dz,

hence

∥∥v p
n − vq

n

∥∥
H1 � T −n

∣∣∣∣∣∣up − uq
∣∣∣∣∣∣.

From Claim 2, we infer that (vq
n) is a Cauchy sequence in H1

C
(T). Let vn denote its limit in H1

C
(T).

Note that

∥∥vn − vq
n

∥∥
H1 � T −n

∣∣∣∣∣∣u − uq
∣∣∣∣∣∣,

and hence the series
∑

n�0 zn vn is convergent for |z| < T . Therefore, for |z| � rT with r < 1,

∥∥∥∥∑
n�0

zn(vn − vq
n
)∥∥∥∥

H1
� (1 − r)−1

∣∣∣∣∣∣u − uq
∣∣∣∣∣∣,

and hence uq(z) = ∑
n�0 zn vq

n → ∑
n�0 zn vn in ZrT as q → ∞. It follows that

u(z) =
∑
n�0

zn vn for |z| < T .

The proof of Proposition 2.2 is complete. �
3. Unique continuation property for BBM

In this section we prove a UCP for the BBM equation for small solutions with nonnegative mean
values.

Theorem 3.1. Let u0 ∈ H1(T) be such that

∫
T

u0(x)dx � 0, (3.1)

and

‖u0‖L∞(T) < 3. (3.2)

Assume that the solution u of (2.1)–(2.2) satisfies

u(x, t) = 0 for all (x, t) ∈ ω × (0, T ), (3.3)

where ω ⊂ T is a nonempty open set and T > 0. Then u0 = 0, and hence u ≡ 0.
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Proof. Using a system of coordinates, we may identify T to [0,2π) in such a way that ω ⊃
[0, ε) ∪ (2π − ε,2π) for some ε > 0. (This is possible whenever we take the origin of the coordi-
nates inside ω.) Since u ∈ Cω(R; H1(T)) by Proposition 2.2, we have that u(x, ·) ∈ Cω(R) for all x ∈ T.
(3.3) gives then that

u(x, t) = 0 for (x, t) ∈ ω ×R. (3.4)

Introduce the function

v(x, t) =
x∫

0

u(y, t)dy.

Then v ∈ Cω(R; H2(0,2π)) and v satisfies

vt − vtxx + vx + u2

2
= 0, x ∈ (0,2π), (3.5)

as it may be seen by integrating (2.1) on (0, x). Let

I(t) =
2π∫
0

v(x, t)dx.

Note that I ∈ Cω(R). Integrating (3.5) on (0,2π) gives with (3.1)

It = −
2π∫
0

u0(x)dx − 1

2

2π∫
0

∣∣u(x, t)
∣∣2

dx � 0.

Since ‖u(t)‖H1 = ‖u0‖H1 for all t ∈ R, v ∈ L∞(R, H2(0,2π)) and I ∈ L∞(R). It follows that the func-
tion I has a finite limit as t → ∞, that we denote by l. From the boundedness of ‖u(t)‖H1(T) for t ∈ R,
we infer the existence of a sequence tn ↗ +∞ such that

u(tn) ⇀ ũ0 in H1(T) (3.6)

for some ũ0 ∈ H1(T). Let ũ denote the solution of the IVP for BBM corresponding to the initial data
ũ0; that is, ũ solves

ũt − ũtxx + ũx + ũũx = 0, x ∈ T, t ∈R,

ũ(x,0) = ũ0(x).

Pick any s ∈ (1/2,1). As u(tn) → ũ0 strongly in Hs(T), we infer from Theorem 2.1 that

u(tn + ·) → ũ in C
([0,1]; Hs(T)

)
. (3.7)

It follows from (3.4), (3.7) and the fact that ũ ∈ Cω(R, H1(T)) that

ũ(x, t) = 0 for (x, t) ∈ ω ×R.
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On the other hand,
∫ 2π

0 ũ0(x)dx = ∫ 2π
0 u0(x)dx from (3.6) and the invariance of

∫ 2π
0 u(x, t)dx. Let

ṽ(x, t) = ∫ x
0 ũ(y, t)dy and Ĩ(t) = ∫ 2π

0 ṽ(x, t)dx. Then we still have that

Ĩt = −
2π∫
0

u0(x)dx − 1

2

2π∫
0

∣∣ũ(x, t)
∣∣2

dx � 0. (3.8)

But we infer from (3.7) that

I(tn) → Ĩ(0), I(tn + 1) → Ĩ(1).

Since

lim
n→∞ I(tn) = lim

n→∞ I(tn + 1) = l,

we have that Ĩ(0) = Ĩ(1). Combined with (3.8), this yields

ũ(x, t) = 0, (x, t) ∈ T× [0,1].

In particular, ũ0 = 0. From (3.6), we infer that

2π∫
0

(
u3(x, tn) + 3u2(x, tn)

)
dx → 0 as n → ∞.

As
∫ 2π

0 (u3 + 3u2)dx is a conserved quantity, we infer that

2π∫
0

(
3 + u0(x)

)∣∣u0(x)
∣∣2

dx = 0,

which, combined with (3.2), yields u0 = 0. �
Remark 3.2. Note that Theorem 3.1 is false if the assumptions u0 ∈ H1(T) and (3.1) are removed.
Indeed, if u ∈ C(R; L2(T)) is defined for x ∈ T ∼ (0,2π) and t ∈R by

u(x, t) = u0(x) =
{−2 if |x − π | � π

2 ,

0 if π
2 < |x − π | < π,

then (2.1) and (2.2) are satisfied, although u 	≡ 0.

4. Unique continuation property for BBM-like equations

We shall consider BBM-like equations with different nonlinear terms. We first consider a general-
ized BBM equation without drift term, and next a BBM-like equation with a nonlocal bilinear term.
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4.1. Generalized BBM equation without drift term

We consider the following generalized BBM equation

ut − utxx + [
f (u)

]
x = 0, x ∈ T, t ∈R, (4.1)

u(x,0) = u0(x), (4.2)

where f ∈ C1(R), f (u) � 0 for all u ∈ R, and the only solution u ∈ (−δ, δ) of f (u) = 0 is u = 0, for
some number δ > 0. That class of BBM-like equations includes the Morrison–Meiss–Carey equation

ut − utxx + uux = 0

for f (u) = u2/2. Note that the global well-posedness of (4.1)–(4.2) in H1(T) can easily be derived
from the contraction mapping theorem and the conservation of the H1-norm. It turns out that the
UCP can be derived in a straight way and without any additional assumption on the initial data.

Theorem 4.1. Let f be as above, and let ω be a nonempty open set in T. Let u0 ∈ H1(T) be such that the
solution u of (4.1)–(4.2) satisfies u(x, t) = 0 for (x, t) ∈ ω × (0, T ) for some T > 0. Then u0 = 0.

Proof. Once again, we can assume without loss of generality that ω = [0, ε) ∪ (2π − ε,2π). The
prolongation of u by 0 on (R \ (0,2π)) × (0, T ), still denoted by u, satisfies

ut − utxx + [
f (u)

]
x = 0, x ∈R, t ∈ (0, T ), (4.3)

u(x, t) = 0, x /∈ (ε,2π − ε), t ∈ (0, T ), (4.4)

u ∈ C
([0, T ]; H1(R)

)
, ut ∈ C

([0, T ]; H2(R)
)
. (4.5)

Scaling in (4.3) by ex yields for t ∈ (0, T )

∞∫
−∞

f
(
u(x, t)

)
ex dx = 0,

for
∫ ∞
−∞ utxxex dx = ∫ ∞

−∞ utex dx by two integrations by parts. Since f is nonnegative, this yields

f
(
u(x, t)

) = 0 for (x, t) ∈R× (0, T ).

Since u is continuous and it vanishes for x /∈ (ε,2π − ε), we infer from the assumptions about f that
u ≡ 0. �

Pick any nonnegative function a ∈ C∞(T) with ω := {x ∈ T; a(x) > 0} nonempty. We are interested
in the stability properties of the system

ut − utxx + [
f (u)

]
x + a(x)u = 0, x ∈ T, t � 0, (4.6)

u(x,0) = u0(x), (4.7)

where f is as above. The following weak stability result holds.

Corollary 4.2. Let u0 ∈ H1(T). Then (4.6)–(4.7) admits a unique solution u ∈ C([0, T ]; H1(T)) for all T > 0.
Furthermore, u(t) → 0 weakly in H1(T), hence strongly in Hs(T) for s < 1, as t → +∞.
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Proof. The local well-posedness in Hs(T) for any s > 1/2 is derived from the contraction mapping
theorem in much the same way as for Theorem 2.1. The global well-posedness in H1(T) follows at
once from the energy identity

∥∥u(T )
∥∥2

H1 − ‖u0‖2
H1 + 2

T∫
0

∫
T

a(x)
∣∣u(x, t)

∣∣2
dx dt = 0, (4.8)

obtained by scaling each term in (4.6) by u. On the other hand, still from the application of the con-
traction mapping theorem, given any s > 1/2, any ρ > 0 and any u0, v0 ∈ Hs(T) with ‖u0‖Hs(T) � ρ ,
‖v0‖Hs(T) � ρ , there is some time T = T (s,ρ) > 0 such that the solutions u and v of (4.6)–(4.7)
corresponding to the initial data u0 and v0, respectively, fulfill

‖u − v‖C([0,T ];Hs(T)) � 2‖u0 − v0‖Hs(T). (4.9)

Pick any initial data u0 ∈ H1(T), any s ∈ (1/2,1), and let ρ = ‖u0‖H1(T) and T = T (s,ρ). Note that
‖u(t)‖H1 is nonincreasing by (4.8), hence it has a nonnegative limit l as t → ∞. Let v0 be in the
ω-limit set of (u(t))t�0 in H1(T) for the weak topology; that is, for some sequence tn → ∞ we have
u(tn) → v0 weakly in H1(T). Extracting a subsequence if needed, we may assume that tn+1 − tn � T
for all n. From (4.8) we infer that

lim
n→∞

tn+1∫
tn

∫
T

a(x)
∣∣u(x, t)

∣∣2
dx dt = 0. (4.10)

Since u(tn) → v0 (strongly) in Hs(T), and ‖u(tn)‖Hs(T) � ‖u(tn)‖H1(T) � ρ , we have from (4.9) that

u(tn + ·) → v in C
([0, T ]; Hs(T)

)
as n → ∞, (4.11)

where v = v(x, t) denotes the solution of

vt − vtxx + [
f (v)

]
x + a(x)v = 0, x ∈ T, t � 0,

v(x,0) = v0(x).

Note that v ∈ C([0, T ]; H1(T)) for v0 ∈ H1(T). (4.10) combined with (4.11) yields

T∫
0

∫
T

a(x)
∣∣v(x, t)

∣∣2
dx dt = 0,

so that av ≡ 0. By Theorem 4.1, v0 = 0 and hence, as t → ∞,

u(t) → 0 weakly in H1(T),

u(t) → 0 strongly in Hs(T) for s < 1. �
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4.2. A BBM-like equation with a nonlocal bilinear term

Here, we consider a BBM-type equation with the drift term, but with a nonlocal bilinear term
given by a convolution, namely

ut − utxx + ux + λ(u ∗ u)x = 0, x ∈R, (4.12)

where λ ∈R is a constant and

(u ∗ v)(x) =
∞∫

−∞
u(x − y)v(y)dy for x ∈R.

A UCP can be derived without any restriction on the initial data.

Theorem 4.3. Assume that λ 	= 0. Let u ∈ C1([0, T ]; H1(R)) be a solution of (4.12) such that

u(x, t) = 0 for |x| > L, t ∈ (0, T ). (4.13)

Then u ≡ 0.

Proof. Taking the Fourier transform of each term in (4.12) yields

(
1 + ξ2)ût = −iξ

(
û + λû2), ξ ∈R, t ∈ (0, T ). (4.14)

Note that, for each t ∈ (0, T ), û(·, t) and ût(·, t) may be extended to C as entire functions of exponen-
tial type at most L. Furthermore, (4.14) is still true for ξ ∈ C and t ∈ (0, T ) by analytic continuation.
To prove that u ≡ 0, it is sufficient to check that

∂k
ξ û(i, t) = 0 ∀k ∈N, ∀t ∈ (0, T ). (4.15)

Let us prove (4.15) by induction on k. First, we see that (4.14) gives that either

û(i, t) = 0 ∀t ∈ (0, T ), (4.16)

or

û(i, t) = −λ−1 ∀t ∈ (0, T ). (4.17)

Derivating with respect to ξ in (4.14) yields (the upper script denoting the order of derivation in ξ )

2ξ ût(ξ, t) + (
1 + ξ2)û(1)

t (ξ, t)

= −iû(ξ, t)
(
1 + λû(ξ, t)

) − iξ û(1)(ξ, t)
(
1 + 2λû(ξ, t)

)
. (4.18)

Note that ût(i, t) = 0 if either (4.16) or (4.17) hold. Combined with (4.18), this gives

û(1)(i, t) = 0, t ∈ (0, T ).

Assume now that, for some k � 2,
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û(l)(i, t) = 0 for t ∈ (0, T ) and any l ∈ {1, . . . ,k − 1}. (4.19)

Derivating k times with respect to ξ in (4.14) yields

(
1 + ξ2)û(k)

t + 2kξ û(k−1)
t + k(k − 1)û(k−2)

t

= −iξ

(
û(k) + λ

k∑
l=0

Cl
kû(l)û(k−l)

)
− ik

(
û(k−1) + λ

k−1∑
l=0

Cl
k−1û(l)û(k−1−l)

)
. (4.20)

From (4.19) and (4.20) we infer that

û(k)(i, t)
(
1 + 2λû(i, t)

) = 0.

Combined with (4.16) and (4.17), this yields

û(k)(i, t) = 0.

Thus

û(k)(i, t) = 0 ∀k � 1. (4.21)

(4.17) and (4.21) would imply

û(ξ, t) = −λ−1 ∀ξ ∈C,

which contradicts the fact that û(·, t) ∈ L2(R). Thus (4.16) holds and u ≡ 0. �
5. Unique continuation property for the KdV–BBM equation

In this section we prove some UCP for the following KdV–BBM equation

ut − utxx − cuxxx + qux = 0, x ∈ T, t ∈ (0, T ), (5.1)

where q ∈ L∞(0, T ; L∞(T)) is a given potential function and c 	= 0 is a given real constant. The UCP
obtained here will be used in the next section to obtain a semiglobal exponential stabilization result
for BBM with a moving damping.

Theorem 5.1. Let c ∈ R \ {0}, T > 2π/|c|, and q ∈ L∞(0, T ; L∞(T)). Let ω ⊂ T be a nonempty open set. Let
u ∈ L2(0, T ; H2(T)) ∪ L∞(0, T ; H1(T)) satisfying (5.1) and

u(x, t) = 0 for a.e. (x, t) ∈ ω × (0, T ). (5.2)

Then u ≡ 0 in T× (0, T ).

Proof. Assume first that

u ∈ L2(0, T ; H2(T)
)
. (5.3)

Let w = u − uxx ∈ L2(0, T ; L2(T)). Then (u, w) solves the following system
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u − uxx = w, (5.4)

wt + cwx = (c − q)ux. (5.5)

We shall establish some Carleman estimates for the elliptic equation (5.4) and the transport equation
(5.5) with the “same weights”, and combine both Carleman estimates into a single one for (5.1). We
refer the reader to [50] for a similar analysis for a coupled system of elliptic–hyperbolic equations,
and to [1,10] for coupled systems of parabolic–hyperbolic equations.

Remark 5.2. There is a finite speed propagation for KdV–BBM: assuming for simplicity that q(x) = c
for all x ∈ T, where c > 0 is given, and that ω = (2π − ε,2π) for a small ε > 0, then the UCP fails
in time T � (2π − 2ε)/c. Indeed, picking any nontrivial initial state u0 ∈ C∞

0 (0, ε), we easily see that
the solution (u, w) of (5.4)–(5.5) reads u(x, t) = u0(x − ct), w = w0(x − ct) where w0 = (1 − ∂2

x )u0.
Then u(x, t) = 0 for (x, t) ∈ ω × (0, (2π − 2ε)/c), although u 	≡ 0. Hence, the condition T > 2π/|c| in
Theorem 5.1 is sharp. The necessity of T > 2π/|c| in all the control results for KdV–BBM is also clear
from the value of the spectral gap deduced from (6.6) when q is constant. Note that, by contrast,
there is an infinite speed propagation for both BBM and KdV (see [30,36,39]).

Introduce a few notations. We identify T with [0,2π) by choosing a system of coordinates.
Without loss of generality, we can assume that c > 0 (the case c < 0 being similar), and that
ω = (2π − η,2π + η) ∼ [0, η) ∪ (2π − η,2π) for some η ∈ (0,π) (by choosing the origin of the
coordinates inside ω). Assume given a time T fulfilling

T >
2π

c
. (5.6)

Pick some numbers δ > 0 and ρ ∈ (0,1) such that

ρcT > 2π + δ (5.7)

and a function ψ ∈ C∞([0,2π ]) such that

ψ(x) = |x + δ|2 for x ∈ [η/2,2π − η/2], (5.8)

dkψ

dxk
(0) = dkψ

dxk
(2π) for k = 1,2,3, (5.9)

2δ � dψ

dx
(x) � 2(2π + δ) for x ∈ [0,2π ]. (5.10)

Introduce the function ϕ ∈ C∞([0,2π ] ×R) defined by

ϕ(x, t) = ψ(x) − ρc2t2. (5.11)

Then the following Carleman estimate for (5.1) will be derived.

Proposition 5.3. Let ω, c and T be as above. Then there exists some positive numbers s2 and C2 such that for
all s � s2 and all u ∈ L2(0, T ; H2(T)) satisfying (5.1), we have
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T∫
0

∫
T

[
s|uxx|2 + s|ux|2 + s3|u|2]e2sϕ dx dt + s

∫
T

[|u − uxx|2e2sϕ]
|t=0 dx

� C2

T∫
0

∫
ω

[
s|uxx|2 + s3|u|2]e2sϕ dx dt. (5.12)

Note that the Carleman estimate (5.12) yields at once the observability inequality

∥∥u(·,0)
∥∥2

H2(T)
� C

T∫
0

∥∥u(·, t)
∥∥2

H2(ω)
dt. (5.13)

The proof of Proposition 5.3 is outlined as follows. In the first step, we prove a Carleman estimate
for the elliptic equation (5.4) with the weight esψ . In the second step, we prove a Carleman estimate
for the transport equation (5.5) with the weight esϕ . Note that we are concerned here with global
Carleman estimates with weights suitably chosen in the control region, so that our results do not
seem to be direct consequences of the local Carleman estimates in [16]. In the last step, we combine
the two above Carleman estimates into a single one to obtain (5.12).

Step 1. Carleman estimate for the elliptic equation.

Lemma 5.4. There exist s0 � 1 and C0 > 0 such that for all s � s0 and all u ∈ H2(T), the following holds

∫
T

[
s|ux|2 + s3|u|2]e2sψ dx � C0

(∫
T

|uxx|2e2sψ dx +
∫
ω

s3|u|2e2sψ dx

)
. (5.14)

Proof. Let v = esψ u and P = ∂2
x . Then

esψ P u = esψ P
(
e−sψ v

) = P s v + Pa v

where

P s v = (sψx)
2 v + vxx, (5.15)

Pa v = −2sψx vx − sψxx v (5.16)

denote the (formal) self-adjoint and skew-adjoint parts of esψ P (e−sψ ·), respectively. It follows that

∥∥esψ P u
∥∥2 = ‖P s v‖2 + ‖Pa v‖2 + 2(P s v, Pa v)

where ( f , g) = ∫
T

f g dx, and ‖ f ‖2 = ( f , f ). Then

(P s v, Pa v) = (
(sψx)

2 v,−2sψx vx
) + (

(sψx)
2 v,−sψxx v

)
+ (vxx,−2sψx vx) + (vxx,−sψxx v) =: I1 + I2 + I3 + I4.

After some integrations by parts in x, we obtain with (5.9) that
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I1 = 3
∫
T

(sψx)
2sψxx v2 dx,

I3 =
∫
T

sψxx v2
x dx,

I4 =
∫
T

vx(sψxxx v + sψxx vx)dx = −
∫
T

sψxxxx
v2

2
dx +

∫
T

sψxx v2
x dx.

Therefore

∥∥esψ P u
∥∥2 = ‖P s v‖2 + ‖Pa v‖2 +

∫
T

[
4(sψx)

2sψxx − sψxxxx
]
v2 dx +

∫
T

(4sψxx)v2
x dx.

From (5.8), we infer that there exist some numbers s0 � 1, K > 0 and K ′ > 0 such that for all s � s0

4(sψx)
2sψxx − sψxxxx � K s3 for (x, t) ∈ (η/2,2π − η/2) × (0, T ),

4sψxx � K s for (x, t) ∈ (η/2,2π − η/2) × (0, T ),

while, setting ω0 = [0, η/2) ∪ (2π − η/2,2π),

∣∣4(sψx)
2sψxx − sψxxxx

∣∣ � K ′s3 for (x, t) ∈ ω0 × (0, T ),

|4sψxx| � K ′s for (x, t) ∈ ω0 × (0, T ).

We conclude that for s � s0 and some constant C > 0

‖P s v‖2 +
∫
T

[
s|vx|2 + s3|v|2]dx � C

(∥∥esψ P u
∥∥2 +

∫
ω0

[
s|vx|2 + s3|v|2]dx

)
. (5.17)

Next we show that
∫
T

s−1|vxx|2 dx is also less than the r.h.s. of (5.17). We have

∫
T

s−1|vxx|2 dx �
∫
T

s−1
∣∣P s v − (sψx)

2 v
∣∣2

dx

� 2
∫
T

s−1(|P s v|2 + |sψx|4|v|2)dx

� C

(
s−1‖P s v‖2 +

∫
T

s3|v|2 dx

)
.

Combined with (5.17), this gives

∫ {
s−1|vxx|2 + s|vx|2 + s3|v|2}dx � C

(∥∥esψ P u
∥∥2 +

∫
ω

s3|v|2 dx +
∫
ω

s|vx|2 dx

)
(5.18)
T 0 0
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where C does not depend on s and v . Finally, we show that we can drop the last term in the r.h.s. of
(5.18). Let ξ ∈ C∞

0 (ω) with 0 � ξ � 1 and ξ(x) = 1 for x ∈ ω0. Then

∫
ω0

|vx|2 dx �
∫
ω

ξ |vx|2 dx

� −
∫
ω

(ξx vx + ξ vxx)v dx

� 1

2

∫
ω

ξxx v2 dx −
∫
ω

ξ vxx v dx

so that

2
∫
ω0

s|vx|2 � ‖ξxx‖L∞(T)

∫
ω

s|v|2 dx + κ

∫
ω

s−1|vxx|2 dx + κ−1
∫
ω

s3|v|2 dx (5.19)

where κ > 0 is a constant that can be chosen as small as desired. Combining (5.18) and (5.19) with κ
small enough gives for s � s0 (with a possibly increased value of s0) and some constant C that does
not depend on s and v

∫
T

{
s−1|vxx|2 + s|vx|2 + s3|v|2}dx � C

(∥∥esψ P u
∥∥2 +

∫
ω

s3|v|2 dx

)
. (5.20)

Replacing v by esψ u in (5.20) gives at once (5.14). The proof of Lemma 5.4 is complete. �
Step 2. Carleman estimate for the transport equation.

Lemma 5.5. There exist s1 � s0 and C1 > 0 such that for all s � s1 and all w ∈ L2(T × (0, T )) with wt +
cwx ∈ L2(T× (0, T )), the following holds

T∫
0

∫
T

s|w|2e2sϕ dx dt +
∫
T

s
[|w|2e2sϕ]

|t=0 dx +
∫
T

s
[|w|2e2sϕ]

|t=T dx

� C1

( T∫
0

∫
T

|wt + cwx|2e2sϕ dx dt +
T∫

0

∫
ω

s|w|2e2sϕ dx dt

)
. (5.21)

Proof. We first assume that w ∈ H1(T× (0, T )). Let v = esϕ w and P = ∂t + c∂x . Then

esϕ P w = esϕ P
(
e−sϕ v

)
= (−sϕt v − csϕx v) + (vt + cvx)

=: P s v + Pa v.

It follows that
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∥∥esϕ P w
∥∥2

L2(T×(0,T ))
= ‖P s v‖2

L2(T×(0,T ))
+ ‖Pa v‖2

L2(T×(0,T ))
+ 2(P s v, Pa v)L2(T×(0,T )). (5.22)

After some integrations by parts in t and x in the last term in (5.22), we obtain

2(P s v, Pa v)L2(T×(0,T )) =
T∫

0

∫
T

s
(
ϕtt + 2cϕxt + c2ϕxx

)
v2 dx dt

−
∫
T

s(ϕt + cϕx)v2
∣∣T
0 dx −

T∫
0

cs(ϕt + cϕx)v2
∣∣2π

0 dt. (5.23)

Using (5.9), (5.11) and the fact that v(0, t) = v(2π, t), we notice that the last term in (5.23) is null.
From (5.7)–(5.11), we infer that

ϕtt + 2cϕxt + c2ϕxx = 2(1 − ρ)c2 > 0 for x ∈ (η/2,2π − η/2), t ∈ (0, T ),

−(ϕt + cϕx) � 2c(ρcT − 2π − δ) > 0 for x ∈ (0,2π), t = T ,

ϕt + cϕx � 2cδ > 0 for x ∈ (0,2π), t = 0.

Thus

T∫
0

∫
T

s|v|2 dx dt +
∫
T

s
(|v|2|t=0 + |v|2|t=T

)
dx � C

( T∫
0

∫
T

∣∣esϕ P w
∣∣2

dx dt +
T∫

0

∫
ω

s|v|2 dx dt

)
,

which gives at once (5.21) by replacing v by esϕ w . The proof of Lemma 5.5 is achieved when w ∈
H1(T× (0, T )).

We now claim that Lemma 5.5 is still true when w and f := wt + cwx are in L2(0, T ; L2(T)).
Indeed, in that case w ∈ C([0, T ]; L2(T)), and if (wn

0) and ( f n) are two sequences in H1(T) and
L2(0, T ; H1(T)), respectively, such that

wn
0 → w(0) in L2(T),

f n → f in L2(0, T ; L2(T)
)
,

then the solution wn ∈ C([0, T ]; H1(T)) of

wn
t + cwn

x = f n,

wn(0) = wn
0

satisfies wn ∈ H1(T× (0, T )) and wn → w in C([0, T ]; L2(T)), so that we can apply (5.21) to wn and
next pass to the limit n → ∞ in (5.21). The proof of Lemma 5.5 is complete. �

Let us complete the proof of Proposition 5.3. Let u ∈ L2(0, T ; H2(T)) satisfy (5.1), and let w =
u − uxx ∈ L2(0, T ; L2(T)). Then wt + cwx = (c − q)ux ∈ L2(0, T ; L2(T)). Combining (5.4), (5.5), (5.14)
(multiplied by e−2sρc2t2

and next integrated over (0, T )), and (5.21), we obtain for s � s1 that
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T∫
0

∫
T

[
s|ux|2 + s3|u|2 + s|u − uxx|2

]
e2sϕ dx dt +

∫
T

s
[|u − uxx|2e2sϕ]

|t=0 dx

� C

( T∫
0

∫
T

[|uxx|2 + |(c − q)ux|2
]
e2sϕ dx dt +

T∫
0

∫
ω

[
s|u − uxx|2 + s3|u|2]e2sϕ dx dt

)
. (5.24)

Then choosing s2 � s1 and C2 > C large enough, we obtain (5.12) for any s � s2 and any u ∈
L2(0, T ; H2(T)) satisfying (5.1). �

We are now in a position to prove Theorem 5.1. Pick any function u fulfilling (5.1) and (5.2). If
u ∈ L2(0, T ; H2(T)), then it follows from (5.12) that u ≡ 0 in T× (0, T ).

Assume now that u ∈ L∞(0, T ; H1(T)). We proceed as in [39]. Since u and w := u − uxx are not
regular enough to apply Lemmas 5.4 and 5.5, we smooth them by using some convolution in time.
For any function v = v(x, t) and any number h > 0, we set

v[h](x, t) = 1

h

t+h∫
t

v(x, s)ds.

Recall that if v ∈ L p(0, T ; V ), where 1 � p � +∞ and V denotes any Banach space, then v[h] ∈
W 1,p(0, T − h; V ), ‖v[h]‖Lp(0,T −h;V ) � ‖v‖Lp(0,T ;V ) , and for p < ∞ and T ′ < T

v[h] → v in Lp(
0, T ′; V

)
as h → 0.

In the sequel, v[h]
t denotes (v[h])t , v[h]

x denotes (v[h])x , etc. Assume again that c > 0. Pick any T ′ ∈
( 2π

c , T ), any pair (ρ, δ) such that (5.7) still holds with T replaced by T ′ , and define the functions
ψ and ϕ as above. Then for any positive number h < h0 := T − T ′ , u[h] ∈ W 1,∞(0, T ′; H1(T)), and it
solves

u[h]
t − u[h]

txx − cu[h]
xxx + (qux)

[h] = 0 in D′(0, T ′; H−2(T)
)
, (5.25)

u[h](x, t) = 0, (x, t) ∈ ω × (
0, T ′). (5.26)

From (5.25), we infer that

u[h]
xxx = c−1(u[h]

t − u[h]
txx + (qux)

[h]) ∈ L∞(
0, T ′; H−1(T)

)
,

hence

u[h] ∈ L∞(
0, T ′; H2(T)

)
. (5.27)

This yields, with (5.4)–(5.5),

w[h] = u[h] − u[h]
xx ∈ L∞(

0, T ′; L2(T)
)
, (5.28)

w[h]
t + cw[h]

x = (
(c − q)ux

)[h] ∈ W 1,∞(
0, T ; L2(T)

)
. (5.29)

From (5.26)–(5.29) and Lemmas 5.4 and 5.5, we infer that there exist some constants s1 > 0 and
C1 > 0 such that for all s � s1 and all h ∈ (0,h0), we have
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T ′∫
0

∫
T

(
s
∣∣u[h]

x

∣∣2 + s3
∣∣u[h]∣∣2 + s

∣∣w[h]∣∣2)
e2sϕ dx dt

� C1

T ′∫
0

∫
T

(∣∣u[h]∣∣2 + ∣∣w[h]∣∣2 + ∣∣((c − q)ux
)[h]∣∣2)

e2sϕ dx dt

� C1

T ′∫
0

∫
T

(∣∣u[h]∣∣2 + ∣∣w[h]∣∣2 + 2
∣∣(c − q)u[h]

x

∣∣2

+ 2
∣∣((c − q)ux

)[h] − (c − q)u[h]
x

∣∣2)
e2sϕ dx dt. (5.30)

Comparing the powers of s in (5.30), we obtain that for s � s3 > s1, h ∈ (0,h0) and some constant
C3 > C1 (that does not depend on s,h)

T ′∫
0

∫
T

(
s
∣∣u[h]

x

∣∣2 + s3
∣∣u[h]∣∣2 + s

∣∣w[h]∣∣2)
e2sϕ dx dt

� C3

T ′∫
0

∫
T

∣∣((c − q)ux
)[h] − (c − q)u[h]

x

∣∣2
e2sϕ dx dt.

Fix s to the value s3, and let h → 0. We claim that

T ′∫
0

∫
T

∣∣((c − q)ux
)[h] − (c − q)u[h]

x

∣∣2
e2s3ϕ dx dt → 0 as h → 0.

Indeed, as h → 0,

(
(c − q)ux

)[h] → (c − q)ux in L2(0, T ′; L2(T)
)
,

(c − q)u[h]
x → (c − q)ux in L2(0, T ′; L2(T)

)
,

while e2s3ϕ ∈ L∞(T× (0, T ′)). Therefore,

T ′∫
0

∫
T

∣∣u[h]∣∣2
e2s3ϕ dx dt → 0 as h → 0.

On the other hand, u[h] → u in L2(0, T ′; L2(T)), hence

T ′∫
0

∫
T

∣∣u[h]∣∣2
e2s3ϕ dx dt →

T ′∫
0

∫
T

|u|2e2s3ϕ dx dt

as h → 0. We conclude that u ≡ 0 in T × (0, T ′). As T ′ may be taken arbitrarily close to T , we infer
that u ≡ 0 in T× (0, T ), as desired. The proof of Theorem 5.1 is complete. �
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6. Control and stabilization of the KdV–BBM equation

In this section we are concerned with the control properties of the system

ut − utxx − cuxxx + (c + 1)ux + uux = a(x)h, x ∈ T, t � 0, (6.1)

u(x,0) = u0(x), (6.2)

where c ∈R \ {0} and a ∈ C∞(T) is a given nonzero function. Let

ω = {
x ∈ T; a(x) 	= 0

} 	= ∅. (6.3)

6.1. Exact controllability

The first result is a local controllability result in large time.

Theorem 6.1. Let a ∈ C∞(T) with a 	= 0, s � 0 and T > 2π/|c|. Then there exists a δ > 0 such that for any
u0, uT ∈ Hs(T) with

‖u0‖Hs + ‖uT ‖Hs < δ,

one can find a control input h ∈ L2(0, T ; Hs−2(T)) such that the system (6.1)–(6.2) admits a unique solution
u ∈ C([0, T ], Hs(T)) satisfying u(·, T ) = uT .

Proof. The result is first proved for the linearized equation, and next extended to the nonlinear one
by a fixed-point argument.

Step 1. Exact controllability of the linearized system.

We first consider the exact controllability of the linearized system

ut − utxx − cuxxx + (c + 1)ux = a(x)h, (6.4)

u(x,0) = u0(x), (6.5)

in Hs(T) for any s ∈ R. Let A = (1 − ∂2
x )−1(c∂3

x − (c + 1)∂x) with domain D(A) = Hs+1(T) ⊂ Hs(T).
The operator A generates a group of isometries {W (t)}t∈R in Hs(T), with

W (t)v =
∞∑

k=−∞
e
−it ck3+(c+1)k

k2+1 v̂keikx (6.6)

for any

v =
∞∑

k=−∞
v̂keikx ∈ Hs(T).

The system (6.4)–(6.5) may be cast into the following integral form

u(t) = W (t)u0 +
t∫

W (t − τ )
(
1 − ∂2

x

)−1[
a(x)h(τ )

]
dτ .
0
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We proceed as in [31]. Take h(x, t) in (6.4) to have the following form

h(x, t) = a(x)
∞∑

j=−∞
f jq j(t)eijx (6.7)

where f j and q j(t) are to be determined later. Then the solution u of Eq. (6.4) can be written as

u(x, t) =
∞∑

k=−∞
ûk(t)eikx

where ûk(t) solves

d

dt
ûk(t) + ikσ(k)ûk(t) = 1

1 + k2

∞∑
j=−∞

f jq j(t)m j,k (6.8)

with σ(k) = ck2+c+1
1+k2 , and

m j,k = 1

2π

∫
T

a2(x)ei( j−k)x dx.

Thus

ûk(T ) − e−ikσ (k)T ûk(0) = 1

1 + k2

∞∑
j=−∞

f jm j,k

T∫
0

e−ikσ (k)(T −τ )q j(τ )dτ

or

ûk(T )eikσ (k)T − ûk(0) = 1

1 + k2

∞∑
j=−∞

f jm j,k

T∫
0

eikσ (k)τ q j(τ )dτ .

It may occur that the eigenvalues

λk = ikσ(k), k ∈ Z

are not all different. If we count only the distinct values, we obtain the sequence (λk)k∈I , where I ⊂ Z

has the property that λk1 	= λk2 for any k1,k2 ∈ I with k1 	= k2. For each k1 ∈ Z set

I(k1) = {
k ∈ Z; kσ(k) = k1σ(k1)

}
and m(k1) = |I(k1)| (the number of elements in I(k1)). Clearly, there exists some integer k∗ such that
k ∈ I if |k| > k∗ . Thus there are only finite many integers in I, say k j , j = 1, . . . ,n, such that one can
find another integer k 	= k j with λk = λk j . Let

I j = {k ∈ Z; k 	= k j, λk = λk j }, j = 1,2, . . . ,n.
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Then

Z = I∪ I1 ∪ · · · ∪ In.

Note that I j contains at most two integers, for m(k j) � 3. We write

I j = {k j,1,k j,m(k j)−1}, j = 1,2, . . . ,n

and rewrite k j as k j,0. Let

pk(t) := e−ikσ (k)t, k = 0,±1,±2, . . . .

Then the set

P := {
pk(t); k ∈ I

}
forms a Riesz basis for its closed span, PT , in L2(0, T ) if

T >
2π

|c| .

Let L := {q j(t); j ∈ I} be the unique dual Riesz basis for P in PT ; that is, the functions in L are the
unique elements of PT such that

T∫
0

q j(t)pk(t)dt = δkj, j,k ∈ I.

In addition, we choose

qk = qk j if k ∈ I j.

For such choice of q j(t), we have then, for any k ∈ Z,

ûk(T )eikσ (k)T − ûk(0) = 1

1 + k2
fkmk,k if k ∈ I \ {k1, . . . ,kn}; (6.9)

ûk j,q (T )eik jσ (k j)T − ûk j,q (0) = 1

1 + k2
j,q

m(k j)−1∑
l=0

fk j,lmk j,l,k j,q

if k = k j,q, j = 1, . . . ,n, q = 0, . . . ,m(k j) − 1. (6.10)

It is well known that for any finite set J ⊂ Z, the Gram matrix AJ = (mp,q)p,q∈J is definite positive,

hence invertible. It follows that the system (6.9)–(6.10) admits a unique solution �f (. . . , f−2, f−1,

f0, f1, f2, . . .). Since

mk,k = 1

2π

∫
a2(x)dx =: μ 	= 0,
T
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we have that

fk = 1 + k2

μ

(
ûk(T )eikσ (k)T − ûk(0)

)
for |k| > k∗.

Note that

‖h‖2
L2(0,T ;Hs−2(T))

=
T∫

0

∥∥∥∥∥a(x)
∞∑

j=−∞
f jq j(t)eijx

∥∥∥∥∥
2

Hs−2

dt

� C

T∫
0

∞∑
j=−∞

(
1 + j2)s−2∣∣ f jq j(t)

∣∣2

� C
∞∑

j=−∞

(
1 + j2)s−2| f j|2

� C
(∥∥u(0)

∥∥2
Hs + ∥∥u(T )

∥∥2
Hs

)
.

This analysis leads us to the following controllability result for the linear system (6.4)–(6.5).

Proposition 6.2. Let s ∈ R and T > 2π
|c| be given. For any u0, uT ∈ Hs(T), there exists a control h ∈

L2(0, T ; Hs−2(T)) such that the system (6.4)–(6.5) admits a unique solution u ∈ C([0, T ]; Hs(T)) satisfying

u(x, T ) = uT (x).

Moreover, there exists a constant C > 0 depending only on s and T such that

‖h‖L2(0,T ;Hs−2(T)) � C
(‖u0‖Hs + ‖uT ‖Hs

)
.

Introduce the (bounded) operator Φ : Hs(T) × Hs(T) → L2(0, T ; Hs−2(T)) defined by

Φ(u0, uT )(t) = h(t),

where h is given by (6.7) and �f is the solution of (6.9)–(6.10) with (û0)k and (ûT )k substituted to
ûk(0) and ûk(T ), respectively.

Then h = Φ(u0, uT ) is a control driving the solution u of (6.4)–(6.5) from u0 at t = 0 to uT at
t = T .

Step 2. Local exact controllability of the BBM equation.

We proceed as in [36]. Pick any time T > 2π/|c|, and any u0, uT ∈ Hs(T) (s � 0) satisfying

‖u0‖Hs � δ, ‖uT ‖Hs � δ

with δ to be determined. For any u ∈ C([0, T ]; Hs(T)), we set

ω(u) = −
T∫

W (T − τ )
(
1 − ∂2

x

)−1
(uux)(τ )dτ .
0
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Then

∥∥ω(u) − ω(v)
∥∥

Hs � C T ‖u + v‖L∞(0,T ;Hs(T))‖u − v‖L∞(0,T ;Hs(T)).

Furthermore,

W (t)u0 +
t∫

0

W (t − τ )
(
1 − ∂2

x

)−1[
a(x)Φ

(
u0, uT − ω(u)

) − uux
]
(τ )dτ

=
{

u0 if t = 0,

ω(u) + (uT − ω(u)) = uT if t = T .

We are led to consider the nonlinear map

Γ (u) = W (t)u0 +
t∫

0

W (t − τ )
(
1 − ∂2

x

)−1[
a(x)Φ

(
u0, uT − ω(u)

) − uux
]
(τ )dτ .

The proof of Theorem 6.1 will be complete if we can show that the map Γ has a fixed point in some
closed ball of the space C([0, T ]; Hs(T)). For any R > 0, let

B R = {
u ∈ C

([0, T ]; Hs(T)
); ‖u‖C([0,T ];Hs(T)) � R

}
.

From the above calculations, we see that there exist two positive constants C1, C2 (depending on s
and T , but not on R , ‖u0‖Hs or ‖uT ‖Hs ) such that for all u, v ∈ B R

∥∥Γ (u)
∥∥

C([0,T ];Hs(T))
� C1

(‖u0‖Hs + ‖uT ‖Hs
) + C2 R2,∥∥Γ (u) − Γ (v)

∥∥
C([0,T ];Hs(T))

� C2 R‖u − v‖C([0,T ];Hs(T)).

Picking R = (2C2)
−1 and δ = (8C1C2)

−1, we obtain for u0, uT satisfying

‖u0‖Hs � δ, ‖uT ‖Hs � δ

and u, v ∈ B R that

∥∥Γ (u)
∥∥

C([0,T ];Hs(T))
� R, (6.11)

∥∥Γ (u) − Γ (v)
∥∥

C([0,T ];Hs(T))
� 1

2
‖u − v‖C([0,T ];Hs(T)). (6.12)

It follows from the contraction mapping theorem that Γ has a unique fixed point u in B R . Then
u satisfies (6.1)–(6.2) with h = Φ(u0, uT − ω(u)) and u(T ) = uT , as desired. The proof of Theorem 6.1
is complete. �
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6.2. Exponential stabilizability

We are now concerned with the stabilization of (6.1)–(6.2) with a feedback law h = h(u). To guess
the expression of h, it is convenient to write the linearized system (6.4)–(6.5) as

ut = Au + Bk, (6.13)

u(0) = u0 (6.14)

where k(t) = (1 − ∂2
x )−1h(t) ∈ L2(0, T ; Hs(T)) is the new control input, and

B = (
1 − ∂2

x

)−1
a
(
1 − ∂2

x

) ∈ L
(

Hs(T)
)
. (6.15)

We already noticed that A is skew-adjoint in Hs(T), and that (6.13)–(6.14) is exactly controllable
in Hs(T) (with some control functions k ∈ L2(0, T ; Hs(T))) for any s � 0. If we choose the simple
feedback law

k = −B∗,su, (6.16)

the resulting closed-loop system

ut = Au − B B∗,su, (6.17)

u(0) = u0 (6.18)

is exponentially stable in Hs(T) (see e.g. [27,37]). In (6.16), B∗,s denotes the adjoint of B in L(Hs(T)).
Easy computations show that

B∗,su = (
1 − ∂2

x

)1−s
a
(
1 − ∂2

x

)s−1
u. (6.19)

In particular

B∗,1u = au.

Let Ã = A − B B∗,1, where (B B∗,1)u = (1 − ∂2
x )−1[a(1 − ∂2

x )(au)]. Since B B∗,1 ∈ L(Hs(T)) and A is
skew-adjoint in Hs(T), Ã is the infinitesimal generator of a group {Wa(t)}t∈R on Hs(T) (see e.g. [34,
Theorem 1.1, p. 76]). We first show that the closed-loop system (6.17)–(6.18) is exponentially stable
in Hs(T) for all s � 1.

Lemma 6.3. Let a ∈ C∞(T) with a 	= 0. Then there exists a constant γ > 0 such that for any s � 1, one can
find a constant Cs > 0 for which the following holds for all u0 ∈ Hs(T)

∥∥Wa(t)u0
∥∥

Hs � Cse−γ t‖u0‖Hs for all t � 0. (6.20)

Proof. (6.20) is well known for s = 1 (see e.g. [27]). Assume that it is true for some s ∈ N
∗ , and pick

any u0 ∈ Hs+1(T). Let v0 = Ãu0 ∈ Hs(T). Then∥∥Wa(t)v0
∥∥

Hs � Cse−γ t‖v0‖Hs .

Clearly,

Wa(t)v0 = ÃWa(t)u0 = AWa(t)u0 − B B∗,1Wa(t)u0,
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hence

∥∥AWa(t)u0
∥∥

Hs �
∥∥Wa(t)v0

∥∥
Hs + ∥∥B B∗,1

∥∥
L(Hs)

∥∥Wa(t)u0
∥∥

Hs � Ce−γ t‖u0‖Hs+1 .

Therefore

∥∥Wa(t)u0
∥∥

Hs+1 � Cs+1e−γ t‖u0‖Hs+1 ,

as desired. The estimate (6.20) is thus proved for any s ∈ N
∗ . It may be extended to any s ∈ [1,+∞)

by interpolation. �
Plugging the feedback law k = −B∗,1u = −au in the nonlinear equation gives the following closed-

loop system

ut − utxx − cuxxx + (c + 1)ux + uux = −a
(
1 − ∂2

x

)[au], (6.21)

u(x,0) = u0(x). (6.22)

We first show that the system (6.21)–(6.22) is globally well-posed in the space Hs(T) for any s � 0.

Theorem 6.4. Let s � 0 and T > 0 be given. For any u0 ∈ Hs(T), the system (6.21)–(6.22) admits a unique
solution u ∈ C([0, T ]; Hs(T)).

The following bilinear estimate from [42] will be very helpful.

Lemma 6.5. Let w ∈ Hr(T) and v ∈ Hr′
(T) with 0 � r � s, 0 � r′ � s and 0 � 2s − r − r′ < 1

4 . Then

∥∥(
1 − ∂2

x

)−1
∂x(w v)

∥∥
Hs � cr,r′,s‖w‖Hr ‖v‖Hr′ .

In particular, if w ∈ Hr(T) and v ∈ Hs(T) with 0 � r � s < r + 1
4 , then

∥∥(
1 − ∂2

x

)−1
∂x(w v)

∥∥
Hs � cr,s‖w‖Hr ‖v‖Hs .

Proof of Theorem 6.4. The proof is divided in three steps.
Step 1. The system is locally well-posed in the space Hs(T):

Let s � 0 and R > 0 be given. There exists a T ∗ depending only on s and R such that for any u0 ∈ Hs(T)

with

‖u0‖Hs � R,

the system (6.21)–(6.22) admits a unique solution u ∈ C([0, T ∗]; Hs(T)). Moreover, T ∗ → ∞ as R → 0.

Rewrite (6.21)–(6.22) in its integral form

u(t) = Wa(t)u0 −
t∫

Wa(t − τ )
(
1 − ∂2

x

)−1
(uux)(τ )dτ . (6.23)
0
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For given θ > 0, define a map Γ on C([0, θ]; Hs(T)) by

Γ (v) = Wa(t)u0 −
t∫

0

Wa(t − τ )
(
1 − ∂2

x

)−1
(v vx)(τ )dτ

for any v ∈ C([0, θ]; Hs(T)). Note that, according to Lemma 6.3 and Lemma 6.5,

∥∥Wa(t)u0
∥∥

C([0,θ ];Hs(T))
� Cs‖u0‖Hs ,

and

∥∥∥∥∥
t∫

0

Wa(t − τ )
(
1 − ∂2

x

)−1
(v vx)(τ )dτ

∥∥∥∥∥
C([0,θ ];Hs(T))

� Csθ sup
0�t�θ

∥∥(
1 − ∂2

x

)−1
(v vx)(t)

∥∥
Hs

� Cscs,s

2
θ‖v‖2

C([0,θ ];Hs(T)).

Thus, for given R > 0 and u0 ∈ Hs(T) with ‖u0‖Hs � R , one can choose T ∗ = [2cs,s(1 + Cs)R]−1 such
that Γ is a contraction mapping in the ball

B := {
v ∈ C

([
0, T ∗]; Hs(T)

); ‖v‖C([0,T ∗];Hs(T)) � 2Cs R
}

whose fixed point u is the desired solution.

Step 2. The system is globally well-posed in the space Hs(T) for any s � 1.

To this end, it suffices to establish the following global a priori estimate for smooth solutions of
the system (6.21)–(6.22):

Let s � 1 and T > 0 be given. There exists a continuous nondecreasing function

αs,T : R+ →R
+

such that any smooth solution u of the system (6.21)–(6.22) satisfies

sup
0�t�T

∥∥u(·, t)
∥∥

Hs � αs,T
(‖u0‖Hs

)
. (6.24)

Estimate (6.24) holds obviously when s = 1 because of the energy identity

∥∥u(t)
∥∥2

H1 − ‖u0‖2
H1 = −2

t∫
0

∥∥au(τ )
∥∥2

H1 dτ ∀t � 0.

When 1 < s � s1 := 1 + 1
8 , applying Lemma 6.3 and Lemma 6.5 to (6.23) yields that for any 0 < t � T ,
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∥∥u(·, t)
∥∥

Hs � Cs‖u0‖Hs + Csc1,s

2

t∫
0

∥∥u(·, τ )
∥∥

H1

∥∥u(·, τ )
∥∥

Hs dτ

� C‖u0‖Hs + Cα1,T
(‖u0‖H1

) t∫
0

∥∥u(·, τ )
∥∥

Hs dτ .

Estimate (6.24) for 1 < s � s1 follows by using Gronwall’s lemma. Similarly, for s1 < s � s2 := 1 + 2
8 ,

∥∥u(·, t)
∥∥

Hs � Cs‖u0‖Hs + Cscs1,s

2

t∫
0

∥∥u(·, τ )
∥∥

Hs1

∥∥u(·, τ )
∥∥

Hs dτ

� C‖u0‖Hs + Cαs1,T
(‖u0‖Hs1

) t∫
0

∥∥u(·, τ )
∥∥

Hs dτ .

Estimate (6.24) thus holds for 1 < s � s2. Continuing this argument, we can show that the estimate
(6.24) holds for 1 < s � sk := 1 + k

8 for any k � 1.

Step 3. The system (6.21)–(6.22) is globally well-posed in the space Hs(T) for any 0 � s < 1.

To see it is true, as in [42], we decompose any u0 ∈ Hs(T) as

u0 =
∑
k∈Z

ûkeikx =
∑

|k|�k0

+
∑

|k|>k0

=: w0 + v0

with v0 ∈ Hs(T) satisfying

‖v0‖Hs � δ

for some small δ > 0 to be chosen, and w0 ∈ H1(T). Consider the following two initial value problems

{
vt − vtxx − cvxxx + (c + 1)vx + v vx = −a

(
1 − ∂2

x

)[av],
v(x,0) = v0(x)

(6.25)

and

{
wt − wtxx − cwxxx + (c + 1)wx + w wx + (v w)x = −a

(
1 − ∂2

x

)[aw],
w(x,0) = w0(x).

(6.26)

By the local well-posedness established in Step 1, for given T > 0, if δ is small enough, then (6.25) ad-
mits a unique solution v ∈ C([0, T ]; Hs(T)). For (6.26), with v ∈ C([0, T ]; Hs(T)), by using Lemma 6.3,
the estimate

∥∥(
1 − ∂2

x

)−1
∂x(w v)

∥∥
H1 � C‖w v‖L2 � C‖w‖H1‖v‖Hs

and the contraction mapping principle, one can show first that it is locally well-posed in the space
H1(T). Then, for any smooth solution w of (6.26) it holds that
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1

2

d

dt

∥∥w(·, t)
∥∥2

H1 −
∫
T

v(x, t)w(x, t)wx(x, t)dx = −∥∥a(·)w(·, t)
∥∥2

H1 ,

which implies that

∥∥w(·, t)
∥∥2

H1 � ‖w0‖2
H1 exp

(
C

t∫
0

∥∥v(·, τ )
∥∥

L2 dτ

)

for any t � 0. The above estimate can be extended to any w0 ∈ H1(T) by a density argu-
ment. Consequently, for w0 ∈ H1(T) and v ∈ C([0, T ]; Hs(T)), (6.26) admits a unique solution w ∈
C([0, T ]; H1(T)). Thus u = w + v ∈ C([0, T ]; Hs(T)) is the desired solution of system (6.21)–(6.22).
The proof of Theorem 6.4 is complete. �

Next we show that the system (6.21)–(6.22) is locally exponentially stable in Hs(T) for any s � 1.

Proposition 6.6. Let s � 1 be given and γ > 0 be as given in Lemma 6.3. Then there exist two numbers δ > 0
and C ′

s depending only on s such that for any u0 ∈ Hs(T) with

‖u0‖Hs � δ,

the corresponding solution u of the system (6.21)–(6.22) satisfies

∥∥u(·, t)
∥∥

Hs � C ′
se−γ t‖u0‖Hs ∀t � 0.

Proof. We proceed as in [35]. As in the proof of Theorem 6.4, rewrite the system (6.21)–(6.22) in its
integral form

u(t) = Wa(t)u0 − 1

2

t∫
0

Wa(t − τ )
(
1 − ∂2

x

)−1
∂x

(
u2)(τ )dτ

and consider the map

Γ (v) := Wa(t)u0 − 1

2

t∫
0

Wa(t − τ )
(
1 − ∂2

x

)−1
∂x

(
v2)(τ )dτ .

For given s � 1, by Lemma 6.3 and Lemma 6.5, there exists a constant Cs > 0 such that

∥∥Γ (v)(·, t)
∥∥

Hs � Cse−γ t‖u0‖Hs + Cscs,s

2

t∫
0

e−γ (t−τ )
∥∥v(·, τ )

∥∥2
Hs dτ

� Cse−γ t‖u0‖Hs + Cscs,s

2
sup

0�τ�t

∥∥eγ τ v(·, τ )
∥∥2

Hs

t∫
0

e−γ (t+τ ) dτ

� Cse−γ t‖u0‖Hs + Cscs,s

2γ
e−γ t(1 − e−γ t) sup

0�τ�t

∥∥eγ τ v(·, τ )
∥∥2

Hs
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for any t � 0. Let us introduce the Banach space

Ys :=
{

v ∈ C
([0,∞); Hs(T)

): ‖v‖Ys := sup
0�t<∞

∥∥eγ t v(·, t)
∥∥

Hs < ∞
}
.

For any v ∈ Ys ,

∥∥Γ (v)
∥∥

Ys
� Cs‖u0‖Hs + Cscs,s

2γ
‖v‖2

Ys
.

Choose

δ = γ

4C2
s cs,s

, R = 2Csδ.

Then, if ‖u0‖ � δ, for any v ∈ Ys with ‖v‖Ys � R ,

∥∥Γ (v)
∥∥

Ys
� Csδ + Cscs,s

2γ
(2Csδ)R � R.

Moreover, for any v1, v2 ∈ Ys with ‖v1‖Ys � R and ‖v2‖Ys � R ,

∥∥Γ (v1) − Γ (v2)
∥∥

Ys
� 1

2
‖v1 − v2‖Ys .

The map Γ is a contraction whose fixed point u ∈ Ys is the desired solution satisfying∥∥u(·, t)
∥∥

Hs � 2Cse−γ t‖u0‖Hs

for any t � 0. �
Now we turn to the issue of the global stability of the system (6.21)–(6.22). First we show that

the system (6.21)–(6.22) is globally exponentially stable in the space H1(T).

Theorem 6.7. Let a ∈ C∞(T) with a 	= 0, and let γ > 0 be as in Lemma 6.3. Then for any R0 > 0, there
exists a constant C∗ > 0 such that for any u0 ∈ H1(T) with ‖u0‖H1 � R0 , the corresponding solution u of
(6.21)–(6.22) satisfies

∥∥u(·, t)
∥∥

H1 � C∗e−γ t‖u0‖H1 for all t � 0. (6.27)

Theorem 6.7 is a direct consequence of the following observability inequality.

Proposition 6.8. Let R0 > 0 be given. Then there exist two positive numbers T and β such that for any u0 ∈
H1(T) satisfying

‖u0‖H1 � R0, (6.28)

the corresponding solution u of (6.21)–(6.22) satisfies

‖u0‖2
H1 � β

T∫
0

∥∥au(t)
∥∥2

H1 dt. (6.29)
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Indeed, if (6.29) holds, then it follows from the energy identity

∥∥u(t)
∥∥2

H1 = ‖u0‖2
H1 − 2

t∫
0

∥∥au(τ )
∥∥2

H1 dτ ∀t � 0 (6.30)

that

∥∥u(T )
∥∥2

H1 �
(
1 − 2β−1)‖u0‖2

H1 .

Thus

∥∥u(mT )
∥∥2

H1 �
(
1 − 2β−1)m‖u0‖2

H1

which gives by the semigroup property

∥∥u(t)
∥∥

H1 � Ce−κt‖u0‖H1 for all t � 0, (6.31)

for some positive constants C = C(R0), κ = κ(R0).
Finally, we can replace κ by the γ given in Lemma 6.3. Indeed, let t′ = κ−1 log[1+ C R0δ

−1], where
δ is as given in Proposition 6.6. Then for ‖u0‖H1 � R0, ‖u(t′)‖H1 < δ, hence for all t � t′

∥∥u(t)
∥∥

H1 � C ′
1

∥∥u
(
t′)∥∥

H1 e−γ (t−t′) �
(
C ′

1δ/R0
)‖u0‖H1 e−γ (t−t′) � C∗e−γ t‖u0‖H1

where C∗ = (C ′
1δ/R0)eγ t′ . �

Now we present a proof of Proposition 6.8. Pick for the moment any T > 2π/|c| (its value will be
specified later on). We prove the estimate (6.29) by contradiction. If (6.29) is not true, then for any
n � 1 (6.21)–(6.22) admits a solution un ∈ C([0, T ]; H1(T)) satisfying

∥∥un(0)
∥∥

H1 � R0 (6.32)

and

T∫
0

∥∥aun(t)
∥∥2

H1 dt <
1

n
‖u0,n‖2

H1 (6.33)

where u0,n = un(0). Since αn := ‖u0,n‖H1 � R0, one can choose a subsequence of (αn), still denoted
by (αn), such that limn→∞ αn = α. Note that αn > 0 for all n, by (6.33). Set vn = un/αn for all n � 1.
Then

vn,t − vn,txx − cvn,xxx + (c + 1)vn,x + αn vn vn,x = −a
(
1 − ∂2

x

)[avn] (6.34)

and

T∫
‖avn‖2

H1 dt <
1

n
. (6.35)
0
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Because of

∥∥vn(0)
∥∥

H1 = 1, (6.36)

the sequence (vn) is bounded in L∞(0, T ; H1(T)), while (vn,t) is bounded in L∞(0, T ; L2(T)). From
Aubin–Lions’ lemma and a diagonal process, we infer that we can extract a subsequence of (vn), still
denoted (vn), such that

vn → v in C
([0, T ]; Hs(T)

) ∀s < 1, (6.37)

vn → v in L∞(
0, T ; H1(T)

)
weak∗ (6.38)

for some v ∈ L∞(0, T ; H1(T))∩ C([0, T ]; Hs(T)) for all s < 1. Note that, by (6.37)–(6.38), we have that

αn vn vn,x → αv vx in L∞(
0, T ; L2(T)

)
weak∗. (6.39)

Furthermore, by (6.35),

T∫
0

‖av‖2
H1 dt � lim inf

n→∞

T∫
0

‖avn‖2
H1 dt = 0. (6.40)

Thus, v solves

vt − vtxx − cvxxx + (c + 1)vx + αv vx = 0 on T× (0, T ), (6.41)

v = 0 on ω × (0, T ), (6.42)

where ω is given in (6.3). According to Theorem 5.1, v ≡ 0 on T× (0, T ).
We claim that (vn) is linearizable in the sense of [9]; that is, if (wn) denotes the sequence of

solutions to the linear KdV–BBM equation with the same initial data

wn,t − wn,txx − cwn,xxx + (c + 1)wn,x = −a
(
1 − ∂2

x

)[awn], (6.43)

wn(x,0) = vn(x,0), (6.44)

then

sup
0�t�T

∥∥vn(t) − wn(t)
∥∥

H1 → 0 as n → ∞. (6.45)

Indeed, if dn = vn − wn , then dn solves

dn,t − dn,txx − cdn,xxx + (c + 1)dn,x = −a
(
1 − ∂2

x

)[adn] − αn vn vn,x,

dn(0) = 0.

Since ‖Wa(t)‖L(H1(T)) � 1, we have from Duhamel formula that for t ∈ [0, T ]

∥∥dn(t)
∥∥

H1 �
T∫ ∥∥(

1 − ∂2
x

)−1
(αn vn vn,x)(τ )

∥∥
H1 dτ .
0
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Combined with (6.37) and to the fact that v ≡ 0, this gives (6.45). By Lemma 6.3, we have that

∥∥wn(t)
∥∥

H1 � C1e−γ t
∥∥wn(0)

∥∥
H1 for all t � 0. (6.46)

From (6.46) and the energy identity for (6.43)–(6.44), namely

∥∥wn(t)
∥∥2

H1 − ∥∥wn(0)
∥∥2

H1 = −2

t∫
0

∥∥awn(τ )
∥∥2

H1 dτ , (6.47)

we have for Ce−λT < 1

∥∥wn(0)
∥∥2

H1 � 2
(
1 − C2

1e−2γ T )−1
T∫

0

∥∥awn(τ )
∥∥2

H1 dτ . (6.48)

Combined with (6.35) and (6.45), this yields ‖vn(0)‖H1 = ‖wn(0)‖H1 → 0, which contradicts (6.36).
This completes the proof of Proposition 6.8 and of Theorem 6.7. �

Next we show that the system (6.21)–(6.27) is exponentially stable in the space Hs(T) for any
s � 1.

Theorem 6.9. Let a ∈ C∞(T) with a 	= 0 and γ > 0 be as given in Lemma 6.3. For any given s � 1 and R0 > 0,
there exists a constant C > 0 depending only on s and R0 such that for any u0 ∈ Hs(T) with ‖u0‖Hs � R0 , the
corresponding solution u of (6.21)–(6.22) satisfies

∥∥u(·, t)
∥∥

Hs � Ce−γ t‖u0‖Hs for all t � 0. (6.49)

Proof. As before, rewrite the system in its integral form

u(t) = Wa(t)u0 − 1

2

t∫
0

Wa(t − τ )
(
1 − ∂2

x

)−1
(uux)(τ )dτ .

For u0 ∈ Hs(T) with ‖u0‖Hs � R0, applying Lemma 6.3, Lemma 6.5 and Theorem 6.7 yields that, for
any 1 � s � 1 + 1

10 ,

∥∥u(·, t)
∥∥

Hs � Cse−γ t‖u0‖Hs + Csc1,1,s

2

t∫
0

e−γ (t−τ )
∥∥u(·, τ )

∥∥2
H1 dτ

� Cse−γ t‖u0‖Hs + Csc1,1,s(C∗)2

2

t∫
0

e−γ (t−τ )e−2γ τ ‖u0‖2
H1 dτ

�
(

Cs + Csc1,1,s(C∗)2

2γ
‖u0‖H1

)
e−γ t‖u0‖Hs

for any t � 0. Thus the estimate (6.49) holds for 1 � s � m1 := 1 + 1
10 . Similarly, for m1 � s � m2 :=

1 + 2
10 , we have for ‖u0‖Hs � R0
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∥∥u(·, t)
∥∥

Hs � Cse−γ t‖u0‖Hs + Cscm1,m1,s

2

t∫
0

e−γ (t−τ )
∥∥u(·, τ )

∥∥2
Hm1 dτ

� Cse−γ t‖u0‖Hs + C(s,m1, R0)

t∫
0

e−γ (t−τ )e−2γ τ ‖u0‖2
Hm1 dτ

�
(
Cs + C(s,m1, R0)‖u0‖Hm1 γ

−1)e−γ t‖u0‖Hs .

Thus the estimate (6.49) holds for 1 � s � m2 := 1 + 2
10 . Repeating this argument yields that the

estimate (6.49) holds for 1 � s � mk := 1 + k
10 for k = 1,2, . . . . �
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