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In this paper, we study the global existence of weak solutions
to the Cauchy problem of the three-dimensional equations for
compressible isentropic magnetohydrodynamic flows subject to
discontinuous initial data. It is assumed here that the initial
energy is suitably small in L2, and that the initial density and
the gradients of initial velocity/magnetic field are bounded in
L∞ and L2, respectively. This particularly implies that the initial
data may contain vacuum states and the oscillations of solutions
could be arbitrarily large. As a byproduct, we also prove the global
existence of smooth solutions with strictly positive density and
small initial energy.
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1. Introduction

Magnetohydrodynamics (MHD) concerns the motion of a conducting fluid (plasma) in an electro-
magnetic field with a very wide range of applications. Because the dynamic motion of the fluid and
the magnetic field interact on each other and both the hydrodynamic and electrodynamic effects in
the motion are strongly coupled, the problems of MHD system are considerably complicated. The gov-
erning equations for the motion of three-dimensional compressible isentropic magnetohydrodynamic
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flows, derived from fluid mechanics with appropriate modifications to account for electrical forces,
have the following form (see, e.g., [2,20]):

ρt + div(ρu) = 0, (1.1)

(ρu)t + div(ρu ⊗ u) + ∇ P (ρ) = (∇ × H) × H + μ�u + (λ + μ)∇ div u, (1.2)

Ht − ∇ × (u × H) = −∇ × (ν∇ × H), div H = 0, (1.3)

where x = (x1, x2, x3) ∈ R
3 is the spatial variable and t � 0 is the time. The unknown functions ρ ,

u = (u1, u2, u3) ∈ R
3, P = P (ρ) and H = (H1, H2, H3) ∈ R

3 are the density, velocity, pressure and
magnetic field, respectively. The constants μ and λ are the shear and bulk viscosity coefficients of the
flow and satisfy the physical restrictions:

μ > 0 and λ + 2

3
μ � 0. (1.4)

The constant ν > 0 is the resistivity coefficient which is inversely proportional to the electrical con-
ductivity constant and acts as the magnetic diffusivity of magnetic fields. Here we only consider the
isentropic flows in which the equation of state reads

P (ρ) = Aργ with A > 0 and γ > 1 (1.5)

where A > 0 and γ > 1 are some physical parameters.
In this paper, we are interested in an initial value problem of (1.1)–(1.5) subject to the following

initial conditions:

(ρ, u, H)(x,0) = (ρ0, u0, H0)(x) for all x ∈R
3, (1.6)

and the far-field behavior:

ρ(x, t) → ρ̃ > 0, (u, H)(x, t) → (0,0) as |x| → ∞, (1.7)

where ρ̃ > 0 is the fixed reference density.
There have been numerous studies on the MHD problem by many physicists and mathematicians

due to its physical importance, complexity, rich phenomena and mathematical challenges, see, for
example, [2,3,9,12,13,20] and the references therein. In particular, if there is no electromagnetic effect,
i.e. H ≡ 0, then (1.1)–(1.5) reduce to the compressible Navier–Stokes equations for isentropic flows,
which have also been studied by many people, see, for example, [4,6,7,11,16–18] among others. For
multi-dimensional compressible MHD flows, Kawashima [13] first considered the global existence of
smooth solutions when the initial data are close to a non-vacuum equilibrium in H3-norm. In the
Lions’ framework [16] (see also Feireisl et al. [5]), Hu and Wang [9] studied the global existence of
weak solutions, the so-called finite energy weak solution, to the compressible MHD equations with
general initial data and suitably large adiabatic exponent γ when the initial energy is merely finite.
The solution obtained in [9] may have large oscillations and contain vacuum, however, it possess
rather little regularity and only satisfies the equations in a very weak sense. Recently, assume that
the viscosity coefficients μ and λ fulfill the following additional/non-physical conditions:

0 < μ < ξ � 2μ + λ <

(
3

2
+

√
21

6

)
μ. (1.8)
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Suen and Hoff [19] proved the global existence of weak solutions of (1.1)–(1.3) when the initial data
(ρ0, u0, H0) satisfies

⎧⎨
⎩

∥∥(ρ0 − ρ̃, u0, H0)
∥∥

L2 is sufficiently small,
0 < ρ � infρ0(x) � supρ0(x) � ρ̄ < ∞,

‖u0‖L p + ‖H0‖L p < ∞ for some p > 6.

(1.9)

It is worth mentioning that the additional restriction (1.8) on viscosity coefficients seems unsatisfac-
tory and non-physical, and moreover, the positive lower bound of initial density in (1.9)2 indicates
there is absent of vacuum initially.

It is well known that the discontinuous solutions (namely, weak solutions) are fundamental and
important in both the physical and mathematical theory. Moreover, as emphasized in many papers
(see, e.g. [8,15,16,21]), the possible presence of vacuum is one of the major difficulties in the study
of mathematical theory of compressible fluids. So, the main purpose of this paper is to study the
global existence and large-time behavior of weak solutions of (1.1)–(1.7) when the initial density may
contain vacuum states. A great deal of information on the partial regularity of velocity, vorticity and
magnetic field will be also obtained. Our study is mainly motivated by a recent paper due to Huang,
Li and Xin [11], where the authors established the global well-posedness of classical solution with
large oscillations and vacuum to the Cauchy problem of three-dimensional Navier–Stokes equations
for compressible isentropic flows in a very technical and subtle way.

To state the main results in a precise way, we first introduce some notations and conventions
which will be used throughout the paper. Let

∫
f dx =

∫
R3

f dx and ∂i f � ∂ f

∂xi
.

For k ∈ Z
+ and r > 1, the standard homogeneous and inhomogeneous Sobolev spaces for scalar/vector

functions are denoted by (see, e.g. [1]):

{
Lr = Lr

(
R

3
)
, Dk,r = {

u ∈ L1
loc

(
R

3
) ∣∣ ∥∥∇ku

∥∥
Lr < ∞}

, W k,r = Lr ∩ Dk,r,

Hk = W k,2, Dk = Dk,2, D1 = {
u ∈ L6

∣∣ ‖∇u‖L2 < ∞}
, ‖u‖Dk,r = ∥∥∇ku

∥∥
Lr .

Weak solutions of (1.1)–(1.7) are defined in a usual way.

Definition 1.1. A pair of functions (ρ, u, H) is said to be a weak solution of (1.1)–(1.7) provided
that (ρ − ρ̃, ρu, H) ∈ C([0,∞); H−1(R3)), u ∈ L2

loc(0,∞; D1), H ∈ L∞(0,∞; L2) ∩ L2(0,∞; D1), and
div H(·, t) = 0 in D′(R3) for t > 0. Moreover, the following identities hold for any test function
ψ ∈D(R3 × (t1, t2)) with t2 � t1 � 0 and j = 1,2,3:

∫
ρψ(x, t)dx

∣∣∣t2

t1
=

t2∫
t1

∫
(ρψt + ρu · ∇ψ)dx dt,

∫
ρu jψ(x, t)dx

∣∣∣t2

t1
+

t2∫
t1

∫ (
μ∇u j · ∇ψ + (μ + λ)(div u)ψx j

)
dx dt

=
t2∫

t

∫ (
ρu jψt + ρu ju · ∇ψ + P (ρ)ψx j + 1

2
|H|2ψx j − H j H · ∇ψ

)
dx dt,
1
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and

∫
H jψ(x, t)dx

∣∣∣t2

t1
=

t2∫
t1

∫ (
H jψt + H ju · ∇ψ − u j H · ∇ψ − ν∇H j · ∇ψ

)
dx dt.

For any given initial data (ρ0, u0, H0), we define the initial energy C0 as follows:

C0 �
∫ (

1

2
ρ0|u0|2 + 1

2
|H0|2 + G(ρ0)

)
dx, (1.10)

where G(ρ) is the potential energy density defined by

G(ρ) � ρ

ρ∫
ρ̃

P (s) − P (ρ̃)

s2
ds. (1.11)

It is clear that

c1(ρ̃, ρ̄)(ρ − ρ̃)2 � G(ρ) � c2(ρ̃, ρ̄)(ρ − ρ̃)2 for ρ̃ > 0, 0 � ρ � 2ρ̄,

where c1, c2 are positive constants depending only on ρ̃ and ρ̄ .
We are now ready to state our main results.

Theorem 1.1. For given positive numbers M1 , M2 (not necessarily small) and ρ̄ � ρ̃ + 1, assume that the
initial data (ρ0, u0, H0) satisfies

{
0 � infρ0 � supρ0 � ρ̄, div H0 = 0,

‖∇u0‖2
L2 � M1, ‖∇H0‖2

L2 � M2.
(1.12)

Then there exists a positive constant ε, depending on μ, λ, ν , γ , A, ρ̃ , ρ̄ , M1 and M2 , such that if

C0 � ε, (1.13)

then there exists a weak solution (ρ, u, H) of (1.1)–(1.7) in the sense of Definition 1.1 satisfying

0 � ρ(x, t) � 2ρ̄ for all x ∈R
3, t � 0, (1.14)

and

lim
t→∞

∫ (|ρ − ρ̃|p + ρ1/2|u|4 + |H|q) dx = 0, (1.15)

where p ∈ (2,+∞) and q ∈ (2,6].

Remark 1.1. Compared with the results obtained in [19], the initial vacuum now is allowed. Moreover,
it is worth mentioning that D1 only embeds into L6, but not into L p with p > 6.
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Theorem 1.1 will be proved by constructing weak solutions as limits of smooth solutions. Roughly
speaking, we first utilize Kawashima’s theorem (see Lemma 2.4) to guarantee the local existence of
smooth solutions with strictly positive density, then extend the smooth non-vacuum solutions glob-
ally in time just under the condition that the initial energy is suitably small (see Theorem 4.1), and
finally let the lower bound of the initial density go to zero. So, for the proof of Theorem 1.1, it suffices
to derive some global a priori estimates which are independent of the lower bound of density. How-
ever, due to the presence of vacuum states, the analysis (especially, the energy estimates of A1(T ),
A2(T )) here is completely different than that in [19]. To overcome the difficulties induced by vacuum,
we shall make use of some ideas developed in [11]. As that in [11], it turns out that the key step
is to obtain the time-independent upper bound of the density. However, because of the influence of
magnetic field and its interaction with the hydrodynamic motion, the problem of MHD considered
becomes more complicated than that of Navier–Stokes equations. For example, since the material
derivative u̇ � ut + u · ∇u is strongly associated with the density in the presence of vacuum, some
additional difficulties will arise when we deal with the magnetic force (∇ × H) × H and the con-
vection term ∇ × (u × H). These difficulties will be circumvented by using Sobolev inequalities and
the important relations among the velocity u, pressure P , magnetic field H , vorticity ω and effective
viscous flux F (see Lemma 2.2) in a subtle way.

The remainder of this paper is organized as follows. We first collect some useful inequalities and
basic results in Section 2. The global-in-time a priori estimates will be proved in Section 3. Finally,
Theorem 1.1 will be proved in Section 4 by constructing weak solutions as limits of smooth solutions.

2. Auxiliary lemmas

In this section, we state some auxiliary lemmas, which will be frequently used in the sequel. We
start with the well-known Gagliardo–Nirenberg inequality (see, for instance, [1,14]).

Lemma 2.1. Assume that f ∈ H1 and g ∈ Lq ∩ D1,r with q > 1 and r > 3. Then for any p ∈ [2,6], there exists
a positive constant C , depending only on p, q and r, such that

‖ f ‖L p � C‖ f ‖(6−p)/(2p)

L2 ‖∇ f ‖(3p−6)/2p
L2 , (2.1)

‖g‖L∞ � C‖g‖q(r−3)/(3r+q(r−3))

Lq ‖∇g‖3r/(3r+q(r−3))

Lr . (2.2)

As it was pointed out in [4–7,16], the effective viscous flux plays an important role in the mathe-
matical theory of compressible fluid dynamics. However, due to the additional presence of magnetic
field, we need to define the effective viscous flux in a slightly different manner. More precisely, let F
and ω be the (modified) effective flux and vorticity defined by

F � (2μ + λ)div u − (
P (ρ) − P (ρ̃)

) − 1

2
|H|2 and ω � ∇ × u. (2.3)

Due to div H = 0, one has

(∇ × H) × H = H · ∇H − 1

2
∇|H|2.

So, it follows from (1.2) that

�F = div(ρu̇ − H · ∇H), μ�ω = ∇ × (ρu̇ − H · ∇H), (2.4)

where “ ˙ ” denotes the material derivative, i.e.,

ḟ := ∂t f + u · ∇ f . (2.5)
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In view of Lemma 2.1 and the classical estimates of elliptic system, we have

Lemma 2.2. There exists a generic positive constant C , depending only on μ and λ, such that for any 2 � p � 6,

‖∇ F‖L p + ‖∇ω‖L p � C
(‖ρu̇‖L p + ‖H · ∇H‖L p

)
, (2.6)

‖∇u‖L p � C
(‖F‖L p + ‖ω‖L p + ∥∥P (ρ) − P (ρ̃)

∥∥
L p + ‖H‖2

L2p

)
. (2.7)

Proof. An application of the L p-estimate of elliptic systems to (2.4) gives (2.6). On the other hand,
since −�u = −∇ div u + ∇ × ω, it holds that

∇u = −∇(−�)−1∇ div u + ∇(−�)−1∇ × ω,

which, combined with the standard L p-estimate and (2.3), yields that ∀p ∈ [2,6],

‖∇u‖L p � C
(‖div u‖L p + ‖ω‖L p

)
� C

(‖F‖L p + ‖ω‖L p + ∥∥P (ρ) − P (ρ̃)
∥∥

L p + ‖H‖2
L2p

)
.

This finishes the proof of Lemma 2.2. �
The next lemma is due to Zlotnik [22], which will be used to prove the uniform (in time) upper

bound of density.

Lemma 2.3. Assume that y ∈ W 1,1(0, T ) solves the ODE system:

y′ = g(y) + b′(t) on [0, T ], y(0) = y0, (2.8)

where b ∈ W 1,1(0, T ), g ∈ C(R) and g(∞) = −∞. If there are two non-negative numbers N0, N1 � 0 satis-
fying

b(t2) − b(t1) � N0 + N1(t2 − t1) for all 0 � t1 < t2 � T , (2.9)

then it holds that

y(t) � max
{

y0, ξ
∗} + N0 < ∞ on [0, T ], (2.10)

where ξ∗ ∈ R is a constant such that

g(ξ) � −N1 for ξ � ξ∗. (2.11)

Finally, we need the local-in-time existence theorem of (1.1)–(1.7) in the case that the initial den-
sity is strictly away from vacuum (see [13]).

Lemma 2.4. Assume that the initial data (ρ0, u0, H0) satisfies

(ρ0 − ρ̃, u0, H0) ∈ H3, div H0 = 0 and infρ0 > 0. (2.12)

Then there exists a positive time T0 , which may depend on infρ0 , such that the Cauchy problem (1.1)–(1.7) has
a unique smooth solution (ρ, u, H) on R

3 × [0, T0] satisfying
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ρ(x, t) > 0 for all x ∈ R
3, t ∈ [0, T0], (2.13)

ρ − ρ̃ ∈ C
([0, T0]; H3) ∩ C1([0, T0]; H2), (2.14)

and

(u, H) ∈ C
([0, T0]; H3) ∩ C1([0, T0]; H1) ∩ L2([0, T0]; H4). (2.15)

3. A priori estimates

This section is devoted to the global-in-time a priori estimates. To begin, let T > 0 be fixed and
assume that (ρ, u, H) is a smooth solution of (1.1)–(1.7) defined on R

3 × (0, T ]. For simplicity, we set
σ(t) � min{1, t} and define

A1(T ) � sup
0�t�T

σ
(‖∇u‖2

L2 + ‖∇H‖2
L2

) +
T∫

0

σ
(∥∥ρ1/2u̇

∥∥2
L2 + ‖Ht‖2

L2 + ∥∥∇2 H
∥∥2

L2

)
dt, (3.1)

A2(T ) � sup
0�t�T

σ 2(∥∥ρ1/2u̇
∥∥2

L2 + ∥∥∇2 H
∥∥2

L2 + ‖Ht‖2
L2

) +
T∫

0

σ 2(‖∇u̇‖2
L2 + ‖∇Ht‖2

L2

)
dt (3.2)

and

A3(T ) � sup
0�t�T

(‖∇u‖2
L2 + ‖∇H‖2

L2

)
. (3.3)

The proof of Theorem 1.1 is based on the following energy estimates of (u, H) and uniform upper
bound of ρ .

Proposition 3.1. Assume that (ρ0, u0, H0) satisfies (1.12) and that (ρ, u, H) is a smooth solution of (1.1)–
(1.7) on R

3 × (0, T ]. There exist two positive constants ε and K , depending on μ, λ, ν , γ , A, ρ̄ , ρ̃ , M1 and M2 ,
such that if {

0 � ρ(x, t) � 2ρ̄ for (x, t) ∈R
3 × [0, T ],

A1(T ) + A2(T ) � 2C1/2
0 , A3

(
σ(T )

)
� 3K ,

(3.4)

then one has {
0 � ρ(x, t) � 7ρ̄/4 for (x, t) ∈R

3 × [0, T ],
A1(T ) + A2(T ) � C1/2

0 , A3
(
σ(T )

)
� 2K ,

(3.5)

provided that

C0 � ε. (3.6)

Proof. As a result of Lemmas 3.2, 3.5 and 3.7, one gets (3.5) provided K and ε are chosen as the ones
in Lemmas 3.2 and 3.7, respectively. �

For simplicity, throughout this section we denote by C the various generic positive constants,
which may depend on μ, λ, ν , γ , A, ρ̄ , ρ̃ , M1 and M2, but are independent of T . We also sometimes
write C(α) to emphasize the dependence on α.

We begin the proof of Proposition 3.1 with the standard energy estimate of (ρ, u, H).
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Lemma 3.1. Let (ρ, u, H) be a smooth solution of (1.1)–(1.7) on R
3 × (0, T ]. Then,

sup
0�t�T

∫ (
G(ρ) + 1

2
ρ|u|2 + 1

2
|H|2

)
dx

+
T∫

0

(
μ‖∇u‖2

L2 + (λ + μ)‖div u‖2
L2 + ν‖∇H‖2

L2

)
dt � C0. (3.7)

Proof. Due to div H = 0, it is easy to check that

∇ × (u × H) = H · ∇u − u · ∇H − H div u,

(∇ × H) × H = H · ∇H − 1

2
∇|H|2 and −∇ × (∇ × H) = �H .

Thus, multiplying (1.1), (1.2) and (1.3) by G ′(ρ), u and H , respectively, integrating the resulting equa-
tions by parts over R

3 × (0, T ), and adding them together, one easily obtains (3.7). �
The next lemma is concerned with the estimate of A3(T ), which plays an important role in the

proofs of A1(T ), A2(T ) and the uniform upper bound of density.

Lemma 3.2. Suppose that the conditions of Proposition 3.1 hold. Then there exist positive constants K and ε1 ,
depending on μ, λ, ν , γ , A, ρ̄ , ρ̃ , M1 and M2 , such that

A3
(
σ(T )

) +
σ (T )∫
0

(∥∥ρ1/2u̇
∥∥2

L2 + ‖Ht‖2
L2 + ∥∥∇2 H

∥∥2
L2

)
dt � 2K , (3.8)

and moreover,

sup
0�t�T

‖∇H‖2
L2 +

T∫
0

(‖Ht‖2
L2 + ∥∥∇2 H

∥∥2
L2

)
dt � C‖∇H0‖2

L2 , (3.9)

provided A3(σ (T )) � 3K and C0 � ε1 .

Proof. Multiplying (1.2) by ut and integrating by parts over R
3, we obtain

1

2

d

dt

(
μ‖∇u‖2

L2 + (μ + λ)‖div u‖2
L2

) + ∥∥ρ1/2u̇
∥∥2

L2

= d

dt

∫ (
1

2
|H|2(div u) − H · ∇u · H + (

P (ρ) − P (ρ̃)
)
(div u)

)
dx

+
∫ (

Ht · ∇u · H + H · ∇u · Ht − H · Ht(div u)
)

dx

−
∫

Pt(div u)dx +
∫

ρu · ∇u · u̇ dx. (3.10)

On the other hand, it follows from (1.3) that
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ν
d

dt
‖∇H‖2

L2 + (‖Ht‖2
L2 + ν2

∥∥∇2 H
∥∥2

L2

)
=

∫
|Ht − ν�H|2 dx =

∫
|H · ∇u − u · ∇H − H div u|2 dx. (3.11)

Thus, adding (3.10) and (3.11) together gives

d

dt

(
1

2
μ‖∇u‖2

L2 + 1

2
(μ + λ)‖div u‖2

L2 + ν‖∇H‖2
L2

)

+ (∥∥ρ1/2u̇
∥∥2

L2 + ‖Ht‖2
L2 + ν2

∥∥∇2 H
∥∥2

L2

)
= d

dt

∫ (
1

2
|H|2(div u) − H · ∇u · H + (

P (ρ) − P (ρ̃)
)
(div u)

)
dx

+
∫ (

Ht · ∇u · H + H · ∇u · Ht − H · Ht(div u)
)

dx −
∫

Pt(div u)dx

+
∫

ρu · ∇u · u̇ dx +
∫

|H · ∇u − u · ∇H − H div u|2 dx

� d

dt
I0 +

4∑
i=1

Ii . (3.12)

By Lemma 2.1 and Cauchy–Schwarz inequality, we have for any η > 0 that

I1 � C‖H‖L∞‖Ht‖L2‖∇u‖L2

� C‖∇H‖1/2
L2

∥∥∇2 H
∥∥1/2

L2 ‖Ht‖L2‖∇u‖L2

� η
(∥∥∇2 H

∥∥2
L2 + ‖Ht‖2

L2

) + C(η)‖∇u‖4
L2‖∇H‖2

L2 . (3.13)

To deal with I2, we first observe from (1.1) and (2.3) that

Pt = −u · ∇(
P − P (ρ̃)

) − γ P div u, P (ρ) = Aργ (3.14)

and

div u = 1

2μ + λ

(
F + (

P − P (ρ̃)
) + 1

2
|H|2

)
.

So, after integrating by parts we infer from (2.6), (3.4) and (3.7) that

I2 =
∫ (

γ P (div u)2 + 1

2μ + λ

(
F + (

P − P (ρ̃)
) + 1

2
|H|2

)
u · ∇(

P − P (ρ̃)
))

dx

� C
(‖∇u‖2

L2 + ∥∥P − P (ρ̃)
∥∥4

L4

) + C‖∇u‖L2

(‖∇ F‖L2 + ‖H∇H‖L2

)∥∥P − P (ρ̃)
∥∥

L3

� C
(‖∇u‖2

L2 + C0
) + CC1/3

0 ‖∇u‖L2

(∥∥ρ1/2u̇
∥∥

L2 + ‖H∇H‖L2

)
� η

(∥∥ρ1/2u̇
∥∥2

2 + ∥∥∇2 H
∥∥2

2

) + C(η)
(
C0 + ‖∇u‖2

2 + ‖∇u‖4/3
2 ‖∇H‖2

2

)
, (3.15)
L L L L L
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where we have also used the following inequality (due to (2.1)):

‖H‖2
L12 � C‖H∇H‖L2 � C‖H‖L6‖∇H‖L3 � C‖∇H‖3/2

L2

∥∥∇2 H
∥∥1/2

L2 . (3.16)

Using (2.1), (2.6), (2.7), (3.4), (3.7) and (3.16), we deduce that

I3 �
∥∥ρ1/2u̇

∥∥
L2‖∇u‖L3‖u‖L6 �

∥∥ρ1/2u̇
∥∥

L2‖∇u‖3/2
L2 ‖∇u‖1/2

L6

�
∥∥ρ1/2u̇

∥∥
L2‖∇u‖3/2

L2

(∥∥ρ1/2u̇
∥∥1/2

L2 + ‖H∇H‖1/2
L2 + ∥∥P − P (ρ̃)

∥∥1/2
L6

)
�

∥∥ρ1/2u̇
∥∥

L2‖∇u‖3/2
L2

(
1 + ∥∥ρ1/2u̇

∥∥1/2
L2 + ‖∇H‖3/4

L2

∥∥∇2 H
∥∥1/4

L2

)
� η

(∥∥ρ1/2u̇
∥∥2

L2 + ∥∥∇2 H
∥∥2

L2

) + C(η)
(‖∇u‖3

L2 + ‖∇u‖6
L2 + ‖∇u‖4

L2‖∇H‖2
L2

)
, (3.17)

and finally,

I4 � C
(‖u‖2

L6‖∇H‖2
L3 + ‖∇u‖2

L2‖H‖2
L∞

)
� C‖∇u‖2

L2‖∇H‖L2

∥∥∇2 H
∥∥

L2

� η
∥∥∇2 H

∥∥2
L2 + C(η)‖∇u‖4

L2‖∇H‖2
L2 . (3.18)

Thanks to (3.4), (3.7) and (2.1), we find

I0 � C‖∇u‖L2

(∥∥P − P (ρ̃)
∥∥

L2 + ‖H‖2
L4

)
� C‖∇u‖L2

(
C1/2

0 + ‖H‖1/2
L2 ‖∇H‖3/2

L2

)
� C‖∇u‖L2

(
C1/2

0 + C1/4
0 ‖∇H‖3/2

L2

)
� η‖∇u‖2

L2 + C(η)
(
C0 + C1/2

0 ‖∇H‖3
L2

)
. (3.19)

Thus, putting (3.13), (3.15), (3.17) and (3.18) into (3.12), integrating it over (0, σ (T )), and using
Cauchy–Schwarz inequality, by virtue of (3.4), (3.7) and (3.19) we conclude that (choosing η > 0 suf-
ficiently small)

A3
(
σ(T )

) +
σ (T )∫
0

(∥∥ρ1/2u̇
∥∥2

L2 + ‖Ht‖2
L2 + ∥∥∇2 H

∥∥2
L2

)
dt

� C
(
1 + ‖∇u0‖2

L2 + ‖∇H0‖2
L2

) + CC1/2
0 sup

0�t�σ (T )

‖∇H‖3
L2

+ C

σ (T )∫
0

‖∇u‖4
L2

(‖∇u‖2
L2 + ‖∇H‖2

L2

)
dt

� C(M1, M2) + CC1/2
0 A3/2

3

(
σ(T )

) + C sup
0�t�σ (T )

‖∇u‖4
L2

σ (T )∫
0

(‖∇u‖2
L2 + ‖∇H‖2

L2

)
dt

� C(M1, M2) + CC1/2
0 A3/2

3

(
σ(T )

) + CC0 A2
3

(
σ(T )

)
� K + CC1/2

0 A2
3

(
σ(T )

)
, (3.20)

where K � C(M1, M2). As an immediate result of (3.20), one obtains (3.8) provided it holds that
A3(σ (T )) � 3K and C0 � ε1,1 � min{1, (9C K )−2}.
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To prove (3.9), we deduce from (3.11) and (3.18) that

sup
0�t�T

‖∇H‖2
L2 +

T∫
0

(‖Ht‖2
L2 + ∥∥∇2 H

∥∥2
L2

)
dt

� C‖∇H0‖2
L2 + C1 sup

0�t�T
‖∇H‖2

L2

T∫
0

‖∇u‖4
L2 dt. (3.21)

On the other hand, it follows from (3.4), (3.7) and (3.8) that

T∫
0

‖∇u‖4
L2 dt =

σ (T )∫
0

‖∇u‖4
L2 dt +

T∫
σ (T )

‖∇u‖4
L2 dt

� sup
0�t�σ (T )

‖∇u‖2
L2

σ (T )∫
0

‖∇u‖2
L2 dt + sup

σ (T )�t�σ (T )

(
σ‖∇u‖2

L2

) T∫
σ (T )

‖∇u‖2
L2 dt

� C(K )C0. (3.22)

Thus, if C0 is chosen to be such that

C0 � ε1 � min
{
ε1,1,

(
2C1C(K )

)−1}
,

then substituting (3.22) into (3.21) immediately leads to (3.9). The proof of Lemma 3.2 is therefore
complete. �

Next we derive preliminary bounds for A1(T ) and A2(T ).

Lemma 3.3. Assume that the conditions of Proposition 3.1 hold. Then,

A1(T ) � CC0 +
T∫

0

σ 2
∥∥P − P (ρ̃)

∥∥4
L4 dt (3.23)

and

A2(T ) � CC0 + C A1(T ) + C

T∫
0

σ 2‖∇u‖4
L4 dt, (3.24)

provided C0 � ε1 .

Proof. Multiplying (3.12) by σ(t), integrating the resulting equation over (0, T ), and using the similar
arguments as those in the derivations of (3.13), (3.15) and (3.17)–(3.19), we infer from (3.4), (3.7),
(3.9), (3.22) and Cauchy–Schwarz inequality that
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A1(T ) � CC0 + C

T∫
0

(‖∇u‖2
L2 + ‖∇H‖2

L2 + ‖∇u‖4
L2

)
dt

+ CC1/2
0 sup

0�t�T
‖∇H‖L2 sup

0�t�T

(
σ‖∇H‖2

L2

)

+ C

T∫
0

(
σ‖∇u‖6

L2 + σ‖∇u‖4
L2‖∇H‖2

L2 + σ 2
∥∥P − P (ρ̃)

∥∥4
L4

)
dt

+ C

T∫
0

∫
σ ′

∣∣∣∣1

2
|H|2(div u) − H · ∇u · H + (

P (ρ) − P (ρ̃)
)
(div u)

∣∣∣∣ dx dt

� CC0 + CC1/2
0 sup

0�t�T
σ

(‖∇u‖2
L2 + ‖∇H‖2

L2

) + C

T∫
0

σ 2
∥∥P − P (ρ̃)

∥∥4
L4 dt

+ C

T∫
0

σ ′(‖∇u‖2
L2 + ‖H‖4

L4 + ∥∥P − P (ρ̃)
∥∥2

L2

)
dt

� CC0 + C

T∫
0

σ 2
∥∥P − P (ρ̃)

∥∥4
L4 dt,

which proves (3.23). Note here that 0 � σ ′ � 1 for t � 0 and σ ′ = 0 for t > 1.
To estimate A2(T ), applying the operator σ 2u̇ j[∂t + div(u·)] to both sides of j-th equation of (1.2)

and integrating them by parts over R
3, we obtain after summing up that

L � 1

2

d

dt

∫
σ 2ρ|u̇|2 dx − μ

∫
σ 2u̇ j[�u j

t + div
(
u�u j)] dx

− (λ + μ)

∫
σ 2u̇ j[∂t∂ j div u + div(u∂ j div u)

]
dx

=
∫

σσ ′ρ|u̇|2 dx −
∫

σ 2u̇ j[∂ j Pt + div(∂ j P u)
]

dx

−
∫

σ 2u̇ j[∂ j
(

Hi Hi
t

) + div
(

Hi∂ j Hiu
)]

dx

+
∫

σ 2u̇ j[∂t
(

Hi∂i H j) + div
(

Hi∂i H ju
)]

dx �
4∑

i=1

Ri . (3.25)

Here and in what follows, we use the Einstein convention that repeated indices denote the summation
over the indices.

We are now in a position of estimating some terms in (3.25). First, the second term on the left-
hand side can be estimated from below as follows:

−μ

∫
σ 2u̇ j[�u j

t + div
(
u�u j)] dx
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= μ

∫
σ 2(∂ku̇ j∂ku j

t − ∂2
iku̇ jui∂ku j − ∂i u̇

j∂kui∂ku j)dx

= μ

∫
σ 2(|∇u̇|2 + ∂ku̇ j∂iu

i∂ku j − ∂ku̇ j∂kui∂iu
j − ∂i u̇

j∂kui∂ku j)dx

� 7μ

8
σ 2‖∇u̇‖2

L2 − Cσ 2‖∇u‖4
L4 .

In a similar manner,

−(λ + μ)

∫
σ 2u̇ j[∂t∂ j div u + div(u∂ j div u)

]
dx � μ + λ

2
σ 2‖div u̇‖2

L2 − Cσ 2‖∇u‖4
L4 ,

and consequently,

L � 1

2

d

dt

∫
σ 2ρ|u̇|2 dx + 7μ

8
σ 2‖∇u̇‖2

L2 − Cσ 2‖∇u‖4
L4 . (3.26)

For the second term R2 on the right-hand side, using (3.14) and integrating by parts, by (3.4) and
Cauchy–Schwarz inequality we have

R2 =
∫

σ 2(−γ P (ρ)∂iu
i∂ j u̇

j + P (ρ)∂i
(
ui∂ j u̇

j) − P (ρ)∂ j
(
ui∂i u̇

j))dx

=
∫

σ 2(−γ P (ρ)∂iu
i∂ j u̇

j + P (ρ)∂iu
i∂ j u̇

j − P (ρ)∂ ju
i∂i u̇

j) dx

� μ

8
σ 2‖∇u̇‖2

L2 + Cσ 2‖∇u‖2
L2 . (3.27)

By virtue of (2.1), (3.7) and (3.9), we obtain after integrating by parts that

R3 � Cσ 2‖∇u̇‖L2

(‖H‖L3‖Ht‖L6 + ‖u‖L6‖H‖L6‖∇H‖L6

)
� Cσ 2‖∇u̇‖L2

(‖H‖1/2
L2 ‖∇H‖1/2

L2 ‖∇Ht‖L2 + ‖∇u‖L2‖∇H‖L2

∥∥∇2 H
∥∥

L2

)
� μ

8
σ 2‖∇u̇‖2

L2 + Cσ 2(C1/2
0 ‖∇Ht‖2

L2 + ‖∇u‖2
L2

∥∥∇2 H
∥∥2

L2

)
, (3.28)

and similarly, using the fact that div H = 0, we have

R4 = −
∫

σ 2(∂i u̇
j(H j Hi

t + Hi H j
t

) + ∂ku̇ j Hi∂i H juk) dx

� μ

8
σ 2‖∇u̇‖2

L2 + Cσ 2(C1/2
0 ‖∇Ht‖2

L2 + ‖∇u‖2
L2

∥∥∇2 H
∥∥2

L2

)
. (3.29)

Thus, putting (3.26)–(3.29) into (3.25) and integrating the resulting inequality over (0, T ), we infer
from (3.4) and (3.7) that

sup
0�t�T

(
σ 2

∥∥ρ1/2u̇
∥∥2

L2

) +
T∫
σ 2‖∇u̇‖2

L2 dt
0
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� C

T∫
0

(
σ

∥∥ρ1/2u̇
∥∥2

L2 + σ 2‖∇u‖2
L2

)
dt + C

T∫
0

σ 2‖∇u‖4
L4 dt

+ CC1/2
0

T∫
0

σ 2‖∇Ht‖2
L2 dt + C sup

0�t�T

(
σ‖∇u‖2

L2

) T∫
0

σ
∥∥∇2 H

∥∥2
L2 dt

� CC0 + C A1(T ) + C

T∫
0

σ 2‖∇u‖4
L4 dt. (3.30)

Differentiating (1.3) with respect to t and multiplying the resulting equations by σ 2 Ht in L2, we
obtain after integrating by parts over R

3 × (0, T ) that

1

2
sup

0�t�T

(
σ 2‖Ht‖2

L2

) + ν

T∫
0

σ 2‖∇Ht‖2
L2 dt

=
T∫

0

σσ ′‖Ht‖2
L2 dt +

T∫
0

∫
σ 2(H · ∇u̇ · Ht + u̇ · ∇Ht · H)dx dt

+
T∫

0

∫
σ 2(Hi∂i H j

t − Hk∂ j Hk
t

)(
u · ∇u j) dx dt

+
T∫

0

∫
σ 2(Ht · ∇u − Ht div u − u · ∇Ht) · Ht dx dt �

4∑
i=1

Ri, (3.31)

where we have used div H = 0, ut = u̇ − u · ∇u and

−
∫

u̇ · ∇H · Ht dx =
∫ (

H · Ht(div u̇) + u̇ · ∇Ht · H
)

dx.

The second term on the right-hand side of (3.31) can be estimated as follows, using (2.1), (3.4),
(3.7) and (3.9):

R2 � C

T∫
0

σ 2‖H‖1/2
L2 ‖∇H‖1/2

L2

(‖Ht‖L6‖∇u̇‖L2 + ‖u̇‖L6‖∇Ht‖L2

)
dt

� ν

4

T∫
0

σ 2‖∇Ht‖2
L2 dt + CC1/2

0

T∫
0

σ 2‖∇u̇‖2
L2 dt

� CC0 + ν

4

T∫
0

σ 2‖∇Ht‖2
L2 dt. (3.32)

In view of (3.4), (3.9), (3.16) and (3.22), we have



S. Liu et al. / J. Differential Equations 254 (2013) 229–255 243
R3 � C

T∫
0

σ 2‖H‖L12‖∇Ht‖L2‖u‖L6‖∇u‖L4 dt

� C

T∫
0

σ 2
∥∥∇2 H

∥∥1/4
L2 ‖∇Ht‖L2‖∇u‖L2‖∇u‖L4 dt

� ν

4

T∫
0

σ 2‖∇Ht‖2
L2 dt + C

T∫
0

σ 2‖∇u‖4
L4 dt + C sup

0�t�T

(
σ

∥∥∇2 H
∥∥

L2

) T∫
0

‖∇u‖4
L2 dt

� CC0 + ν

4

T∫
0

σ 2‖∇Ht‖2
L2 dt + C

T∫
0

σ 2‖∇u‖4
L4 dt, (3.33)

and similarly,

R4 � C

T∫
0

σ 2(‖Ht‖2
L4‖∇u‖L2 + ‖u‖L6‖∇Ht‖L2‖Ht‖L3

)
dt

� C

T∫
0

σ 2‖Ht‖1/2
L2 ‖∇Ht‖3/2

L2 ‖∇u‖L2 dt

� ν

4

T∫
0

σ 2‖∇Ht‖2
L2 dt + C sup

0�t�T

(
σ‖∇u‖2

L2

)2
T∫

0

‖Ht‖2
L2 dt

� CC0 + ν

4

T∫
0

σ 2‖∇Ht‖2
L2 dt. (3.34)

Thus, combining (3.32)–(3.34) with (3.31) shows that

sup
0�t�T

(
σ 2‖Ht‖2

L2

) +
T∫

0

σ 2‖∇Ht‖2
L2 dt � CC0 + C A1(T ) +

T∫
0

σ 2‖∇u‖4
L4 dt. (3.35)

Moreover, it follows from (1.3), the L2-estimate of elliptic system and Lemma 2.1 that

∥∥∇2 H
∥∥2

L2 � C
(‖Ht‖2

L2 + ‖u∇H‖2
L2 + ‖H∇u‖2

L2

)
� C

(‖Ht‖2
L2 + ‖u‖2

L6‖∇H‖2
L3 + ‖H‖2

L∞‖∇u‖2
L2

)
� C

(‖Ht‖2
L2 + ‖∇u‖2

L2‖∇H‖L2

∥∥∇2 H
∥∥

L2

)
� 1

2

∥∥∇2 H
∥∥2

L2 + C
(‖Ht‖2

L2 + ‖∇u‖4
L2‖∇H‖2

L2

)
,

which, together with (3.30) and (3.35), gives
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A2(T ) � CC0 + C A1(T ) + C sup
0�t�T

((
σ‖∇u‖2

L2

)2‖∇H‖2
L2

) + C

T∫
0

σ 2‖∇u‖4
L4 dt

� CC0 + C A1(T ) + C

T∫
0

σ 2‖∇u‖4
L4 dt,

where we have also used (3.4) and (3.9). The proof of Lemma 3.3 is therefore complete. �
Clearly, we still need to deal with ‖∇u‖L4 and ‖P − P (ρ̃)‖L4 .

Lemma 3.4. Let F ,ω be the ones defined in (2.3), and let the conditions of Proposition 3.1 be satisfied. Then,

T∫
0

σ 2(‖∇u‖4
L4 + ‖F‖4

L4 + ‖ω‖4
L4 + ∥∥P − P (ρ̃)

∥∥4
L4

)
dt � CC3/4

0 , (3.36)

provided C0 � ε1 .

Proof. In view of the standard L p-estimate, we have

T∫
0

σ 2‖∇u‖4
L4 dt � C

T∫
0

σ 2(‖div u‖4
L4 + ‖ω‖4

L4

)
dt

� C

T∫
0

σ 2(‖F‖4
L4 + ‖ω‖4

L4 + ∥∥P − P (ρ̃)
∥∥4

L4 + ‖H‖8
L8

)
. (3.37)

The right-hand side of (3.37) will be estimated term by term as follows. First, it follows from (2.3),
(3.4), (3.7), (3.8) and (3.9) that

‖F‖L2 + ‖ω‖L2 �
(‖∇u‖L2 + ∥∥P − P (ρ̃)

∥∥
L2 + ‖H‖2

L4

)
� C, (3.38)

and hence, using Lemmas 2.1, 2.2, (3.4), (3.7), (3.9), (3.16) and (3.38), we see that

T∫
0

σ 2(‖F‖4
L4 + ‖ω‖4

L4

)
dt � C

T∫
0

σ 2(‖F‖L2 + ‖ω‖L2

)(‖∇ F‖3
L2 + ‖∇ω‖3

L2

)
dt

� C

T∫
0

σ 2
∥∥ρ1/2u̇

∥∥3
L2 dt + C

T∫
0

σ 2‖∇H‖9/2
L2

∥∥∇2 H
∥∥3/2

L2 dt

� C sup
0�t�T

(
σ

∥∥ρ1/2u̇
∥∥

L2

) T∫
σ‖ρ1/2u̇‖2

L2 dt
0
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+ C sup
0�t�T

(
σ

∥∥∇2 H
∥∥

L2

)3/2
T∫

0

‖∇H‖2
L2 dt

� C A1/2
2 (T )A1(T ) + CC0 � CC3/4

0 . (3.39)

Next, multiplying (3.14) by 3σ 2(P − P (ρ̃))2, integrating the resulting equation by parts over R
3 ×

(0, T ) and using the effective viscous flux F , we obtain

1

2μ + λ

T∫
0

σ 2
∥∥P − P (ρ̃)

∥∥4
L4 dt

=
∫

σ 2(P − P (ρ̃)
)3

(·, T )dx − 2

T∫
0

σσ ′
∫ (

P − P (ρ̃)
)3

dx dt

− 1

2μ + λ

T∫
0

σ 2
∫ (

P − P (ρ̃)
)3

(
F + 1

2
|H|2

)
dx dt

+ 3

T∫
0

σ 2
∫

γ P (div u)
(

P − P (ρ̃)
)2

dx dt

� CC0 + C

T∫
0

σ 2
∥∥P − P (ρ̃)

∥∥3
L4

(‖F‖L4 + ‖H‖2
L8

)
dt

+ C

T∫
0

σ 2
∥∥P − P (ρ̃)

∥∥2
L4‖∇u‖L2 dt

� C(δ)C3/4
0 + δ

T∫
0

σ 2
∥∥P − P (ρ̃)

∥∥4
L4 dt + C(δ)

T∫
0

σ 2‖H‖8
L8 dt, (3.40)

where we have used (3.4), (3.7), (3.39) and Cauchy–Schwarz inequality. Noting that,

T∫
0

σ 2‖H‖8
L8 dt � C

T∫
0

σ 2‖H‖4
L∞‖H‖4

L4 dt

� C

T∫
0

σ 2‖H‖L2‖∇H‖5
L2

∥∥∇2 H
∥∥2

L2 dt

� C1/2
0

T∫
σ 2

∥∥∇2 H
∥∥2

L2 dt � CC0
0
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due to Lemma 2.1, (3.4), (3.7) and (3.9). This, together with (3.40), gives (choosing δ > 0 small enough)

T∫
0

σ 2(∥∥P − P (ρ̃)
∥∥4

L4 + ‖H‖8
L8

)
dt � CC3/4

0 . (3.41)

Thus, combining (3.37) with (3.39) and (3.41) leads to the desired estimate of (3.36). �
Lemma 3.5. Suppose that the conditions of Proposition 3.1 hold. Then there exists a positive constant ε2 ,
depending on μ, λ, ν , γ , A, ρ̄ , ρ̃ , M1 and M2 , such that

A1(T ) + A2(T ) � C1/2
0 , (3.42)

provided C0 � ε2 .

Proof. Indeed, it follows from (3.23), (3.24) and (3.36) that

A1(T ) + A2(T ) � CC3/4
0 .

Thus, if C0 is chosen to be such that

C0 � ε2 � min
{
ε1, C−4},

then one immediately obtains (3.42). �
In order to complete the proof of Proposition 3.1, we still need to estimate the upper bound of

density. To this end, we first prove

Lemma 3.6. Suppose that the conditions of Proposition 3.1 hold. Then,

sup
0�t�T

(‖∇u‖2
L2 + ‖∇H‖2

L2

) +
T∫

0

(∥∥ρ1/2u̇
∥∥2

L2 + ‖Ht‖2
L2 + ∥∥∇2 H

∥∥2
L2

)
dt � C, (3.43)

sup
0�t�T

σ
(∥∥ρ1/2u̇

∥∥2
L2 + ‖Ht‖2

L2 + ∥∥∇2 H
∥∥2

L2

) +
T∫

0

(‖∇u̇‖2
L2 + ‖∇Ht‖2

L2

)
dt � C, (3.44)

provided C0 � ε2 .

Proof. As an immediate consequence of Lemmas 3.2 and 3.5, one gets (3.43). The proof of (3.44) is
similar to the one used for (3.24). More precisely, applying the operator σ u̇[∂t + div(u·)] to both sides
of (1.2) and integrating the resulting equation by parts over R

3 × (0, T ), we deduce from (3.7), (3.42),
(3.43) as well as (3.26) and (3.27) (with σ 2 replaced by σ ) that

sup
0�t�T

(
σ

∥∥ρ1/2u̇
∥∥2

L2

) +
T∫
σ‖∇u̇‖2

L2 dt
0
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� C +
T∫

0

σ

∫ (|∇u|4 + |∇u̇||H||Ht | + |∇u̇||H||u||∇H|)dt

� C + C

T∫
0

σ
(‖∇u‖4

L4 + ‖∇u̇‖L2‖H‖L∞‖Ht‖L2 + ‖∇u̇‖L2‖H‖L6‖u‖L6‖∇H‖L6

)
dt

� C + 1

2

T∫
0

σ‖∇u̇‖2
L2 dt + C

T∫
0

σ
(‖∇u‖4

L4 + ∥∥∇2 H
∥∥2

L2 + ∥∥∇2 H
∥∥

L2‖Ht‖2
L2

)
dt

� C + 1

2

T∫
0

σ‖∇u̇‖2
L2 dt + C

T∫
0

σ‖∇u‖4
L4 dt + C sup

0�t�T

(
σ

∥∥∇2 H
∥∥

L2

) T∫
0

‖Ht‖2
L2 dt

� C + C

T∫
0

σ‖∇u‖4
L4 dt + 1

2

T∫
0

σ‖∇u̇‖2
L2 dt. (3.45)

It follows from Lemmas 2.1, 2.2, (3.4), (3.7), (3.16), (3.22), (3.36), (3.42) and (3.43) that

T∫
0

σ‖∇u‖4
L4 dt � C

T∫
0

σ‖∇u‖L2‖∇u‖3
L6 dt

� C

T∫
0

σ‖∇u‖L2

(∥∥ρ1/2u̇
∥∥3

L2 + ∥∥P − P (ρ̃)
∥∥3

L6 + ‖H‖6
L12 + ‖H∇H‖3

L2

)

� C

T∫
0

σ‖∇u‖L2

(∥∥ρ1/2u̇
∥∥3

L2 + ∥∥P − P (ρ̃)
∥∥2

L4 + ‖∇H‖9/2
L2

∥∥∇2 H
∥∥3/2

L2

)

� C sup
0�t�T

(
σ

∥∥ρ1/2u̇
∥∥2

L2

)1/2
T∫

0

∥∥ρ1/2u̇
∥∥2

L2 dt

+ C

T∫
0

(‖∇u‖2
L2 + ‖∇u‖4

L2 + ∥∥∇2 H
∥∥2

L2 + σ 2
∥∥P − P (ρ̃)

∥∥4
L4

)

� C + C sup
0�t�T

(
σ

∥∥ρ1/2u̇
∥∥2

L2

)1/2
,

which, together with (3.45) and Young inequality, immediately results in

sup
0�t�T

(
σ

∥∥ρ1/2u̇
∥∥2

L2

) +
T∫

0

σ
(‖∇u̇‖2

L2 + ‖∇u‖4
L4

)
dt � C . (3.46)

With the help of (3.43) and (3.46), similar to the derivation of (3.35), one easily obtains the esti-
mates of magnetic field H stated in (3.44). �
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We are now ready to prove the uniform upper bound of density.

Lemma 3.7. Suppose that the conditions of Proposition 3.1 hold. Then there exists a positive constant ε, de-
pending on μ, λ, ν , γ , A, ρ̄ , ρ̃ , M1 and M2 , such that

sup
x∈R3, t∈[0,T ]

ρ(x, t) � 7

4
ρ̄, (3.47)

provided C0 � ε.

Proof. Let Dtρ � ρt + u · ∇ρ . Then it follows from (1.1) and (2.3) that

Dtρ = g(ρ) + b′(t),

where

g(ρ) � − Aρ

2μ + λ

(
ργ − ρ̃γ

)
, b(t) = − 1

2μ + λ

t∫
0

ρ

(
1

2
|H|2 + F

)
ds.

In order to apply Zlotnik’s inequality (i.e. Lemma 2.3), we need to deal with b(t). To do so, we first
observe from (3.7), (3.9) and (3.42) that

‖F‖L2 � C
(‖∇u‖L2 + ∥∥P − P (ρ̃)

∥∥
L2 + ‖H‖1/2

L2 ‖∇H‖3/2
L2

)
� CC1/4

0 + Cσ−1/2(σ‖∇u‖2
L2

)1/2 � CC1/4
0

(
1 + σ−1/2), (3.48)

and thus, using Lemmas 2.1, 2.2, (3.7), (3.43) and (3.44), we obtain

σ (T )∫
0

(∥∥ρ1/2 H
∥∥2

L∞ + ‖ρ F‖L∞
)

dt

� C

σ (T )∫
0

(‖∇H‖L2

∥∥∇2 H
∥∥

L2 + ‖F‖1/4
L2 ‖∇ F‖3/4

L6

)
dt

� CC1/2
0 + CC1/16

0

σ (T )∫
0

(
1 + σ−1/8)(‖ρu̇‖3/4

L6 + ‖H · ∇H‖3/4
L6

)
dt

� CC1/2
0 + CC1/16

0

σ (T )∫
0

(
1 + σ−1/8)(‖∇u̇‖3/4

L2 + ∥∥∇2 H
∥∥9/8

L2

)
dt

� CC1/2
0 + CC1/16

0

( σ (T )∫ (
1 + σ−4/5)dt

)5/8( σ (T )∫
σ‖∇u̇‖2

L2 dt

)3/8
0 0
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+ CC1/16
0

( σ (T )∫
0

(
1 + σ−2/7)dt

)7/16( σ (T )∫
0

∥∥∇2 H
∥∥2

L2 dt

)9/16

� CC1/16
0 .

This particularly implies that for any 0 � t1 < t2 � σ(T ),

∣∣b(t2) − b(t1)
∣∣ � C

σ (T )∫
0

(∥∥ρ1/2 H
∥∥2

L∞ + ‖ρ F‖L∞
)

dt � CC1/16
0 .

So, for t ∈ [0, σ (T )] we can choose N0, N1 and ξ∗ in Lemma 2.3 as follows:

N0 = CC1/16
0 , N1 = 0 and ξ∗ = ρ̃.

Noting that

g(ξ) = − Aξ

2μ + λ

(
ξγ − ρ̃γ

)
� −N1 = 0 for all ξ � ξ∗ = ρ̃,

we thus deduce from (2.10) that

sup
0�t�σ (T )

∥∥ρ(t)
∥∥

L∞ � max{ρ̄, ρ̃} + N0 � ρ̄ + CC1/16
0 � 3

2
ρ̄, (3.49)

provided C0 is chosen to be such that

C0 � ε3,1 � min

{
ε2,

(
ρ̄

2C

)16}
.

It is clear that ‖F (t)‖L2 � C for all t ∈ [0, T ] due to (3.7) and (3.43). Hence, we have by Cauchy–
Schwarz inequality and (3.42) that for any σ(T ) � t1 < t2 � T ,

∣∣b(t2) − b(t1)
∣∣ �

t2∫
t1

(∥∥ρ1/2 H
∥∥2

L∞ + ‖ρ F‖L∞
)

dt

� CC1/2
0 + C

t2∫
t1

(‖∇u̇‖3/4
L2 + ∥∥∇2 H

∥∥9/8
L2

)
dt

� A

2μ + λ
(t2 − t1) + CC1/2

0 + C

t2∫
t1

(
σ 2‖∇u̇‖2

L2 + σ
∥∥∇2 H

∥∥2
L2

)
dt

� A

2μ + λ
(t2 − t1) + CC1/2

0 .
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Thus, for t ∈ [σ(T ), T ] we can choose N0, N1 and ξ∗ in Lemma 2.3 as follows:

N0 = CC1/2
0 , N1 = A

2μ + λ
and ξ∗ = ρ̃ + 1.

Since

g(ξ) = − Aξ

2μ + λ

(
ξγ − ρ̃γ

)
� −N1 for ξ � ξ∗ = ρ̃ + 1,

we thus infer from (2.10) and (3.49) that

sup
σ (T )�t�T

∥∥ρ(t)
∥∥

L∞ � max

{
3

2
ρ̄, ρ̃ + 1

}
+ N0 � 3

2
ρ̄ + CC1/2

0 � 7

4
ρ̄, (3.50)

provided

C0 � ε � min

{
ε3,1,

(
ρ̄

4C

)2}
.

Combining (3.49) and (3.50) finishes the proof of (3.47). �
4. Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by constructing weak solutions as limits of smooth solutions.
So, we first prove the global-in-time existence of smooth solutions with smooth initial data which is
strictly away from vacuum and is only of small energy.

Theorem 4.1. Assume that (ρ0, u0, H0) satisfies (2.12). Then for any 0 < T < ∞, there exists a unique smooth
solution (ρ, u, H) of (1.1)–(1.7) on R

3 ×[0, T ] satisfying (2.13)–(2.15) with T0 being replaced by T , provided
the initial energy C0 satisfies the smallness condition (1.13) with ε > 0 being the same one as in (3.6) of
Proposition 3.1.

Proof. The standard local existence theorem (i.e. Lemma 2.4) shows that the Cauchy problem (1.1)–
(1.7) admits a unique local smooth solution (ρ, u, H) on R

3 × [0, T0], where T0 > 0 may depend on
infρ0.

In view of (3.1)–(3.3), we have

A1(0) = A2(0) = 0, A3(0) = M1 + M2 � 3K , 0 � ρ0 � ρ̄.

So, by continuity argument we see that there exists a positive time T1 ∈ (0, T0] such that (3.4) holds
for T = T1. Set

T∗ = sup
{

T
∣∣ (3.4) holds

}
. (4.1)

Then it is clear that T∗ � T1 > 0.
We claim that

T∗ = ∞. (4.2)

Otherwise, T∗ < ∞. Then due to C0 � ε, it follows from Proposition 3.1 that (3.5) holds for any
0 � T � T∗ . This, together with Proposition 4.1 (see below) and Lemma 2.4, implies there exists a



S. Liu et al. / J. Differential Equations 254 (2013) 229–255 251
T ∗ > T∗ such that (3.4) holds for T = T ∗ . This contradicts (4.1), and thus, (4.2) holds. As a result,
we deduce from Proposition 4.1 that (ρ, u, H) is in fact the unique smooth solution of (1.1)–(1.7) on
R

3 × [0, T ] for any 0 < T < ∞. �
Proposition 4.1. Let (ρ, u, H) be a smooth solution of (1.1)–(1.7) on R

3 ×[0, T ] with initial data (ρ0, u0, H0)

satisfying (2.12) and the small-energy condition (1.13). Then,

ρ(x, t) > 0 for all x ∈ R
3, t ∈ [0, T ], (4.3)

and

sup
0�t�T

∥∥(ρ − ρ̃, u, H)
∥∥

H3 +
T∫

0

∥∥(u, H)
∥∥2

H4 dt � C̃ . (4.4)

Here and in what follows, for simplicity we denote by C̃ the various positive constants which depend on μ, λ,
ν , γ , A, ρ̃ , ρ̄ , ‖(ρ0 − ρ̃, u0, H0)‖H3 , infρ0(x) and T as well.

Proof. The positive lower bound of density in (4.3) is an immediate result of (4.4), which indeed only
depends on the bound of ‖div u‖L1(0,T ;L∞) . So we only need to prove (4.4). As that in [19], the key
point here is to estimate ‖∇u‖L1(0,T ;L∞) and ‖∇ρ‖L∞(0,T ;Lp) with p ∈ [2,6], which will be achieved
by using the Beale–Kato–Majda’s type inequality developed in [10,11].

Step I. To begin, we first notice that (due to infρ0 > 0 and (2.12))

u̇(·,0) = ρ−1
0

(
μ�u0 + (μ + λ)∇ div u0 − ∇ P (ρ0) − 1

2
∇|H0| + H0 · ∇H0

)
∈ H1. (4.5)

In view of Proposition 3.1, we have

ρ(x, t) � C < ∞ for all x ∈R
3, t ∈ [0, T ], (4.6)

sup
0�t�T

(‖∇u‖2
L2 + ‖∇H‖2

L2

) +
T∫

0

(∥∥ρ1/2u̇
∥∥2

L2 + ‖Ht‖2
L2 + ∥∥∇2 H

∥∥2
L2

)
dt � C, (4.7)

and moreover, similar to the derivation of (3.44), by using (3.7), (4.6) and (4.7) we also infer from
(4.5) that

sup
0�t�T

(∥∥ρ1/2u̇
∥∥2

L2 + ‖Ht‖2
L2 + ∥∥∇2 H

∥∥2
L2

) +
T∫

0

(‖∇u̇‖2
L2 + ‖∇Ht‖2

L2

)
dt � C̃(T ). (4.8)

Step II. This step is concerned with the estimate of the gradient of density. To do this, operating ∇ to
both sides of (1.1) and multiplying the resulting equation by |∇ρ|p−2∇ρ with p � 2, we obtain after
integrating by parts over R

3 that

d ‖∇ρ‖L p � C‖∇u‖L∞‖∇ρ‖L p + C
∥∥∇2u

∥∥
L p . (4.9)
dt
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By the standard L p-estimate of elliptic system, we infer from (1.2) that∥∥∇2u
∥∥

L p � C
(‖ρu̇‖L p + ‖∇ P‖L p + ‖H∇H‖L p

)
. (4.10)

In order to deal with ‖∇u‖L∞ , we recall the following Beale–Kato–Majda’s type inequality (see
[10,11]):

‖∇u‖L∞ � C
(‖div u‖L∞ + ‖ω‖L∞

)
ln

(
e + ∥∥∇2u

∥∥
Lq

) + C‖∇u‖L2 + C, (4.11)

where ω = ∇ × u and q > 3.
So, choosing p = q = 6 in (4.9)–(4.11), and using Lemma 2.1 and (4.6)–(4.8), we find

d

dt
‖∇ρ‖L6 � C‖∇u‖L∞‖∇ρ‖L6 + C

(‖ρu̇‖L6 + ‖∇ P‖L6 + ‖H∇H‖L6

)
� C‖∇ρ‖L6

(‖div u‖L∞ + ‖ω‖L∞
)

ln
(
e + ‖∇u̇‖L2

)
+ C‖∇ρ‖L6

(‖div u‖L∞ + ‖ω‖L∞
)

ln
(
e + ‖∇ρ‖L6

)
+ C

(‖∇u̇‖L2 + ‖∇ρ‖L6 + 1
)
. (4.12)

Define

f (t) � e + ‖∇ρ‖L6 , g(t) � 1 + ‖∇u̇‖L2 + (‖div u‖L∞ + ‖ω‖L∞
)

ln
(
e + ‖∇u̇‖L2

)
.

Hence, it follows from (4.12) that

d

dt
f (t) � C g(t) f (t) + C g(t) f (t) ln f (t),

which particularly implies

d

dt
ln f (t) � C g(t) + C g(t) ln f (t). (4.13)

Next we estimate g(t). Indeed, by Lemmas 2.1, 2.2 and (4.6)–(4.8), we have

T∫
0

g(t)dt � C̃ + C̃

T∫
0

(‖∇u̇‖2
L2 + ‖div u‖2

L∞ + ‖ω‖2
L∞

)
dt

� C̃ + C̃

T∫
0

(‖F‖2
L∞ + ∥∥P − P (ρ̃)

∥∥2
L∞ + ‖H‖4

L∞ + ‖ω‖2
L∞

)
dt

� C̃ + C̃

T∫
0

(‖F‖1/2
L2 ‖∇ F‖3/2

L6 + ‖ω‖1/2
L2 ‖∇ω‖3/2

L6

)
dt

� C̃ + C̃

T∫
0

(‖ρu̇‖3/2
L6 + ‖H∇H‖3/2

L6

)
dt

� C̃ + C̃

T∫
‖∇u̇‖2

L2 dt � C̃ . (4.14)
0
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This, together with (4.13) and Gronwall inequality, gives

sup
0�t�T

‖∇ρ‖L6 � C̃, (4.15)

which, combined with (4.10), (4.11) and (4.14), also yields

T∫
0

‖∇u‖L∞ dt � C̃ . (4.16)

As a result, one also easily deduces from (4.9) and (4.10) that

sup
0�t�T

(‖∇ρ‖L2 + ∥∥∇2u
∥∥

L2

)
� C̃ . (4.17)

Step III. By virtue of (4.5)–(4.8) and (4.15)–(4.17), one can derive the estimates of the higher-order
derivatives of (ρ, u, H) in a similar way as that in [19], basing on the elementary L2-energy method.
The details are omitted here for simplicity. The proof of Proposition 4.1 is therefore complete. �

With the help of Theorem 4.1, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let jδ(x) be a standard mollifier with width δ. Define the approximate initial
data (ρδ

0, uδ
0, Hδ

0) as follows:

ρδ
0 = jδ ∗ ρ0 + δ, uδ

0 = jδ ∗ u0, Hδ
0 = jδ ∗ H0.

Then Theorem 4.1 can be applied to obtain a global smooth solution (ρδ, uδ, Hδ) of (1.1)–(1.7) with
the initial data (ρδ

0, uδ
0, Hδ

0) satisfying (3.4) for all t > 0 uniformly in δ.
In view of Lemma 2.2 and (3.4), we see from Sobolev embedding theorem that

〈
uδ(·, t)

〉1/2 � C
(
1 + ∥∥∇uδ

∥∥
L6

)
� C

(
1 + ∥∥F δ

∥∥
L6 + ∥∥ωδ

∥∥
L6 + ∥∥P δ − P (ρ̃)

∥∥
L6 + ∥∥Hδ

∥∥2
L12

)
� C

(
1 + ∥∥ρδ u̇δ

∥∥
L2 + ∥∥Hδ∇Hδ

∥∥
L2

)
� C(τ ), t � τ > 0, (4.18)

where F δ , ωδ and P δ are the functions F , ω and P with (ρ, u, H) being replaced by (ρδ, uδ, Hδ).
Here, we also used 〈·〉α to denote the Hölder norm with Hölder exponent α ∈ (0,1).

In addition to (4.18), one also has

∣∣∣∣uδ(x, t) − 1

|B R(x)|
∫

B R (x)

uδ(y, t)dy

∣∣∣∣ � C(τ )R1/2,

and hence,
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∣∣uδ(x, t2) − uδ(x, t1)
∣∣

� 1

|B R(x)|
t2∫

t1

∫
B R (x)

∣∣uδ
t (y, t)

∣∣ dy dt + C(τ )R1/2

� C R−3/2|t2 − t1|1/2

( t2∫
t1

∫
B R (x)

∣∣uδ
t (y, t)

∣∣2
dy dt

)1/2

+ C(τ )R1/2

� C R−3/2|t2 − t1|1/2

( t2∫
t1

∫
B R (x)

(∣∣u̇δ
∣∣2 + ∣∣uδ

∣∣2∣∣∇uδ
∣∣2)

dy dt

)1/2

+ C(τ )R1/2. (4.19)

Since it holds for any 0 < τ � t1 < t2 < ∞ that

t2∫
t1

∫ ∣∣u̇δ
∣∣2

dx dt � C(ρ̄, ρ̃)

t2∫
t1

∫ (
ρδ

∣∣u̇δ
∣∣2 + ∣∣ρδ − ρ̃

∣∣2∣∣u̇δ
∣∣2)

dx dt

� C(τ , ρ̄, ρ̃) + C(ρ̄, ρ̃)

t2∫
t1

∥∥∇u̇δ
∥∥2

L2

∥∥ρδ − ρ̃
∥∥2

L3 dt

� C(τ , ρ̄, ρ̃)

and

t2∫
t1

∫ ∣∣uδ
∣∣2∣∣∇uδ

∣∣2
dx dt � C(ρ̄, ρ̃) sup

t�τ

∥∥uδ
∥∥2

L∞

t2∫
t1

∥∥∇uδ
∥∥2

L2 dt � C(τ , ρ̄, ρ̃),

we thus infer from (4.19) that∣∣uδ(x, t2) − uδ(x, t1)
∣∣ � C(τ )R−3/2|t2 − t1|1/2 + C(τ )R1/2

for any 0 < τ � t1 < t2 < ∞. Thus, choosing R = |t2 − t1|1/4, we get∣∣uδ(x, t2) − uδ(x, t1)
∣∣ � C(τ )|t2 − t1|1/8, 0 < τ � t1 < t2 < ∞. (4.20)

The same estimates in (4.18) and (4.20) also hold for the magnetic filed Hδ . Thus, we have proved
that {uδ} and {Hδ} are uniform Hölder continuity away from t = 0. As a result, it follows from Ascoli–
Arzela theorem that

uδ → u, Hδ → H uniformly on compact sets in R
3 × (0,∞). (4.21)

Moreover, by the argument in [16] (see also [5]), we know that

ρδ → ρ strongly in Lp(
R

3 × (0,∞)
)
, ∀p ∈ [2,∞). (4.22)

Therefore, passing to the limit as δ → 0, by (4.21), (4.22) we obtain the limited function (ρ, u, H)

which is indeed a weak solution of (1.1)–(1.7) in the sense of Definition 1.1 and satisfies (3.4) for all
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T � 0. The large-time behavior of (ρ, u, H) in (1.15) is an immediate result of the uniform bounds es-
tablished in Section 3 and can be proved in a similar manner as that in [11]. The proof of Theorem 1.1
is thus complete. �
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