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Invisibility cloaking in acoustic scattering via the approach of trans-
formation optics is considered. The near-cloaks of both passive
medium and active/radiating object are investigated. From a prac-
tical viewpoint, we are especially interested in the cloaking of an
arbitrary (but regular) content. It is shown that one cannot achieve
the near-cloak unless some special mechanism is introduced into
the construction. A general lossy layer is incorporated into the
construction of our near-cloaking devices. We derive very accurate
estimates of the scattering amplitude in terms of the regulariza-
tion parameter and the material parameters of the lossy layer in
different settings.
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1. Introduction

We shall be concerned with the invisibility cloaking in acoustic scattering. Let D be a bounded
convex C2 domain in R

N , N � 2. We assume that D contains the origin and let

Dρ = {ρx; x ∈ D}, ρ ∈ R+.

Let Ω be a bounded domain in R
N such that Ωc := R

N\Ω is connected and D � Ω . Consider the
following scattering problem due to an inhomogeneity supported in Ω and a radiating source f ,
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N∑
i, j=1

∂

∂xi

(
σ i j(x)

∂u(x)

∂x j

)
+ ω2q(x)u(x) = f (x), x ∈R

N ,

u(x) = us(x) + ui(x;ω), x ∈ Ωc,

lim|x|→∞|x|(N−1)/2
{

∂us(x)

∂|x| − iωus(x)

}
= 0,

(1.1)

where

σ(x),q(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
I,1 in Ωc,

σc,qc in Ω\D,

σl,ql in D\D1/2,

σa,qa in D1/2,

(1.2)

and supp( f ) ⊂ D1/2 with f ∈ L2(D1/2). In (1.1), ui(x;ω) is an entire solution to �v + ω2 v = 0 in the
whole space. In the physical situation, (1.1) describes the scattering of an inhomogeneous medium
supported in Ω and a radiating source f supported in D1/2 due to a time-harmonic wave ui(x;ω)

oscillating with frequency ω ∈ R+ . In the classical scattering theory, we note that ui is usually taken
to be the plane wave eiωx·d with d ∈ S

N−1. σ and q are the acoustical material parameters with
σ−1 denoting the density tensor and q the modulus. We assume that q ∈ L∞(RN ) with �q � 0 and,
σ = (σ i j)N

i, j=1 is a symmetric matrix and uniformly elliptic in the sense that

c|ξ |2 �
N∑

i, j=1

σ(x)i jξiξ j � C |ξ |2, ∀ξ ∈R
N , ∀x ∈R

N ,

where c and C are positive constants. In our subsequent study, an acoustic medium is referred to
as regular if its modulus parameter q is essentially bounded with �q � 0 and its density tensor is
symmetric and uniformly elliptic. It is known that (1.1) has a unique solution u ∈ H1

loc(R
N ) admitting

the following asymptotic development as |x| → +∞ (cf. [6,13,21,23])

u(x) = ui + eiω|x|

|x|(N−1)/2
A(x̂) +O

(
1

|x|(N+1)/2

)
, |x| → ∞, (1.3)

where x̂ = x/|x| ∈ S
N−1 for x ∈ R

N . A(x̂) is known as the scattering amplitude or the far-field pattern,
which encodes the exterior wave patterns produced by the underlying scattering object. The classical
inverse scattering problem of significant practical importance is to recover the inhomogeneity σ , q
and/or the radiating source f from the measurement of the corresponding scattering amplitude A(x̂).
In this work, we are mainly interested in the setting that σa , qa and f supported in D1/2 are the
target objects and, (σl,ql) in D\D1/2 and (σc,qc) in Ω\D are some designed cloaking medium which
could hide the target object from exterior wave detections. Our construction is based on the so-called
transformation optics (cf. [11,12,17,24]). Throughout we shall suppose that there exists a (uniformly)
bi-Lipschitz and orientation-preserving map,

F (1)
ε : Ω\Dε → Ω\D, F (1)

ε |∂Ω = Identity, (1.4)

where ε ∈ R+ and 0 < ε < 1. Let

F (2)
ε (x) = x

, x ∈ Dε, (1.5)

ε
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and

Fε =

⎧⎪⎨⎪⎩
Identity on Ωc,

F (1)
ε on Ω\Dε,

F (2)
ε on Dε.

(1.6)

Set

σc = (
F (1)
ε

)
∗σ0, qc = (

F (1)
ε

)
∗q0, (1.7)

where (σ0,q0) = (I,1) and the push-forwards are defined by

(
F (1)
ε

)
∗σ0(y) = D F (1)

ε (x) · σ0(x) · (D F (1)
ε (x))T

|det(D F (1)
ε (x))|

∣∣∣∣
x=(F (1)

ε )−1(y)

,

(
F (1)
ε

)
∗q0(y) = q0(x)

|det(D F (1)
ε (x))|

∣∣∣∣
x=(F (1)

ε )−1(y)

, x ∈ Ω\Dε, y ∈ Ω\D, (1.8)

where D F (1)
ε denotes the Jacobian matrix of F (1)

ε . In a similar manner, we set

σl = (
F (2)
ε

)
∗σ̃l (1.9)

with

σ̃l(x) = εr(γ (x/ε)Pr
(
n
(
x′)) + g(x/ε)

(
I − Pr

(
n
(
x′)))), x ∈ Dε\Dε/2 (1.10)

where r > 2 − N/2 and γ (x) ∈ C2(D\D1/2) is a positive function that is bounded below, g(x) =
(gij(x))N

i, j=1 ∈ C2(D\D1/2)
N×N is symmetric and uniformly elliptic, and x′ ∈ ∂ D lying on the line pass-

ing through the origin and x ∈ Dε\Dε/2, and n(x′) ∈ S
N−1 is the exterior unit normal vector to ∂ D at

x′ and Pr(n(x′)) denotes the projection along the n(x′)-direction. Moreover, we let

ql = (
F (2)
ε

)
∗̃ql with q̃l(x) = α(x/ε) + iβ(x/ε), x ∈ Dε\Dε/2 (1.11)

where α(x) and β(x) for x ∈ D\D1/2 are positive functions that are bounded below and above. We
shall show that the above construction will produce a practical near-cloaking device; that is, the
corresponding scattering amplitude will be asymptotically small in terms of the accurate quantitative
estimates derived in the subsequent section.

In recent years, the transformation optics and invisibility cloaking have received significant at-
tentions; see, e.g., [5,9,10,22] and references therein. The ideal cloaking requires singular cloaking
material and in order to avoid the singular structure, various near-cloaking schemes have been de-
veloped in literature. Some earlier results on approximate cloaking were presented in [7,8,25], where
truncation of singularities are considered for spherical cloaking devices with uniform cloaked con-
tents. In [14,15], the ‘blow-up-a-small-region’ construction were proposed, and the authors show that
in order to cloak an arbitrary target medium, one has to employ a lossy layer right between the cloak-
ing region and the cloaked region, otherwise there is cloak-busting inclusion which defies the attempt
to cloak. In [15], the construction is similar to the one in (1.2), but that the material parameters of
the lossy layer are given by

σl = εN−2 I, ql = εN(
1 + ic0ε

−2) in D\D1/2, (1.12)
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where c0 is a positive constant. In [18,20] a different lossy layer is proposed by employing a high
density medium instead of high loss,

σl = εN+δ I, ql = εN(a0 + ib0) in D\D1/2, (1.13)

where a0, b0 and δ are positive constants. Both the cloaking schemes in [15] and [20] are assessed
in terms of exterior boundary measurements encoded into the boundary Neumann-to-Dirichlet map,
and the one in [20] is shown to produce enhanced performance than existing ones. Moreover, both
the schemes in [15] and [20] are assessed for the cloaking of passive media only. More approximate
cloaking schemes of different nature could be found in [1–3,19]. By straightforward calculations, one
can show that material parameters in (1.9) and (1.11) for our present study are given by

σl(x) = εN+r−2(γ (x)Pr
(
n
(
x′)) + g(x)

(
I − Pr

(
n
(
x′)))), x ∈ D\D1/2 (1.14)

and

ql(x) = εN(
α(x) + iβ(x)

)
, x ∈ D\D1/2. (1.15)

Compared to the lossy layer (1.12) and (1.13), our present construction (1.14)–(1.15) clearly has more
flexibility. It allows the lossy layer to be variable or even anisotropic, and this would be of practical
importance when fabrication fluctuation happens. Moreover, comparing (1.13) and (1.15), we see that
the density in (1.14) could be less high than that of (1.13), but we will show that one could still
achieve favorable near-cloaks. By comparing (1.12) and (1.15), especially by taking N = 2, we see that
in (1.12) one has to implement a high lossy parameter, whereas in (1.14)–(1.15) one could make use
of a layer with low loss but with a reasonably high density. For the construction (1.2) with (1.7),
(1.14) and (1.15), we show that one could achieve the near-cloak disregarding the passive content
(σa,qa), i.e. it could be arbitrary. This is of critical importance from a practical viewpoint. In addition
to the cloaking of a passive medium, we also consider the cloaking of an active/radiating source for
our construction. By the example given in the next section, one can see that if the passive content
is allowed to be arbitrary (but regular), one cannot cloak a generic source without a lossy layer.
However, if the cloaked region is maintained to be absorbing, we show that one can achieve a much
practical and favorable near-cloak of a source term by our scheme.

The rest of the paper is organized as follows. In Section 2, we present the main theorems in
assessing the near-cloaking performances of our construction in different settings. Section 3 is devoted
to the conclusion and discussion.

2. Main results

We first show that in order to assess the near-cloaking performance of our construction, the study
could be reduced to estimating the scattering amplitude due to a small inclusion with arbitrary con-
tents enclosed by a thin lossy layer. We shall make use of the following theorem collecting the key
ingredient of transformation optics.

Theorem 2.1. Let Ω and Ω̃ be two bounded Lipschitz domains in R
N and suppose that there exists a bi-

Lipschitz and orientation-preserving mapping F : Ω → Ω̃ . Let u ∈ H1(Ω) satisfy

∇ · (σ(x)∇u(x)
) + ω2q(x)u(x) = f (x), x ∈ Ω,

where σ(x), q(x), x ∈ Ω are uniformly elliptic and f ∈ L2(Ω). Then one has that ũ = (F −1)∗u := u ◦ F −1 ∈
H1(Ω̃) satisfies

∇ · (σ̃ (y)∇ũ(y)
) + ω2̃q(y)̃u(y) = f̃ (y), y ∈ Ω̃,
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where

σ̃ = F∗σ , q̃ = F∗q, f̃ =
(

f

|det(D F )|
)

◦ F −1.

The proof of Theorem 2.1 could be found in [10,14,19]. By using Theorem 2.1, we have by direct
verification that

Lemma 2.2. Let u ∈ H1
loc(R

N ) be the solution to (1.1) with (σc,qc) given in (1.7) and (σl,ql) given in

(1.9)–(1.11), then uε = F ∗
ε u ∈ H1

loc(R
N ) is the solution to

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇ · (σε(x)∇uε(x)

) + ω2qε(x)uε(x) = fε(x), x ∈R
N ,

uε(x) = us
ε(x) + ui(x;ω), x ∈R

N\Dε,

lim|x|→∞|x|(N−1)/2
{

∂us
ε(x)

∂|x| − iωus
ε(x)

}
= 0,

(2.1)

where

σε(x),qε(x) =

⎧⎪⎨⎪⎩
I,1 in (Dε)

c,

σ̃l, q̃l in Dε\Dε/2,

σ̃a, q̃a in Dε/2,

(2.2)

with σ̃ and q̃l given, respectively, in (1.10) and (1.11), and fε = ε−N F ∗
ε f , and

σ̃a(x) = ε2−Nσa(x/ε), q̃a(x) = ε−Nqa(x/ε), x ∈ Dε/2. (2.3)

In the sequel, we let Aε(x̂) denote the scattering amplitude corresponding to uε . Since u = uε

in Ωc , one sees that

A(x̂) = Aε(x̂), x̂ ∈ S
N−1. (2.4)

Hence, in order assess the near-cloaking performance, i.e., in order to evaluate the scattering ampli-
tude A(x̂) to the physical problem (1.1), it suffices for us to evaluate the scattering amplitude Aε(x̂)
to the virtual problem (2.1). Throughout the rest of the paper, we let

u−
ε = uε|Dε ∈ H1(Dε), u+

ε = uε|RN\Dε
∈ H1

loc

(
R

N\Dε

)
(2.5)

and

us
ε = u+

ε − ui ∈ H1
loc

(
R

N\Dε

)
. (2.6)

By straightforward calculations, it can be shown from (2.1) that
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�us
ε + ω2us

ε = 0 in R
N\Dε,

∇ · (σ̃l∇u−
ε

) + ω2̃qlu
−
ε = 0 in Dε\Dε/2,

∇ · (σ̃a∇u−
ε

) + ω2̃qau−
ε = fε in Dε/2,

us
ε = u−

ε − ui on ∂ Dε,

∂us
ε

∂n
=

N∑
i, j=1

niσ̃
i j
l ∂ ju

−
ε − ∂ui

∂n
on ∂ Dε,

lim|x|→∞|x|(N−1)/2
{

∂us
ε

∂|x| − iωus
ε

}
= 0,

(2.7)

where n(x) = (ni(x))N
i=1 is the exterior unit normal vector to ∂ Dε . Obviously, Aε(x̂) could be read off

from the large |x| asymptotics of us
ε(x).

We shall first consider the cloaking of passive medium, i.e., f = 0 in (1.1) (correspondingly, fε = 0
in (2.1) and (2.7)).

Theorem 2.3. Suppose f = 0 and σa, qa are arbitrary but regular. Let Aε(x̂) be the scattering amplitude
to (2.7). Let B R , R ∈ R+ , be a central ball of radius R such that Ω ⊂ B R . Then there exists ε0 ∈ R+ such that
when ε < ε0 ∣∣Aε(x̂)

∣∣ � Cεmin{N+2r−4,N}∥∥ui
∥∥

H1(B R )
, ∀x̂ ∈ S

N−1, (2.8)

where C is positive constant independent of ε, r, σa and qa.

Remark 2.4. By Theorem 2.3 and (2.4), we see that our construction underlying (1.1) produces an
approximate cloaking device which is within εmin{N+2r−4,N} of the perfect cloaking. Moreover, the
estimate in (2.8) indicates that one can cloak an arbitrary medium, which is of critical importance
from a practical viewpoint. It is mentioned in Introduction that in [14], the authors showed that
there are cloak-busting inclusions which defy the attempt to achieve the near-cloak. Specifically, it
is shown that no matter how small a region is, there exists certain inhomogeneity supported in
that region such that it can produce significant wave scattering. For the boundary value problem
considered in [14], this is shown to be caused by resonances. Hence, a damping mechanism should
be incorporated in order to defeat such ‘resonant’ inclusions. In Remark 2.10 in the following, one
will see that in addition to the ‘resonant’ inclusions, there are more ‘cloak-busting’ inclusions if one
intends to cloak an active content.

In order to prove Theorem 2.3, we first derive the following lemma. Since the following lemma
will also be needed in our subsequent study on cloaking of radiating/active objects, we would like to
emphasize that it holds for the general case with f not necessarily being zero.

Lemma 2.5. Suppose that

α(x) � α0 and β0 � β(x) � β0, x ∈ D\D1/2,

where α0 , β0 and β0 are positive constants. Let uε ∈ H1
loc(R

N ) be the solution to (2.7). Then we have∥∥∥∥∥
(

N∑
i, j=1

niσ̃
i j
l ∂ ju

−
ε

)
(ε ·)

∥∥∥∥∥
H−3/2(∂(D\D1/2))

� εr−1−N/2
(

C +
√

α2
0 + β2

0ω
2ε2−r

)∥∥u−
ε

∥∥
L2(Dε\Dε/2)

,

(2.9)

where C is a positive constant dependent only on γ , g and D, but independent of ε, r, α and β .
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Proof. We shall make use of the duality argument by noting that

∥∥∥∥∥
(

N∑
i, j=1

ni σ̃
i j
l ∂ ju

−
ε

)
(ε ·)

∥∥∥∥∥
H−3/2(∂(D\D1/2))

= sup
‖ϕ‖H3/2(∂(D\D1/2))

�1

∣∣∣∣∣
∫

∂(D\D1/2)

(
N∑

i, j=1

niσ̃
i j
l ∂ ju

−
ε

)
(εx)ϕ(x)dsx

∣∣∣∣∣. (2.10)

For any ϕ ∈ H3/2(∂(D\D1/2)), there exists w ∈ H2(D\D1/2) such that

(i) w = ϕ on ∂ D ∪ ∂ D1/2;

(ii)
∂ w

∂n
= 0 on ∂ D ∪ ∂ D1/2;

(iii) ‖w‖H2(D\D1/2) � C‖ϕ‖H3/2(∂(D\D1/2)).

Let

σ̂l(x) = ε2−rσl(x) = (
γ (x)Pr

(
n
(
x′)) + g(x)

(
I − Pr

(
n
(
x′)))), x ∈ D\D1/2,

where and in the following σl , ql are given in (1.14)–(1.15). We first note that

N∑
i, j=1

ni σ̂
i j
l ∂ j w = γ (n · ∇w) = 0 on ∂ D ∪ ∂ D1/2.

Set v(x) = u−
ε (εx) for x ∈ Dε\Dε/2, and it is directly verified that

∇ · (σ̂l∇v) = −ω2ε2−rql v in D\D1/2. (2.11)

Now, we have

∣∣∣∣∣
∫

∂(D\D1/2)

(
N∑

i, j=1

niσ̃
i j
l ∂ ju

−
ε

)
(εx)ϕ(x)dsx

∣∣∣∣∣
= εr−1

∣∣∣∣∣
∫

∂(D\D1/2)

(
N∑

i, j=1

niσ̂
i j
l ∂ j v

)
w dsx −

∫
∂(D\D1/2)

(
N∑

i, j=1

niσ̂
i j
l ∂ j w

)
v dsx

∣∣∣∣∣
= εr−1

∣∣∣∣ ∫
D\D1/2

∇ · (σ̂l∇v)w dx −
∫

D\D1/2

∇ · (σ̂l∇w)v dx

∣∣∣∣
= εr−1

∣∣∣∣ω2ε2−r
∫

D\D1/2

ql v w dx +
∫

D\D1/2

∇ · (σ̂l∇w)v dx

∣∣∣∣
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� εr−1
[
ω2ε2−r

√
α2

0 + β2
0‖w‖L2(D\D1/2)‖v‖L2(D\D1/2)

+ ∥∥∇ · (σ̂l∇w)
∥∥

L2(D\D1/2)
‖v‖L2(D\D1/2)

]
� εr−1

(
C +

√
α2

0 + β2
0ω

2ε2−r
)
‖w‖H2(D\D1/2)‖v‖L2(D\D1/2)

� εr−1−N/2
(

C +
√

α2
0 + β2

0ω
2ε2−r

)∥∥u−
ε

∥∥
L2(Dε\Dε/2)

‖ϕ‖H3/2(∂ D),

where in the last inequality we have made use of the fact that

‖v‖L2(D\D1/2) = ∥∥u−
ε (ε ·)∥∥L2(D\D1/2)

= ε−N/2
∥∥u−

ε

∥∥
L2(Dε\Dε/2)

.

Hence, we have verified (2.9).
The proof is completed. �
Next, let B R , R ∈ R+ , be the central ball in Theorem 2.3. Without loss of generality, we assume that

ω2 is not a Dirichlet eigenvalue for the negative Laplacian in B R . Consider the Helmholtz equation,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�v + ω2 v = 0 in R

N\B R ,

∂v

∂n
= ψ ∈ H−1/2(∂ B R) on ∂ B R ,

lim|x|→∞|x|(N−1)/2
{

∂v

∂|x| − iωv

}
= 0.

(2.12)

Define the Neumann-to-Dirichlet map by,

Λ(ψ) = v|∂ B R ∈ H1/2(∂ B R),

where v ∈ H1
loc(R

N\B R) is the unique solution to (2.12). It is known that Λ is bounded and invertible
from H−1/2(∂ B R) to H1/2(∂ B R) (see [21] and [23]).

Lemma 2.6. Suppose that

α(x) � α0 and β0 � β(x) � β0, x ∈ D\D1/2,

where α0 , β0 and β0 are positive constants. Let uε ∈ H1
loc(R

N ) be the solution to (2.7) with fε = 0. Then we
have

ω2β0

∫
Dε\Dε/2

∣∣u−
ε

∣∣2
dx � C

(∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥
H1/2(∂ B R )

∥∥∥∥∂ui

∂n

∥∥∥∥
H−1/2(∂ B R )

+
∥∥∥∥∂us

ε

∂n

∥∥∥∥
H−1/2(∂ B R )

∥∥ui
∥∥

H1/2(∂ B R )
+ εN

∥∥ui
∥∥2

H1(B R )

+
∥∥∥∥∂us

ε

∂n

∥∥∥∥
H−1/2(∂ B R )

∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥
H1/2(∂ B R )

)
, (2.13)

where C is a positive constant depending only on R and ω.
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Proof. By multiplying both sides of the first equation in (2.6) by us
ε and by using integration by parts

over B R\Dε , we have

−
∫

B R\Dε

∣∣∇us
ε

∣∣2
dx + ω2

∫
B R\Dε

∣∣us
ε

∣∣2
dx

+
∫

∂ B R

∂us
ε

∂n
· us

ε dsx −
∫

∂ Dε

∂us
ε

∂n
· us

ε dsx = 0, (2.14)

where and in the sequel, n = (ni)
N
i=1 denotes the exterior unit normal vector of the boundary of the

concerned domain. Similarly, by multiplying both sides of the second and third equations in (2.6) by

u−
ε and by using integration by parts over Dε , we have

−
∫

Dε\Dε/2

(
σ̃l∇u−

ε

) · (∇u−
ε

)
dx + ω2

∫
Dε\Dε/2

q̃l
∣∣u−

ε

∣∣2
dx

−
∫

Dε/2

(
σ̃a∇u−

ε

) · (∇u−
ε

)
dx + ω2

∫
Dε/2

q̃a
∣∣u−

ε

∣∣2
dx

+
∫

∂ Dε

(
N∑

i, j=1

ni σ̃
i j
l ∂ ju

−
ε

)
· u−

ε dsx = 0. (2.15)

By adding (2.14) and (2.15) and then taking the imaginary parts of both sides of the resultant equa-
tion, we further have

ω2
∫

Dε\Dε/2

�̃ql
∣∣u−

ε

∣∣2
dx + ω2

∫
Dε/2

�̃qa
∣∣u−

ε

∣∣2
dx

= �
{

−
∫

∂ B R

∂us
ε

∂n
· us

ε dsx +
∫

∂ Dε

∂us
ε

∂n
· us

ε dsx

−
∫

∂ Dε

(
N∑

i, j=1

ni σ̃
i j
l ∂ ju

−
ε

)
· u−

ε dsx

}
. (2.16)

Next, by using the transmission boundary condition on ∂ Dε (namely, the fourth and fifth equations
in (2.7)), we have

∫
∂ Dε

∂us
ε

∂n
· us

ε dsx −
∫

∂ Dε

(
N∑

i, j=1

ni σ̃
i j
l ∂ ju

−
ε

)
· u−

ε dsx

= −
∫

∂ D

(
N∑

i, j=1

niσ̃
i j
l ∂ ju

−
ε

)
· ui dsx −

∫
∂ D

∂ui

∂n
· u−

ε dsx +
∫

∂ D

∂ui

∂n
· ui dsx. (2.17)
ε ε ε
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Furthermore, by using the transmission conditions on ∂ Dε again and the fact that both us
ε and ui are

solutions to (� + ω2)u = 0, we have

∫
∂ Dε

∂ui

∂n
· u−

ε dsx −
∫

∂ Dε

∂ui

∂n
· ui dsx

=
∫
Dε

∂ui

∂n
· us

ε dsx =
∫

∂ B R

∂ui

∂n
· us

ε dsx −
∫

∂ B R

ui ∂us
ε

∂n
dsx +

∫
∂ Dε

ui · ∂us
ε

∂n
dsx

=
∫

∂ B R

∂ui

∂n
· us

ε dsx −
∫

∂ B R

ui · ∂us
ε

∂n
dsx

+
∫

∂ Dε

ui ·
(

N∑
i, j=1

niσ̃
i j
l ∂ ju

−
ε

)
dsx −

∫
∂ Dε

ui · ∂ui

∂n
dsx. (2.18)

By combining (2.16)–(2.18), we have

ω2
∫

Dε\Dε/2

�̃ql
∣∣u−

ε

∣∣s
dx + ω2

∫
Dε/2

�̃qa
∣∣u−

ε

∣∣2
dx

= �
{
−

∫
∂ B R

∂us
ε

∂n
· us

ε dsx −
∫

∂ B R

∂ui

∂n
· us

ε dsx +
∫

∂ B R

ui · ∂us
ε

∂n
dsx −

∫
∂ Dε

ui · ∂ui

∂n
dsx

}
, (2.19)

which together with the fact that

∣∣∣∣ ∫
∂ Dε

ui · ∂ui

∂n
dsx

∣∣∣∣ =
∣∣∣∣ ∫
Dε

�ui · ui dx +
∫
Dε

∣∣∇ui
∣∣2

dx

∣∣∣∣ � CεN
∥∥ui

∥∥2
H1(B R )

,

readily implies (2.13).
The proof is complete. �

Lemma 2.7. Suppose that

α(x) � α0 and β0 � β(x) � β0, x ∈ D\D1/2,

where α0 , β0 and β0 are positive constants. Let uε ∈ H1
loc(R

N ) be the solution to (2.7) with fε = 0. Then we
have

∥∥∥∥∂u+
ε

∂n
(ε ·)

∥∥∥∥2

H−3/2(∂ D)

� C2ε
2r−2−N

(C1 +
√

α2
0 + β2

0ω
2ε2−r)2

ω2β0

×
(∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥
1/2

∥∥∥∥∂ui

∂n

∥∥∥∥ −1/2
H (∂ B R ) H (∂ B R )
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+
∥∥∥∥∂us

ε

∂n

∥∥∥∥
H−1/2(∂ B R )

∥∥ui
∥∥

H1/2(∂ B R )
+ εN

∥∥ui
∥∥2

H1(B R )

+
∥∥∥∥∂us

ε

∂n

∥∥∥∥
H−1/2(∂ B R )

∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥
H1/2(∂ B R )

)
, (2.20)

where C1 and C2 are the positive constants respectively, from Lemmas 2.5 and 2.6.

Proof. Using the fact that

∂u+
ε

∂n
=

N∑
i, j=1

ni σ̃
i j
l ∂ ju

−
ε on ∂ Dε,

the lemma follows by combining Lemmas 2.5 and 2.6. �
The next lemma concerns the scattering estimates due to small sound-hard like inclusions.

Lemma 2.8. Let vτ ∈ H1
loc(R

N\Dτ ) be the solution to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�vτ + ω2 vτ = 0 in R
N\Dτ ,

∂vτ

∂n
= ψ ∈ H−1/2(∂ Dτ ) on ∂ Dτ ,

lim|x|→∞|x|(N−1)/2
{

∂vτ

∂n
− iωvτ

}
= 0.

(2.21)

Then there exists τ0 < R such that when τ < τ0

‖vτ ‖H1/2(∂ B R ) � Cτ N−1
∥∥ψ(τ ·)∥∥H−3/2(∂ D)

, (2.22)

and for the particular case if ψ(x) = ∂ui/∂n on ∂ Dτ ,

‖vτ ‖H1/2(∂ B R ) � Cτ N
∥∥ψ(τ ·)∥∥H−1/2(∂ D)

, (2.23)

where C is a constant depending only on τ0 , ω, R and D.

Proof. The proof of (2.22) can be modified directly from the proof of Lemma 4.2 in [20], and the
proof of (2.23) can be modified directly from that of Lemma 4.1 in [20], both based on layer potential
techniques. We also refer to the excellent monograph [4] for related results. �

We are in a position to present the proof of Theorem 2.3.

Proof of Theorem 2.3. Let v1 ∈ H1
loc(R

N\Dε) be the scattering solution to⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�v1 + ω2 v1 = 0 in R
N\Dε,

∂v1

∂n
= ∂u+

ε

∂n
∈ H−1/2(∂ Dε) on ∂ Dε,

lim|x|→∞|x|(N−1)/2
{

∂v1

∂n
− iωv1

}
= 0,

(2.24)
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and let v2 ∈ H1
loc(R

N\Dε) be the scattering solution to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�v2 + ω2 v2 = 0 in R
N\Dε,

∂v2

∂n
= ∂ui

∂n
∈ H−1/2(∂ Dε) on ∂ Dε,

lim|x|→∞|x|(N−1)/2
{

∂v2

∂n
− iωv2

}
= 0.

(2.25)

Clearly, we have

us
ε = v1 − v2 in R

N\Dε.

By taking τ = ε in Lemma 2.8, we have

∥∥us
ε

∥∥
H1/2(∂ B R )

� C1

(
εN−1

∥∥∥∥(
∂u+

ε

∂n

)
(ε ·)

∥∥∥∥
H−3/2(∂ D)

+ εN

∥∥∥∥(
∂ui

∂n

)
(ε ·)

∥∥∥∥
H−1/2(∂ D)

)

� C2ε
N−1

∥∥∥∥(
∂u+

ε

∂n

)
(ε ·)

∥∥∥∥
H−3/2(∂ D)

+ C2ε
N
∥∥ui

∥∥
H1(B R )

. (2.26)

Next, we first consider the case with r � 2. By (2.20), we know that there exists C3 such that

∥∥∥∥∂u+
ε

∂n
(ε ·)

∥∥∥∥
H−3/2(∂ D)

� C3ε
1−N/2

(∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥1/2

H1/2(∂ B R )

∥∥∥∥∂ui

∂n

∥∥∥∥1/2

H−1/2(∂ B R )

+
∥∥∥∥∂us

ε

∂n

∥∥∥∥1/2

H−1/2(∂ B R )

∥∥ui
∥∥1/2

H1/2(∂ B R )
+ εN/2

∥∥ui
∥∥

H1(B R )

+
∥∥∥∥∂us

ε

∂n

∥∥∥∥1/2

H−1/2(∂ B R )

∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥1/2

H1/2(∂ B R )

)
. (2.27)

By (2.26) and (2.27), we have

∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥
H1/2(∂ B R )

� 4C2
2 C2

3ε
N

∥∥∥∥∂ui

∂n

∥∥∥∥
H−1/2(∂ B R )

+ 1

4

∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥
H1/2(∂ B R )

+ C2C3ε
N/2

∥∥∥∥∂us
ε

∂n

∥∥∥∥1/2

H−1/2(∂ B R )

∥∥ui
∥∥1/2

H1/2(∂ B R )

+ 4C2
2 C2

3ε
N

∥∥∥∥∂us
ε

∂n

∥∥∥∥
H−1/2(∂ B R )

+ 1

4

∥∥∥∥Λ

(
us

ε

∂n

)∥∥∥∥
H1/2(∂ B R )

+ (C2C3 + C2)ε
N
∥∥ui

∥∥
H1(B R )

, (2.28)

and from which we further have that there exists C4 such that
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∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥
H1/2(∂ B R )

� C4ε
N/2

∥∥∥∥∂us
ε

∂n

∥∥∥∥1/2

H−1/2(∂ B R )

∥∥ui
∥∥1/2

H1/2(∂ B R )
+ C4ε

N

∥∥∥∥∂us
ε

∂n

∥∥∥∥
H−1/2(∂ B R )

+ C4ε
N
∥∥ui

∥∥
H1(B R )

�
C2

4

ε
εN

∥∥ui
∥∥

H1/2(∂ B R )
+ ε

∥∥∥∥∂us
ε

∂n

∥∥∥∥
H−1/2(∂ B R )

+ C4ε
N

∥∥∥∥∂us
ε

∂n

∥∥∥∥
H−1/2(∂ B R )

+ C4ε
N
∥∥ui

∥∥
H1(B R )

, (2.29)

where ε ∈ R+ . By choosing ε0 sufficiently small such that when ε < ε0,

C4ε
N � 1

4

∥∥Λ−1
∥∥−1
L(H1/2(∂ B R ),H−1/2(∂ B R ))

and also by choosing ε in (2.29) such that

ε � 1

4

∥∥Λ−1
∥∥−1
L(H1/2(∂ B R ),H−1/2(∂ B R ))

,

one can show from (2.29) by straightforward calculations that there exists C such that∥∥∥∥∂us
ε

∂n

∥∥∥∥
H−1/2(∂ B R )

� CεN
∥∥ui

∥∥
H1(B R )

. (2.30)

Since Aε(x̂) could be read from the large |x| asymptotics of us
ε , by the well-posedness of the forward

scattering problem for us
ε in the exterior of B R , one readily has

∣∣Aε(x̂)
∣∣ � CεN

∥∥ui
∥∥

H1(B R )
, ∀x̂ ∈ S

N−1.

Next, we consider the case with 2 − N/2 < r < 2. In this case, by (2.20), one has that there exists
C5 such that

∥∥∥∥∂u+
ε

∂n
(ε ·)

∥∥∥∥
H−3/2(∂ D)

� C5ε
r−1−N/2

(∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥1/2

H1/2(∂ B R )

∥∥∥∥∂ui

∂n

∥∥∥∥1/2

H−1/2(∂ B R )

+
∥∥∥∥∂us

ε

∂n

∥∥∥∥1/2

H−1/2(∂ B R )

∥∥ui
∥∥1/2

H1/2(∂ B R )
+ εN/2

∥∥ui
∥∥

H1(B R )

+
∥∥∥∥∂us

ε

∂n

∥∥∥∥1/2

H−1/2(∂ B R )

∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥1/2

H1/2(∂ B R )

)
, (2.31)

which in combination with (2.26) yields

∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥
H1/2(∂ B R )

� C6ε
r−2+N/2

(∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥1/2

H1/2(∂ B R )

∥∥∥∥∂ui

∂n

∥∥∥∥1/2

H−1/2(∂ B R )

+
∥∥∥∥∂us

ε

∂n

∥∥∥∥1/2

−1/2

∥∥ui
∥∥1/2

H1/2(∂ B R )
+ εN/2

∥∥ui
∥∥

H1(B R )

H (∂ B R )
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+
∥∥∥∥∂us

ε

∂n

∥∥∥∥1/2

H−1/2(∂ B R )

∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥1/2

H1/2(∂ B R )

)
+ C6ε

N
∥∥ui

∥∥
H1(B R )

. (2.32)

By a similar algebraic argument as earlier, one can show from (2.32) that

∥∥∥∥∂us
ε

∂n

∥∥∥∥
H−1/2(∂ B R )

� CεN+2r−4
∥∥ui

∥∥
H1(B R )

,

which in turn implies

∣∣Aε(x̂)
∣∣ � CεN+2r−4

∥∥ui
∥∥

H1(B R )
.

The proof is completed. �
Next, we consider the cloaking of an active/radiating source term by assuming that f ∈ L2(D1/2)

in (1.1). We shall show that

Theorem 2.9. Suppose f ∈ L2(D1/2) and σa, �qa are arbitrary but regular, and

�qa � q0 > 0 on supp( f ) ⊂ D1/2. (2.33)

Let Aε(x̂) be the scattering amplitude to (2.7). Let B R , R ∈ R+ , be a central ball of radius R such that Ω ⊂ B R .
Then there exists ε0 ∈R+ such that when ε < ε0

∣∣Aε(x̂)
∣∣ � C

(
εmin{N+2r−4,N}∥∥ui

∥∥
H1(B R )

+ εmin{N/2,N/2+r−2}‖ f ‖L2(D1/2)

)
, ∀x̂ ∈ S

N−1 (2.34)

where C is positive constant independent of ε, σa, �qa, r and f .

Remark 2.10. We first note that if one takes f = 0 in Theorem 2.9, then Theorem 2.3 is recovered.
Next, we shall emphasize the critical role of the lossy layer. We only consider the two-dimensional
case as an example. If one excludes the lossy layer by taking σ̃l = σ̃a and q̃l = q̃a to be arbitrary (but
regular) as part of the passive content being cloaked. Let σ̃a = I , q̃a = 1 in Dε , or equivalently, σa = I ,
qa = ε2 in D . Moreover, we let f = c0χD1/2 be the source term that one intends to cloak, where c0
is a generic positive constant. It is readily seen that (σa,qa) is not the ‘resonant’ inclusion discussed
for passive cloaking in Remark 2.4. However, it can be straightforwardly shown that generically one
would have a significant Aε(x) for the virtual scattering problem (2.7) with the parameters specified
in the above, i.e., one cannot cloak the active source term f . For our near-cloaking construction, it
can be seen from Theorem 2.9 that if one maintains the place where the source term is located to be
absorbing, namely condition (2.33) is satisfied, then a much practical and favorable near-cloak could
be achieved. It is emphasized that in Theorem 2.9 we only proposed one possible way of effectively
cloaking a region with active/radiating contents, but we do not claim that it is the most efficient way.
We would also like to note that in [16], the cloaking of a source term is also considered, but the study
there is of different interests.

In order to prove Theorem 2.9, we shall first derive a lemma similar to Lemma 2.6.
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Lemma 2.11. Suppose that

α(x) � α0 and β0 � β(x) � β0, x ∈ D\D1/2,

where α0 , β0 and β0 are positive constants, and

�qa � q0 > 0 on supp( f ) ⊂ D1/2. (2.35)

Let uε ∈ H1
loc(R

N ) be the solution to (2.7). Then we have

ω2β0

∫
Dε\Dε/2

∣∣u−
ε

∣∣2
dx

� C

(∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥
H1/2(∂ B R )

∥∥∥∥∂ui

∂n

∥∥∥∥
H−1/2(∂ B R )

+
∥∥∥∥∂us

ε

∂n

∥∥∥∥
H−1/2(∂ B R )

∥∥ui
∥∥

H1/2(∂ B R )
+ εN

∥∥ui
∥∥2

H1(B R )

+
∥∥∥∥∂us

ε

∂n

∥∥∥∥
H−1/2(∂ B R )

∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥
H1/2(∂ B R )

+ ‖ f ‖2
L2(D1/2)

)
, (2.36)

where C is a positive constant depending only on R, ω and q0 .

Proof. W.L.O.G., we assume that

supp( f ) = D1/2.

By a similar argument to that for the proof of Lemma 2.6, one can show by straightforward calcula-
tions that

ω2
∫

Dε\Dε/2

�̃ql
∣∣u−

ε

∣∣2
dx + ω2

∫
Dε/2

�̃qa
∣∣u−

ε

∣∣2
dx

= �
{
−

∫
∂ B R

∂us
ε

∂n
· us

ε dsx −
∫

∂ B R

∂ui

∂n
· us

ε dsx

+
∫

∂ B R

ui · ∂us
ε

∂n
dsx −

∫
∂ Dε

ui · ∂ui

∂n
dsx +

∫
Dε/2

fεu−
ε dx

}
. (2.37)

Using (2.35) in (2.37), one further has by direct verifications that

ω2β0

∫
Dε\Dε/2

∣∣u−
ε

∣∣2
dx + ω2q0ε

−N
∫

Dε/2

∣∣u−
ε

∣∣2
dx

� C

(∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥
1/2

∥∥∥∥∂ui

∂n

∥∥∥∥ −1/2
H (∂ B R ) H (∂ B R )
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+
∥∥∥∥∂us

ε

∂n

∥∥∥∥
H−1/2(∂ B R )

∥∥ui
∥∥

H1/2(∂ B R )
+ εN

∥∥ui
∥∥2

H1(B R )

+
∥∥∥∥∂us

ε

∂n

∥∥∥∥
H−1/2(∂ B R )

∥∥∥∥Λ

(
∂us

ε

∂n

)∥∥∥∥
H1/2(∂ B R )

+ ε−N

ε

∥∥∥∥ f

(
1

ε
·
)∥∥∥∥2

L2(Dε/2)

+ εε−N
∥∥u−

ε

∥∥2
L2(Dε/2)

)
. (2.38)

By choosing ε = ω2q0/2, together with the use of the fact that∥∥∥∥ f

(
1

ε
·
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L2(Dε/2)

= εN/2‖ f ‖L2(D1/2),

one has (2.36) by straightforward verifications.
The proof is completed. �

Proof of Theorem 2.9. By Lemmas 2.5, 2.8 and 2.11 and a similar argument to that for the proof of
Theorem 2.3, one can show that∥∥∥∥Λ
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Using a similar algebraic argument to that for the proof of Theorem 2.3, one can show by direct
calculations that∥∥∥∥∂us

ε
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)
which immediately implies (2.34) and completes the proof. �
3. Conclusion and discussion

In this work, we have been mainly concerned with the near-invisibility cloaking by the ‘blow-up-a-
small-region’ construction through the transformation optics. From a practical viewpoint, we mainly
considered the case that the cloaked content is arbitrary, and moreover it could be both a passive
medium or an active/radiating source. However, there are cloaking–busting inclusions which defy the
attempt to achieve near-cloaks for both passive cloaking and active cloaking. In order to defeat the
cloak-busts, a lossy layer is incorporated into our construction. Such a damping mechanism was orig-
inated in [14] by using a special layer with a high loss parameter, and was later adopted in [20] by
using a layer with a high density parameter. In the present paper, the lossy layer in our scheme is
very general which could be variable, and even anisotropic, and the density parameter ranges from
very high to reasonably low. This provides more flexibility in the construction of practical cloaking
devices. We assessed the cloaking performance for our construction in terms of the scattering am-
plitude due to a time-harmonic wave. We derive very accurate estimates of the scattering amplitude
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in terms of the regularization parameter and the material parameters of the lossy layer disregarding
the cloaked contents. It is worth noting that in Theorem 2.9, we provide an effective way in cloaking
active contents by maintaining the place where the active object is located to be absorbing.
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