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This work extends previous work (Cantrell et al., 2008 [9]) on
fitness-dependent dispersal for a single species to a two-species
competition model. Both species have the same population dynam-
ics, but one species adopts a combination of random and fitness-
dependent dispersal and the other adopts random dispersal. Global
existence of smooth solutions to the time-dependent quasilinear
parabolic system is studied. When a single species has a strong
tendency to move up its fitness gradient, it results in a stable equi-
librium that can approximate the spatial distribution predicted by
the ideal free distribution (Cantrell et al., 2008 [9]). For the two-
species competition model, if one species has strong tendency to
move up its fitness gradient, such approximately ideal free disper-
sal is advantageous relative to random dispersal. Bifurcation analy-
sis shows that two competing species can coexist when one species
has only an intermediate tendency to move up its fitness gradient
and the other species has a smaller random dispersal rate.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

This work extends our previous work [9] on fitness-dependent dispersal for a single species to
a two-species competition model, with one species adopting a combination of random and fitness-
dependent dispersal and the other adopting random dispersal. The model we considered in [9] has
the form {

ut = ∇ · [μ∇u − αu∇ f (x, u)
] + u f (x, u) in Ω ×R+,[

μ∇u − αu∇ f (x, u)
] · n = 0 on ∂Ω ×R+,

(1.1)

* Corresponding author.
E-mail addresses: rsc@math.miami.edu (R.S. Cantrell), gcc@math.miami.edu (C. Cosner), lou@math.ohio-state.edu (Y. Lou),

cxie@math.ohio-state.edu (C. Xie).
0022-0396/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jde.2013.01.012

http://dx.doi.org/10.1016/j.jde.2013.01.012
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jde
mailto:rsc@math.miami.edu
mailto:gcc@math.miami.edu
mailto:lou@math.ohio-state.edu
mailto:cxie@math.ohio-state.edu
http://dx.doi.org/10.1016/j.jde.2013.01.012


2906 R.S. Cantrell et al. / J. Differential Equations 254 (2013) 2905–2941
where R+ = (0,∞), and

f (x, u) = m(x) − u. (1.2)

The function u(x, t) represents the density of a single species with random diffusion coefficient μ,
and α measures the tendency of the species to move upward along the gradient of the fitness of
the species, measured by f (x, u). We assume that μ is a positive constant and α is a non-negative
constant. Ω is a bounded region in R

N with boundary ∂Ω , and n denotes the outward unit normal
vector on ∂Ω . Throughout this paper we assume that m ∈ C2,γ (Ω) for some γ ∈ (0,1) and m is
positive somewhere in Ω , and u(x,0) is continuous, non-negative and not identically zero in Ω . We
briefly summarize some of the main results in [9] as follows:

• (Global existence in time) Suppose that μ > 0 and α � 0. Then (1.1) has a unique solution u ∈
C2,1(Ω × (0,∞)) ∩ C(Ω × [0,∞)).

• (Existence of positive steady state) If u = 0 is linearly unstable, then (1.1) has at least one positive
steady state. Note that if

∫
Ω

m > 0, u = 0 is linearly unstable for any μ > 0 and α � 0.
• (Global attractor) If m > 0 in Ω , then for large α/μ, (1.1) has a unique positive steady state which

is also globally asymptotically stable.

To study the evolution of dispersal, a common approach, initiated by Hastings [24] for reaction–
diffusion models, is to consider models of two populations that are ecologically identical but use
different dispersal strategies. In general, using such a modeling approach would lead to a system of
the form

⎧⎪⎨
⎪⎩

ut = ∇ · [μ∇u − αu∇ f (x, u + v)
] + u f (x, u + v) in Ω ×R+,

vt = ∇ · [ν∇v − βv∇g(x, u, v)
] + v f (x, u + v) in Ω ×R+,[

μ∇u − αu∇ f (x, u + v)
] · n = [

ν∇u − βu∇g(x, u, v)
] · n = 0 on ∂Ω ×R+,

(1.3)

where f is as in (1.2), and g represents part of an alternate dispersal strategy. For example, g = 0
would correspond to unconditional dispersal of organisms by simple diffusion, g = m would cor-
respond to advection up resource gradient without consideration of crowding, while g = −(u + v)

would correspond to avoidance of crowding without reference to resource distribution. We refer to
[3–5,7–11,13,14,17,23,27,30–32,42,38,46] for recent progress in this direction for reaction–diffusion
models.

In this paper we will focus on system (1.3) with g = 0, i.e.,

⎧⎨
⎩

ut = ∇ · [μ∇u − αu∇ f (x, u + v)
] + u f (x, u + v) in Ω ×R+,

vt = ν�v + v f (x, u + v) in Ω ×R+,[
μ∇u − αu∇ f (x, u + v)

] · n = ∇v · n = 0 on ∂Ω ×R+,

(1.4)

where the initial conditions u(x,0) and v(x,0) are non-negative and not identically zero in Ω , and
μ, ν , α are all positive constants.

Theorem 1. Suppose that Ω ⊂ R
N with ∂Ω of class C2+γ , m ∈ C2+γ (Ω) for some γ ∈ (0,1). Then solutions

of system (1.4) with bounded non-negative initial data exist globally for N = 1,2, and also for N � 3 provided
that ν > μ.

It is an open question whether solutions of system (1.4) with bounded non-negative initial data
exist globally for N � 3 and ν � μ.

For the rest of this section our discussion will mainly focus on non-negative and non-trivial steady
states of system (1.4). System (1.4) has two semi-trivial steady states, denoted by (ũ,0) and (0, θ)
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respectively, where ũ is a positive steady state of the scalar equation (1.1), and θ is a positive solution
of the scalar equation

ν�θ + θ(m − θ) = 0 in Ω, ∇θ · n = 0 on ∂Ω. (1.5)

For the existence of ũ, we need to assume that u = 0 is linearly unstable in (1.1). For that to be the
case, a sufficient condition is that the principal eigenvalue, denoted by λ∗(μ,α), of the associated
eigenvalue problem

∇ · [μ∇φ − αφ∇m] + mφ = −λφ in Ω, [μ∇φ − αφ∇m] · n = 0 on ∂Ω (1.6)

is strictly negative. Similarly, θ exists if and only if λ∗(ν,0) < 0; moreover, θ is unique whenever it
exists. In particular, if

∫
Ω

m > 0, then ũ exists for any α � 0 and μ > 0, and θ exists for any ν > 0.
System (1.4) with α = 0 has been studied in Dockery et al. [20] in the context of evolution of

random dispersal in spatially homogeneous and temporally constant environments, and the general
conclusion is that slower dispersal will evolve; see also [24,26,28]. In particular, it is shown in [20]
that if α = 0, m is non-constant and μ < ν , then (ũ,0) is globally asymptotically stable whenever
(ũ,0) exists. When α is small positive, the following result can be established easily by using an
approach similar to that in [20]:

Theorem 2. Suppose that m is non-constant and positive somewhere in Ω .

(i) If μ < ν , then for small positive α, (ũ,0) is linearly stable and (0, θ) is linearly unstable, whenever they
exist.

(ii) If μ > ν , then for small positive α, (ũ,0) is linearly unstable and (0, θ) is linearly stable, whenever they
exist.

Next we consider the case when α is sufficiently large. This case, if restricted to the single species
equation (1.1), corresponds to the scenario when the species u, at equilibrium, reaches an approxi-
mately ideal free distribution. More precisely, if α → ∞, ũ → m+ uniformly in Ω , i.e., the population
density approximately matches the availability of resources. Therefore, we predict that for large α,
such approximately ideal free dispersal allows a population to better track the distribution of re-
sources so that it is likely to be more advantageous than other sorts of dispersal strategies including
random dispersal. Our next few results strongly support this prediction.

To understand the dynamics of system (1.4), it is important to study the stability of semi-trivial
steady states (ũ,0) and (0, θ). Biologically, the stability of (ũ,0) is associated with the question of
invasibility, namely, what happens when the species with density u is at equilibrium and a small
number of a mutant species with density v is introduced. Can the species with density v invade
when rare? Mathematically, the stability of (ũ,0) is determined by the smallest eigenvalue, denoted
by λu(α,μ,ν), of the linear problem

ν�ψ + (m − ũ)ψ = −λψ in Ω, ∇ψ · n|∂Ω = 0.

More precisely, (ũ,0) is linearly stable if λu > 0 and linearly unstable if λu < 0. The following result
addresses this issue when α is sufficiently large.

Theorem 3. Suppose that either m changes sign in Ω , or m > 0 in Ω and m is non-constant. Then for any ν
and η > 0, there exists some positive constant Λ1 = Λ1(ν,η,m,Ω) such that if α � η and α/μ � Λ1 , (ũ,0)

is linearly stable.

Theorem 3 ensures that if the species with density u is at equilibrium and is adopting an approxi-
mately ideal free dispersal strategy, the species with density v , which is adopting a random dispersal
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strategy, cannot invade when rare. This implies that random dispersal compares unfavorably to an
approximately ideal free dispersal strategy. It is unknown whether the conclusions of Theorem 3 still
hold in the case when m is non-negative and the set where m is equal to zero is non-empty.

An opposite question is: if the species with density v is at equilibrium, can the species with
density u invade when rare? This question is related to the stability of (0, θ). Mathematically, the
linear stability of (0, θ) is determined by the smallest eigenvalue, denoted by λv(α,μ,ν), of the
linear problem

{
∇ · [μ∇ϕ − αϕ∇(m − θ)

] + ϕ[m − θ] = −λϕ in Ω,[
μ∇ϕ − αϕ∇(m − θ)

] · n|∂Ω = 0.
(1.7)

More precisely, (0, θ) is linearly stable if λv > 0 and linearly unstable if λv < 0. The following result
addresses the linear stability of (0, θ) for sufficiently large α.

Theorem 4. Suppose that m is non-constant and positive somewhere in Ω . Then for any ν , there exists some
positive constant Λ2 = Λ2(ν,m,Ω) such that if α/μ � Λ2 , (0, θ) is always unstable whenever it exists,
where Λ2 > 0 is uniquely determined by

∫
Ω

(m − θ)eΛ2(m−θ) = 0. (1.8)

Theorem 4 implies that if the species with density v is at equilibrium and is adopting a random
dispersal strategy, then species with density u, which is taking an approximately ideal free dispersal
strategy, can always invade when rare. This again implies that random dispersal compares unfavorably
to an approximately ideal free dispersal strategy. We conjecture that if α is sufficiently large, then the
semi-trivial steady state (ũ,0) is the global attractor of (1.4) among non-negative, not identically zero
initial data. This conjecture is further supported by the following result on positive steady states of
(1.4) with large α:

Theorem 5. Suppose that function m(x) changes sign in Ω . Then for any μ, ν , there exists some positive
constant Λ3 = Λ3(μ,ν,m,Ω) such that if α � Λ3 , system (1.4) has no positive steady states.

It is an open question whether Theorem 5 still holds when m is non-negative in Ω .
Given any μ > ν , from Theorems 2, 3 and 4 we see that, under suitable assumptions on m, both

(ũ,0) and (0, θ) will change stability at least once when α varies from zero to infinity. In the following
we show that under certain conditions (0, θ) changes its stability exactly once as α varies from zero
to large.

Theorem 6. Suppose that Ω is convex and the Hessian matrix of m is negative definite for every x ∈ Ω . Then,
there exists some ν0 = ν0(m,Ω) > 0 such that

(i) if ν > max{ν0,μ}, (0, θ) is linearly unstable for every α � 0;
(ii) if μ > ν > ν0 , there exists a unique α∗ = α∗(μ,ν,m,Ω) > 0 such that (0, θ) is linearly stable for every

α ∈ [0,α∗) and linearly unstable for every α ∈ (α∗,∞).

A natural question is whether this uniquely determined α∗ , when it exists, is a bifurcation point.
Our next result not only gives an affirmative answer to this question but also provides some informa-
tion on the global bifurcation diagram of positive steady states.

Theorem 7. Suppose that Ω is convex, the Hessian matrix of m is negative definite for every x ∈ Ω , and
μ > ν > ν0 .
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(1) (Local bifurcation) There exist some ε > 0 and continuous functions α : (α∗ − ε,α∗ + ε) → R and
ϕ(s),ψ(s) : (−ε, ε) → C2(Ω) such that α(0) = α∗ , ϕ(0) = ϕ∗ for some positive function ϕ∗ , ψ(0) =
ψ∗ , and solutions of system (1.4) near (α∗,0, θ) consist precisely of (α,0, θ) and {(α(s), sϕ(s), θ +
sψ(s))}, s ∈ (−ε, ε).

(2) (Global bifurcation) Further assume that m(x) changes sign in Ω . Then the componentwise positive equi-
libria to (1.4) which emanate from (α,0, θ) at (α∗,0, θ) contain a continuum which meets (α∗∗, ũ,0),
where ũ is a positive equilibrium solution of (1.1) for α = α∗∗ .

Since ϕ∗ > 0 in Ω , (sϕ(s), θ + sψ(s)) is a positive steady state of (1.4) with α = α(s) for every
0 < s < ε . In other words, part (i) of Theorem 7 ensures that a branch of positive steady states of
(1.4) bifurcates from (0, θ) at α = α∗ . Moreover, under the assumptions of Theorem 7, by Theorem 6,
α∗ is the only bifurcation point for (0, θ). Part (ii) implies that the branch of positive steady states of
(1.4) which bifurcates from (α,0, θ) at (α∗,0, θ) contains a continuum which meets the other semi-
trivial steady state (α∗∗, ũ,0). For our bifurcation analysis we use the framework given by Shi and
Wang in [44], which builds on work by various authors including Dancer, Fitzpatrick, López-Gómez,
Pejsachowicz, and Rabier; see [44] for details and references.

For general m, it is an open question whether there is a unique bifurcation point for (ũ,0) or
(0, θ). To further illuminate this issue, we turn to discuss the asymptotic behaviors of all possible
bifurcation points as μ → ∞ or ν → 0. Numerical simulations suggest that, as α varies from zero to
infinity, the two competing species coexist for some intermediate interval of α. More precisely, if α
is the bifurcation parameter, a branch of positive steady states bifurcates from (ũ,0) at some α = αu
and it connects to (0, θ) at some α = αv . How do these two bifurcation values αu and αv depend
upon values of μ and ν? To address this question, we first give precise definitions of the values
αu and αv . For any μ > ν > 0, both λu(α,μ,ν) = 0 and λv(α,μ,ν) = 0 have at least one positive
root. Let αu(μ,ν) denote any positive root of λu(α,μ,ν) = 0 and let αv(μ,ν) denote any positive
root of λv(α,μ,ν) = 0. Simulation results suggest that for each fixed ν > 0, as μ becomes large,
the coexistence interval becomes wider and both ends of the coexistence interval approach infinity
as μ → ∞. This suggests that as μ → ∞, both αu and αv tend to infinity. In the following we give
some characterizations of asymptotic behaviors of αu and αv as μ → ∞.

Theorem 8. Fix ν > 0. Then,

(a) subject to passing to a subsequence, limμ→∞ αu(μ,ν)/μ = Λ∗, where Λ∗ > 0 is chosen such that the
following system has a positive solution (u∗,ϕ∗):⎧⎪⎨

⎪⎩
Λ∗(m − u∗) = ln u∗ −

∫
Ω

u∗ ln u∗∫
Ω

u∗ in Ω,

ν�ϕ∗ + (
m − u∗)ϕ∗ = 0 in Ω, ∇ϕ∗ · n|∂Ω = 0.

(1.9)

(b) limμ→∞ αv(μ,ν)/μ = Λ2, where Λ2 > 0 is uniquely determined by (1.8).

Remark 1.1. We know that Λ∗ exists and is positive, but we do not know yet whether such Λ∗
is unique. This probably explains why it is in general difficult to show that there is at most one
bifurcation point for (ũ,0).

Simulation results also suggest that for each fixed μ > 0, as ν becomes sufficiently small, the
coexistence interval also becomes wider and both ends of the coexistence interval approach infinity
as ν → 0. This suggests that as ν → 0, both αu and αv tend to infinity. In the following result we
give some characterization of asymptotic behaviors of αu as ν → 0.

Theorem 9. Fix μ > 0. Then

lim
ν→0

αu(μ,ν)

μ/ν
= Λ∗∗,
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where Λ∗∗ > 0 is the unique positive number such that the following equation has a positive solution:

−Λ∗∗�ϕ +
[∫

Ω
m ln m∫
Ω

m
− lnm

]
ϕ = 0 in Ω, ∇ϕ · n|∂Ω = 0.

We are unable to determine the asymptotic behavior of αv as ν → 0.
This paper is organized as follows. In Section 2 we study the global existence of solutions of

(1.4) and establish Theorem 1. The linear stability of both semi-trivial steady states is considered in
Sections 3, 4 and 6, and we prove Theorems 3, 4 and 6, respectively. Section 5 is devoted to the proof
of Theorem 5, the non-existence of positive steady states of (1.4). In Section 6 we study the local
and global bifurcation diagram of positive steady states of (1.4) and prove Theorem 7. Asymptotic
behaviors of bifurcation points are investigated in Section 7, and we prove Theorems 8 and 9 there.
Finally in Section 8, numerical simulation results on various consumer–resource models are presented
to suggest future directions.

2. Preliminary results and global existence

We will always assume that Ω is a bounded domain in R
N for some N . The local existence of

solutions follows from the results of [1]. Showing the global existence of solutions requires some
additional analysis. The system (1.4) is triangular and, in the terminology of [2], it is affine in the
gradient. Thus, Theorem 3 of [2] applies, so that for global existence it is sufficient to establish that
solutions on any finite interval (0, T ] are bounded in L∞ , where the bound may depend on T and the
initial data. In fact, an extension of the results of [2] derived in [34] that requires an L∞ bound on v
but only an L p bound on u with p sufficiently large can be applied to (1.4). The system (1.4) is similar
in structure to cross-diffusion models, and it turns out that it can be treated by some of the methods
developed for those models, as we will describe later in this section. First we note that since (1.4) is
a model for population densities we are interested only in non-negative solutions.

Proposition 1. If u and v satisfy the equations and boundary conditions of (1.4) for t ∈ (0, T ] with
u(x,0), v(x,0) � 0 then u, v � 0 for t ∈ [0, T ].

Proof. From the form of the equation and boundary condition for v it is clear by the maximum prin-
ciple [43] that if v(x,0) � 0 then v � 0 on Ω × [0, T ]. Let z = ue(α/μ)(u−m) . In view of the boundary
condition on v , the boundary condition on u is equivalent to (μ + αu)∂u/∂n − αu∂m/∂n = 0 on
∂Ω × (0, T ]. Using this fact we can see that z satisfies

⎧⎪⎪⎨
⎪⎪⎩

zt = [
1 + (α/μ)u

]{
μ�z + α[∇m − ∇u + ∇v] · ∇z

+ [(
α2/μ

)
(∇m − ∇u) · ∇v + α�v + f (x, u, v)

]
z
}

in Ω × (0, T ],
∂z

∂n
= 0 on ∂Ω × (0, T ].

(2.1)

Since u(x,0) � 0 it follows that μ+αu > 0 for t ∈ [0, δ] for some δ > 0. By the form of (2.1) it follows
from the maximum principle that z � 0 on [0, δ], so u � 0 on [0, δ]. Let t0 > 0 be the largest value
of t ∈ [0, T ] such that u � 0 for t � t0. If t0 < T then since u(x, t0) � 0 we can argue as before that z
and hence u must be non-negative for t ∈ [0, t0 + δ] for some δ > 0, contradicting the definition of t0.
Thus, we must have u � 0 for t ∈ [0, T ]. �
2.1. Normal ellipticity in existence and bifurcation theory

Before turning to the detailed analysis of the system (1.4) we will show that the differential op-
erator on the right-hand side has a key property called normal ellipticity. It turns out that normal
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ellipticity is in some sense an optimal condition for local existence results based on semigroup theory
(see [1, p. 16]) and is also important as a general condition implying that certain operators occurring
in the bifurcation analysis of quasilinear systems are Fredholm with index zero (see [44, Section 2,
especially Theorem 2.7 and its corollaries]). Suppose that an n × n system of linear second order
differential operators on a domain Ω ⊂ R

N has principal symbol A(x, ξ) = ∑N
i, j=1 aij(x)ξiξ j where

aij = (ars
i j ) is an n × n matrix for i, j = 1 . . . N . The system is normally elliptic if the spectrum of the

matrix A(x, ξ) is contained in {z ∈ C: Re z > 0} for all x ∈ Ω and ξ ∈ R
N\{0}. (See [1,2,44]. The way

that the condition is formulated in [44] is slightly different from the formulation of [1,2] but the
formulations are equivalent.) Detailed discussions of conditions for systems to be normal elliptic, the
relation of normal ellipticity to uniform ellipticity and other ellipticity conditions, and the regularity
results that follow from normal ellipticity are given in [1,44]. In particular, uniform ellipticity typi-
cally requires that A(x, ξ) is positive definite in some sense, while normal ellipticity does not, so that
appropriate forms of uniform ellipticity imply normal ellipticity, but normal ellipticity does not imply
uniform ellipticity. It is noted on p. 2790 of [44] that the full proofs of certain L p estimates stated
in [1] are not given in that paper, but the details are provided in [44], so the full details of Amann’s
approach are available in the literature. We will verify that in the system defined by (1.4) the system
of differential operators on the right-hand side is normally elliptic if the coefficients are evaluated for
u = u(x), v = v(x) with u(x) and v(x) non-negative. Before doing that we will briefly review some
background on ellipticity and existence theory for quasilinear parabolic systems. The first observation
is that the idea of normal ellipticity is important in developing existence theory for quasilinear sys-
tems of cross-diffusion type, including specifically (1.4). As noted previously, uniform ellipticity is a
more classical but stronger concept of ellipticity than normal ellipticity. Classical approaches to exis-
tence theory use test functions or other methods to obtain what amount to energy estimates which in
turn lead to inequalities that can be used to obtain the estimates needed for existence results; see for
example [21] or [16] among many others. Those methods typically require some form of uniform el-
lipticity and do not necessarily apply to normally elliptic systems (see the comment at the bottom of
p. 19 of [1]). The methods used by Amann in [1,2] are based on properties of analytic semigroups and
the theory of interpolation spaces, and for that approach normal ellipticity is sufficient. That turns out
to be important for the study of systems such as (1.4). In [1, Eqs. (7) and (8)], Amann gives an exam-
ple of a cross-diffusion system similar to (1.4) and comments on p. 16 “if we were forced to impose
the uniform strong ellipticity condition in our example (7),(8) it would not be possible to study solu-
tions with non-negative initial values (u0 � 0, v0 � 0) in general.” It is clear from the work of Amann
[1] and the verification of the L p estimates in [44] that normal ellipticity is the appropriate condition
for local existence results. There is an important special case in which the estimates needed for global
existence are somewhat easier, and where the condition for normal ellipticity becomes simpler. That
is the case where the principal part of the elliptic operator, and hence the principal symbol, are upper
triangular. In that case it is possible, roughly speaking, to start with estimates for the last equation
of the system, which is coupled to the rest of the system only in lower order terms, use those to
obtain estimates for the next to last equation, and then continue work upward through the system
to obtain the necessary estimates. In the case of an upper triangular system the condition for normal
ellipticity requires only that the diagonal terms in the principal symbol satisfy

∑N
i, j=1 arr

i j (x)ξiξ j > 0

for all x ∈ Ω and ξ ∈ R
N\{0}, for r = 1 . . .n. (See [2, Eq. (0.2) on p. 220].) Our operator has principal

part

(
μ + αu αu

0 ν

)(	u
	v

)
. (2.2)

The boundary condition has principal part

(
μ + αu αu

0 ν

)(∇u · n
∇v · n

)
. (2.3)
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It follows that the principal symbol has the form

(
(μ + αu)|ξ |2 αu|ξ |2

0 ν|ξ |2
)

. (2.4)

As long as u and v are non-negative the operator and boundary conditions satisfy the conditions
given by Amann [1,2] for normal ellipticity. These conditions are explicated in case 3 of Remark 2.5
of [44], where in the notation of [44], the principal part of our system would be defined by taking

a(x) =
(

μ + αu αu
0 ν

)
(2.5)

and αi j = δi j where δi j is the Kronecker delta. Normal ellipticity follows if

det

(
μ + αu + σ αu

0 ν + σ

)

= 0 (2.6)

when σ = 0 or arg σ ∈ [−π/2,π/2]. The determinant is

(μ + αu + σ)(ν + σ),

so since μ + αu > 0 for non-negative u, relation (2.6) is satisfied and hence our system is nor-
mally elliptic. We will need to verify that certain linearized operators associated with our system
are also normally elliptic to establish the Fredholm properties needed to apply the bifurcation results
from [44]. We will do that in Section 6. The analysis is similar to what is shown here.

2.2. Global existence

We now turn to the issue of showing global existence in (1.4). To obtain global existence requires
additional estimates, including estimates that imply uniform Hölder continuity of solutions with re-
spect to the time variable, which are difficult to obtain in general; see [2, p. 223]. However, our
system (1.4) has the special feature of being upper triangular. It is noted in [2] that for such systems
it suffices to obtain L∞ bounds that are uniform in time; see Theorem 3 of [2]. This result of [2] has
been improved by Dung Le in [34] for the case of 2 × 2 systems with the triangular form

⎧⎪⎪⎨
⎪⎪⎩

ut = ∇ · [P (u, v)∇u + R(u, v)∇v
] + F (u, v) in Ω × (0,∞),

vt = ∇ · [Q (u, v)∇v
] + G(u, v) in Ω × (0,∞),

P (u, v)
∂u

∂n
+ R(u, v)

∂v

∂n
= ∂v

∂n
= 0 on ∂Ω × (0,∞).

(2.7)

The main result of [34, Theorem 2.2] shows that under suitable hypotheses on P , Q , R , F and G
(given in Eqs. (2.2)–(2.6) of [34]), it suffices to obtain a uniform L∞ bound on v and a uniform
LN bound on u. It is simple to obtain L∞ bounds on v in triangular systems like (1.4) and (2.7)
because the form of equation and boundary condition for v allow the direct application of maximum
principles or, more generally, invariance principles. The key issue is to obtain estimates for u. In
general that is difficult to do, and in fact global existence is still an open question if N � 3 and
ν � μ. In some cases global existence can be shown via methods developed by Dung Le and his
collaborators. Those results, and some of the results of [2], again exploit the triangular structure of
the system. Thus, they do not require uniform ellipticity conditions like those needed for general
strongly coupled systems, for example as in [16]. We will discuss this point further in the remark and
discussion following the next proposition.
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Proposition 2. (See [34, Theorem 2.2].) Suppose that m ∈ C2+γ (Ω) and if N > 1 suppose that ∂Ω is of class
C2+γ for some γ ∈ (0,1). Suppose that (u, v) is a non-negative solution of (1.4) for t ∈ I , where I is an
interval of existence of the solution. If ‖u‖N and ‖v‖∞ are uniformly bounded for t ∈ I then so are ‖u‖C1+δ

and ‖v‖C1+δ for some δ ∈ (0,1).

Remark 2.1. Uniform bounds for u and v in C1+δ for t ∈ I imply that the solution (u, v) can be
extended to some larger interval. If for any finite interval of existence I there is some uniform bound
for u and v in C1+δ , possibly depending on I , then the solution can always be extended, so if I is
the maximal interval of existence for the solution (u, v) then I = (0,∞), that is, the solution exists
globally. See [2,34]. If there is such a uniform bound that is independent of I and the initial conditions
then solutions are in Le’s terminology ultimately uniformly bounded, which is effectively a type of
dissipativity condition that implies the system has a global attractor with finite Hausdorff dimension;
see [34]. The case N = 1 was also treated in [33] for a related system. See also [45] for similar results
in one dimension.

Discussion. The only ways that the form of (1.4) differs from that of (2.7) are the dependence of
f (x, u, v) on x via m(x) and the presence of the advection term −α∇ · (u∇m) in (1.4), also arising
from the dependence of m on x. The results of [34] do not require the system to be uniformly ellip-
tic; they require only that hypotheses (H.1) and (H.2) (Eqs. (2.2)–(2.6)) are satisfied. The conditions
that are imposed on P , Q and R in hypothesis (H.1) of [34] are that they are differentiable, their
derivatives can be bounded by some powers of u and v , and that P (u, v) � d > 0, Q (u, v) � d > 0,
and |R(u, v)| < Φ(v)u where Φ(v) is a continuous function. The reaction terms in (1.4) are the same
as those considered in the example in Theorem 3.1 of [34] except for the fact that m depends on x.
In fact, Theorem 3.1 of [34] would apply directly to our system in the case of N = 2 if our system did
not have the x-dependent terms arising from m(x) because the hypotheses (H.1) and (H.2) would be
satisfied, and that is all that is required. It is worth noting that the systems studied by Le and Nguyen
in [35] are not necessarily uniformly elliptic because the coefficient b11 in Eq. (1.4) of [35] can be
arbitrarily large. We do not use the results of [35] directly, but they illustrate that uniform ellipticity
or positive definiteness are not needed for applications of the general results of [34]. By carefully go-
ing through the calculations used to derive Theorem 3.1 of [34] one can verify that the proof of that
result extends to our system, thus yielding global existence when N = 2. The method used in [34]
uses an induction argument to show that u is uniformly bounded in L p(Ω) for any p, then uses the
bounds to obtain estimates on the undifferentiated terms in the equations that allow the application
of parabolic regularity theory. The inductive step in bounding u is based on multiplying the equation
for u by u2p−1 so as to obtain a bound for ‖u‖2p from a bound for ‖u‖p . The terms corresponding to
P , Q , and R in (1.4) are μ+αu, ν , and αu, respectively. Those satisfy the hypothesis (H.1) of [34] that
is needed for the calculations in the inductive step. The dependence of u f (x, u, v) and v f (x, u, v) on
u and v is the same as some of forms assumed for F and G in [34]. The fact that f (x, u, v) depends
on x does not affect the calculations. In our case the advection term −α∇ · (u∇m) produces an extra
term

∫
Ω

αu∇m · ∇(u2p−1)dx on the right side of formula (2.21) of [34]. That term can be estimated
by C

∫
Ω

|∇m||U∇U |dx, where U = up . Since ∇m is bounded an estimate analogous to (2.24) of [34]
can then be used to obtain the bound needed to continue the inductive step. The smoothness condi-
tions on m and ∂Ω are used so that regularity theory can be applied as in the discussion following
(2.32) of [34]. A result similar to Theorem 2.2 of [34] is also proved in [33] for a related system with
Ω ⊂ R

1. That system has a slightly different form than (1.4) or (2.7) but the key estimates are all
essentially the same and extend directly to (1.4), thus yielding global existence when N = 1.

Proposition 3. Suppose that Ω ⊂ R
1 or Ω ⊂ R

2 with ∂Ω of class C2+λ , and that m ∈ C2+λ(Ω) for some
λ ∈ (0,1). Then solutions of the system in (1.4) with non-negative initial data exist globally, and in fact they are
ultimately uniformly bounded in [C1+δ]2 so that the system (1.4) has a global attractor with finite Hausdorff
dimension.

Proof. The bound on ‖u‖1 obtained in Lemma 3.3 of [34] is valid in any dimension. The remaining
estimates needed for global existence for the case N = 1 are obtained in [33]. As noted previously,



2914 R.S. Cantrell et al. / J. Differential Equations 254 (2013) 2905–2941
the system studied in [33] is slightly different from (1.4) but all the key estimates [33] are essentially
the same as those needed to treat (1.4) and extend to that system. (The analysis in [34] is very
similar to that in [33].) For the case of Ω ⊂ R

2, the estimates used in Section 3 of [34] to obtain
a bound on ‖u‖2 carry over to (1.4) essentially without modification. Global existence then follows
from Proposition 2 and the results and methods of [2] as in [34]. Furthermore, the bound obtained in
Section 3 of [34] and the analogous bound in the one-dimensional case that follows from the analysis
in [33] imply ultimate uniform boundedness, which as noted in the remark following Proposition 2
implies the existence of a global attractor. �

For Ω ⊂ R
N with N > 2 we do not have a general proof for global existence. However, global

existence can be shown for ν > μ by adapting some ideas from [35]. The results of [35] do not seem
to extend directly to (1.4) because of the terms involving advection along ∇m but part of the proof
can be modified to obtain estimates on ‖u‖p for any p.

Proposition 4. Suppose that Ω ⊂ R
N with ∂Ω of class C2+λ , m ∈ C2+λ(Ω) for some λ ∈ (0,1), and ν > μ

in (1.4). Then solutions of the system in (1.4) with bounded non-negative initial data exist globally.

Proof. We first observe that by the form of the second equation in (1.4), the maximum principle (and
more general invariance principles) imply ‖v‖∞ < C on the interval of existence for some constant C
depending only on m and the initial data. Thus, we need only bound the LN norm of u. If H(u, v) is
a smooth function then we can use (1.4) to compute

1

2

d

dt

∫
Ω

H(u, v)2 dx =
∫
Ω

(H Huut + H H v vt)dx

= −
∫
Ω

∇H · {Hu
[
(μ + αu)∇u + αu∇v − αu∇m

] + H v [ν∇v]}dx

−
∫
Ω

H
{∇Hu · [(μ + αu)∇u + αu∇v − αu∇m

] + ∇H v · [ν∇v]}dx

+
∫
Ω

H[Huu + H v v] f dx. (2.8)

Le and Nguyen [35] treated systems of the form (2.7) and observed that an optimal estimate for the
integral corresponding to the one on the second line of (2.8) can be obtained by choosing H to satisfy

R Hu = (P − Q )H v; (2.9)

see Eqs. (3.3) and (3.4) of [35] and the related discussion. In our case solving (2.9) with P = μ + αu,
Q = ν , and R = αu leads to H(u, v) = h(u + v + γ ln u) where γ = (μ − ν)/α and h is any smooth
function. For the present purpose it is convenient to take h(z) = exp(kz) where k > 0 is a constant to
be chosen later, so that

H(u, v) = exp
(
k[u + v + γ ln u]), (2.10)

and hence

∇H(u, v) = kH

[(
1 + γ

u

)
∇u + ∇v

]
. (2.11)
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With this choice of H we have

∫
Ω

∇H · {Hu
[
(μ + αu)∇u + αu∇v − αu∇m

] + H v [ν∇v]}dx

=
∫
Ω

(μ + αu)|∇H|2 − k(μ − ν + αu)H∇m · ∇H dx, (2.12)

where we have used (1 + γ
u )αu = (μ − ν + αu). Note that

∇Hu = k

(
1 + γ

u

)
∇H −

(
kγ

u2

)
H∇u and ∇H v = k∇H . (2.13)

Thus

∫
Ω

H
{∇Hu · [(μ + αu)∇u + αu∇v

] + ∇H v · [ν∇v]}dx

=
∫
Ω

k(μ + αu)H∇H ·
[(

1 + γ

u

)
∇u + ∇v

]
dx

−
∫
Ω

kγ

u2
H2[(μ + αu)|∇u|2 + αu∇u · ∇v

]
dx. (2.14)

Since μ + αu = ν + (1 + γ
u )αu we have

(μ + αu)|∇u|2 + αu∇u · ∇v = ν|∇u|2 + αu∇u ·
[(

1 + γ

u

)
∇u + ∇v

]

= ν|∇u|2 + αu∇u · ∇H

kH
. (2.15)

It follows that for k sufficiently large

∫
Ω

H
{∇Hu · [(μ + αu)∇u + αu∇v

] + ∇H v · [ν∇v]}dx

=
∫
Ω

(μ + αu)|∇H|2 dx −
∫
Ω

kγ ν

u2
H2|∇u|2 dx −

∫
Ω

αγ

u
H∇u · ∇H dx

� 1

2

(∫
Ω

(μ + αu)|∇H|2 dx −
∫
Ω

kγ ν

u2
H2|∇u|2 dx

)
. (2.16)

Fixing a sufficiently large value of k we can use (2.12) and (2.16) in (2.8) to obtain

1

2

d

dt

∫
H(u, v)2 dx � −3

2

∫
(μ + αu)|∇H|2 dx + 1

2

∫
kγ ν

u2
H2|∇u|2 dx
Ω Ω Ω
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+
∫
Ω

k(μ − ν + αu)H∇m · ∇H dx +
∫
Ω

αuH∇Hu · ∇m dx

+
∫
Ω

H[Huu + H v v] f dx. (2.17)

The hypothesis ν > μ implies that γ < 0. The first integral on the second line of (2.17) can be esti-
mated as

∫
Ω

k(μ − ν + αu)H∇m · ∇H dx �
∫
Ω

(μ + αu)
(
ε|∇H|2 + Cε H2)dx

� ε

∫
Ω

(μ + αu)|∇H|2 dx +
∫
Ω

(
Cε,δ + δu2)H2 dx (2.18)

where Cε,δ depends on α, μ, ν , m and k. Using (2.13) the second integral on the second line of (2.17)
can be written as

∫
Ω

αuH∇Hu · ∇m dx =
∫
Ω

αuHk

(
1 + γ

u

)
∇H · ∇m dx −

∫
Ω

(
kαγ

u

)
H∇u · ∇m dx. (2.19)

The first integral on the right side of (2.19) is identical to the integral on the left in (2.18) and can be
estimated in the same way. The second integral on the right side of (2.19) can be estimated as

−
∫
Ω

(
kαγ

u

)
H∇u · ∇m dx � Cε + ε

∫
Ω

H2|∇u|2
u2

dx. (2.20)

Finally, in the last integral on the right in (2.17) we have

H[Huu + H v v] f = kH2[γ + u + v][m − u − v]

� kH2
[

C − 1

2
(u + v)2

]
� C H2 − k

2
u2 H2. (2.21)

By using the hypothesis that γ = (μ − ν)/α < 0 and the estimates in (2.18), (2.20), and (2.21) with ε
and δ taken to be sufficiently small, we can conclude from (2.17) that for some constants C1, C2,

1

2

d

dt

∫
Ω

H2 dx � −
∫
Ω

(μ + αu)|∇H|2 dx + C1 + C2

∫
Ω

H2 dx

� C1 + C2

∫
Ω

H2 dx, (2.22)

where the constants C1 and C2 depend on the initial data, m, and the parameters in the system (1.4).
We can conclude that on any finite interval 0 � t � T , we have

∫
H2 dx � C for some C depending

on the initial data, T , C1, and C2. Since ‖v‖∞ is bounded and H(u, v) grows exponentially in u as
u → ∞, it follows that ‖u‖p is bounded on [0, T ] for any p. Taking p = N , we have global existence
of solutions to (1.4) by Proposition 2. �
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Remark 2.2. It may be possible to apply other methods of obtaining global existence for cross-
diffusion systems, for example those developed in [15,40,47], to the system (1.4), but the structure
of the nonlinear diffusion terms in the systems considered in those works is different than in (1.4).
It is worth noting that the system treated in [47] includes advection along a fitness gradient as well
as cross diffusion. It may also be possible to adapt methods developed to treat chemotaxis models as
in [45]. These are topics of interest for future research.

3. Stability of (ũ,0) for large α/μ

This section is devoted to the proof of Theorem 3.
Recall that ũ is a positive solution of

{
∇ · [μ∇ũ − αũ∇(m − ũ)

] + ũ[m − ũ] = 0 in Ω,[
μ∇ũ − αũ∇(m − ũ)

] · n|∂Ω = 0.
(3.1)

The stability of (ũ,0) is determined by the smallest eigenvalue, denoted by λu(α,μ,ν), of the linear
problem

ν�ψ + (m − ũ)ψ = −λψ in Ω, ∇ψ · n|∂Ω = 0.

We first recall the following result [9] concerning the profile of ũ for sufficiently large α.

Lemma 3.1. For any positive solution ũ of (3.1), ũ → m+ weakly in H1 and strongly in L2 as α/μ → ∞.
Furthermore, for any given η > 0, if α � η and α/μ → ∞, ũ → m+ in Cγ (Ω) for some γ ∈ (0,1).

If one further assumes that m > 0 in Ω , then for any given η > 0, if α � η and α/μ → ∞, then ũ → m in
C2(Ω). Moreover,

(1) if α/μ → ∞ and α → ∞, we have

α

μ
(ũ − m) →

∫
Ω

m ln m∫
Ω

m
− lnm (3.2)

uniformly in Ω;
(2) if α/μ → ∞ and α → α̃ ∈ (0,∞), then

α

μ
(ũ − m) → w̃ − lnm, (3.3)

uniformly in Ω , where w̃ is the unique solution of

α̃�w̃ + α̃∇ w̃ · ∇(ln m) = w̃ − lnm in Ω,
∂ w̃

∂n
= 0 on ∂Ω. (3.4)

The following two results will play important roles in later analysis.

Lemma 3.2. Suppose that m > 0 in Ω . Then

∫
Ω

m · lnm �
∫
Ω

m · ∫
Ω

lnm

|Ω| , (3.5)

and equality holds if and only if m is a constant function.
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Proof. We first make the following claim: For any continuous function g ,

∫
Ω

(g − g)eg � 0, (3.6)

where the equality holds if and only if g ≡ g , where g = ∫
Ω

g/|Ω|.
To establish our assertion, for τ ∈ R, define

h(τ ) =
∫
Ω

(g − g)eτ (g−g).

Then,

dh

dτ
=

∫
Ω

(g − g)2eτ (g−g) � 0

with equality if and only if g ≡ g . Therefore, if g 
≡ g , we have h(1) > h(0). Since h(0) = 0, we have

∫
Ω

(g − g)eg−g > 0,

which implies (3.6). This proves our assertion.
Rewrite (3.6) as

∫
Ω

geg �
∫
Ω

g

|Ω|
∫
Ω

eg .

Now choose g = ln m, we see that (3.5) holds, and the inequality is strict if m is not a constant. This
completes the proof. �
Lemma 3.3. Suppose that m > 0 in Ω , m is a non-constant function. Then, for w̃ given by (3.4),

∫
Ω

(w̃ − lnm)dx > 0. (3.7)

Proof. Rewrite the equation of w̃ as

α̃∇ · [m∇ w̃] = m[w̃ − lnm] in Ω,
∂ w̃

∂n
= 0 on ∂Ω. (3.8)

Multiplying the above equation by e−w̃ and integrating the result in Ω , we have

∫
me−w̃ [w̃ − lnm] = α̃

∫
me−w̃ |∇ w̃|2 > 0,
Ω Ω
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where the last inequality is strict since w̃ is non-constant as m is non-constant. In particular,

∫
Ω

e−[w̃−ln m][w̃ − lnm] > 0. (3.9)

Given any η, define the function F (η) by

F (η) =
∫
Ω

e−η(w̃−lnm)(w̃ − lnm).

Since

F ′(η) = −
∫
Ω

e−η(w̃−ln m)(w̃ − lnm)2 � 0,

we have F (1) � F (0), i.e.,

∫
Ω

(w̃ − lnm) = F (0) � F (1) =
∫
Ω

e−(w̃−lnm)(w̃ − lnm). (3.10)

It is clear that (3.7) follows from (3.9) and (3.10). �
Proof of Theorem 3. We argue by contradiction. Suppose that there exists η0 > 0 such that, passing
to some sequence if necessary, for α � η0 and α/μ → ∞, the smallest eigenvalue (denoted by γ1) of
the linear eigenvalue problem

−ν�ψ + ψ(−m + ũ) = γ ψ in Ω,
∂ψ

∂n
= 0 on ∂Ω

is non-positive. We choose the corresponding eigenfunction ψ1 such that ψ1 > 0 in Ω and
‖ψ1‖∞ = 1. Without loss of generality, we may assume that either α → ∞ or α → α̃ ∈ (0,∞).
Since 0 � ũ � maxΩ m [9, Corollary 3.2], we see that |γ1| is uniformly bounded, i.e., |γ1| � C for
some positive constant C which is independent of μ and α. Since ũ and ψ1 are uniformly bounded,
by standard elliptic regularity [22] we see that ‖ψ1‖W 2,p(Ω) is uniformly bounded for any p > 1. By
Sobolev’s embedding theorem [22] and ‖ũ − m+‖2 → 0 (Lemma 3.1), we may assume that ψ1 → Ψ

in C1, where Ψ is a weak solution of

−ν�Ψ + (−m + m+)Ψ = ΛΨ in Ω,
∂Ψ

∂n
= 0 on ∂Ω,

Ψ � 0 in Ω , and ‖Ψ ‖∞ = 1. Note that Λ � 0 since γ1 � 0. There are three cases for our consideration.

Case 1. m changes sign. For this case, m − m+ is non-positive and non-trivial. Hence, Λ > 0, which is
a contradiction.

Case 2. m > 0 in Ω , α → ∞ and α/μ → ∞. Since ‖ψ1‖∞ = 1 and m − m+ ≡ 0, we see that Ψ ≡ 1, i.e.,
ψ1 → 1. Integrating the equation of ψ1 in Ω , we have

γ1

∫
ψ1 =

∫
ψ1(ũ − m). (3.11)
Ω Ω
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Since ψ1 → 1 uniformly and (α/μ)(ũ − m) → ∫
Ω

m lnm/
∫
Ω

m − ln m (Lemma 3.1), we have

lim
α/μ,α→∞

γ1α

μ
=

[∫
Ω

m ln m∫
Ω

m
−

∫
Ω

lnm

|Ω|
]

> 0,

where the last inequality follows from Lemma 3.2. In particular, γ1 > 0 for sufficiently large α and
α/μ, which is again a contradiction.

Case 3. m > 0 in Ω , α/μ → ∞ and α → α̃ > 0. As in the previous case, we have ψ1 → 1 uniformly, and
(α/μ)(ũ − m) → w̃ − m (Lemma 3.1), where w̃ is the unique solution of (3.4). Therefore,

lim
α/μ→∞,α→α̃

λ1α

μ
|Ω| = lim

α/μ→∞,α→α̃

∫
Ω

α

μ
(ũ − m) =

∫
Ω

(w̃ − lnm) > 0,

where the last inequality follows from Lemma 3.3, again a contradiction. �
4. Stability of (0, θ)

This section is devoted to the proofs of Theorems 4 and 6. Theorem 4 is proved in Lemma 4.2, and
Theorem 6 is a consequence of Theorems 2 and 10.

Recall that θ is a positive solution of

ν�θ + θ(m − θ) = 0 in Ω, ∇θ · n|∂Ω = 0, (4.1)

and it is unique whenever it exists. The stability of (0, θ) is determined by the smallest eigenvalue,
denoted by λv(α,μ,ν), of the linear problem

{
∇ · [μ∇ϕ − αϕ∇(m − θ)

] + ϕ[m − θ] = −λϕ in Ω,[
μ∇ϕ − αϕ∇(m − θ)

] · n|∂Ω = 0.
(4.2)

Define

F (η) =
∫
Ω

eη(m−θ)(m − θ), η � 0.

Lemma 4.1. There exists a unique η∗ > 0 such that F (η) > 0 if η > η∗ and F (η) < 0 if η < η∗ .

Proof. The proof was essentially given in Proposition 2.1 of [18]. Since

F ′(η) =
∫
Ω

eη(m−θ)(m − θ)2 > 0,

so F has at most one root. Note that

F (0) =
∫
Ω

(m − θ) = −ν

∫
Ω

�θ

θ
= −ν

∫
Ω

|∇θ |2
θ2

< 0.

Since m−θ is positive somewhere in Ω , we see that limη→∞ F (η) = +∞. Hence, F (η) = 0 has exactly
one positive root, denoted by η∗ . In particular, F (η) > 0 if η > η∗ and F (η) < 0 if η < η∗ . �
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Lemma 4.2. If α/μ > η∗ , then λv(α,μ,ν) < 0, i.e., (0, θ) is linearly unstable.

Proof. Set ρ = e−(α/μ)(m−θ)ϕ in (4.2). Then ρ satisfies

{
μ∇ · [e(α/μ)(m−θ)∇ρ

] + e(α/μ)(m−θ)(m − θ)ρ = −λv(α,μ,ν)e(α/μ)(m−θ)ρ in Ω,

∇ρ · n|∂Ω = 0.
(4.3)

Dividing the first equation in (4.3) by ρ and integrating in Ω , we see that

λv(α,μ,ν)

∫
Ω

e(α/μ)(m−θ) = −
∫
Ω

e(α/μ)(m−θ)(m − θ) − μ

∫
Ω

∇ · [e(α/μ)(m−θ)∇ρ]
ρ

= −F

(
α

μ

)
− μ

∫
Ω

e(α/μ)(m−θ) |∇ρ|2
ρ2

< −F

(
α

μ

)

< −F
(
η∗) = 0,

where the last inequality follows from assumption α/μ > η∗ and Lemma 4.1. �
The following result shows that under suitable conditions λv is strictly monotone in α:

Theorem 10. Suppose that Ω is convex and the Hessian matrix of m(x) is negative definite for every x ∈ Ω .
Then there exists some ν0 > 0 such that if ν > ν0 , then λv is strictly monotone decreasing for all α � 0.

Set

V (x) := m − θ.

By (4.3), ρ > 0 also satisfies

μ�ρ + α∇V · ∇ρ + V ρ + λvρ = 0 in Ω,
∂ρ

∂n

∣∣∣∣
∂Ω

= 0. (4.4)

Lemma 4.3. For any α � 0,

∂λv

∂α
= −

∫
Ω

e(α/μ)V ρ∇ρ · ∇V∫
Ω

e(α/μ)V ρ2
. (4.5)

Proof. In the following we denote ∂ρ/∂α by ρ ′ and similarly for λ′
v . Differentiating (4.4) with respect

to α, we have

μ�ρ ′ + ∇V · ∇ρ + α∇V · ∇ρ ′ + V ρ ′ + λ′
vρ + λvρ

′ = 0,
∂ρ ′

∂n

∣∣∣∣ = 0. (4.6)

∂Ω
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Rewrite (4.6) as

⎧⎪⎨
⎪⎩

μ∇ · [e(α/μ)V ∇ρ ′] + e(α/μ)V ∇V · ∇ρ + e(α/μ)V V ρ ′ + λ′
vρe(α/μ)V + λv e(α/μ)V ρ ′ = 0,

∂ρ ′

∂n

∣∣∣∣
∂Ω

= 0.
(4.7)

Multiplying (4.7) by ρ , (4.3) by ρ ′ , subtracting and integrating in Ω , we find that (4.5) holds. �
It is clear that Theorem 10 follows from Lemma 4.3 and the following result.

Proposition 5. Suppose that Ω is convex and the Hessian matrix of m(x) is negative definite for every x ∈ Ω .
Then there exists some ν0 > 0 such that if ν > ν0 ,

∫
Ω

e(α/μ)V ρ∇ρ · ∇V > 0

for every α � 0 and every μ > 0.

To establish Proposition 5, we first prove the following lemma.

Lemma 4.4. The following holds:

∫
Ω

e(α/μ)V ρ∇ρ∇V =
∫
Ω

e(α/μ)V [
μ

∣∣∇2ρ
∣∣2 − V |∇ρ|2 − λv |∇ρ|2]

− μ

2

∫
∂Ω

e(α/μ)V ∂

∂n
|∇ρ|2 − α

∫
Ω

e(α/μ)V (∇ρ)T · ∇2 V · ∇ρ. (4.8)

Proof. Differentiate (4.4) with respect to xi and write the result in vector form:

μ�(∇ρ) + α∇2 V · ∇ρ + α∇2ρ · ∇V + ρ∇V + V ∇ρ + λv∇ρ = 0, (4.9)

where ∇2 V denotes the symmetric matrix (V xi x j ), i.e. the Hessian of V . Multiplying (4.9) by

e(α/μ)V ∇ρ (take inner product of vectors) and integrating the result in Ω we have

∫
Ω

e(α/μ)V ρ∇ρ · ∇V

= −λv

∫
Ω

e(α/μ)V |∇ρ|2 − μ

∫
Ω

e(α/μ)V ∇ρ · �(∇ρ) − α

∫
Ω

e(α/μ)V (∇ρ)T · ∇2 V · ∇ρ

− α

∫
Ω

e(α/μ)V (∇ρ)T · ∇2ρ · ∇V −
∫
Ω

e(α/μ)V V |∇ρ|2. (4.10)

Multiplying the identity

∣∣∇2ρ
∣∣2 + ∇(�ρ) · ∇ρ = 1

�
(|∇ρ|2)
2
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by e(α/μ)V and integrating the result in Ω , we have

∫
Ω

e(α/μ)V ∇(�ρ) · ∇ρ

= −
∫
Ω

e(α/μ)V
∣∣∇2ρ

∣∣2 + 1

2

∫
∂Ω

e(α/μ)V ∂

∂n
|∇ρ|2 − α

μ

∫
Ω

e(α/μ)V (∇V )T · ∇2ρ · ∇ρ. (4.11)

Hence, Eq. (4.8) follows from Eqs. (4.10) and (4.11). �
Lemma 4.5. The following holds:

∫
Ω

e(α/μ)V [
μ

∣∣∇2ρ
∣∣2 − V |∇ρ|2 − λv |∇ρ|2] � 0. (4.12)

Proof. By (4.3), λv can be characterized as

λv = inf
ψ∈W 1,2(Ω)

∫
Ω

e(α/μ)V [μ|∇ψ |2 − V ψ2]∫
Ω

ψ2
.

Choosing the test function ψ = ρxi for every 1 � i � n, we have

∫
Ω

e(α/μ)V [
μ|∇ρxi |2 − V |ρxi |2 − λv |ρxi |2

]
� 0,

and summing up i from 1 to N , we see that (4.12) holds. �
The following result belongs to Casten and Holland [12] and Matano [41].

Lemma 4.6. Suppose that Ω is convex. Then

∂

∂n
|∇ρ|2 � 0

on ∂Ω .

Proof of Proposition 5. By Eqs. (4.8) and (4.12) and Lemma 4.6,

∫
Ω

e(α/μ)V ρ∇ρ · ∇V � −α

∫
Ω

e(α/μ)V (∇ρ)T · ∇2 V · ∇ρ. (4.13)

As θ → 1
|Ω|

∫
Ω

m in C2(Ω) when ν → ∞ and ∇2m is negative definite for every x ∈ Ω , there ex-

ists some ν0 > 0 such that if ν > ν0, ∇2 V = ∇2m − ∇2θ is negative definite for every x ∈ Ω . This
completes the proof of Proposition 5. �
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5. Non-existence of positive steady states for large α

This section is devoted to the proof of Theorem 5, which is a corollary of Lemma 5.5. To this end,
we first establish a few auxiliary results.

Lemma 5.1. For any componentwise non-negative equilibrium (u, v) of (1.4), u(x) � maxΩ m for every x ∈ Ω .

Proof. Set

w = ue−(α/μ) f (x,u+v). (5.1)

Then w satisfies zero Neumann boundary condition and

μ∇ · [e(α/μ) f ∇w
] + u f (x, u + v) = 0 in Ω. (5.2)

Let w(xα) = maxΩ w for some xα ∈ Ω . Rewrite the equation of w as

μ�w + α∇m · ∇w + w f (x, u + v) = 0 in Ω.

Then by the maximum principle (cf. [39, Lemma 2.1]),

m(xα) − u(xα) − v(xα) � 0. (5.3)

By (5.3) we have

max
Ω

w = w(xα) = e−(α/μ)[m(xα)−u(xα)−v(xα)]u(xα)

� u(xα)

� m(xα)

� max
Ω

m. (5.4)

By the definition of w , we have

u(x)e−(α/μ)[m(x)−u(x)−v(x)] � max
Ω

m (5.5)

for every x ∈ Ω . If u(x̃) > maxΩ m for some x̃, then m(x̃) < u(x̃). This along with (5.5) implies that

u(x̃) � u(x̃)e−(α/μ)[m(x̃)−u(x̃)−v(x̃)] � max
Ω

m,

which contradicts our assumption u(x̃) > maxΩ m. Hence, maxΩ u � maxΩ m. �
Lemma 5.2. For any p � 1, ‖v‖W 2,p is uniformly bounded for non-negative equilibria of (1.4) and for all
α � 0 and μ > 0.

Proof. By the maximum principle, v(x) � maxΩ m in Ω . By Lemma 5.1 and L p estimates [22] we see
that ‖v‖W 2,p is uniformly bounded. �
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Lemma 5.3. For any positive steady state of (1.4), ‖u‖H1 is uniformly bounded for all α � 0 and μ > 0.

Proof. Multiplying the equation of u by f (x, u + v) and integrating in Ω , we have

μ

∫
Ω

|∇u|2 + α

∫
Ω

u|∇ f |2 +
∫
Ω

u f 2 = μ

∫
Ω

∇u · ∇m − μ

∫
Ω

∇u · ∇v.

By Lemma 5.2 and Cauchy–Schwartz inequality we see that

μ

2

∫
Ω

|∇u|2 + α

∫
Ω

u|∇ f |2 +
∫
Ω

u f 2 � Cμ, (5.6)

where C > 0 is some constant independent of α and μ. In particular,
∫
Ω

|∇u|2 � C . Since u is also
uniformly bounded, this proves our assertion. �
Lemma 5.4. For any positive equilibria of (1.4),

∫
Ω

(m − u − v)+ � μ

α
|Ω|. (5.7)

Proof. Let w be defined as in (5.1). Dividing (5.2) by w and integrating in Ω , we find that

∫
Ω

e(α/μ) f f = −μ

∫
Ω

e(α/μ) f |∇w|2
w2

� 0.

It is easy to check that ye(α/μ)y � (α/μ)y2 for y � 0, and ye(α/μ)y � −μ/α for every y ∈ R. Hence,

0 �
∫

{ f �0}
e(α/μ) f f +

∫
{ f <0}

e(α/μ) f f � α

μ

∫
{ f �0}

f 2 − μ

α
|Ω|.

Therefore,

∫
{ f �0}

f 2 � μ2

α2
|Ω|.

By Hölder’s inequality, we have

∫
Ω

f+ �
(∫

Ω

( f+)2
)1/2

|Ω|1/2 =
( ∫

{ f �0}
f 2

)1/2

|Ω|1/2 � μ

α
|Ω|. �

Lemma 5.5. Suppose that m(x) changes sign in Ω . For any η > 0, there exists some positive constant C = C(η)

(independent of α, μ) such that if α � η and α/μ � C, then system (1.4) has no positive equilibria.
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Proof. To prove the non-existence of positive equilibria, we argue by contradiction. Suppose that there
exists η0 > 0 such that α � η0, α/μ → ∞, and (1.4) has positive steady states. By Lemmas 5.2 and 5.3
and Sobolev’s embedding theorem [22] we may assume that as α/μ → ∞, passing to a sequence if
necessary, u → u∗ weakly in H1 and strongly in L2, and v → v∗ in W 2,p weakly and strongly in
C1,γ (Ω) for some non-negative functions u∗ , v∗ , where p ∈ (1,∞) and γ ∈ (0,1). By Lemmas 5.1
and 5.2, we see that u∗, v∗ ∈ L∞(Ω). In particular, v∗ is a non-negative weak solution of

ν�v∗ + v∗(m − u∗ − v∗) = 0 in Ω,
∂v∗

∂n
= 0 on ∂Ω. (5.8)

Since u∗, v∗ ∈ L∞(Ω), by elliptic regularity [22] we have v∗ ∈ W 2,p(Ω)∩ C1,γ (Ω) for every γ ∈ (0,1)

and p > 1.
Passing to the limit in (5.7), we have

∫
Ω

(
m − u∗ − v∗)

+ = 0.

Since both u∗ and v∗ are non-negative functions, we have

u∗(x) + v∗(x) � m+(x) a.e. in Ω. (5.9)

We consider two different cases:

Case 1. v∗ 
≡ 0. For this case, by the strong maximum principle [43] we have v∗ > 0 in Ω . By (5.9) we
see that m − u∗ − v∗ � 0 in Ω and m − u∗ − v∗ < 0 in {x ∈ Ω: m(x) < 0}. Hence,

∫
Ω

v∗(m − u∗ − v∗) =
∫

{x∈Ω: m(x)�0}
v∗(m − u∗ − v∗) +

∫
{x∈Ω: m(x)<0}

v∗(m − u∗ − v∗)

�
∫

{x∈Ω: m(x)<0}
v∗(m − u∗ − v∗) < 0. (5.10)

On the other hand, integrating (5.8) in Ω ,

∫
Ω

v∗(m − u∗ − v∗) = 0,

which contradicts (5.10).

Case 2. v∗ ≡ 0. Hence, v → 0 as α → ∞. Set ṽ = v/‖v‖∞ . Passing to a subsequence if necessary, by
elliptic regularity and Sobolev’s embedding theorem [22] we may assume that ṽ → v∗∗ in C1, where
v∗∗ is a non-negative weak solution of

ν�v∗∗ + v∗∗(m − u∗) = 0 in Ω, ∇v∗∗ · n|∂Ω = 0. (5.11)

Since v∗ = 0 a.e., we have u∗ � m+ a.e. in Ω . By the same argument as in Case 1, we see that the
only non-negative solution of (5.11) is v∗∗ = 0, which is a contradiction since ‖v∗∗‖∞ = 1. This proves
that system (1.4) has no positive equilibria when m changes sign. �
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6. Existence of positive steady state: Bifurcation approach

This section is devoted to the proof of Theorem 7. The local bifurcation result is a consequence of
Theorem 11 and Lemmas 6.1, 6.2 and 6.3. The global bifurcation part is established at the end of this
section.

6.1. Local bifurcation

We first state a version of the well-known local bifurcation theorem of Crandall and Rabinowitz
[19] from simple eigenvalues. We will also use a recent result by Shi and Wang [44] that provides
a global bifurcation result under the hypotheses of the local bifurcation theorem together with some
additional conditions. Let X and Y be two Banach spaces.

Theorem 11. Let V be an open connected subset of R× X and (λ0, x0) ∈ V . Let F be a continuously differen-
tiable mapping from V into Y . Suppose that

1. F (λ, x0) = 0 for (λ, x0) ∈ V .
2. Dλx F (λ, x) exists and is continuous in some neighborhood of (λ0, x0).
3. Both the kernel and co-kernel of Dx F (λ0, x0), where N(Dx F (λ0, x0)) denote the kernel of Dx F (λ0, x0)

are one-dimensional and the range R(Dx F (λ0, x0)) is closed.
4. Dλx F (λ, x)(w0) /∈ R(Dx F (λ0, x0)), where w0 spans N(Dx F (λ0, x0)).

Let Z be any complement of N(Dx F (λ0, x0)) in X. Then there exists some ε > 0 and continuous functions
λ : (−ε, ε) →R and ξ : (−ε, ε) → Z such that λ(0) = 0 and ξ(0) = 0 and F (λ(s), x0 + sw0 + sξ(s)) = 0, s ∈
(−ε, ε). Moreover, the set F −1(0) = 0 near (λ0, x0) consists of precisely the curves {(λ, x0)} and {(λ(s), x0 +
sw0 + sξ(s)), s ∈ (−ε, ε)}.

For the case Ω ⊂ R
N we require ∂Ω to be of class C3 and define

X = W 2,p(Ω) × W 2,p(Ω),

Y = Lp(Ω) × Lp(Ω) × W 1−1/p,p(∂Ω) × W 1−1/p,p(∂Ω),

V =
{
(α, u, v) ∈ (δ,1/δ) × X: u > − μ

2α
, v > −δ

}
,

where p > N , δ > 0 is small. Recall that for p > N , W 2,p(Ω) embeds in C1,γ (Ω).
For the local bifurcation analysis we could replace X and Y with X̃ = C2,γ (Ω) × C2,γ

N (Ω), where

C2,γ
N (Ω) := {u ∈ C2,γ (Ω): ∇u · n|∂Ω = 0} and Ỹ = Cγ (Ω) × Cγ (Ω) × C1,γ (∂Ω). However, we will

need to work in Sobolev spaces so that we can use the results of [44] for the global bifurcation
analysis.

Define F (α, u, v) = (F1, F2, F3, F4), where

F1(α, u, v) = ∇ · [μ∇u − αu∇ f (x, u + v)
] + u f (x, u + v),

F2(α, u, v) = ν�v + v f (x, u + v),

F3(α, u, v) = [
μ∇u − αu∇ f (x, u + v)

] · n,

F4(α, u, v) = ν∇v · n.
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Since we take p > N it is clear that F is smooth. By a direct calculation,

D(u,v) F |(α,u,v)=(α,0,θ)(ϕ,ψ) =

⎛
⎜⎜⎝

∇ · [μ∇ϕ − αϕ∇(m − θ)] + ϕ(m − θ)

ν�ψ + ψ(m − 2θ) − θϕ

[μ∇ϕ − αϕ∇(m − θ)] · n
ν∇ψ · n

⎞
⎟⎟⎠ .

Lemma 6.1. Suppose that Ω is convex and the Hessian matrix of m is negative definite for every x ∈ Ω . There
exists some ν0 = ν0(m,Ω) > 0 such that if ν > ν0 , D(u,v) F |(α,0,θ) is invertible for any α < α∗ , and at α = α∗ ,
N(D(u,v) F |(α∗,0,θ)) is one-dimensional.

Proof. (ϕ,ψ) ∈ N(D(u,v) F |(α,0,θ)) if and only if the linear problem

⎧⎨
⎩

∇ · [μ∇ϕ − αϕ∇(m − θ)
] + ϕ(m − θ) = 0 in Ω,

ν�ψ + ψ(m − 2θ) − θϕ = 0 in Ω,[
μ∇ϕ − αϕ∇(m − θ)

] · n = ∇ψ · n = 0 on ∂Ω

has non-trivial solution. By Theorem 6, we see that if α < α∗ , the problem

{
∇ · [μ∇ϕ − αϕ∇(m − θ)

] + ϕ(m − θ) = 0 in Ω,[
μ∇ϕ − αϕ∇(m − θ)

] · n = 0 on ∂Ω

has only the trivial solution ϕ = 0. Hence, ψ satisfies

ν�ψ + ψ(m − 2θ) = 0 in Ω, ∇ψ · n = 0 on ∂Ω.

Since the operator ν�ψ + ψ(m − 2θ) with zero Neumann boundary conditions is invertible, we see
that ψ = 0. Hence, if α < α∗ , D(u,v) F |(α,0,θ) is invertible.

For α = α∗ , the problem

{
∇ · [μ∇ϕ − α∗ϕ∇(m − θ)

] + ϕ(m − θ) = 0 in Ω,[
μ∇ϕ − α∗ϕ∇(m − θ)

] · n = 0 on ∂Ω
(6.1)

has a positive solution, denoted by ϕ∗ , which is uniquely determined by maxΩ ϕ∗ = 1. Since the
operator ν�ψ + ψ(m − 2θ) is invertible, we see that

N(D(u,v) F |(α∗,0,θ)) = span
(
ϕ∗,ψ∗),

where ψ∗ is the unique solution of

ν�ψ∗ + ψ∗(m − 2θ) − θϕ∗ = 0 in Ω, ∇ψ∗ · n = 0 on ∂Ω.

This completes the proof. �
Let ρ > 0 be a principal eigenfunction of the adjoint problem of (6.1), i.e., ρ satisfies

μ�ρ + α∗∇(m − θ) · ∇ρ + (m − θ)ρ = 0 in Ω, ∇ρ · n|∂Ω = 0, (6.2)
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or equivalently,

μ∇ · [e(α∗/μ)(m−θ)∇ρ
] + ρe(α∗/μ)(m−θ)(m − θ) = 0 in Ω, ∇ρ · n|∂Ω = 0. (6.3)

It is straightforward to check that

ρ = Ce−(α∗/μ)(m−θ)ϕ∗

for some positive constant C .

Lemma 6.2. Suppose that Ω is convex and the Hessian matrix of m is negative definite for every x ∈ Ω . There
exists some ν0 = ν0(m,Ω) > 0 such that if ν > ν0 , then

R(D(u,v) F |(α∗,0,θ)) =
{
(h1,h2, g1, g2) ∈ Y :

∫
Ω

h1ρ =
∫

∂Ω

g1ρ

}
.

Proof. Given any (h1,h2, g1, g2) ∈ Y , (h1,h2, g1, g2) ∈ R(D(u,v) F |(α∗,0,θ)) if and only if there exist
( f1, f2) ∈ X such that D(u,v) F |(α∗,0,θ)( f1, f2) = (h1,h2, g1, g2), which, due to the invertibility of the
operator ν�ψ + ψ(m − 2θ), is equivalent to solving the equation

{
∇ · [μ∇ f1 − α∗ f1∇(m − θ)

] + f1(m − θ) = h1 in Ω,[
μ∇ f1 − α∗ f1∇(m − θ)

] · n = g1 on ∂Ω.
(6.4)

Set f̃1 = e−(α∗/μ)(m−θ) f1. Then (6.4) is equivalent to

{
μ∇ · [e(α∗/μ)(m−θ)∇ f̃1

] + f̃1e(α∗/μ)(m−θ)(m − θ) = h1 in Ω,

μe(α∗/μ)(m−θ)(∇ f̃1 · n) = g1 on ∂Ω.
(6.5)

By the Fredholm alternative for a single equation and (6.3), (6.5) is solvable if and only if
∫
Ω

h1ρ =∫
∂Ω

g1ρ . �
Remark 6.1. It follows from the characterization of R(D(u,v) F |(α∗,0,θ)) in Lemma 6.2 that
R(D(u,v) F |(α∗,0,θ)) is closed and has a one-dimensional complement, so Lemmas 6.1 and 6.2 imply
that hypothesis 3 of Theorem 11 is satisfied and D(u,v) F |(α∗,0,θ) is Fredholm.

Lemma 6.3. Suppose that Ω is convex and the Hessian matrix of m is negative definite for every x ∈ Ω . There
exists some ν0 = ν0(m,Ω) > 0 such that if ν > ν0 , then Dα D(u,v) F |(α∗,0,θ)(ϕ

∗,ψ∗) /∈ R(D(u,v) F |(α∗,0,θ)).

Proof. From the proof of Lemma 6.1, N(D(u,v) F |(α∗,0,θ)) is one-dimensional and spanned by (ϕ∗,ψ∗).
Hence,

Dα D(u,v) F |(α∗,0,θ)

(
ϕ∗,ψ∗) =

⎛
⎜⎜⎝

−∇ · [ϕ∗∇(m − θ)]
0
−ϕ∗∇(m − θ) · n
0

⎞
⎟⎟⎠ .
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From Lemma 6.2 we see that Dα D(u,v) F |(α∗,0,θ)(ϕ
∗,ψ∗) /∈ R(D(u,v) F |(α∗,0,θ)) if and only if

∫
Ω

ρ∇ · (ϕ∗∇(m − θ)
) −

∫
∂Ω

ρϕ∗∇(m − θ) · n 
= 0. (6.6)

Since

∫
∂Ω

ρϕ∗∇(m − θ) · n =
∫
Ω

∇ · (ρϕ∗∇(m − θ)
)

=
∫
Ω

ϕ∗∇ρ · ∇(m − θ) +
∫
Ω

ρ∇ · [ϕ∗∇(m − θ)
]
,

(6.6) is equivalent to

∫
Ω

ϕ∗∇ρ · ∇(m − θ) 
= 0. (6.7)

Since ϕ∗ = ρe(α∗/μ)(m−θ)/C for some positive constant C , (6.7) is equivalent to

∫
Ω

e(α∗/μ)(m−θ)ρ∇ρ · ∇(m − θ) 
= 0,

which holds due to Proposition 5. �
Remark 6.2. Lemmas 6.1, 6.2 and 6.3 verify the hypotheses of Theorem 11 and hence prove the local
bifurcation result (1) in Theorem 7.

6.2. Global bifurcation

The paper [44] by Shi and Wang gives conditions under which the hypotheses of Theorem 11 imply
a global bifurcation result. The following result is a combination of Theorems 4.3 and 4.4 of [44].

Theorem 12. Suppose that the hypotheses of Theorem 11 are satisfied and that in addition

1. Dx F (λ, x) exists and is Fredholm for all (λ, x) ∈ V , and Dx F (λ, x0) is continuously differentiable with
respect to λ for all (λ, x0) ∈ V ,

2. the norm function x �→ ‖x‖ on X is continuously differentiable for any x 
= 0, and
3. if (λ, x), (λ, x0) ∈ V then for any k ∈ (0,1), the operator kDx F (λ, x) + (1 − k)Dx F (λ, x0) is Fredholm.

Let Γ + = {(λ(s), x0 + sw0 + sξ(s)), s ∈ (0, ε)} and Γ − = {(λ(s), x0 + sw0 + sξ(s)), s ∈ (−ε,0)}. Then
Γ + and Γ − are contained in C , where C is a connected component of S with S = {(λ, x) ∈ V : F (λ, x) = 0,

x 
= x0}. Let C+ be the connected component of C\Γ − containing Γ + and let C− be the connected component
of C\Γ + containing Γ − . Each of C+ and C− satisfies one of the following: (i) it is not compact in V , (ii) it
contains a point (λ∗, x0) with λ∗ 
= λ0 , or (iii) it contains a point (λ, x0 + z) where z 
= 0 and z ∈ Z , where Z
is as in Theorem 11.

We first establish two auxiliary results.
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Lemma 6.4. Given any Λ > 0, there exist some positive constants C := C(Λ) and γ := γ (Λ) ∈ (0,1) such
that for any positive steady states of (1.4) with 0 � α � Λ, ‖u‖C2,γ (Ω) � C and ‖v‖C2,γ (Ω) � C.

Proof. Since ‖u‖L∞ and ‖v‖L∞ are bounded (Lemmas 5.1 and 5.2), by elliptic regularity theory [22]
we see that for any p > 1, ‖v‖W 2,p(Ω) is uniformly bounded for α � 0. By the Sobolev embedding

theorem [22], ‖v‖C1,τ (Ω) is uniformly bounded for α � 0 and any τ ∈ (0,1). Set w = e−(α/μ) f (x,u+v)u.
Then w satisfies

μ∇ · [e(α/μ) f (x,u+v)∇w
] + u(m − u − v) = 0 in Ω,

∂ w

∂n
= 0 on ∂Ω. (6.8)

Since ‖u‖L∞ and ‖v‖L∞ are bounded, f and w are bounded for 0 � α � Λ. By De Giorgi–Nash es-
timate up to the boundary (cf. [37, Lemma 5.1]; [36, Theorem 6.44]), there exists some γ ∈ (0,1)

such that ‖w‖Cγ (Ω) is uniformly bounded for 0 � α � Λ. Define h(y) = e(α/μ)y y. Note that h(u) =
we(α/μ)(m−v) . As ‖w‖Cγ (Ω) , m ∈ C2(Ω) and ‖v‖C1(Ω) are uniformly bounded, ‖h(u)‖Cγ (Ω) is uni-
formly bounded for 0 � α � Λ. Since h is smooth and h′(y) > 0 for y > −μ/α, we see that ‖u‖Cγ (Ω)

is uniformly bounded for 0 � α � Λ. By the Schauder theory [22], ‖v‖C2,γ (Ω) is uniformly bounded
for 0 � α � Λ. Furthermore, ‖ f (·, u + v)‖Cγ (Ω) is uniformly bounded for 0 � α � Λ. By the Schauder
theory for second elliptic operator with the divergence form (cf. [25, Theorem 2.8]), ‖w‖C1,γ (Ω) is uni-

formly bounded for 0 � α � Λ. As m ∈ C2(Ω) and ‖v‖C1,γ (Ω) are uniformly bounded, ‖h(u)‖C1,γ (Ω)

is uniformly bounded, which in turn implies that ‖u‖C1,γ (Ω) is uniformly bounded for 0 � α � Λ, so
‖ f (·, u + v)‖C1,γ (Ω) is uniformly bounded. Rewrite (6.8) as

μ�w + α∇ f · ∇w + w(m − u − v) = 0 in Ω,
∂ w

∂n
= 0 on ∂Ω. (6.9)

By the Schauder theory [22] we see that ‖w‖C2,γ (Ω) is uniformly bounded for 0 � α � Λ, from which
it follows that ‖u‖C2,γ (Ω) is uniformly bounded for 0 � α � Λ. �
Remark 6.3. For precise statements of global Hölder estimates for conormal derivative problems, we
refer to Lemma 5.1 of [37] for elliptic equations and Theorem 6.44 of [36] for parabolic equations. The
proof of Lemma 5.1 of [37] can be found in Chapter 10 of [29, pp. 466–467].

Lemma 6.5. Suppose that μ > ν . There exists some α0 > 0 small such that if 0 � α < α0 , (1.4) has no positive
steady states.

Proof. We argue by contradiction. If not, suppose that there exist {(αk, uk, vk)}∞k=1 with αk → 0+ as
k → ∞, and uk > 0 and vk > 0 are equilibria of (1.4) with α = αk . By Lemma 6.4, passing to a limit
we may assume that (uk, vk) → (u0, v0) as k → ∞, where u0 � 0 and v0 � 0, and

μ�u0 + u0(m − u0 − v0) = 0 in Ω,

ν�v0 + v0(m − u0 − v0) = 0 in Ω

with ∇u0 · n = ∇v0 · n = 0 on ∂Ω . Since μ > ν , by [20] we cannot have both u0 > 0 and v0 > 0.
Either we have (u0, v0) = (θ(μ),0), or (u0, v0) = (0, θ(ν)), or (u0, v0) = (0,0). If u0 = v0 = 0, divide
the equation of vk by ‖vk‖L∞ and pass to a limit (via a subsequence if necessary) to get vk/‖vk‖L∞ →
v∗ > 0 in Ω as k → ∞, where v∗ satisfies

ν�v∗ + mv∗ = 0 in Ω, ∇v∗ · n = 0 on ∂Ω. (6.10)
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Multiply (6.10) by θ(ν) and integrate to get

∫
Ω

v∗θ2(ν) = 0

which is a contradiction. When u0 = θ(μ) and v0 = 0, v∗ satisfies

ν�v∗ + [
m − θ(μ)

]
v∗ = 0 in Ω, ∇v∗ · n = 0 on ∂Ω.

That is, the smallest eigenvalue of the operator −ν� + (−m + θ(μ)) with respect to zero Neumann
boundary condition is equal to zero. So 1/ν is the principal eigenvalue for

−�ϕ = λ
(
m − θ(μ)

)
ϕ in Ω, ∇ · n = 0 on ∂Ω.

However, the equation of θ(μ) tells us that this eigenvalue is 1/μ, a contradiction.
If u0 = 0 and v0 = θ(ν), divide the equation for uk by ‖uk‖∞ . Since a term of the form

∫
Ω

∇ϕ · αk · uk

‖uk‖∞
∇(m − uk − vk) → 0

as k → ∞ for any test function ϕ ∈ C1(Ω) (since αk → 0), we get u∗ > 0 in Ω , ∇u∗ · n = 0 on ∂Ω

with

μ�u∗ + u∗(m − θ(ν)
) = 0

which is a contradiction (the argument is similar as the case u0 = θ(μ) and v0 = 0). �
Proof of (2), Theorem 7. Hypothesis 2 of Theorem 12 is satisfied because we are working in a suit-
able Sobolev space; see [44]. To verify the Fredholm properties in hypotheses 1 and 3 we can follow
the analysis in Example 4.2 of [44], which treats a cross-diffusion system with structure somewhat
similar to our model. The key issue is to verify that the linear operators in those hypotheses satisfy
suitable structure and ellipticity conditions. It turns out that those conditions involve only the prin-
cipal parts of the operators and boundary conditions, that is, the terms in each operator or boundary
condition involving the highest order derivatives. The principal part of the differential operator in
D(u,v) F (α, u, v) arising from linearizing (F1, F2), applied to (w1, w2), is

(
μ + αu αu

0 ν

)(	w1
	w2

)
. (6.11)

The boundary condition has principal part

(
μ + αu αu

0 ν

)(∇w1 · n
∇w2 · n

)
. (6.12)

These forms fit the structure shown in case 3 of Remark 2.5 of [44], where in the notation of [44],

a(x) =
(

μ + αu αu
0 ν

)
(6.13)
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and αi j = δi j where δi j is the Kronecker delta. It then follows by Theorem 2.7 and Corollary 2.10 of
[44] that Dx F (λ, x) is Fredholm provided that

det

(
μ + αu + σ αu

0 ν + σ

)

= 0 (6.14)

for (α, u, v) ∈ V when σ = 0 or arg σ ∈ [−π/2,π/2]. The determinant is

(μ + αu + σ)(ν + σ),

so since μ + αu > 0 on V , relation (6.14) is satisfied and hence Dx F (λ, x) is Fredholm for all
(λ, x) ∈ V , as needed for hypothesis 1.

The analysis for hypothesis 3 is similar. The principal part of kDx F (λ, x) + (1 − k)Dx F (λ, x0) eval-
uated at x = (u1, v1) and x0 = (u2, v2), applied to (w1, w2), is

(
μ + (1 − k)αu1 + kαu2 (1 − k)αu1 + kαu2

0 ν

)(	w1
	w2

)
. (6.15)

The principal part of the boundary condition is

(
μ + (1 − k)αu1 + kαu2 (1 − k)αu1 + kαu2

0 ν

)(∇w1 · n
∇w2 · n

)
. (6.16)

By the definition of V we have αui > −μ/2 for i = 1,2 so that μ + (1 − k)αu1 + kαu2 > 0. It follows
as in (6.11)–(6.14) that kDx F (λ, x) + (1 − k)Dx F (λ, x0) is Fredholm of index 0 so that Theorem 12
applies to our system. It follows that the positive component C+ of the solution branch bifurcating at
α = α∗ must satisfy one of the alternatives in the theorem. Alternative (ii) is impossible because of
the uniqueness of α∗ . We have not yet specified which complement of N(Dx F (λ0, x0)) we want Z to
be. Recall that N(Dx F (λ0, x0)) is spanned by (ϕ∗,ψ∗) where ϕ∗ > 0 in Ω . We may choose

Z =
{
(u, v) ∈ X:

∫
Ω

uϕ∗ dx = 0

}
. (6.17)

It follows from (6.17) that if (u, v) ∈ Z then u must change sign. If alternative (iii) holds then since
x0 = (0, θ) it must be the case that there are solutions on C+ for which u changes sign. For points
on C+ sufficiently close to (α∗,0, θ), we have u > 0. Thus, on C+ , if (iii) holds then the minimum
of u changes sign on C+ . Since X ⊂ C(Ω)2, the function G(u, v) = minΩ u is continuous on X , so
since C+ is a connected component there must be a point (α, u0, v0) on C+ with min(u0) = 0. Let
w = e−(α/μ)(m−u0−v0)u. Then w satisfies

μ∇ · [e(α/μ)(m−u0−v0)∇w
] + we(α/μ)(m−u0−v0)(m − u0 − v0) = 0 in Ω, ∇w · n|∂Ω = 0

with minΩ w = 0. By the strong maximum principle, w ≡ 0, so u0 ≡ 0, which implies that alternative
(ii) holds in Theorem 12. Alternative (ii) is ruled out by the uniqueness of the bifurcation point α∗ .
Thus, alternative (i) must hold. By Theorem 5 and Lemma 6.5, (1.4) has no positive steady states for
α < α0 and α > Λ3. In the definition of V , let δ < 1

2 min{α0,1/Λ3}. Then componentwise positive
steady states of (1.4) along C+ cannot meet {δ} × [W 2,p(Ω)]2 and {1/δ} × [W 2,p(Ω)]2. If (α, u, v) ∈
C+ ∩ V and u > 0 and v > 0, by Lemma 6.4, u and v are uniformly bounded in the C2,γ (Ω) norm
for some γ ∈ (0,1). Thus, to satisfy alternative (i), there must be some point (α, u, v) ∈ C+ ∩ V such
that either u changes sign or v changes sign. The case when u changes sign can be ruled out in the
same way as before by applying the function G(u, v) = minΩ u. Therefore, the only possibility is that
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v changes sign. Since X ⊂ C(Ω)2, the function H(u, v) = minΩ v is continuous on X , so since C+
is a connected component, there exists some (α∗∗, u∗∗, v∗∗) such that α∗∗ ∈ (δ,1/δ), u∗∗ > 0 in Ω ,
v∗∗ � 0 in Ω and minΩ v∗∗ = 0. By the strong maximum principle, v∗∗ ≡ 0 in Ω . This implies that
u∗∗ is a positive steady state of (1.1) with α = α∗∗ . �
7. Asymptotic behaviors of bifurcation points

This section is devoted to the proofs of Theorems 8 and 9.

7.1. Proof of part (a), Theorem 8

We first establish the following result, which classifies the asymptotic behavior of λu(α,μ,ν)

when α → ∞, α/μ → ∞.

Proposition 6. Suppose that m > 0 in Ω . Suppose that α → ∞, α/μ → ∞.

(i) If we further assume that α/(μ/ν) → 0, then

λu(α,μ,ν) · α

μ
→

∫
Ω

m ln m∫
Ω

m
− max

Ω

lnm < 0.

(ii) If we further assume that α/(μ/ν) → η for some η ∈ (0,∞), then

λu(α,μ,ν) · α

μ
→ λ∗,

where λ∗ is the smallest eigenvalue of

−η�ϕ +
[∫

Ω
m lnm∫
Ω

m
− lnm

]
ϕ = λϕ in Ω, ∇ϕ · n|∂Ω = 0.

(iii) If we further assume that α/(μ/ν) → ∞, then

λu(α,μ,ν) · α

μ
→

∫
Ω

m lnm∫
Ω

m
− 1

|Ω|
∫
Ω

lnm > 0.

Proof. Set λ̃ = λu(α,μ,ν) · (α/μ). Then λ̃ is the smallest eigenvalue of the problem

− α

μ/ν
�ψ + α

μ
(ũ − m)ψ = λ̃ψ in Ω, ∇ψ · n|∂Ω = 0.

We first establish part (i). Given any ε > 0, by Lemma 3.1 we have that if α and α/μ are suffi-
ciently large,

∫
Ω

m ln m∫
Ω

m
− lnm − ε � α

μ
(ũ − m) �

∫
Ω

m ln m∫
Ω

m
− lnm + ε

in Ω . Let λε denote the smallest eigenvalue of the problem

− α

μ/ν
�ψ +

[∫
Ω

m lnm∫
m

− lnm + ε

]
ψ = λψ in Ω, ∇ψ · n|∂Ω = 0.
Ω



R.S. Cantrell et al. / J. Differential Equations 254 (2013) 2905–2941 2935
By the comparison principle of principal eigenvalues, λ̃ � λε . It is well known that

lim
α

μ/ν →0
λε = min

Ω

[∫
Ω

m lnm∫
Ω

m
− lnm + ε

]
.

Hence,

lim sup
α

μ/ν →0
λ̃ � min

Ω

[∫
Ω

m lnm∫
Ω

m
− lnm + ε

]
.

Since ε is arbitrary, letting ε → 0 we have

lim sup
α

μ/ν →0
λ̃ � min

Ω

[∫
Ω

m ln m∫
Ω

m
− lnm

]
.

Similarly, we can show that

lim inf
α

μ/ν →0
λ̃ � min

Ω

[∫
Ω

m lnm∫
Ω

m
− lnm

]
.

This completes the proof of part (i).
For the proof of part (ii), since α

μ/ν → η ∈ (0,∞) and (α/μ)(ũ − m) is uniformly bounded, we

see that λ̃ is also bounded. We first normalize the positive eigenfunction ψ such that maxΩ ψ = 1.
By standard elliptic regularity and Sobolev’s embedding theorem we may assume that, passing to a
subsequence if necessary, ψ → ϕ in C2(Ω) and λ̃ → λ̂ as α

μ/ν → η and α,α/μ → ∞, where ϕ and λ̂

satisfy

−η�ϕ +
[∫

Ω
m lnm∫
Ω

m
− lnm

]
ϕ = λ̂ϕ in Ω, ∇ϕ · n|∂Ω = 0.

Since ϕ � 0 and maxΩ ϕ = 1, we see that λ̂ must be the smallest eigenvalue. Hence, λ̂ = λ∗ . Since the
convergence is independent of the choice of sequence, we see that part (ii) holds. The proof of part
(iii) is similar to that of (ii), so we omit it. �
Lemma 7.1. Fix ν > 0. Then, αu(μ,ν)/μ is bounded as μ → ∞.

Proof. We argue by contradiction. Suppose that αu(μ,ν)/μ → ∞ as μ → ∞. Hence, αu → ∞. By
part (iii) of Proposition 6, we see that

λ(αu,μ,ν) · αu

μ
→

∫
Ω

m lnm∫
Ω

m
− 1

|Ω|
∫
Ω

lnm > 0,

where the last inequality follows from Lemma 3.2. However, this is a contradiction as λ(αu,μ,

ν) = 0. �
Proof of part (a) of Theorem 8. Set w = e−(αu/μ)(m−ũ)ũ. Then w satisfies

μ∇ · [e(αu/μ)(m−ũ)∇w
] + e(αu/μ)(m−ũ)(m − ũ)w = 0 in Ω, ∇w · n|∂Ω = 0.



2936 R.S. Cantrell et al. / J. Differential Equations 254 (2013) 2905–2941
Since ũ is uniformly bounded (see [9]), αu/μ is bounded (Lemma 7.1) and μ → ∞, by standard
elliptic regularity, we may assume that, passing to a subsequence if necessary, w converges to some
positive constant, denoted by C (and thus ũ → u∗ for some u∗), and αu/μ → η̃ such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−η̃(m−u∗)u∗ = C in Ω,∫
Ω

u∗(m − u∗) = 0,

ν�ϕ∗ + (
m − u∗)ϕ∗ = 0 in Ω, ϕ∗ > 0 in Ω, ∇ϕ∗ · n|∂Ω = 0.

(7.1)

If η̃ = 0, then u∗ = ∫
Ω

m/|Ω|. This implies that ϕ∗ satisfies

ν�ϕ∗ +
(

m −
∫
Ω

m/|Ω|
)
ϕ∗ = 0 in Ω, ϕ∗ > 0 in Ω, ∇ϕ∗ · n|∂Ω = 0. (7.2)

Dividing (7.2) by ϕ∗ and integrating in Ω , we have

ν

∫
Ω

|∇ϕ∗|2
(ϕ∗)2

= 0,

which implies that ϕ∗ is a constant. By (7.2) we see that m = ∫
Ω

m/|Ω|, which is a contradiction.
Hence, η̃ > 0.

Rewriting the first equation of (7.1) as

−η̃
(
m − u∗) + ln u∗ = ln C

and substituting it into the second equation of (7.1), we find that

ln C =
∫
Ω

u∗ ln u∗∫
Ω

u∗ .

Therefore,

−η̃
(
m − u∗) + ln u∗ =

∫
Ω

u∗ ln u∗∫
Ω

u∗ .

In particular, this implies that η̃ > 0 and u∗ > 0 satisfy

⎧⎪⎨
⎪⎩

η̃
(
m − u∗) = ln u∗ −

∫
Ω

u∗ ln u∗∫
Ω

u∗ ,

ν�ϕ∗ + (
m − u∗)ϕ∗ = 0 in Ω, ∇ϕ∗ · n|∂Ω = 0.

(7.3)

This completes the proof. �
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7.2. Proof of part (b), Theorem 8

It follows from Lemma 4.2 that αv(μ,ν)/μ � η∗ . Passing to some subsequence if necessary, we
may assume that αv(μ,ν)/μ → η for some η � 0 as μ → ∞. Note that by definition of αv(μ,ν), the
equation

μ∇ · [e(αv/μ)(m−θ)∇w
] + e(αv/μ)(m−θ)(m − θ)w = 0 in Ω, ∇w · n|∂Ω = 0

has a positive solution with maxΩ w = 1. By standard elliptic regularity, we see that as μ → ∞,
w → 1 in L∞ . Integrating the equation of w in Ω , we find

∫
Ω

e(αv/μ)(m−ṽ)(m − ṽ)w = 0.

Passing to the limit in the above equation we have

∫
Ω

eη(m−θ)(m − θ) = 0;

i.e., F (η) = 0. Hence, by Lemma 4.1 we see that η = η∗ , that is, αv(μ,ν)/μ → η∗ as μ → ∞. This
completes the proof.

7.3. Proof of Theorem 9

We first show that αu(μ,ν) → ∞ as ν → 0. If not, suppose that αu(μ,ν) is bounded and we
shall reach a contradiction. Set w = e−(αu/μ)(m−ũ)ũ. Since ũ is uniformly bounded in L∞ , we see that
‖w‖L∞(Ω) is also uniformly bounded. Note that w satisfies

μ∇ · [e(αu/μ)(m−ũ)∇w
] + ũ(m − ũ) = 0 in Ω, ∇w · n|∂Ω = 0.

By standard elliptic regularity, passing to a subsequence if necessary, we may assume that w → w∗
and αu → α∗ such that w∗ is a positive solution of

μ∇ · [e(α∗/μ)(m−u∗)∇w∗] + u∗(m − u∗) = 0 in Ω, ∇w · n|∂Ω = 0,

where w∗ = e−(α∗/μ)(m−u∗)u∗ . Since m is non-constant and
∫
Ω

u∗(m − u∗) = 0, we see that m − u∗
must change sign in Ω . Recall the equation

ν�ψ + ψ(m − ũ) = −λu(α,μ,ν)ψ in Ω, ∇ψ · n|∂Ω = 0.

Similar to the proof of part (i) of Proposition 6, we can obtain

lim
ν→0

λu(αu,μ,ν) = min
Ω

(
m − u∗) < 0,

which contradicts λu(αu,μ,ν) = 0. Hence, αu → ∞ as ν → 0.
Next, we rewrite the equation of ψ as

αu

μ/ν
�ψ + αu

μ
(m − ũ)ψ = 0 in Ω, ∇ψ · n|∂Ω = 0.
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Table 1
Coexistence region: μ = 1.

ν Coexistence region for α

0.1 [0.83,0.89]
0.01 [5.1,9.7]
0.001 [18.9,98.6]

Since αu/μ → ∞ and αu → ∞, we can apply Proposition 6 to conclude that the only possibility is
that αu/(μ/ν) → η̃, where η̃ is some positive number such that the following equation has a positive
solution:

−η̃�ψ +
[∫

Ω
m ln m∫
Ω

m
− lnm

]
ψ = 0 in Ω, ∇ψ · n|∂Ω = 0.

By Lemma 3.2 we have

∫
Ω

[∫
Ω

m lnm∫
Ω

m
− lnm

]
> 0.

Since
∫
Ω

m lnm/
∫
Ω

m − ln m is negative somewhere in Ω , the existence and uniqueness of such posi-
tive η̃ follows from standard theory for principal eigenvalue for indefinite weight functions [6].

8. Numerical simulations

In this section we assume that Ω = (0,1) and numerically investigate the effect of fitness-
dependent dispersal in four types of models: (i) system (1.4); (ii) a two-species competition model in
which both species adopt random dispersal and fitness-dependent dispersal; (iii) a two-consumers–
one-resource model in which both consumers move upward along the resource gradient but the
resource species does not move; (iv) a tri-trophic predator–consumer–resource model in which both
consumers move upward along the resource gradient but the predator and the resource do not
move. Our simulation results suggest that for models (i), (ii) and (iii), selection favors stronger ad-
vection along the fitness gradient and slower random dispersal, while the opposite can occur for the
model (iv). Our results may yield some insight into the evolution of dispersal in food chains, e.g., the
presence of predation risk seems to have much larger impact on the evolution of dispersal strategies
of consumer species than the presence of resource species.

8.1. Coexistence region in (1.4)

We consider the following two cases.
Case 1. Fix μ = 1 and decrease ν = 0.1,0.01,0.001. The corresponding coexistence intervals for

α are summarized in Table 1. These results suggest that as ν → 0, the coexistence intervals become
wider, and both ends of the coexistence interval tend to infinity as ν → 0. This is in agreement with
Theorem 9.

Case 2. Fix ν = 0.1 and increase μ = 1,2,5,10,20. The corresponding coexistence intervals for α
are summarized in Table 2. These results suggest that as μ → ∞, the coexistence intervals become
wider, and both ends of the coexistence interval tend to infinity. These results agree with Theorem 8.

8.2. Fitness-dependent dispersal

We consider the scenario when both competing species adopt random dispersal and fitness-
dependent dispersal as follows.
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Table 2
Coexistence region: ν = 0.1.

μ Coexistence region for α

1 [0.83,0.89]
2 [1.734,1.889]
5 [4.47,4.87]

10 [9.04,9.85]
20 [18.2,19.8]

⎧⎨
⎩

ut = (
μux − αu(m − u − v)x

)
x + u(m − u − v) in 0 < x < 1, t > 0,

vt = (
νvx − βv(m − u − v)x

)
x + v(m − u − v) in 0 < x < 1, t > 0,

μux − αu(m − u − v)x = νvx − βv(m − u − v)x = 0, x = 0,1, t > 0,

(8.1)

where μ, ν , α, β are positive constants. Our numerical results suggest that the following holds: when
α = β , u survives and v dies if μ < ν , u dies and v survives if μ > ν; when μ = ν , u dies and
v survives if α < β , and u survives and v dies if α > β . In other words, selection favors stronger
advection along the fitness gradient and slower random dispersal.

8.3. Consumer and resource model

We performed numerical simulations on the following one-resource and two-consumer model

⎧⎪⎪⎨
⎪⎪⎩

Rt = R
[
r(x)

(
1 − R/K (x)

) − a1C1 − a2C2
]

in 0 < x < 1, t > 0,

(C1)t = C1(e1a1 R − d1) + [
μ1(C1)x − β1C1 Rx

]
x in 0 < x < 1, t > 0,

(C2)t = C2(e2a2 R − d2) + [
μ2(C2)x − β2C2 Rx

]
x in 0 < x < 1, t > 0,

μ1(C1)x − β1C1 Rx = μ2(C2)x − β2C2 Rx = 0, x = 0,1, t > 0,

(8.2)

where R = R(x, t) and Ci = Ci(x, t) (i = 1,2) represent the density of a resource species and two con-
sumer species, respectively. Our numerical results suggest some similar phenomena as those observed
in model (8.1). Namely, assume that all parameters are the same except β1 and β2, then the competi-
tor with the larger advection rate always drives the other competitor to extinction; if all parameters
are the same except μ1 and μ2, then the competitor with the smaller random dispersal rate always
drives the other competitor to extinction.

8.4. A tri-trophic model

We also considered a three trophic level food chain model of the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Rt = R
[
r(x)

(
1 − R/K (x)

) − a1C1 − a2C2
]

in 0 < x < 1, t > 0,

(C1)t = C1(e1a1 R − d1 − α1 P ) + [
μ1(C1)x − β1C1 Rx

]
x in 0 < x < 1, t > 0,

(C2)t = C2(e2a2 R − d2 − α2 P ) + [
μ2(C2)x − β2C2 Rx

]
x in 0 < x < 1, t > 0,

Pt = P ( f1α1C1 + f2α2C2 − dp) in 0 < x < 1, t > 0,

μ1(C1)x − β1C1 Rx = μ2(C2)x − β2C2 Rx = 0, x = 0,1, t > 0,

(8.3)

where the model consists of one resource species, two consumers and a top predator. The top preda-
tor feeds on two consumers and both consumers feed on the resource species. The two consumers
move, but the top predator and the resource species do not. Our numerical results for (8.3) suggest
something different from the previous models. Namely, assume that all parameters are the same ex-
cept β1 and β2, then the competitor with the smaller advection rate drives the other competitor to
extinction; if all parameters are the same except μ1 and μ2, then the competitor with the larger
random dispersal rate can drive the other competitor to extinction.
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