
Available online at www.sciencedirect.com
ScienceDirect

J. Differential Equations 259 (2015) 5220–5270

www.elsevier.com/locate/jde

On parametric Gevrey asymptotics for some nonlinear 

initial value Cauchy problems

A. Lastra a,b,∗,1, S. Malek a,b

a University of Alcalá, Departamento de Física y Matemáticas, Ap. de Correos 20, E-28871 Alcalá de Henares 
(Madrid), Spain

b University of Lille 1, Laboratoire Paul Painlevé, 59655 Villeneuve d’Ascq cedex, France

Received 10 March 2014; revised 9 January 2015

Available online 8 July 2015

Abstract

We study a nonlinear initial value Cauchy problem depending upon a complex perturbation parameter 
ε with vanishing initial data at complex time t = 0 and whose coefficients depend analytically on (ε, t)
near the origin in C2 and are bounded holomorphic on some horizontal strip in C w.r.t. the space variable. 
This problem is assumed to be non-Kowalevskian in time t , therefore analytic solutions at t = 0 cannot be 
expected in general. Nevertheless, we are able to construct a family of actual holomorphic solutions defined 
on a common bounded open sector with vertex at 0 in time and on the given strip above in space, when the 
complex parameter ε belongs to a suitably chosen set of open bounded sectors whose union form a covering 
of some neighborhood � of 0 in C∗. These solutions are achieved by means of Laplace and Fourier inverse 
transforms of some common ε-depending function on C ×R, analytic near the origin and with exponential 
growth on some unbounded sectors with appropriate bisecting directions in the first variable and exponential 
decay in the second, when the perturbation parameter belongs to �. Moreover, these solutions satisfy the 
remarkable property that the difference between any two of them is exponentially flat for some integer 
order w.r.t. ε. With the help of the classical Ramis–Sibuya theorem, we obtain the existence of a formal 
series (generally divergent) in ε which is the common Gevrey asymptotic expansion of the built up actual 
solutions considered above.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider a family of parameter depending nonlinear initial value Cauchy 
problems of the form

Q(∂z)(∂tu(t, z, ε)) = (Q1(∂z)u(t, z, ε))(Q2(∂z)u(t, z, ε)) +
D∑

l=1

ε�l tdl ∂
δl
t Rl(∂z)u(t, z, ε)

+ c0(t, z, ε)R0(∂z)u(t, z, ε) + f (t, z, ε) (1)

for given vanishing initial data u(0, z, ε) ≡ 0, where D ≥ 2, �l , dl , δl , 1 ≤ l ≤ D are integers 
which satisfy the inequalities

1 = δ1, δl < δl+1, dD = (δD − 1)(k + 1), �D = dD − δD + 1,

dl > (δl − 1)(k + 1), δD ≥ δl + 2

k
, �l + k(1 − δD) + 1 ≥ 0

for all 1 ≤ l ≤ D − 1 and for some integer k ≥ 1. Besides, Q(X), Q1(X), Q2(X), Rl(X), 
0 ≤ l ≤ D are polynomials submitted to the constraints

deg(Q) ≥ deg(RD) ≥ deg(Rl), deg(RD) ≥ deg(Q1), deg(RD) ≥ deg(Q2),

Q(im) �= 0, RD(im) �= 0

for all m ∈ R, all 0 ≤ l ≤ D − 1. The coefficient c0(t, z, ε) and the forcing term f (t, z, ε)
are bounded holomorphic functions on a product D(0, r) × Hβ × D(0, ε0), where D(0, r)
(resp. D(0, ε0)) is a disc centered at 0 with small radius r > 0 (resp. ε0 > 0) and Hβ = {z ∈
C/|Im(z)| < β} is some strip of width β > 0. In order to avoid cumbersome statements and to 
improve the readability of the computations, we have restricted our study to a quadratic non-
linearity and monomial coefficients in t in front of the derivatives with respect to t and z but 
the method described here can also be extended to higher order nonlinearities, with polynomial 
coefficients w.r.t. t in the linear part on the right handside of equation (1).

This work can be seen as a continuation of the study described in [22] where the second author 
has studied nonlinear integro-differential initial values problems with the shape

R(∂z)P (∂t , ∂z)Y (t, z) =
t∫

0

b(t − s, z)∂s0
z Y (s, z)ds +

t∫
0

∂s1
z Y (t − s, z)∂s2

z Y (s, z)ds (2)

where R(X) ∈C[X], P(T , X) ∈ C[T , X] and s0, s1, s2 ≥ 0 are non negative integers. The coeffi-
cient b(t, z) = ∑

k∈I bk(z)t
k is a polynomial in t and its coefficients bk(z) are the Fourier inverse 

transform of some function bk(m) belonging to a Banach space E(β,μ) of continuous functions 
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h : R → C endowed with the norm ||h(m)||(β,μ) = supm∈R(1 + |m|)μ exp(β|m|)|h(m)| and de-
fine bounded holomorphic functions on any strip Hβ ′ , 0 < β ′ < β . The initial conditions are 

defined by Y(0, z) = Y0(z), (∂
j
t Y )(0, z) ≡ 0, for all 1 ≤ j ≤ degT P (T , X) − 1, where Y0 is also 

assumed to be the Fourier inverse transform of some Y0(m) belonging to E(β,μ). We focused on 
the case when the degree of R(X)P (T , X) with respect to T is smaller than its degree in X. In 
that case the classical Cauchy–Kowalevski theorem (see [12]) cannot be applied and the unique 
formal power series solution Ŷ (t, z) = ∑

l≥0 Yl(z)t
l , with coefficients belonging to the Banach 

space of bounded holomorphic functions on Hβ ′ equipped with the sup norm, is in general di-
vergent. Nevertheless, under suitable constraints on the roots of the polynomial T 
→ P(T 2, im)

and for sufficiently small data ||bk||(β,μ), ||Y0||(β,μ), one can construct by means of the classi-
cal Borel–Laplace procedure and the Fourier inverse transform an actual holomorphic solution 
Y(t, z) on C+ × Hβ ′ of (2) for the given initial data (C+ denotes the set of complex numbers 
t such that Re(t) > 0), which possess the formal series Ŷ as the Gevrey asymptotic expansion 
of order 1 as t tends to 0, meaning that for any compact subsector W ⊂ C+ centered at 0, there 
exist constants C, M > 0 with

sup
z∈Hβ′

|Y(t, z) −
n−1∑
l=0

Yl(z)t
l | ≤ CMnn!|t |n

for all n ≥ 1, all t ∈ W .
Compared to the work [22], the problem (1) now involves an additional complex parameter ε. 

Provided that δD + deg(RD) > deg(Q) + 1 holds, the problem (1) is singularly perturbed in the 
parameter ε and belongs to a class of so-called PDEs with irregular singularity at t = 0 in the 
sense of [24]. In the paper [21], the second author has already considered a similar problem of 
the form

εt2∂t ∂
S
z Xp(t, z, ε) = F(t, z, ε, ∂t , ∂z)Xp(t, z, ε) + P(t, z, ε,Xp(t, z, ε)) (3)

for given initial data

(∂
j
z Xp)(t,0, ε) = φj,p(t, ε), 0 ≤ p ≤ ς − 1,0 ≤ j ≤ S − 1, (4)

where S, ς ≥ 2 are some positive integers, F is some differential operator with polynomial co-
efficients and P a polynomial. The initial data φj,p(t, ε) were assumed to be holomorphic on 
products T × Ep ⊂ C

2 for some sector T centered at 0 and where E = {Ep}0≤p≤ς−1 denotes a 
family of open bounded sectors with aperture larger than π which form a so-called good cover-
ing in C∗, meaning that Ep ∩ Ep+1 �= ∅ for all 0 ≤ p ≤ ς − 1 (with the convention that Eς = E0) 
with the property that the intersection of any three different elements in {Ep}0≤p≤ς−1 is empty 
and that ∪ς−1

p=0Ep = U \ {0}, where U is some neighborhood of 0 in C. Under convenient assump-
tions on the shape of equation (3) and on the initial data (4), the existence of a formal series 
X̂(t, z, ε) = ∑

k≥0 hk(t, z)εk/k! solution of (3) is established with coefficients hk(t, z) belong-
ing to the Banach space F of bounded holomorphic functions on T × D(0, δ) (for some δ > 0
small enough) equipped with the sup norm. This formal series X̂(t, z, ε) is the Gevrey asymptotic 
expansion of order 1 of actual holomorphic solutions Xp(t, z, ε) of (3), (4) on Ep as F-valued 
functions, for all 0 ≤ p ≤ ς − 1, in other words for any closed subsector W ⊂ Ep centered at 0, 
there exist constants C, M > 0 such that
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sup
t∈T ,z∈D̄(0,δ)

|Xp(t, z, ε) −
n−1∑
k=0

hk(t, z)ε
k/k!| ≤ CMnn!|ε|n

for all n ≥ 1, all ε ∈W .
In this work we address the same queries as in [21,22], namely our main purpose is the con-

struction of actual holomorphic solutions up(t, z, ε) to the problem (1) on domains T ×Hβ ′ ×Ep

using some Borel–Laplace procedure and the Fourier inverse transform and the analysis of their 
asymptotic expansions as ε tends to 0. More specifically, we can present our main statements as 
follows.

Main results. Assume the existence of an unbounded sector

SQ,RD
= {z ∈C/|z| ≥ rQ,RD

, |arg(z) − dQ,RD
| ≤ ηQ,RD

}

with direction dQ,RD
∈ R, aperture ηQ,RD

> 0 and radius rQ,RD
> 0 such that the quotient 

Q(im)/RD(im) belongs to SQ,RD
for all m ∈ R. This sector SQ,RD

is prescribed in such a way 
that there exists a set of adequate directions dp ∈ R, 0 ≤ p ≤ ς − 1, with the feature that the 
distinct complex roots ql(m), 0 ≤ l ≤ (δD − 1)k − 1, of the polynomial Pm(τ) = Q(im)k −
RD(im)kδDτ (δD−1)k fulfill estimates of the form: there exist constants M1, M2 > 0 such that

|τ − ql(m)| ≥ M1(1 + |τ |), |τ − ql0(m)| ≥ M2|ql0(m)|

for all 0 ≤ l ≤ (δD − 1)k − 1, some integer l0 ∈ {0, . . . , (δD − 1)k − 1}, for all m ∈ R, all τ ∈
Sdp ∪ D̄(0, ρ), for some well chosen unbounded sectors Sdp centered at 0 with direction dp and 
for some radius ρ > 0. Then, we choose a family E = {Ep}0≤p≤ς−1 of sectors with aperture 
slightly larger than π/k which defines a good covering of C∗ and we take an open bounded 
sector T centered at 0 such that for every 0 ≤ p ≤ ς − 1, the product εt belongs to a sector 
with direction dp and aperture slightly larger than π/k, for all ε ∈ Ep , all t ∈ T . We make 
the assumption that the coefficient c0(t, z, ε) and the forcing term f (t, z, ε) can be written as 
convergent series of the special form

c0(t, z, ε) =
∑
n≥0

c0,n(z, ε)(εt)
n, f (t, z, ε) =

∑
n≥1

fn(z, ε)(εt)
n,

on a domain D(0, r) × Hβ ′ × D(0, ε0) (where Hβ ′ is a strip of width β ′) such that T ⊂ D(0, r), 
∪0≤p≤ς−1Ep ⊂ D(0, ε0) and 0 < β ′ < β are given positive real numbers. The coefficients 
c0,0(z, ε), c0,n(z, ε) and fn(z, ε), n ≥ 1, are supposed to be inverse the Fourier transform of 
functions m 
→ C0,0(m, ε), m 
→ C0,n(m, ε) and m 
→ Fn(m, ε) that belong to the Banach space 
E(β,μ) for some μ > max(deg(Q1) + 1, deg(Q2) + 1) and that depend holomorphically on ε in 
D(0, ε0).

Our first result stated in Theorem 1 claims that if the norm ||C0,0(m, ε)||(β,μ) and the radius ε0
are chosen small enough and if the radius rQ,RD

is taken sufficiently large then we can construct 
a family of holomorphic bounded functions up(t, z, ε), 0 ≤ p ≤ ς − 1, defined on the products 
T ×Hβ ′ ×Ep , which solves the problem (1) with vanishing initial data up(0, z, ε) ≡ 0 and which 
can be written as the Laplace–Fourier transform
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up(t, z, ε) = k

(2π)1/2

+∞∫
−∞

∫
Lγp

ω
dp

k (u,m, ε)e−( u
εt

)k eizm du

u
dm,

where the inner integration is made along some halfline Lγp ⊂ Sdp where ω
dp

k (u, m, ε) denotes 
a function with at most exponential growth of order k in u/ε and exponential decay in m ∈ R

which satisfies more precisely estimates of the form

|ωdp

k (u,m, ε)| ≤ C(1 + |m|)−μe−β|m| |u
ε
|

1 + |u
ε
|2k

exp(ν|u
ε
|k)

for some constants C, ν > 0, for all m ∈R, all u ∈ Sdp ∪ D̄(0, ρ), all ε ∈ D(0, ε0) \ {0}.
Our second main result, described in Theorem 2, asserts that the functions up , 0 ≤ p ≤ ς −1, 

turn out to be the k-sums on Ep of a common formal power series

û(t, z, ε) =
∑
m≥0

hm(t, z)
εm

m! ∈ F[[ε]]

where F is the Banach space of bounded holomorphic functions on T ×Hβ ′ equipped with the sup 
norm. Namely, for any closed subsector W ⊂ Ep centered at 0, there exist constants C, M > 0
such that

sup
t∈T ,z∈Hβ′

|up(t, z, ε) −
n−1∑
m=0

hm(t, z)
εm

m! | ≤ CMn�(1 + n

k
)|ε|n

for all n ≥ 1, all ε ∈W .

It is worth remarking that when deg(Q) + 1 > δD + deg(RD), equation (1) is not singularly 
perturbed in ε and possess no irregular singularity at t = 0. However, the asymptotic expansion 
û of up as ε tends to 0 on Ep remains divergent in general. The reason for this phenomenon to 
appear relies on the way one constructs the actual solutions up as Laplace transforms of order 
k in the new variable εt and from the fact that for any fixed ε ∈ D(0, ε0) \ {0}, the problem 
(1) is not Kowalevskian with respect to t at 0 (meaning that formal series solutions v̂(t, z, ε) =∑

n≥1 vn(z, ε)tn, with coefficients z 
→ vn(z, ε) bounded holomorphic on Hβ ′ , are in general 
divergent, as a consequence of Propositions 8 and 9) as it was already the case in our previous 
paper [22].

The Cauchy problem (1) we consider here comes within the new trend of research concerning 
Borel–Laplace summability procedures applied to partial differential equation going back to the 
seminal work of D. Lutz, M. Miyake and R. Schäfke on the linear complex heat equation, see 
[18]. We quote below some important results in this field not pretending to be exhaustive. This 
construction of Borel–Laplace k-summable or even multi-summable formal series solutions has 
been extended to general linear PDEs in two complex variables with constant coefficients by 
W. Balser in [3] and [4] provided that their initial data are analytic functions near the origin that 
can be analytically continued with exponential growth on some unbounded sectors. A similar 
result has been obtain for the so-called fractional linear PDEs with non-integer derivatives by 
S. Michalik, see [23]. Latter on, linear complex heat like equations with variable coefficients 
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have been explored by several authors, see [5,7,20]. Recently, general linear PDEs with time de-
pendent coefficients taking for granted that their initial data are entire functions in CN , N ≥ 1, 
have been investigated by H. Tahara and H. Yamazawa in [27]. In the context of nonlinear PDEs, 
we mention the work [19] of G. Lysik who constructed summable formal solutions of the one di-
mensional Burgers equations with the help of the so-called Cole–Hopf transform. We also point 
out that O. Costin and S. Tanveer have constructed summable formal series in time variable to 
the celebrated 3D Navier Stokes equations in [9]. We also refer to the work of S. Ouchi who 
constructed multisummable formal solutions to nonlinear PDEs which come from perturbations 
of ordinary differential equations, see [25]. We also mention the fact that, these last years, a lot of 
attention has been payed to singularly perturbed PDEs in the complex domain partly motived by 
a conjecture of B. Dubrovin which concerns the question of universal behavior of generic solu-
tions near gradient catastrophe of singularly Hamiltonian perturbations of first order hyperbolic 
equations, see [10]. In this active direction, we refer namely to the works of B. Dubrovin and 
M. Elaeva who investigated the case of generalized Burgers equations in [11] and of T. Claeys 
and T. Grava in [6] who solved the problem for KdV equations. We indicate the recent important 
studies of T. Koike on Garnier systems, [15,16] and of S. Hirose on the reduction of general 
singularly perturbed holonomic systems in two complex variables to Pearcy systems normal 
forms, [13].

In the sequel, we explain our principal intermediate key results and the arguments needed 
in their proofs. In a first part, we depart from an auxiliary parameter depending initial value 
differential and convolution equation which is singular in its perturbation parameter ε at 0, see 
(72). This equation is formally constructed by making the change of variable T = εt in equation
(1) (as done in our previous works [21,17]) and by taking the Fourier transform with respect to 
the variable z. Under the constraint (70) and the assumption that dl ≥ δl , 0 ≤ l ≤ D − 1 (which 
follows from the hypothesis (69)) we can construct a formal power series solution Û(T , m, ε) =∑

n≥1 Un(m, ε)T n of (72) whose coefficients m 
→ Un(m, ε) depend holomorphically on ε ∈C
∗

near the origin and belong to a Banach space E(β,μ) of continuous function with exponential 
decay on R introduced in the paper [9] by O. Costin and S. Tanveer. This series turns out to be 
in general divergent as we will see below.

In the next step, we follow the strategy developed recently by H. Tahara and H. Yamazawa 
in [27], namely we multiply each hand side of (72) by the power T k which transforms it into 
equation (76) which involves only differential operators in T of irregular type at T = 0 of the 
form T β∂T with β ≥ k + 1 due to our assumption (69) on the shape of equation (72).

Then, we apply a formal Borel transform of order k (defined as a slightly modified version 
of the classical Borel transform of order k from the reference book [1]), that we call mk-Borel 
transform in Definition 3, to the formal series Û with respect to T , denoted

ωk(τ,m, ε) =
∑
n≥1

Un(m, ε)
τ k

�(n
k
)
.

From the commutation rules of the mk-Borel transform with respect to the weighted convolution 
product � of formal series (introduced in Proposition 5) and the differential operators T β∂T for 
β ≥ k + 1 described in Proposition 6, we get that ωk(τ, m, ε) formally solves a convolution 
equation in both variables τ and m, see (80).

Under some size constraint on the E(β,μ)-norm of the constant term C0,0 of one coefficient 
of equation (80) and for all ε ∈ C

∗ close enough to 0, we show that ωk(τ, m, ε) is actually con-
vergent for τ on some fixed neighborhood of 0 and can be extended to a holomorphic functions 
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ωd
k (τ, m, ε) on unbounded sectors Sd centered at zero with bisecting direction d and tiny aperture 

provided that Sd stays away from the roots of some polynomial Pm(τ), for all m ∈ R. Besides, the 
function ωd

k (τ, m, ε) satisfies estimates of the form: there exist constants ν > 0 and �d > 0 with

|ωd
k (τ,m, ε)| ≤ �d(1 + |m|)−μe−β|m| | τ

ε
|

1 + | τ
ε
|2k

exp(ν|τ
ε
|k)

for all τ ∈ Sd , m ∈ R, all ε ∈ C
∗ near the origin (see Proposition 9). The technical constraints (69)

and (87) together with (81), (84) and (85) allow, by means of lower bound estimates (86) for the 
polynomial Pm(τ), the transformation of equation (80) into a fixed point equation Hε(ωk) = ωk

where the map Hε is given by (89) for which we can find a solution ωd
k in some Banach space of 

holomorphic functions Fd
(ν,β,μ,k,ε) studied in Section 2. It is worth noting that the formal series 

Û (T , m, ε) diverges since the function ωk(τ, m, ε) cannot in general be extended everywhere 
on C w.r.t. τ . But, as a result, we get that these series Û are mk-summable w.r.t. T (see Def-
inition 3) in all the directions d chosen as above. In other words, some Laplace transform of 
order k of ωd

k denoted Ud(T , m, ε) can be constructed for all T belonging to a sector Sd,k,h|ε|
with bisecting direction d , aperture slightly larger than π/k and radius h|ε| (for some h > 0). 
This function T 
→ Ud(T , m, ε) is the unique E(β,μ)-valued map which admits Û(T , m, ε) as 
the Gevrey asymptotic expansion of order 1/k on Sd,k,h|ε|. Moreover, Ud(T , m, ε) solves the 
auxiliary problem (72) with vanishing initial data Ud(0, m, ε), see Proposition 10.

In Theorem 1, we construct a family of actual bounded holomorphic solutions up(t, z, ε), 
0 ≤ p ≤ ς − 1 of our original problem (1) on domains of the form T × Hβ ′ × Ep . The sectors 
Ep , 0 ≤ p ≤ ς − 1 constitute a so-called good covering in C∗ (Definition 4). The strip Hβ ′ has 
width 0 < β ′ < β and T is a fixed bounded sector centered at 0 which fulfills the constraint 
εt ∈ Sdp,k for all ε ∈ Ep , t ∈ T , and Sdp,k is a sector of bisecting direction dp and aperture 
slightly larger than π/k where dp are suitable directions for which the unbounded sectors Sdp

with small aperture and bisecting direction dp satisfy the restrictions described above. Namely, 
the functions up are set as Fourier inverse transforms of Udp ,

up(t, z, ε) =F−1(m 
→ Udp (εt,m, ε))(z)

where the definition of F−1 is pointed out in Proposition 7. In addition to that, one can prove 
that the difference of any two neighboring functions up+1(t, z, ε) − up(t, z, ε) tends to zero as 
ε → 0 on Ep ∩ Ep+1 faster than a function with exponential decay of order k, uniformly w.r.t. 
t ∈ T and z ∈ Hβ ′ , see (119).

The last section of the paper is devoted to deal with this latter growth information in order to 
show the existence of a common asymptotic expansion û(t, z, ε) = ∑

m≥0 hm(t, z)εm/m! of the 
Gevrey order 1/k for all the functions up(t, z, ε) as ε tends to 0 on Ep , uniformly w.r.t. t ∈ T
and z ∈ Hβ ′ , see Theorem 2. The key tool in proving the result is the classical Ramis–Sibuya 
theorem (Theorem (RS)).

The layout of this work reads as follows.
In Section 2, we define some weighted parameter depending Banach spaces of continuous 

functions on C × R with exponential growth on sectors w.r.t. the first variable and exponential 
decay on R w.r.t. the second one. We study the continuity properties of several kind of linear and 
nonlinear integral operators acting on these spaces that will be useful in Section 4.

In Section 3, we give a definition of k-summability (that we call mk-summability) which is a 
minor modification of the classical one given in the textbook [1] and which is appropriate for the 
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problem we have to deal with. We also give conditions for the set of mk-sums of formal series 
to be a differential algebra. This fact will be important in the next section where we construct 
actual solutions of the auxiliary equation (72). We provide explicit commutation formulas for the 
mk-Borel transform w.r.t. products and differential operators of irregular type.

In Section 4, we introduce an auxiliary differential and convolution problem (72) for which 
we construct a formal solution. We show that the mk-Borel transform of this formal solution sat-
isfies a convolution problem (80). Under suitable assumptions, we can solve uniquely this latter 
problem in the Banach spaces described in Section 2 using some fixed point theorem argument. 
Then, applying the Laplace transform, we can give a uniquely determined actual solution to (72)
having the formal solution mentioned above as the Gevrey asymptotic expansion.

In Section 5, with the help of Section 4, we build a family of actual holomorphic solutions to 
our initial Cauchy problem (1) on a full neighborhood of the origin in C∗ w.r.t. the perturbation 
parameter ε. We show that the difference of any two neighboring solutions is exponentially flat 
for some integer order in ε (Theorem 1).

In Section 6, we show that the actual solutions constructed in Section 5 share a common 
formal series as the Gevrey asymptotic expansion as ε tends to 0 on sectors (Theorem 2). The 
result relies on the classical so-called Ramis–Sibuya theorem.

2. Banach spaces functions with exponential growth and decay

We denote by D(0, r) the open disc centered at 0 with radius r > 0 in C and by D̄(0, r) its clo-
sure. Let Sd be an open unbounded sector in direction d ∈ R and E be an open sector with finite 
radius rE , both centered at 0 in C. By convention, these sectors do not contain the origin in C.

Definition 1. Let ν, β, μ > 0 and ρ > 0 be positive real numbers. Let k ≥ 1 be an integer and 
let ε ∈ E . We denote Fd

(ν,β,μ,k,ε) the vector space of continuous functions (τ, m) 
→ h(τ, m) on 

(D̄(0, ρ) ∪ Sd) ×R, which are holomorphic with respect to τ on D(0, ρ) ∪ Sd and such that

||h(τ,m)||(ν,β,μ,k,ε) = sup
τ∈D̄(0,ρ)∪Sd ,m∈R

(1 + |m|)μ 1 + | τ
ε
|2k

| τ
ε
| exp(β|m| − ν|τ

ε
|k)|h(τ,m)|

is finite. One can check that the normed space (F d
(ν,β,μ,k,ε), ||.||(ν,β,μ,k,ε)) is a Banach space.

Remark. These norms are appropriate modifications of the norms defined by O. Costin and 
S. Tanveer in [9] and by the second the author in [21] and [22].

Throughout the whole section, we assume ε ∈ E , μ, β, ν > 0 are fixed. In the next lemma, we 
check the continuity property by multiplication operation with bounded functions.

Lemma 1. Let (τ, m) 
→ a(τ, m) be a bounded continuous function on (D̄(0, ρ) ∪Sd) ×R, which 
is holomorphic with respect to τ on D(0, ρ) ∪ Sd . Then, we have

||a(τ,m)h(τ,m)||(ν,β,μ,k,ε) ≤
(

sup
τ∈D̄(0,ρ)∪Sd ,m∈R

|a(τ,m)|
)

||h(τ,m)||(ν,β,μ,k,ε) (5)

for all h(τ, m) ∈ Fd .
(ν,β,μ,k,ε)
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In the next proposition, we study the continuity property of some convolution operators acting 
on the latter Banach spaces.

Proposition 1. Let γ2 > 0 be a real number. Let k ≥ 1 be an integer such that 1/k ≤ γ2 ≤ 1. 
Then, there exists a constant C1 > 0 (depending on ν, k, γ2) with

||
τk∫

0

(τ k − s)γ2f (s1/k,m)
ds

s
||(ν,β,μ,k,ε) ≤ C1|ε|kγ2 ||f (τ,m)||(ν,β,μ,k,ε) (6)

for all f (τ, m) ∈ Fd
(ν,β,μ,k,ε).

Proof. Let f (τ, m) ∈ Fd
(ν,β,μ,k,ε). For any τ ∈ D̄(0, ρ) ∪ Sd , the segment [0, τ k] is such that the 

map s ∈ [0, τ k] → f (s1/k, m) is well defined, provided that m ∈R. By definition, we have that

||
τk∫

0

(τ k − s)γ2f (s1/k,m)
ds

s
||(ν,β,μ,k,ε)

= sup
τ∈D̄(0,ρ)∪Sd ,m∈R

(1 + |m|)μ 1 + | τ
ε
|2k

| τ
ε
| exp(β|m| − ν|τ

ε
|k)

× |
τk∫

0

{(1 + |m|)μeβ|m| exp(−ν|s|/|ε|k)
1 + |s|2

|ε|2k

|s|1/k

|ε|
f (s1/k,m)}

×A(τ, s,m, ε)ds| (7)

where

A(τ, s,m, ε) = 1

(1 + |m|)μ e−β|m| exp(ν|s|/|ε|k)
1 + |s|2

|ε|2k

|s|1/k

|ε| (τ k − s)γ2
1

s

Therefore,

||
τk∫

0

(τ k − s)γ2f (s1/k,m)
ds

s
||(ν,β,μ,k,ε) ≤ C1(ε)||f (τ,m)||(ν,β,μ,k,ε) (8)

where

C1(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
ε
|2k

| τ
ε
| exp(−ν|τ

ε
|k) ×

|τ |k∫
0

exp(νh/|ε|k)
1 + h2

|ε|2k

h
1
k
−1

|ε| (|τ |k − h)γ2dh

Making the change of variable h = |ε|kh′ in the integral inside C1(ε) yields
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C1(ε) = |ε|kγ2 sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
ε
|2k

| τ
ε
| exp(−ν|τ

ε
|k)

×
| τ
ε
|k∫

0

exp(νh′)
1 + h′2 (h′)

1
k
−1(|τ

ε
|k − h′)γ2dh′ ≤ |ε|kγ2 sup

x≥0
A(x) (9)

where

A(x) = 1 + x2

x1/k
exp(−νx)

x∫
0

exp(νh)

1 + h2
h

1
k
−1(x − h)γ2dh

For any x > 0, we have A(x) ≤ Ã(x), where

Ã(x) = (1 + x2)xγ2− 1
k exp(−νx)

x∫
0

exp(νh)

1 + h2
h

1
k
−1dh.

Using L’Hospital rule, we know that

lim
x→+∞ Ã(x) = lim

x→+∞
exp(νx)x

1
k
−1/(1 + x2)

∂x(
exp(νx)

(1+x2)x
γ2− 1

k

)

= lim
x→+∞

(1 + x2)x2(γ2− 1
k
)x

1
k
−1

ν(1 + x2)xγ2− 1
k − (2xγ2− 1

k
+1 + (γ2 − 1

k
)xγ2− 1

k
−1(1 + x2))

and this latter limit is finite if γ2 ≤ 1 holds. Hence, we deduce that there exists a constant Ã > 0
such that

sup
x≥0

Ã(x) ≤ Ã (10)

Gathering the estimates (8), (9), (10), we see that (6) holds. �
Proposition 2. Let γ1 ≥ 0 and χ2 > −1 be real numbers. Let ν2 ≥ 0 be an integer. We consider 
a holomorphic function aγ1,k(τ ) on D(0, ρ) ∪ Sd , continuous on D̄(0, ρ) ∪ Sd , such that

|aγ1,k(τ )| ≤ 1

(1 + |τ |k)γ1

for all τ ∈ D̄(0, ρ) ∪ Sd .
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i) Assume that χ2 ≥ 0.
If ν2 + χ2 − γ1 ≤ 0, then there exists a constant C2.1 > 0 (depending on ν, ν2, χ2, γ1) such 

that

||aγ1,k(τ )

τk∫
0

(τ k − s)χ2sν2f (s1/k,m)ds||(ν,β,μ,k,ε)

≤ C2.1|ε|k(1+ν2+χ2−γ1)||f (τ,m)||(ν,β,μ,k,ε) (11)

for all f (τ, m) ∈ Fd
(ν,β,μ,k,ε).

ii) Assume that χ2 = χ
k

− 1 for some real number χ ≥ 1.

If ν2 + 1
k

− γ1 ≤ 0, then there exists a constant C2.2 > 0 (depending χ , k, ν, γ1, ν2) on such 
that

||aγ1,k(τ )

τk∫
0

(τ k − s)χ2sν2f (s1/k,m)ds||(ν,β,μ,k,ε)

≤ C2.2|ε|k(1+ν2+χ2−γ1)||f (τ,m)||(ν,β,μ,k,ε) (12)

for all f (τ, m) ∈ Fd
(ν,β,μ,k,ε).

Proof. In the first part of the proof, let us assume that i) holds. Let f (τ, m) ∈ Fd
(ν,β,μ,k,ε). By 

definition, we have

||aγ1,k(τ )

τk∫
0

(τ k − s)χ2sν2f (s1/k,m)ds||(ν,β,μ,k,ε)

= sup
τ∈D̄(0,ρ)∪Sd ,m∈R

(1 + |m|)μ 1 + | τ
ε
|2k

| τ
ε
| exp(β|m| − ν|τ

ε
|k)

× |aγ1,k(τ )

τk∫
0

{(1 + |m|)μeβ|m| exp(−ν|s|/|ε|k)
1 + |s|2

|ε|2k

|s|1/k

|ε|
f (s1/k,m)}

×B(τ, s,m, ε)ds| (13)

where

B(τ, s,m, ε) = 1

(1 + |m|)μ e−β|m| exp(ν|s|/|ε|k)
1 + |s|2

|ε|2k

|s|1/k

|ε| (τ k − s)χ2sν2 .

Therefore,
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||aγ1,k(τ )

τk∫
0

(τ k − s)χ2sν2f (s1/k,m)ds||(ν,β,μ,k,ε) ≤ C2(ε)||f (τ,m)||(ν,β,μ,k,ε) (14)

where

C2(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
ε
|2k

| τ
ε
| exp(−ν|τ

ε
|k)

× 1

(1 + |τ |k)γ1

|τ |k∫
0

exp(νh/|ε|k)
1 + h2

|ε|2k

h
1
k

|ε| (|τ |k − h)χ2hν2dh

Making the change of variable h = |ε|kh′ in the integral inside C2(ε) yields

C2(ε) = |ε|k(1+ν2+χ2) sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
ε
|2k

| τ
ε
| exp(−ν|τ

ε
|k)

× 1

(1 + |ε|k| τ
ε
|k)γ1

| τ
ε
|k∫

0

exp(νh′)
1 + h′2 (h′)

1
k (|τ

ε
|k − h′)χ2h′ν2dh′

≤ |ε|k(1+ν2+χ2) sup
x≥0

B(x, ε) (15)

where

B(x, ε) = 1 + x2

x1/k
exp(−νx)

1

(1 + |ε|kx)γ1

x∫
0

exp(νh)

1 + h2
h

1
k
+ν2(x − h)χ2dh.

For any x > 0, we get that B(x, ε) ≤ B̃(x, ε), where

B̃(x, ε) = (1 + x2)xχ2

(1 + |ε|kx)γ1
exp(−νx)

x∫
0

exp(νh)

1 + h2
hν2dh

Let x0 > 0. From the inequality 1 +|ε|kx ≥ 1, for all x ∈ [0, x0] and ε ∈ E , there exists a constant 
B̃ > 0 such that

sup
x∈[0,x0],ε∈E

B̃(x, ε) ≤ B̃. (16)

On the other hand, since 1 + |ε|kx ≥ |ε|kx holds for all x ≥ 0 and ε ∈ E , we get that B̃(x, ε) ≤
B̃2(x)/|ε|kγ1 where
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B̃2(x) = (1 + x2)xχ2−γ1 exp(−νx)

x∫
0

exp(νh)

1 + h2
hν2dh (17)

for all x ≥ x0. By L’Hospital rule we get that

lim
x→+∞ B̃2(x) = lim

x→+∞
(1 + x2)x2(χ2−γ1)xν2

ν(1 + x2)xχ2−γ1 − (2xχ2−γ1+1 + (χ2 − γ1)xχ2−γ1−1(1 + x2))

which is finite if we assume that 1 ≥ (1 + ν2 + χ2 − γ1). We deduce that there exists a constant 
B̃2 > 0 such that

sup
x≥x0

B̃(x, ε) ≤ 1

|ε|kγ1
sup
x≥x0

B̃2(x) ≤ B̃2

|ε|kγ1
(18)

Bearing in mind the estimates (14), (15), (16) and (18), we obtain (11).
In the second part of the proof, assume now that the condition ii) holds. Let f (τ, m) ∈

Fd
(ν,β,μ,k,ε). By definition, we have

||aγ1,k(τ )

τk∫
0

(τ k − s)
χ
k
−1sν2f (s1/k,m)ds||(ν,β,μ,k,ε)

= sup
τ∈D̄(0,ρ)∪Sd ,m∈R

(1 + |m|)μ 1 + | τ
ε
|2k

| τ
ε
| exp(β|m| − ν|τ

ε
|k)

× |aγ1,k(τ )

τk∫
0

{(1 + |m|)μeβ|m| exp(−ν|s|/|ε|k)
1 + |s|2

|ε|2k

|s|1/k

|ε|
f (s1/k,m)}

× {exp(−ν
|τ k − s|

|ε|k )
1 + |τk−s|2

|ε|2k

|τk−s|1/k

|ε|
(τ k − s)

χ
k } ×B(τ, s,m, ε)ds| (19)

where

B(τ, s,m, ε) = e−β|m|

(1 + |m|)μ exp(ν
|s|
|ε|k ) exp(ν

|τ k − s|
|ε|k )

|s|1/k

|ε|
|τ k − s|1/k

|ε|
× 1

1 + |s|2
|ε|2k

1

1 + |τk−s|2
|ε|2k

(τ k − s)−1sν2 .

Hence,

||aγ1,k(τ )

τk∫
0

(τ k − s)
χ
k
−1sν2f (s1/k,m)ds||(ν,β,μ,k,ε)

≤ C2.2(ε)C2.3(ε)||f (τ,m)||(ν,β,μ,k,ε) (20)
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where

C2.2(ε) = sup
x≥0

exp(−ν
x

|ε|k )
1 + x2

|ε|2k

x1/k

|ε|
x

χ
k ,

C2.3(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
ε
|2k

| τ
ε
|

1

(1 + |τ |k)γ1

×
|τ |k∫
0

h1/k

|ε|
(|τ |k − h)1/k

|ε|
1

1 + h2

|ε|2k

1

1 + (|τ |k−h)2

|ε|2k

(|τ |k − h)−1hν2dh. (21)

By using the classical estimates

sup
x≥0

xm1 exp(−m2x) = (
m1

m2
)m1e−m1 (22)

for any real numbers m1 ≥ 0 and m2 > 0, we get that

C2.2(ε) ≤ |ε|χ
(

(
χ − 1

kν
)

χ−1
k e−(

χ−1
k

) + (
2 + χ−1

k

ν
)2+ χ−1

k e−(2+ χ−1
k

)

)
. (23)

Making the change of variable h = |ε|kh′ in the integral involved in the definition of C2.3(ε)

yields

C2.3(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
ε
|2k

| τ
ε
|

1

(1 + |ε|k| τ
ε
|k)γ1

×
| τ
ε
|k∫

0

(h′)1/k(|τ
ε
|k − h′)1/k 1

1 + (h′)2

1

1 + (| τ
ε
|k − h′)2

(|τ
ε
|k − h′)−1|ε|kν2(h′)ν2dh′

≤ |ε|kν2 sup
x≥0

B2.3(x, ε) (24)

where

B2.3(x, ε) = 1 + x2

x1/k

1

(1 + |ε|kx)γ1

x∫
0

1

(1 + h2)(1 + (x − h)2)

1

(x − h)1− 1
k

h
1
k
+ν2dh.

For any x > 0, we have that B2.3(x, ε) ≤ B̃2.3(x, ε), where

B̃2.3(x, ε) = 1 + x2

(1 + |ε|kx)γ1

x∫
1

(1 + h2)(1 + (x − h)2)

1

(x − h)1− 1
k

hν2dh.
0
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Let x0 > 0. From the inequality 1 + |ε|kx ≥ 1, for all x ∈ [0, x0], ε ∈ E , there exists a constant 
B̃2.3 > 0 such that

sup
x∈[0,x0],ε∈E

B̃2.3(x, ε) ≤ B̃2.3. (25)

On the other hand, since 1 + |ε|kx ≥ |ε|kx holds for all x ≥ 0 and ε ∈ E , we get that

B̃2.3(x, ε) ≤ B̃2.4(x)

|ε|kγ1
(26)

where

B̃2.4(x) = (1 + x2)x−γ1

x∫
0

1

(1 + h2)(1 + (x − h)2)

1

(x − h)1− 1
k

hν2dh

for all x ≥ x0. Now, we make the change of variable h = xu in the integral inside B̃2.4(x). We 
can write

B̃2.4(x) = (1 + x2)xν2+ 1
k
−γ1Fk(x)

where

Fk(x) =
1∫

0

uν2

(1 + x2u2)(1 + x2(1 − u)2)(1 − u)1− 1
k

du.

Using a partial fraction decomposition, we can split Fk = F1,k(x) + F2,k(x), where

F1,k(x) = 1

4 + x2

1∫
0

(2u + 1)uν2

(1 + x2u2)(1 − u)1− 1
k

du,

F2,k(x) = 1

4 + x2

1∫
0

(3 − 2u)uν2

(1 + x2(1 − u)2)(1 − u)1− 1
k

du.

In particular, we observe that there exist two constants F1,k, F2,k > 0 such that

F1,k(x) ≤ F1,k

4 + x2
, F2,k(x) ≤ F2,k

4 + x2
(27)

for all x ≥ x0. Hence, if one assumes that ν2 + 1
k
−γ1 ≤ 0, then we get a constant B̃2.4.1 > 0 such 

that

sup
x≥x0

B̃2.3(x, ε) ≤ 1

|ε|kγ1
sup
x≥x0

B̃2.4(x) ≤ B̃2.4.1

|ε|kγ1
(28)

Finally, gathering all the estimates (20), (23), (24), (25), (28), we get (12). �
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Proposition 3. Let k ≥ 1 be an integer. Let Q1(X), Q2(X), R(X) ∈ C[X] such that

deg(R) ≥ deg(Q1), deg(R) ≥ deg(Q2), R(im) �= 0 (29)

for all m ∈R. Assume that μ > max(deg(Q1) +1, deg(Q2) +1). Let m 
→ b(m) be a continuous 
function on R such that

|b(m)| ≤ 1

|R(im)|
for all m ∈R. Then, there exists a constant C3 > 0 (depending on Q1, Q2, R, μ, k, ν) such that

||b(m)

τk∫
0

(τ k − s)
1
k (

s∫
0

+∞∫
−∞

Q1(i(m − m1))f ((s − x)1/k,m − m1)

× Q2(im1)g(x1/k,m1)
1

(s − x)x
dxdm1)ds||(ν,β,μ,k,ε)

≤ C3|ε|||f (τ,m)||(ν,β,μ,k,ε)||g(τ,m)||(ν,β,μ,k,ε) (30)

for all f (τ, m), g(τ, m) ∈ Fd
(ν,β,μ,k,ε).

Proof. Let f (τ, m), g(τ, m) ∈ Fd
(ν,β,μ,k,ε). For any τ ∈ D̄(0, ρ) ∪Sd , the segment [0, τ k] is such 

that for any s ∈ [0, τ k], any x ∈ [0, s], the expressions f ((s − x)1/k, m − m1) and g(x1/k, m1)

are well defined, provided that m, m1 ∈R. By definition, we can write

||b(m)

τk∫
0

(τ k − s)
1
k (

s∫
0

+∞∫
−∞

Q1(i(m − m1))f ((s − x)1/k,m − m1)

× Q2(im1)g(x1/k,m1)
1

(s − x)x
dxdm1)ds||(ν,β,μ,k,ε)

= sup
τ∈D̄(0,ρ)∪Sd ,m∈R

(1 + |m|)μ 1 + | τ
ε
|2k

| τ
ε
| exp(β|m| − ν|τ

ε
|k)

× |
τk∫

0

(τ k − s)1/k(

s∫
0

+∞∫
−∞

{(1 + |m − m1|)μeβ|m−m1|
1 + |s−x|2

|ε|2k

|s−x|1/k

|ε|
exp(−ν|s − x|/|ε|κ )

× f ((s − x)1/k,m − m1)} × {(1 + |m1|)μeβ|m1|
1 + |x|2

|ε|2k

|x|1/k

|ε|
exp(−ν|x|/|ε|k)g(x1/k,m1)}

× C(s, x,m,m1, ε)dxdm1)ds|

where
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C(s, x,m,m1, ε) = exp(−β|m1|) exp(−β|m − m1|)
(1 + |m − m1|)μ(1 + |m1|)μ b(m)Q1(i(m − m1))Q2(im1)

×
|s−x|1/k |x|1/k

|ε|2

(1 + |s−x|2
|ε|2k )(1 + |x|2

|ε|2k )
× exp(ν|s − x|/|ε|k) exp(ν|x|/|ε|k) 1

(s − x)x

Now, we know that there exist Q1, Q2, R > 0 with

|Q1(i(m − m1))| ≤ Q1(1 + |m − m1|)deg(Q1), |Q2(im1)| ≤ Q2(1 + |m1|)deg(Q2),

|R(im)| ≥ R(1 + |m|)deg(R) (31)

for all m, m1 ∈ R. Therefore,

||b(m)

τk∫
0

(τ k − s)
1
k (

s∫
0

+∞∫
−∞

Q1(i(m − m1))f ((s − x)1/k,m − m1)

× Q2(im1)g(x1/k,m1)
1

(s − x)x
dxdm1)ds||(ν,β,μ,k,ε)

≤ C3(ε)||f (τ,m)||(ν,β,μ,k,ε)||g(τ,m)||(ν,β,μ,k,ε) (32)

where

C3(ε) = sup
τ∈D̄(0,ρ)∪Sd ,m∈R

(1 + |m|)μ 1 + | τ
ε
|2k

| τ
ε
| exp(β|m| − ν|τ

ε
|k) 1

R(1 + |m|)deg(R)

×
|τ |k∫
0

(|τ |k − h)1/k(

h∫
0

+∞∫
−∞

exp(−β|m1|) exp(−β|m − m1|)
(1 + |m − m1|)μ(1 + |m1|)μ

×Q1Q2(1 + |m − m1|)deg(Q1)(1 + |m1|)deg(Q2)

(h−x)1/kx1/k

|ε|2

(1 + (h−x)2

|ε|2k )(1 + x2

|ε|2k )

× exp(ν(h − x)/|ε|k) exp(νx/|ε|k) 1

(h − x)x
dxdm1)dh (33)

Using the triangular inequality |m| ≤ |m1| +|m −m1|, for all m, m1 ∈R, we get that C3(ε) ≤
C3.1C3.2(ε) where

C3.1 = Q1Q2

R
sup
m∈R

(1 + |m|)μ−deg(R)

+∞∫
−∞

1

(1 + |m − m1|)μ−deg(Q1)(1 + |m1|)μ−deg(Q2)
dm1

(34)

which is finite whenever μ > max(deg(Q1) + 1, deg(Q2) + 1) under the assumption (29) using 
the same estimates as in Lemma 4 of [22] (see also Lemma 2.2 from [9]), and where
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C3.2(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
ε
|2k

| τ
ε
| exp(−ν|τ

ε
|k)

×
|τ |k∫
0

(|τ |k − h)1/k exp(νh/|ε|κ )

h∫
0

(h−x)1/kx1/k

|ε|2

(1 + (h−x)2

|ε|2k )(1 + x2

|ε|2k )

1

(h − x)x
dxdh. (35)

Making the changes of variables h = |ε|kh′ and x = |ε|kx′, we get that

|τ |k∫
0

(|τ |k − h)1/k exp(νh/|ε|k)
h∫

0

(h−x)1/kx1/k

|ε|2

(1 + (h−x)2

|ε|2k )(1 + x2

|ε|2k )

1

(h − x)x
dxdh

= |ε|
| τ
ε
|k∫

0

(|τ
ε
|k − h′)1/k exp(νh′)

h′∫
0

1

(1 + (h′ − x′)2)(1 + x′2)
1

(h′ − x′)1− 1
k x′1− 1

k

dx′dh′

(36)

From (35) and (36), we get that C3.2(ε) ≤ |ε|C3.3, where

C3.3 = sup
x≥0

1 + x2

x1/k
exp(−νx)

x∫
0

(x − h′)1/k exp(νh′)

× (

h′∫
0

1

(1 + (h′ − x′)2)(1 + x′2)
1

(h′ − x′)1− 1
k x′1− 1

k

dx′)dh′ (37)

Again by the change of variable x′ = h′u, for u ∈ [0, 1], we can write

h′∫
0

1

(1 + (h′ − x′)2)(1 + x′2)
1

(h′ − x′)1− 1
k x′1− 1

k

dx′

= 1

h′1− 2
k

1∫
0

1

(1 + (h′)2(1 − u)2)(1 + h′2u2)(1 − u)1− 1
k u1− 1

k

du = Jk(h
′) (38)

Using a partial fraction decomposition, we can split Jk(h
′) = J1,k(h

′) + J2,k(h
′), where

J1,k(h
′) = 1

h′1− 2
k (h′2 + 4)

1∫
0

3 − 2u

(1 + h′2(1 − u)2)(1 − u)1− 1
k u1− 1

k

du

J2,k(h
′) = 1

h′1− 2
k (h′2 + 4)

1∫
2u + 1

(1 + h′2u2)(1 − u)1− 1
k u1− 1

k

du (39)
0
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From now on, we assume that k ≥ 2. By construction of J1,k(h
′) and J2,k(h

′), we see that there 
exists a constant jk > 0 such that

Jk(h
′) ≤ jk

h′1− 2
k (h′2 + 4)

(40)

for all h′ ≥ 0. From (37) and (40), we deduce that C3.3 ≤ supx≥0 C̃3.3(x), where

C̃3.3(x) = (1 + x2) exp(−νx)

x∫
0

jk exp(νh′)
h′1− 2

k (h′2 + 4)
dh′. (41)

From L’Hospital rule, we know that

lim
x→+∞ C̃3.3(x) = lim

x→+∞
jk

x1− 2
k

(1+x2)2

x2+4

ν(1 + x2) − 2x

is finite when k ≥ 2. Therefore, we get a constant C̃3.3 > 0 such that

sup
x≥0

C̃3.3(x) ≤ C̃3.3. (42)

Taking into account the estimates for (33), (34), (35), (37), (41) and (42), we obtain the result 
(30) when k ≥ 2.

In the remaining case k = 1, from Corollary 4.9 of [8] one can check the existence of a 
constant j1 > 0 such that

J1(h
′) ≤ j1

h′2 + 1
(43)

for all h′ ≥ 0. From (37) and (43), we deduce that C3.3 ≤ supx≥0 C̃3.3.1(x), where

C̃3.3.1(x) = (1 + x2) exp(−νx)

x∫
0

j1 exp(νh′)
h′2 + 1

dh′. (44)

From L’Hospital rule, we know that

lim
x→+∞ C̃3.3.1(x) = lim

x→+∞
j1(1 + x2)

ν(1 + x2) − 2x

is finite. Therefore, we get a constant C̃3.3.1 > 0 such that

sup
x≥0

C̃3.3.1(x) ≤ C̃3.3.1. (45)

Taking into account the estimates for (33), (34), (35), (37), (44) and (45), we obtain the result 
(30) for k = 1. �
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Definition 2. Let β, μ ∈ R. We denote by E(β,μ) the vector space of continuous functions 
h : R→C such that

||h(m)||(β,μ) = sup
m∈R

(1 + |m|)μ exp(β|m|)|h(m)|

is finite. The space E(β,μ) equipped with the norm ||.||(β,μ) is a Banach space.

Proposition 4. Let k ≥ 1 be an integer. Let Q(X), R(X) ∈C[X] be polynomials such that

deg(R) ≥ deg(Q), R(im) �= 0 (46)

for all m ∈R. Assume that μ > deg(Q) + 1. Let m 
→ b(m) be a continuous function such that

|b(m)| ≤ 1

|R(im)|
for all m ∈R. Then, there exists a constant C4 > 0 (depending on Q, R, μ, k, ν) such that

||b(m)

τk∫
0

(τ k − s)
1
k

+∞∫
−∞

f (m − m1)Q(im1)g(s1/k,m1)dm1
ds

s
||(ν,β,μ,k,ε)

≤ C4|ε|||f (m)||(β,μ)||g(τ,m)||(ν,β,μ,k,ε) (47)

for all f (m) ∈ E(β,μ), all g(τ, m) ∈ Fd
(ν,β,μ,k,ε).

Proof. The proof follows the same lines of arguments as those of Propositions 1 and 3. Let 
f (m) ∈ E(β,μ), g(τ, m) ∈ Fd

(ν,β,μ,k,ε)
. We can write

N2 := ||b(m)

τk∫
0

(τ k − s)
1
k

+∞∫
−∞

f (m − m1)Q(im1)g(s1/k,m1)dm1
ds

s
||(ν,β,μ,k,ε)

= sup
τ∈D̄(0,ρ)∪Sd ,m∈R

(1 + |m|)μ 1 + | τ
ε
|2k

| τ
ε
| exp(β|m| − ν|τ

ε
|k)

× |b(m)

τk∫
0

+∞∫
−∞

{(1 + |m − m1|)μ exp(β|m − m1|)f (m − m1)}

× {(1 + |m1)
μ exp(β|m1|) exp(−ν|s|

|ε|k )
1 + |s|2

|ε|2k

|s|1/k

|ε|
g(s1/k,m1)}

×D(τ, s,m,m1, ε)dm1ds| (48)

where
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D(τ, s,m,m1, ε) = Q(im1)e
−β|m1|e−β|m−m1|

(1 + |m − m1|)μ(1 + |m1|)μ ×
exp(

ν|s|
|ε|k )

1 + |s|2
|ε|2k

|s|1/k

|ε| (τ k − s)1/k 1

s

Again, we know that there exist constants Q, R > 0 such that

|Q(im1)| ≤ Q(1 + |m1|)deg(Q), |R(im)| ≥ R(1 + |m|)deg(R)

for all m, m1 ∈ R. By means of the triangular inequality |m| ≤ |m1| + |m − m1|, we get that

N2 ≤ C4.1(ε)C4.2||f (m)||(β,μ)||g(τ,m)||(ν,β,μ,k,ε) (49)

where

C4.1(ε) = sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
ε
|2k

| τ
ε
| exp(−ν|τ

ε
|k)

|τ |k∫
0

exp(νh/|ε|k)
1 + h2

|ε|2k

h
1
k
−1

|ε| (|τ |k − h)1/kdh

and

C4.2 = Q

R
sup
m∈R

(1 + |m|)μ−deg(R)

+∞∫
−∞

1

(1 + |m − m1|)μ(1 + |m1|)μ−deg(Q)
dm1.

From the estimates (9) and (10), we know that there exists a constant C4.1 > 0 such that

C4.1(ε) ≤ C4.1|ε| (50)

and from the estimates for (34), we know that C4.2 is finite under the assumption (46) provided 
that μ > deg(Q) + 1. Finally, gathering this latter bound estimates together with (49) and (50)
yields the result (47). �

In the next proposition, we show that (E(β,μ), ||.||(β,μ)) is a Banach algebra for some non-
commutative product � introduced below.

Proposition 5. Let Q1(X), Q2(X), R(X) ∈ C[X] be polynomials such that

deg(R) ≥ deg(Q1), deg(R) ≥ deg(Q2), R(im) �= 0, (51)

for all m ∈ R. Assume that μ > max(deg(Q1) + 1, deg(Q2) + 1). Then, there exists a constant 
C5 > 0 (depending on Q1, Q2, R, μ) such that

|| 1

R(im)

+∞∫
−∞

Q1(i(m − m1))f (m − m1)Q2(im1)g(m1)dm1||(β,μ)

≤ C5||f (m)||(β,μ)||g(m)||(β,μ) (52)
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for all f (m), g(m) ∈ E(β,μ). Therefore, (E(β,μ), ||.||(β,μ)) becomes a Banach algebra for the 
product � defined by

f � g(m) = 1

R(im)

+∞∫
−∞

Q1(i(m − m1))f (m − m1)Q2(im1)g(m1)dm1.

As a particular case, when f, g ∈ E(β,μ) with β > 0 and μ > 1, the classical convolution product

f ∗ g(m) =
+∞∫

−∞
f (m − m1)g(m1)dm1

belongs to E(β,μ).

Proof. The proof is similar to the one of Proposition 3. Let f (m), g(m) ∈ E(β,μ). We write

|| 1

R(im)

+∞∫
−∞

Q1(i(m − m1))f (m − m1)Q2(im1)g(m1)dm1||(β,μ)

= sup
m∈R

(1 + |m|)μeβ|m|| 1

R(im)

+∞∫
−∞

{(1 + |m − m1|)μeβ|m−m1|f (m − m1)}

× {(1 + |m1|)μeβ|m1|g(m1)} × E(m,m1)dm1| (53)

where

E(m,m1) = e−β|m−m1|e−β|m1|

(1 + |m − m1|)μ(1 + |m1|)μ Q1(i(m − m1))Q2(im1).

Using the triangular inequality |m| ≤ |m1| + |m − m1| and the estimates in (31), we get that

|| 1

R(im)

+∞∫
−∞

Q1(i(m − m1))f (m − m1)Q2(im1)g(m1)dm1||(β,μ)

≤ C5||f (m)||(β,μ)||g(m)||(β,μ) (54)

where

C5 = Q1Q2

R
sup
m∈R

(1 + |m|)μ−deg(R)

+∞∫
−∞

1

(1 + |m − m1|)μ−deg(Q1)(1 + |m1|)μ−deg(Q2)
dm1

which is finite whenever μ > max(deg(Q1) + 1, deg(Q2) + 1) provided that (51) holds as ex-
plained in Proposition 3 (see (34)). �
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3. The Laplace transform, asymptotic expansions and the Fourier transform

We give a definition of k-Borel summability of formal series with coefficients in a Banach 
space which is a slightly modified version of the one given in [1], Section 3.2, in order to fit our 
necessities.

Definition 3. Let k ≥ 1 be an integer. Let mk(n) be the sequence defined by

mk(n) = �(
n

k
) =

+∞∫
0

t
n
k
−1e−t dt

for all n ≥ 1. A formal series

X̂(T ) =
∞∑

n=1

anT
n ∈ TE[[T ]]

with coefficients in a Banach space (E, ||.||E) is said to be mk-summable with respect to t in the 
direction d ∈ [0, 2π) if

i) there exists ρ ∈ R+ such that the following formal series, called a formal mk-Borel trans-
form of X̂

Bmk
(X̂)(τ ) =

∞∑
n=1

an

�(n
k
)
τn ∈ τE[[τ ]],

is absolutely convergent for |τ | < ρ.
ii) there exists δ > 0 such that the series Bmk

(X̂)(τ ) can be analytically continued with respect 
to τ in a sector Sd,δ = {τ ∈ C∗ : |d − arg(τ )| < δ}. Moreover, there exist C > 0 and K > 0 such 
that

||Bmk
(X̂)(τ )||E ≤ CeK|τ |k

for all τ ∈ Sd,δ .

If this is so, the vector valued Laplace transform of Bmk
(X̂)(τ ) in the direction d is defined 

by

Ld
mk

(B(X̂))(T ) = k

∫
Lγ

Bmk
(X̂)(u)e−(u/T )k du

u
,

along a half-line Lγ = R+eiγ ⊂ Sd,δ ∪ {0}, where γ depends on T and is chosen in such a way 
that cos(k(γ − arg(T ))) ≥ δ1 > 0, for some fixed δ1. The function Ld

mk
(Bmk

(X̂))(T ) is well 
defined, holomorphic and bounded in any sector

Sd,θ,R1/k = {T ∈ C
∗ : |T | < R1/k, |d − arg(T )| < θ/2},
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where π
k

< θ < π
k

+ 2δ and 0 < R < δ1/K . This function is called the mk-sum of the formal 
series X̂(T ) in the direction d .

We now state some elementary properties concerning the mk-sums of formal power series.
1) The function Ld

mk
(Bmk

(X̂))(T ) has the formal series X̂(T ) as Gevrey asymptotic expansion 
of order 1/k with respect to t on Sd,θ,R1/k . This means that for all π

k
< θ1 < θ , there exist 

C, M > 0 such that

||Ld
mk

(Bmk
(X̂))(T ) −

n−1∑
p=1

apT p||E ≤ CMn�(1 + n

k
)|T |n (55)

for all n ≥ 2, all T ∈ Sd,θ1,R
1/k . Moreover, from Watson’s lemma (see Proposition 11 p. 75 in [1]), 

we get that Ld
mk

(Bmk
(X̂))(T ) is the unique holomorphic function that satisfies the estimates (55)

on the sectors Sd,θ1,R
1/k with large aperture θ1 > π

k
.

2) Let us assume that (E, ||.||E) also has the structure of a Banach algebra for a product �. Let 
X̂1(T ), X̂2(T ) ∈ TE[[T ]] be mk-summable formal power series in direction d . Let q1 ≥ q2 ≥ 1
be integers. We assume that X̂1(T ) + X̂2(T ), X̂1(T ) � X̂2(T ) and T q1∂

q2
T X̂1(T ), which are ele-

ments of TE[[T ]], are mk-summable in direction d . Then, the following equalities

Ld
mk

(Bmk
(X̂1))(T ) +Ld

mk
(Bmk

(X̂2))(T ) = Ld
mk

(Bmk
(X̂1 + X̂2))(T ),

Ld
mk

(Bmk
(X̂1))(T ) �Ld

mk
(Bmk

(X̂2))(T ) = Ld
mk

(Bmk
(X̂1 � X̂2))(T )

T q1∂
q2
T Ld

mk
(Bmk

(X̂1))(T ) = Ld
mk

(Bmk
(T q1∂

q2
T X̂1))(T ) (56)

hold for all T ∈ Sd,θ,R1/k . These equalities are consequence of the unicity of the function having 
a given Gevrey expansion of order 1/k in large sectors as stated above in 1) and from the fact 
that the set of holomorphic functions having the Gevrey asymptotic expansion of order 1/k on 
a sector with values in the Banach algebra E form a differential algebra (meaning that this set 
is stable with respect to the sum and product of functions and derivation in the variable T ) (see 
Theorems 18, 19 and 20 in [1]).

In the next proposition, we give some identities for the mk-Borel transform that will be useful 
in the sequel.

Proposition 6. Let f̂ (t) = ∑
n≥1 fnt

n, ĝ(t) = ∑
n≥1 gnt

n be formal series whose coefficients 
fn, gn belong to some Banach space (E, ||.||E). We assume that (E, ||.||E) is a Banach algebra 
for some product �. Let k, m ≥ 1 be integers. The following formal identities hold.

Bmk
(tk+1∂t f̂ (t))(τ ) = kτ kBmk

(f̂ (t))(τ ) (57)

Bmk
(tmf̂ (t))(τ ) = τ k

�(m
k
)

τk∫
0

(τ k − s)
m
k
−1Bmk

(f̂ (t))(s1/k)
ds

s
(58)

and

Bmk
(f̂ (t) � ĝ(t))(τ ) = τ k

τk∫
Bmk

(f̂ (t))((τ k − s)1/k) �Bmk
(ĝ(t))(s1/k)

1

(τ k − s)s
ds (59)
0
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Proof. First, we show (57). By definition, we have that

Bmk
(
tk+1

k
∂t f̂ (t))(τ ) =

∑
n≥1

n
k
fn

�(n
k

+ 1)
τn+k (60)

By application of the addition formula for the Gamma function which yields �(n
k

+ 1) = n
k
�(n

k
)

for any n ≥ 1, we deduce (57) from (60).
Now, we prove (58). By definition, we can write

Bmk
(tmf̂ (t))(τ ) = 1

�(m
k
)

∑
n≥1

fn

�(n
k
)

�(m
k
)�(n

k
)

�(m+n
k

)
τm+n. (61)

Using the Beta integral formula (see Appendix B in [2]), we can write

�(m
k
)�(n

k
)

�(m+n
k

)
= τ k

τm+n

τk∫
0

(τ k − s)
m
k
−1s

n
k
−1ds (62)

for any m, n ≥ 1. Plugging (62) into (61) yields (58).
Finally, we show (59). By definition, we have

Bmk
(f̂ (t) � ĝ(t))(τ ) =

∑
n≥2

(
∑

p+q=n

fp

�(
p
k
)

�
gq

�(
q
k
)

× �(
p
k
)�(

q
k
)

�(n
k
)

)τn (63)

Using again the Beta integral formula, we can write

�(
p
k
)�(

q
k
)

�(n
k
)

= τ k

τn

τk∫
0

(τ k − s)
p
k
−1s

q
k
−1ds (64)

when p + q = n and p, q ≥ 1. By the substitution of (64) into (63), we deduce (59). �
In the following proposition, we recall some properties of the inverse the Fourier transform

Proposition 7. Let f ∈ E(β,μ) with β > 0, μ > 1. The inverse Fourier transform of f is defined 
by

F−1(f )(x) = 1

(2π)1/2

+∞∫
−∞

f (m) exp(ixm)dm

for all x ∈ R. The function F−1(f ) extends to an analytic function on the strip

Hβ = {z ∈ C/|Im(z)| < β}. (65)
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Let φ(m) = imf (m) ∈ E(β,μ−1). Then, we have

∂zF−1(f )(z) =F−1(φ)(z) (66)

for all z ∈ Hβ .
Let g ∈ E(β,μ) and let ψ(m) = 1

(2π)1/2 f ∗ g(m), the convolution product of f and g, for all 
m ∈ R. From Proposition 5, we know that ψ ∈ E(β,μ). Moreover, we have

F−1(f )(z)F−1(g)(z) =F−1(ψ)(z) (67)

for all z ∈ Hβ .

Proof. Let f ∈ E(β,μ). It is straight to check that F−1(f ) is well defined on the real line. The 
fact that F−1(f ) extends to an analytic function on the strip Hβ follows from the next inequality. 
There exists C > 0 such that

|f (m)|| exp(izm)| ≤ C

(1 + |m|)μ exp((β ′ − β)|m|)

for all m ∈ R, z ∈ Hβ ′ , with β ′ < β . The relations (66), (67) are classical and can be found for 
instance in [26]. �
4. Formal and analytic solutions of convolution initial value problems with complex 
parameters

Let k ≥ 1 and D ≥ 2 be integers. For 1 ≤ l ≤ D, let dl, δl, �l ≥ 0 be nonnegative integers. We 
assume that

1 = δ1, δl < δl+1, (68)

for all 1 ≤ l ≤ D − 1. We make also the assumption that

dD = (δD − 1)(k + 1), dl > (δl − 1)(k + 1), �D = dD − δD + 1 (69)

for all 1 ≤ l ≤ D−1. Let Q(X), Q1(X), Q2(X), Rl(X) ∈ C[X], 0 ≤ l ≤ D, be polynomials such 
that

deg(Q) ≥ deg(RD) ≥ deg(Rl), deg(RD) ≥ deg(Q1), deg(RD) ≥ deg(Q2),

Q(im) �= 0, RD(im) �= 0 (70)

for all m ∈ R, all 0 ≤ l ≤ D − 1. We consider sequences of functions m 
→ C0,n(m, ε), for all 
n ≥ 0 and m 
→ Fn(m, ε), for all n ≥ 1, that belong to the Banach space E(β,μ) for some β > 0
and μ > max(deg(Q1) + 1, deg(Q2) + 1) and which depend holomorphically on ε ∈ D(0, ε0). 
We assume that there exist constants K0, T0 > 0 such that

||C0,n(m, ε)||(β,μ) ≤ K0(
1

)n, ||Fn(m, ε)||(β,μ) ≤ K0(
1

)n (71)

T0 T0
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for all n ≥ 1, for all ε ∈ D(0, ε0). We define

C0(T ,m, ε) =
∑
n≥1

C0,n(m, ε)T n, F (T ,m, ε) =
∑
n≥1

Fn(m, ε)T n

which are convergent series on D(0, T0/2) with values in E(β,μ). We consider the following 
singular initial value problem

Q(im)(∂T U(T ,m, ε))

= ε−1 1

(2π)1/2

+∞∫
−∞

Q1(i(m − m1))U(T ,m − m1, ε)

× Q2(im1)U(T ,m1, ε)dm1 +
D∑

l=1

Rl(im)ε�l−dl+δl−1T dl ∂
δl

T U(T ,m, ε)

+ ε−1 1

(2π)1/2

+∞∫
−∞

C0(T ,m − m1, ε)R0(im1)U(T ,m1, ε)dm1

+ ε−1 1

(2π)1/2

+∞∫
−∞

C0,0(m − m1, ε)R0(im1)U(T ,m1, ε)dm1 + ε−1F(T ,m, ε) (72)

for given initial data U(0, m, ε) = 0.

Proposition 8. There exists a unique formal series

Û (T ,m, ε) =
∑
n≥1

Un(m, ε)T n

solution of (72) with initial data U(0, m, ε) ≡ 0, where the coefficients m 
→ Un(m, ε) belong to 
E(β,μ) for β > 0 and μ > max(deg(Q1) + 1, deg(Q2) + 1) given above and depend holomor-
phically on ε in D(0, ε0) \ {0}.

Proof. From Proposition 5 and the conditions in the statement above, we get that the coefficients 
Un(m, ε) of Û (T , m, ε) are well defined, belong to E(β,μ) for all ε ∈ D(0, ε0) \ {0}, all n ≥ 1 and 
satisfy the following recursion relation

(n + 1)Un+1(m, ε)

= ε−1

Q(im)

∑
n1+n2=n,n1≥1,n2≥1

1

(2π)1/2

+∞∫
−∞

Q1(i(m − m1))Un1(m − m1, ε)Q2(im1)Un2(m1, ε)dm1

+
D∑ Rl(im)

Q(im)

(
ε�l−dl+δl−1�

δl−1
j=0 (n + δl − dl − j)

)
Un+δl−dl

(m, ε)
l=1
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+ ε−1

Q(im)

∑
n1+n2=n,n1≥1,n2≥1

1

(2π)1/2

+∞∫
−∞

C0,n1(m − m1, ε)R0(im1)Un2(m1, ε)dm1

+ ε−1

(2π)1/2Q(im)

+∞∫
−∞

C0,0(m − m1, ε)R0(im1)Un(m1, ε)dm1 + ε−1

Q(im)
Fn(m, ε) (73)

for all n ≥ max1≤l≤D dl . �
Using the formula from [27], p. 40, we can expand the operators T δl(k+1)∂

δl

T in the form

T δl(k+1)∂
δl

T = (T k+1∂T )δl +
∑

1≤p≤δl−1

Aδl,pT k(δl−p)(T k+1∂T )p (74)

where Aδl,p , p = 1, . . . , δl − 1 are real numbers. We define integers dl,k ≥ 0 to satisfy

dl + k + 1 = δl(k + 1) + dl,k (75)

for all 1 ≤ l ≤ D. Multiplying equation (72) by T k+1 and using (74), we can rewrite equation
(72) in the form

Q(im)(T k+1∂T U(T ,m, ε))

= ε−1T k+1 1

(2π)1/2

+∞∫
−∞

Q1(i(m − m1))U(T ,m − m1, ε)Q2(im1)U(T ,m1, ε)dm1

+
D∑

l=1

Rl(im)
(
ε�l−dl+δl−1T dl,k (T k+1∂T )δlU(T ,m, ε)

+
∑

1≤p≤δl−1

Aδl,p ε�l−dl+δl−1T k(δl−p)+dl,k (T k+1∂T )pU(T ,m, ε)
)

+ ε−1T k+1 1

(2π)1/2

+∞∫
−∞

C0(T ,m − m1, ε)R0(im1)U(T ,m1, ε)dm1

+ ε−1T k+1 1

(2π)1/2

+∞∫
−∞

C0,0(m − m1, ε)R0(im1)U(T ,m1, ε)dm1 + ε−1T k+1F(T ,m, ε)

(76)

We denote ωk(τ, m, ε) the formal mk-Borel transform of Û (T , m, ε) with respect to T , 
ϕk(τ, m, ε) the formal mk-Borel transform of C0(T , m, ε) with respect to T and ψk(τ, m, ε)
the formal mk-Borel transform of F(T , m, ε) with respect to T ,



5248 A. Lastra, S. Malek / J. Differential Equations 259 (2015) 5220–5270
ωk(τ,m, ε) =
∑
n≥1

Un(m, ε)
τn

�(n
k
)
, ϕk(τ,m, ε) =

∑
n≥1

C0,n(m, ε)
τn

�(n
k
)

ψk(τ,m, ε) =
∑
n≥1

Fn(m, ε)
τn

�(n
k
)

Using (71) we get that ϕk(τ, m, ε) ∈ Fd
(ν,β,μ,k,ε) and ψk(τ, m, ε) ∈ Fd

(ν,β,μ,k,ε), for all
ε ∈ D(0, ε0) \ {0}, any unbounded sector Sd centered at 0 and bisecting direction d ∈ R, for 
some ν > 0. Indeed, we have that

||ϕk(τ,m, ε)||(ν,β,μ,k,ε) ≤
∑
n≥1

||C0,n(m, ε)||(β,μ)( sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
ε
|2k

| τ
ε
| exp(−ν|τ

ε
|k) |τ |n

�(n
k
)
),

||ψk(τ,m, ε)||(ν,β,μ,k,ε) ≤
∑
n≥1

||Fn(m, ε)||(β,μ)( sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
ε
|2k

| τ
ε
| exp(−ν|τ

ε
|k) |τ |n

�(n
k
)
)

(77)

By using the classical estimates (22) and the Stirling formula �(n/k) ∼ (2π)1/2(n/k)
n
k
− 1

2 e−n/k

as n tends to +∞, we get two constants A1, A2 > 0 depending on ν, k such that

sup
τ∈D̄(0,ρ)∪Sd

1 + | τ
ε
|2k

| τ
ε
| exp(−ν|τ

ε
|k) |τ |n

�(n
k
)

= sup
τ∈D̄(0,ρ)∪Sd

|ε|n(1 + |τ
ε
|2k)|τ

ε
|n−1 exp(−ν| τ

ε
|k)

�(n
k
)

≤ εn
0 sup

x≥0
(1 + x2)x

n−1
k

e−νx

�(n
k
)

≤ εn
0

(
(
n − 1

νk
)

n−1
k e− n−1

k + (
n − 1

νk
+ 2

ν
)

n−1
k

+2e−( n−1
k

+2)

)
/�(n/k)

≤ A1ε
n
0 (A2)

n (78)

for all n ≥ 0, all ε ∈ D(0, ε0) \ {0}. Therefore, if ε0 fulfills ε0A2 < T0, we get the estimates

||ϕk(τ,m, ε)||(ν,β,μ,k,ε) ≤ A1

∑
n≥1

||C0,n(m, ε)||(β,μ)(ε0A2)
n ≤ A1A2K0

T0

ε0

1 − A2
T0

ε0
,

||ψk(τ,m, ε)||(ν,β,μ,k,ε) ≤ A1

∑
n≥1

||Fn(m, ε)||(β,μ)(ε0A2)
n ≤ A1A2K0

T0

ε0

1 − A2
T0

ε0
(79)

for all ε ∈ D(0, ε0) \ {0}.
Using the computation rules for the formal mk-Borel transform in Proposition 6, we deduce 

the following equation satisfied by ωk(τ, m, ε),
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Q(im)(kτ kωk(τ,m, ε))

= ε−1 τ k

�(1 + 1
k
)

τk∫
0

(τ k − s)1/k

×
⎛
⎝ 1

(2π)1/2
s

s∫
0

+∞∫
−∞

Q1(i(m − m1))ωk((s − x)1/k,m − m1, ε)

× Q2(im1)ωk(x
1/k,m1, ε)

1

(s − x)x
dxdm1

)
ds

s

+ RD(im)
(
kδDτ δDkωk(τ,m, ε)

+
∑

1≤p≤δD−1

AδD,p

τ k

�(δD − p)

τk∫
0

(τ k − s)δD−p−1 (kpspωk(s
1/k,m, ε))

ds

s

)

+
D−1∑
l=1

Rl(im)

(
ε�l−dl+δl−1 τ k

�(
dl,k

k
)

τk∫
0

(τ k − s)
dl,k
k

−1(kδl sδlωk(s
1/k,m, ε))

ds

s

+ ∑
1≤p≤δl−1

Aδl,pε�l−dl+δl−1 τ k

�(
dl,k

k
+ δl − p)

τk∫
0

(τ k − s)
dl,k
k

+δl−p−1(kpspωk(s
1/k,m, ε))

ds

s

)

+ ε−1 τ k

�(1 + 1
k
)

τk∫
0

(τ k − s)1/k

×
⎛
⎝ 1

(2π)1/2
s

s∫
0

+∞∫
−∞

ϕk((s − x)1/k,m − m1, ε)R0(im1)ωk(x
1/k,m1, ε)

1

(s − x)x
dxdm1

)
ds

s

+ ε−1 τ k

�(1 + 1
k
)

τk∫
0

(τ k − s)1/k 1

(2π)1/2
(

+∞∫
−∞

C0,0(m − m1, ε)R0(im1)ωk(s
1/k,m1, ε)dm1)

ds

s

+ ε−1 τ k

�(1 + 1
k
)

τk∫
0

(τ k − s)1/kψk(s
1/k,m, ε)

ds

s
(80)

We make the additional assumption that there exists an unbounded sector

SQ,RD
= {z ∈C/|z| ≥ rQ,RD

, |arg(z) − dQ,RD
| ≤ ηQ,RD

}

with direction dQ,R ∈ R, aperture ηQ,R > 0 for some radius rQ,R > 0 such that

D D D
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Q(im)

RD(im)
∈ SQ,RD

(81)

for all m ∈ R. We factorize the polynomial Pm(τ) = Q(im)k − RD(im)kδDτ (δD−1)k in the 
form

Pm(τ) = −RD(im)kδD�
(δD−1)k−1
l=0 (τ − ql(m)) (82)

where

ql(m) = (
|Q(im)|

|RD(im)|kδD−1
)

1
(δD−1)k exp(

√−1(arg(
Q(im)

RD(im)kδD−1
)

1

(δD − 1)k
+ 2πl

(δD − 1)k
))

(83)

for all 0 ≤ l ≤ (δD − 1)k − 1, all m ∈R.
We choose an unbounded sector Sd centered at 0, a small closed disc D̄(0, ρ) and we prescribe 

the sector SQ,RD
in such a way that the following conditions hold.

1) There exists a constant M1 > 0 such that

|τ − ql(m)| ≥ M1(1 + |τ |) (84)

for all 0 ≤ l ≤ (δD − 1)k − 1, all m ∈ R, all τ ∈ Sd ∪ D̄(0, ρ). Indeed, from (81) and the 
explicit expression (83) of ql(m), we first observe that |ql(m)| > 2ρ for every m ∈ R, all 
0 ≤ l ≤ (δD − 1)k − 1 for an appropriate choice of rQ,RD

and of ρ > 0. We also see that for 
all m ∈ R, all 0 ≤ l ≤ (δD − 1)k − 1, the roots ql(m) remain in a union U of unbounded sec-
tors centered at 0 that do not cover a full neighborhood of the origin in C∗ provided that ηQ,RD

is small enough. Therefore, one can choose an adequate sector Sd such that Sd ∩ U = ∅ with 
the property that for all 0 ≤ l ≤ (δD − 1)k − 1 the quotients ql(m)/τ lay outside some small 
disc centered at 1 in C for all τ ∈ Sd , all m ∈ R. This yields (84) for some small constant 
M1 > 0.

2) There exists a constant M2 > 0 such that

|τ − ql0(m)| ≥ M2|ql0(m)| (85)

for some l0 ∈ {0, . . . , (δD − 1)k − 1}, all m ∈ R, all τ ∈ Sd ∪ D̄(0, ρ). Indeed, for the sector Sd

and the disc D̄(0, ρ) chosen as above in 1), we notice that for any fixed 0 ≤ l0 ≤ (δD − 1)k − 1, 
the quotient τ/ql0(m) stays outside a small disc centered at 1 in C for all τ ∈ Sd ∪ D̄(0, ρ), all 
m ∈ R. Hence (85) must hold for some small constant M2 > 0.

By construction of the roots (83) in the factorization (82) and using the lower bound estimates 
(84), (85), we get a constant CP > 0 such that

|Pm(τ)| ≥ M
(δD−1)k−1
1 M2|RD(im)kδD |( |Q(im)|

|RD(im)|kδD−1
)

1
(δD−1)k (1 + |τ |)(δD−1)k−1

≥ M
(δD−1)k−1
1 M2

kδD

δD−1
1

(δ −1)k

(rQ,RD
)

1
(δD−1)k |RD(im)|
(k ) D
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× (min
x≥0

(1 + x)(δD−1)k−1

(1 + xk)(δD−1)− 1
k

)(1 + |τ |k)(δD−1)− 1
k

= CP (rQ,RD
)

1
(δD−1)k |RD(im)|(1 + |τ |k)(δD−1)− 1

k (86)

for all τ ∈ Sd ∪ D̄(0, ρ), all m ∈R.
In the next proposition, we give sufficient conditions under which equation (80) has a solution 

ωk(τ, m, ε) in the Banach space Fd
(ν,β,μ,k,ε)

where β , μ are defined above.

Proposition 9. Under the assumption that

δD ≥ δl + 2

k
, �l + k(1 − δD) + 1 ≥ 0, (87)

for all 1 ≤ l ≤ D − 1, there exists a radius rQ,RD
> 0, a constant � > 0 and constants 

ζ0, ζ1, ζ2 > 0 (depending on Q1, Q2, k, CP , μ, ν, ε0, Rl , �l , δl , dl for 0 ≤ l ≤ D) such that 
if

||C0,0(m, ε)||(β,μ) ≤ ζ0, ||ϕk(τ,m, ε)||(ν,β,μ,k,ε) ≤ ζ1, ||ψk(τ,m, ε)||(ν,β,μ,k,ε) ≤ ζ2 (88)

for all ε ∈ D(0, ε0) \{0}, equation (80) has a unique solution ωd
k (τ, m, ε) in the space Fd

(ν,β,μ,k,ε)

where β, μ > 0 are defined in Proposition 8 which verifies ||ωd
k (τ, m, ε)||(ν,β,μ,k,ε) ≤ � , for all 

ε ∈ D(0, ε0) \ {0}.

Proof. We start the proof with a lemma which provides appropriate conditions in order to apply 
a fixed point theorem.

Lemma 2. One can choose the constant rQ,RD
> 0, a constant � small enough and three con-

stants ζ0, ζ1, ζ2 > 0 (depending on Q1, Q2, k, CP , μ, ν, ε0, Rl , �l , δl , dl for 0 ≤ l ≤ D) such 
that if

||C0,0(m, ε)||(β,μ) ≤ ζ0, ||ϕk(τ,m, ε)||(ν,β,μ,k,ε) ≤ ζ1, ||ψk(τ,m, ε)||(ν,β,μ,k,ε) ≤ ζ2

for all ε ∈ D(0, ε0) \ {0} the map Hε defined by

Hε(w(τ,m))

:= ε−1

Pm(τ)�(1 + 1
k
)

τk∫
0

(τ k − s)1/k

×
⎛
⎝ 1

(2π)1/2
s

s∫
0

+∞∫
−∞

Q1(i(m − m1))w((s − x)1/k,m − m1)

× Q2(im1)w(x1/k,m1)
1

dxdm1

)
ds
(s − x)x s
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+ RD(im)

Pm(τ)

⎧⎪⎨
⎪⎩

∑
1≤p≤δD−1

AδD,p

�(δD − p)

τk∫
0

(τ k − s)δD−p−1(kpspw(s1/k,m))
ds

s

⎫⎪⎬
⎪⎭

+
D−1∑
l=1

Rl(im)

Pm(τ)

⎧⎪⎨
⎪⎩

ε�l−dl+δl−1

�(
dl,k

k
)

τk∫
0

(τ k − s)
dl,k
k

−1(kδl sδlw(s1/k,m))
ds

s

+
∑

1≤p≤δl−1

Aδl,pε�l−dl+δl−1

�(
dl,k

k
+ δl − p)

τk∫
0

(τ k − s)
dl,k
k

+δl−p−1(kpspw(s1/k,m))
ds

s

}

+ ε−1

Pm(τ)�(1 + 1
k
)

τk∫
0

(τ k − s)1/k

×
⎛
⎝ 1

(2π)1/2
s

s∫
0

+∞∫
−∞

ϕk((s − x)1/k,m − m1, ε)R0(im1)w(x1/k,m1)
1

(s − x)x
dxdm1

⎞
⎠ ds

s

+ ε−1

Pm(τ)�(1 + 1
k
)

τk∫
0

(τ k − s)1/k 1

(2π)1/2
(

+∞∫
−∞

C0,0(m − m1, ε)R0(im1)w(s1/k,m1)dm1)
ds

s

+ ε−1

Pm(τ)�(1 + 1
k
)

τk∫
0

(τ k − s)1/kψk(s
1/k,m, ε)

ds

s
(89)

satisfy the next properties.
i) The following inclusion holds

Hε(B̄(0,�)) ⊂ B̄(0,�) (90)

where B̄(0, �) is the closed ball of radius � > 0 centered at 0 in Fd
(ν,β,μ,k,ε), for all ε ∈

D(0, ε0) \ {0}.
ii) We have

||Hε(w1) −Hε(w2)||(ν,β,μ,k,ε) ≤ 1

2
||w1 − w2||(ν,β,μ,k,ε) (91)

for all w1, w2 ∈ B̄(0, �), for all ε ∈ D(0, ε0) \ {0}.

Proof. We first check the property (90). Let ε ∈ D(0, ε0) \ {0} and w(τ, m) be in Fd
ν,β,μ,k,ε . We 

take ζ0, ζ1, ζ2, � > 0 such that

||w(τ,m)||(ν,β,μ,k,ε) ≤ �, ||C0,0(m, ε)||(β,μ) ≤ ζ0, ||ϕk(τ,m, ε)||(ν,β,μ,k,ε) ≤ ζ1,

||ψk(τ,m, ε)||(ν,β,μ,k,ε) ≤ ζ2,

for all ε ∈ D(0, ε0) \ {0}.
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Using Lemma 1 and Proposition 3 with the lower bound estimates (86) we get that

|| ε−1

Pm(τ)�(1 + 1
k
)

τk∫
0

(τ k − s)1/k

×
⎛
⎝ 1

(2π)1/2
s

s∫
0

+∞∫
−∞

Q1(i(m − m1))w((s − x)1/k,m − m1)

× Q2(im1)w(x1/k,m1)
1

(s − x)x
dxdm1

)
ds

s
||(ν,β,μ,k,ε)

≤ 1

�(1 + 1
k
)(2π)1/2

C3||w(τ,m)||2(ν,β,μ,k,ε)

CP (rQ,RD
)

1
(δD−1)k

≤ 1

�(1 + 1
k
)(2π)1/2

C3�
2

CP (rQ,RD
)

1
(δD−1)k

(92)

Moreover, for 0 ≤ p ≤ δD − 1 and by means of Proposition 2 i), we deduce

||RD(im)

Pm(τ)

AδD,p

�(δD − p)

τk∫
0

(τ k − s)δD−p−1(kpspw(s1/k,m))
ds

s
||(ν,β,μ,k,ε)

≤ AδD,pkpC2.1|ε|
�(δD − p)CP (rQ,R)

1
(δD−1)k

||w(τ,m)||(ν,β,μ,k,ε)

≤ AδD,pkpC2.1ε0

�(δD − p)CP (rQ,R)
1

(δD−1)k

�. (93)

With the help of Proposition 2 ii) and due to the assumptions of (87) we also get that

||Rl(im)

Pm(τ)

ε�l−dl+δl−1

�(
dl,k

k
)

τk∫
0

(τ k − s)
dl,k
k

−1(kδl sδlw(s1/k,m))
ds

s
||(ν,β,μ,k,ε)

≤ kδlC2.2

�(
dl,k

k
)CP (rQ,RD

)
1

(δD−1)k

|ε|�l−dl+δl+k(δl−δD)+dl,k sup
m∈R

| Rl(im)

RD(im)
|||w(τ,m)||(ν,β,μ,k,ε)

≤ kδlC2.2

�(
dl,k

k
)CP (rQ,RD

)
1

(δD−1)k

ε
�l−dl+δl+k(δl−δD)+dl,k

0 sup
m∈R

| Rl(im)

RD(im)
|�, (94)

and that
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||Rl(im)

Pm(τ)

Aδl,pε�l−dl+δl−1

�(
dl,k

k
+ δl − p)

τk∫
0

(τ k − s)
dl,k
k

+δl−p−1(kpspw(s1/k,m))
ds

s
||(ν,β,μ,k,ε)

≤
|Aδl,p|kpC2.2

�(
dl,k

k
+ δl − p)CP (rQ,RD

)
1

(δD−1)k

|ε|�l−dl+δl+k(δl−δD)+dl,k sup
m∈R

| Rl(im)

RD(im)
|||w(τ,m)||(ν,β,μ,k,ε)

≤ |Aδl,p|kpC2.2

�(
dl,k

k
+ δl − p)CP (rQ,RD

)
1

(δD−1)k

ε
�l−dl+δl+k(δl−δD)+dl,k

0 sup
m∈R

| Rl(im)

RD(im)
|�. (95)

Using Lemma 1 and Proposition 3 again with the lower bound estimates (86) we get that

|| ε−1

Pm(τ)�(1 + 1
k
)

τk∫
0

(τ k − s)1/k

×
⎛
⎝ 1

(2π)1/2
s

s∫
0

+∞∫
−∞

ϕk((s − x)1/k,m − m1, ε)

× R0(im1)w(x1/k,m1)
1

(s − x)x
dxdm1

)
ds

s
||(ν,β,μ,k,ε)

≤ 1

�(1 + 1
k
)(2π)1/2

C3||ϕk(τ,m, ε)||(ν,β,μ,k,ε)||w(τ,m)||(ν,β,μ,k,ε)

CP (rQ,RD
)

1
(δD−1)k

≤ 1

�(1 + 1
k
)(2π)1/2

C3ζ1�

CP (rQ,RD
)

1
(δD−1)k

(96)

Moreover, using Proposition 4, we also get

|| ε−1

Pm(τ)�(1 + 1
k
)

τk∫
0

(τ k − s)1/k 1

(2π)1/2
(

+∞∫
−∞

C0,0(m − m1, ε)

× R0(im1)w(s1/k,m1)dm1)
ds

s
||(ν,β,μ,ε) ≤ 1

�(1 + 1
k
)(2π)1/2

C4ζ0�

CP (rQ,RD
)

1
(δD−1)k

(97)

Finally, from Lemma 1 and Proposition 1, one gets

|| ε−1

Pm(τ)�(1 + 1
k
)

τk∫
0

(τ k − s)1/kψk(s
1/k,m, ε)

ds

s
||(ν,β,μ,k,ε)

≤ C1

�(1 + 1
k
)CP (rQ,RD

)
1

(δD−1)k minm∈R |RD(im)|
||ψk(τ,m, ε)||(ν,β,μ,k,ε)

≤ C1

�(1 + 1 )C (r )
1

(δD−1)k min |R (im)|
ζ2 (98)
k P Q,RD m∈R D
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Now, we choose �, ζ0, ζ1, ζ2 > 0 and rQ,RD
> 0 such that

1

�(1 + 1
k
)(2π)1/2

C3�
2

CP (rQ,RD
)

1
(δD−1)k

+
δD−1∑
p=1

|AδD,p|kpC2.1ε0

�(δD − p)CP (rQ,R)
1

(δD−1)k

�

+
D−1∑
l=1

kδlC2.2

�(
dl,k

k
)CP (rQ,RD

)
1

(δD−1)k

ε
�l−dl+δl+k(δl−δD)+dl,k

0 sup
m∈R

| Rl(im)

RD(im)
|�

+
δl−1∑
p=1

|Aδl,p|kpC2.2

�(
dl,k

k
+ δl − p)CP (rQ,RD

)
1

(δD−1)k

ε
�l−dl+δl+k(δl−δD)+dl,k

0 sup
m∈R

| Rl(im)

RD(im)
|�

+ 1

�(1 + 1
k
)(2π)1/2

(C3ζ1 + C4ζ0)�

CP (rQ,RD
)

1
(δD−1)k

+ C1

�(1 + 1
k
)CP (rQ,RD

)
1

(δD−1)k minm∈R |RD(im)|
ζ2 ≤ � (99)

Gathering all the norm estimates (92), (93), (94), (95), (96), (97), (98) with the constraint (99), 
one gets (90).

Now, we check the second property (91). Let w1(τ, m), w2(τ, m) be in Fd
(ν,β,μ,k,ε). We take 

� > 0 such that

||wl(τ,m)||(ν,β,μ,k,ε) ≤ �,

for l = 1, 2, for all ε ∈ D(0, ε0) \ {0}. One can write

Q1(i(m − m1))w1((s − x)1/k,m − m1)Q2(im1)w1(x
1/k,m1)

− Q1(i(m − m1))w2((s − x)1/k,m − m1)Q2(im1)w2(x
1/k,m1)

= Q1(i(m − m1))
(
w1((s − x)1/k,m − m1) − w2((s − x)1/k,m − m1)

)
Q2(im1)w1(x

1/k,m1)

+ Q1(i(m − m1))w2((s − x)1/k,m − m1)Q2(im1)
(
w1(x

1/k,m1) − w2(x
1/k,m1)

)
(100)

and using Lemma 1 and Proposition 3 with the lower bound estimates (86) we get that

|| ε−1

Pm(τ)�(1 + 1
k
)

τk∫
0

(τ k − s)1/k

×
⎛
⎝ 1

(2π)1/2
s

s∫
0

+∞∫
−∞

(Q1(i(m − m1))w1((s − x)1/k,m − m1)Q2(im1)w1(x
1/k,m1)

− Q1(i(m − m1))w2((s − x)1/k,m − m1)
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× Q2(im1)w2(x
1/k,m1))

1

(s − x)x
dxdm1

)
ds

s
||(ν,β,μ,k,ε)

≤ 1

�(1 + 1
k
)(2π)1/2

C3

CP (rQ,RD
)

1
(δD−1)k

× ||w1(τ,m) − w2(τ,m)||(ν,β,μ,k,ε)(||w1(τ,m)||(ν,β,μ,k,ε) + ||w2(τ,m)||(ν,β,μ,k,ε))

≤ 1

�(1 + 1
k
)(2π)1/2

C32�

CP (rQ,RD
)

1
(δD−1)k

||w1(τ,m) − w2(τ,m)||(ν,β,μ,k,ε) (101)

From the estimates (93), (94), (95), (96), (97), (98) and under the constraints (87), we deduce 
that

||RD(im)

Pm(τ)

AδD,p

�(δD − p)

τk∫
0

(τ k − s)δD−p−1(kpsp(w1(s
1/k,m) − w2(s

1/k,m)))
ds

s
||(ν,β,μ,k,ε)

≤ |AδD,p|kpC2.1|ε|
�(δD − p)CP (rQ,RD

)
1

(δD−1)k

||w1(τ,m) − w2(τ,m)||(ν,β,μ,k,ε)

≤ |AδD,p|kpC2.1ε0

�(δD − p)CP (rQ,RD
)

1
(δD−1)k

||w1(τ,m) − w2(τ,m)||(ν,β,μ,k,ε) (102)

and

||Rl(im)

Pm(τ)

ε�l−dl+δl−1

�(
dl,k

k
)

τk∫
0

(τ k − s)
dl,k
k

−1(kδl sδl (w1(s
1/k,m) − w2(s

1/k,m))
ds

s
||(ν,β,μ,k,ε)

≤ kδl C2.2

�(
dl,k

k
)CP (rQ,RD

)
1

(δD−1)k

|ε|�l−dl+δl+k(δl−δD)+dl,k sup
m∈R

| Rl(im)

RD(im)
|||w1(τ,m) − w2(τ,m)||(ν,β,μ,k,ε)

≤ kδl C2.2

�(
dl,k

k
)CP (rQ,RD

)
1

(δD−1)k

ε
�l−dl+δl+k(δl−δD)+dl,k

0 sup
m∈R

| Rl(im)

RD(im)
|||w1(τ,m) − w2(τ,m)||(ν,β,μ,k,ε)

(103)

and that

||Rl(im)

Pm(τ)

Aδl,pε�l−dl+δl−1

�(
dl,k

k
+ δl − p)

τk∫
0

(τ k − s)
dl,k
k

+δl−p−1

× (kpsp(w1(s
1/k,m) − w2(s

1/k,m))
ds

s
||(ν,β,μ,k,ε)

≤ |Aδl,p|kpC2.2

�(
dl,k + δ − p)C (r )

1
(δD−1)k

|ε|�l−dl+δl+k(δl−δD)+dl,k
k l P Q,RD
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× sup
m∈R

| Rl(im)

RD(im)
|||w1(τ,m) − w2(τ,m)||(ν,β,μ,k,ε)

≤ |Aδl,p|kpC2.2

�(
dl,k

k
+ δl − p)CP (rQ,RD

)
1

(δD−1)k

ε
�l−dl+δl+k(δl−δD)+dl,k

0

× sup
m∈R

| Rl(im)

RD(im)
|||w1(τ,m) − w2(τ,m)||(ν,β,μ,k,ε) (104)

and that

|| ε−1

Pm(τ)�(1 + 1
k
)

τk∫
0

(τ k − s)1/k

⎛
⎝ 1

(2π)1/2
s

s∫
0

+∞∫
−∞

ϕk((s − x)1/k,m − m1, ε)

R0(im1)(w1(x
1/k,m1) − w2(x

1/k,m1))
1

(s − x)x
dxdm1

)
ds

s
||(ν,β,μ,k,ε)

≤ 1

�(1 + 1
k
)(2π)1/2

C3||ϕk(τ,m, ε)||(ν,β,μ,k,ε)||w1(τ,m) − w2(τ,m)||(ν,β,μ,k,ε)

CP (rQ,RD
)

1
(δD−1)k

≤ 1

�(1 + 1
k
)(2π)1/2

C3ζ1||w1(τ,m) − w2(τ,m)||(ν,β,μ,k,ε)

CP (rQ,RD
)

1
(δD−1)k

(105)

together with

|| ε−1

Pm(τ)�(1 + 1
k
)

τk∫
0

(τ k − s)1/k 1

(2π)1/2
(

+∞∫
−∞

C0,0(m − m1, ε)R0(im1)

× (w1(s
1/k,m1) − w2(s

1/k,m1))dm1)
ds

s
||(ν,β,μ,k,ε)

≤ 1

�(1 + 1
k
)(2π)1/2

C4ζ0||w1(τ,m) − w2(τ,m)||(ν,β,μ,k,ε)

CP (rQ,RD
)

1
(δD−1)k

(106)

Now, we take � and rQ,RD
such that

1

�(1 + 1
k
)(2π)1/2

C32�

CP (rQ,RD
)

1
(δD−1)k

+
∑

1≤p≤δD−1

|AδD,p|kpC2.1ε0

�(δD − p)CP (rQ,RD
)

1
(δD−1)k

+
∑ kδlC2.2

�(
dl,k )C (r )

1
(δD−1)k

ε
�l−dl+δl+k(δl−δD)+dl,k

0 sup
m∈R

| Rl(im)

RD(im)
|

1≤l≤D−1 k P Q,RD
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+
∑

1≤p≤δl−1

|Aδl,p|kpC2.2

�(
dl,k

k
+ δl − p)CP (rQ,RD

)
1

(δD−1)k

ε
�l−dl+δl+k(δl−δD)+dl,k

0 sup
m∈R

| Rl(im)

RD(im)
|

+ 1

�(1 + 1
k
)(2π)1/2

C3ζ1 + C4ζ0

CP (rQ,RD
)

1
(δD−1)k

≤ 1

2
(107)

Bearing in mind the estimates (101), (102), (103), (104), (105), (106) with the constraint 
(107), one gets (91).

Finally, we choose � and rQ,RD
such that both (99) and (107) are satisfied. This yields our 

lemma. �
We consider the ball B̄(0, �) ⊂ Fd

(ν,β,μ,k,ε) constructed in Lemma 2 which is a complete 
metric space for the norm ||.||(ν,β,μ,k,ε). From the lemma above, we get that Hε is a contractive 
map from B̄(0, �) into itself. Due to the classical contractive mapping theorem, we deduce that 
the map Hε has a unique fixed point denoted by ωk(τ, m, ε) (i.e. Hε(ωk(τ, m, ε)) = ωk(τ, m, ε)) 
in B̄(0, �), for all ε ∈ D(0, ε0) \ {0}. Moreover, the function ωk(τ, m, ε) depends holomorphi-
cally on ε in D(0, ε0) \ {0}. By construction, ωk(τ, m, ε) defines a solution of equation (80). This 
yields the proposition. �

In the next proposition, we construct analytic solutions of equation (72).

Proposition 10. Let the assumption (87) hold. We also choose the sectors Sd and SQ,RD
in such 

a way that (84) and (85) hold. We take the radius rQ,RD
as prescribed in Proposition 9. We also 

assume that the inequalities (88) hold for ζ0, ζ1, ζ2 constructed in Proposition 9. Notice that the 
inequalities for ζ1, ζ2 can be satisfied if ε0 is small enough due to the estimates (79).

Let Sd,θ,h′|ε| be a bounded sector with aperture π/k < θ < π/k + 2δ (where 2δ is the small 
aperture of the unbounded sector Sd ), with direction d and radius h′|ε| for some h′ > 0 indepen-
dent of ε. We choose 0 < β ′ < β .

Then, equation (72) with initial condition U(0, m, ε) ≡ 0 has a solution (T , m) 
→ U(T , m, ε)
defined on Sd,θ,h′|ε| × R for some real number h′ > 0 for all ε ∈ D(0, ε0) \ {0}. Let ε ∈
D(0, ε0) \ {0}, then for each T ∈ Sd,θ,h′|ε|, the function m 
→ U(T , m, ε) belongs to the space 
E(β ′,μ) and for each m ∈ R, the function T 
→ U(T , m, ε) is bounded and holomorphic on 
Sd,θ,h′|ε|. Moreover, the function U(T , m, ε) can be written as a Laplace transform of order 
k in the direction d ,

U(T ,m, ε) = k

∫
Lγ

ωd
k (u,m, ε)e−( u

T
)k du

u
(108)

along a halfline Lγ = R+eiγ ∈ Sd ∪ {0} (the direction γ may depend on T ), where ωd
k (τ, m, ε)

defines a continuous function on (D̄(0, ρ) ∪ Sd) ×R × D(0, ε0) \ {0} which is holomorphic with 
respect to (τ, ε) on (D̄(0, ρ) ∪ Sd) × D(0, ε0) \ {0} and satisfies the estimates: there exists a 
constant �d (independent of ε) such that

|ωd
k (τ,m, ε)| ≤ �d(1 + |m|)−μe−β|m| | τ

ε
|

1 + | τ
ε
|2k

exp(ν|τ
ε
|k) (109)

for all τ ∈ D(0, ρ) ∪ Sd , all m ∈R, all ε ∈ D(0, ε0) \ {0}.
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Proof. Taking into account the requirements stated above in Proposition 10, we get that 
all the assumptions of Proposition 9 are fulfilled. Therefore, the formal mk-Borel transform 
ωk(τ, m, ε) = ∑

n≥1 Un(m, ε)τn/�(n/k) of the formal series Û (T , m, ε) constructed in Propo-
sition 9 is convergent with respect to τ on D(0, ρ) as series with coefficients in the Banach 
space E(β,μ). Moreover, this function ωk(τ, m, ε) can be extended as an analytic function with 
respect to τ on the sector Sd , denoted ωd

k (τ, m, ε), that belongs to the Banach space Fd
(ν,β,μ,k,ε)

and satisfies the bounds ||ωd
k (τ, m, ε)||(ν,β,μ,k,ε) ≤ �d where �d is a constant independent of 

ε in D(0, ε0) \ {0}. This means that (109) must hold. As a result, we get that the formal series 
Û (T , m, ε) ∈ T E(β,μ)[[T ]] is mk-summable in the direction d (see Definition 3). By construc-
tion, its mk-sum U(T , m, ε) in direction d defines a holomorphic function on the sector Sd,θ,h′|ε|
described above in Proposition 10 with values in E(β,μ), for all ε ∈ D(0, ε0) \ {0}. On the other 
hand, the series C0(T , m, ε), F(T , m, ε) ∈ T E(β,μ)[[T ]] are convergent. Therefore, these series 
are mk-summable in any direction d and their mk-sums satisfy

Ld
mk

(ϕk(τ,m, ε))(T ) = C0(T ,m, ε), Ld
mk

(ψk(τ,m, ε))(T ) = F(T ,m, ε)

for all T ∈ D(0, T0/2). Finally, using the properties for the sum, product and derivative of 
mk-sums described in (56), we deduce that the mk-sum U(T , m, ε) in direction d satisfies equa-
tion (76) as a function of (T , m) on Sd,θ,h′|ε| × R, for all ε ∈ D(0, ε0) \ {0}, since the formal 
series Û (T , m, ε) satisfies equation (76). As a result, the function U(T , m, ε) also satisfies equa-
tion (72) as a function of (T , m) on Sd,θ,h′|ε| ×R, for all ε ∈ D(0, ε0) \ {0}. �
5. Analytic solutions of a nonlinear initial value Cauchy problem with complex parameter

Let k ≥ 1 and D ≥ 2 be integers. For 1 ≤ l ≤ D, let dl, δl, �l ≥ 0 be nonnegative integers. We 
assume that

1 = δ1, δl < δl+1, (110)

for all 1 ≤ l ≤ D − 1. We make also the assumption that

dD = (δD − 1)(k + 1), dl > (δl − 1)(k + 1), �D = dD − δD + 1 (111)

for all 1 ≤ l ≤ D−1. Let Q(X), Q1(X), Q2(X), Rl(X) ∈ C[X], 0 ≤ l ≤ D, be polynomials such 
that

deg(Q) ≥ deg(RD) ≥ deg(Rl), deg(RD) ≥ deg(Q1), deg(RD) ≥ deg(Q2),

Q(im) �= 0, RD(im) �= 0 (112)

for all m ∈R, all 0 ≤ l ≤ D − 1.
We consider the following nonlinear initial value problem

Q(∂z)(∂tu(t, z, ε)) = (Q1(∂z)u(t, z, ε))(Q2(∂z)u(t, z, ε)) +
D∑

l=1

ε�l tdl ∂
δl
t Rl(∂z)u(t, z, ε)

+ c0(t, z, ε)R0(∂z)u(t, z, ε) + f (t, z, ε) (113)

for given initial data u(0, z, ε) ≡ 0.
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The coefficient c0(t, z, ε) and the forcing term f (t, z, ε) are constructed as follows. We con-
sider sequences of functions m 
→ C0,n(m, ε), for n ≥ 0 and m 
→ Fn(m, ε), for n ≥ 1, that 
belong to the Banach space E(β,μ) for some β > 0, μ > max(deg(Q1) + 1, deg(Q2) + 1) and 
which depend holomorphically on ε ∈ D(0, ε0). We assume that there exist constants K0, T0 > 0
such that (71) hold for all n ≥ 1, for all ε ∈ D(0, ε0). We deduce that the functions

C0(T , z, ε) =
∑
n≥0

F−1(m 
→ C0,n(m, ε))(z)T n, F(T , z, ε) =
∑
n≥1

F−1(m 
→ Fn(m, ε))(z)T n

represent bounded holomorphic functions on D(0, T0/2) × Hβ ′ × D(0, ε0) for any 0 < β ′ < β

(where F−1 denotes the inverse Fourier transform defined in Proposition 7). We define the coef-
ficient c0(t, z, ε) and the forcing term f (t, z, ε) as

c0(t, z, ε) = C0(εt, z, ε), f (t, z, ε) = F(εt, z, ε). (114)

The functions c0 and f are holomorphic and bounded on D(0, r) ×Hβ ′ × D(0, ε0) where rε0 <

T0/2.
We make the additional assumption that there exists an unbounded sector

SQ,RD
= {z ∈ C/|z| ≥ rQ,RD

, |arg(z) − dQ,RD
| ≤ ηQ,RD

}
with direction dQ,RD

∈ R, aperture ηQ,RD
> 0 for some radius rQ,RD

> 0 such that

Q(im)

RD(im)
∈ SQ,RD

(115)

for all m ∈R.

Definition 4. Let ς ≥ 2 be an integer. For all 0 ≤ p ≤ ς −1, we consider open sectors Ep centered 
at 0, with radius ε0 and opening π

k
+ κp , with κp > 0 small enough such that Ep ∩ Ep+1 �= ∅, for 

all 0 ≤ p ≤ ς − 1 (with the convention that Eς = E0). Moreover, we assume that the intersection 
of any three different elements in (Ep)0≤p≤ς is empty and that ∪ς−1

p=0Ep = U \ {0}, where U is 
some neighborhood of 0 in C. Such a set of sectors {Ep}0≤p≤ς−1 is called a good covering in C

∗.

Definition 5. Let {Ep}0≤p≤ς−1 be a good covering in C∗. Let T be an open bounded sector 
centered at 0 with radius rT and consider a family of open sectors

Sdp,θ,ε0rT = {T ∈ C
∗/|T | < ε0rT , |dp − arg(T )| < θ/2}

with aperture θ > π/k and where dp ∈R, for all 0 ≤ p ≤ ς − 1, are directions which satisfy the 
following constraints: Let ql(m) be the roots of the polynomials (82) defined by (83) and Sdp , 
0 ≤ p ≤ ς − 1 be unbounded sectors centered at 0 with directions dp and with small aperture. 
We assume that

1) There exists a constant M1 > 0 such that

|τ − ql(m)| ≥ M1(1 + |τ |) (116)

for all 0 ≤ l ≤ (δD − 1)k − 1, all m ∈R, all τ ∈ Sdp ∪ D̄(0, ρ), for all 0 ≤ p ≤ ς − 1.
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2) There exists a constant M2 > 0 such that

|τ − ql0(m)| ≥ M2|ql0(m)| (117)

for some l0 ∈ {0, . . . , (δD − 1)k − 1}, all m ∈R, all τ ∈ Sdp ∪ D̄(0, ρ), for all 0 ≤ p ≤ ς − 1.
3) For all 0 ≤ p ≤ ς − 1, for all t ∈ T , all ε ∈ Ep , we have that εt ∈ Sdp,θ,ε0rT .
We say that the family {(Sdp,θ,ε0rT )0≤p≤ς−1, T } is associated to the good covering

{Ep}0≤p≤ς−1.

In the next first main result, we construct a family of actual holomorphic solutions to equation
(113) for given initial data at t = 0 being identically equal to zero, defined on the sectors Ep

with respect to the complex parameter ε. We can also control the difference between any two 
neighboring solutions on the intersection of sectors Ep ∩ Ep+1 and show that it is exponentially 
flat of order at most k.

Theorem 1. We consider equation (113) and we assume that the constraints (110), (111), (112)
and (115) hold. We also make the additional assumption that

δD ≥ δl + 2

k
, �l + k(1 − δD) + 1 ≥ 0, (118)

hold for all 1 ≤ l ≤ D−1. Let the coefficient c0(t, z, ε) and forcing term f (t, z, ε) be constructed 
as in (114). Let a good covering {Ep}0≤p≤ς−1 in C∗ be given, for which a family of sectors 
{(Sdp,θ,ε0rT )0≤p≤ς−1, T } associated to this good covering can be considered.

Then, there exists a radius rQ,RD
> 0 large enough, ε0 > 0 small enough and a constant 

ζ0 > 0 small enough such that if

||C0,0(m, ε)||(β,μ) < ζ0

for all ε ∈ D(0, ε0) \ {0}, then for every 0 ≤ p ≤ ς − 1, one can construct a solution up(t, z, ε)
of equation (113) with up(0, z, ε) ≡ 0 which defines a bounded holomorphic function on the 
domain (T ∩ D(0, h′)) × Hβ ′ × Ei for any given 0 < β ′ < β and for some h′ > 0. Moreover, 
there exist constants 0 < h′′ ≤ h′, Kp, Mp > 0 (independent of ε) such that

sup
t∈T ∩D(0,h′′),z∈Hβ′

|up+1(t, z, ε) − up(t, z, ε)| ≤ Kpe
− Mp

|ε|k (119)

for all ε ∈ Ep+1 ∩ Ep , for all 0 ≤ p ≤ ς − 1 (where by convention uς = u0).

Proof. Using Proposition 10, one can choose rQ,RD
> 0 large enough, ε0 > 0 small enough and 

ζ0 > 0 small enough such that

||C0,0(m, ε)||(β,μ) ≤ ζ0

for all ε ∈ D(0, ε0) \ {0} such that for each direction dp with 0 ≤ p ≤ ς − 1, one can construct a 
function Udp (T , m, ε) which satisfies Udp (0, m, ε) ≡ 0 and solves the equation
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Q(im)(∂T U(T ,m, ε))

= ε−1 1

(2π)1/2

+∞∫
−∞

Q1(i(m − m1))U(T ,m − m1, ε)

× Q2(im1)U(T ,m1, ε)dm1

+
D∑

l=1

Rl(im)ε�l−dl+δl−1T dl ∂
δl

T U(T ,m, ε)

+ ε−1 1

(2π)1/2

+∞∫
−∞

C0(T ,m − m1, ε)U(T ,m1, ε)dm1

+ ε−1 1

(2π)1/2

+∞∫
−∞

C0,0(m − m1, ε)U(T ,m1, ε)dm1 + ε−1F(T ,m, ε) (120)

where

C0(T ,m, ε) =
∑
n≥1

C0,n(m, ε)T n, F (T ,m, ε) =
∑
n≥1

Fn(m, ε)T n

are convergent series in D(0, T0/2) with values in E(β,μ), for all ε ∈ D(0, ε0) \ {0}. The function 
(T , m) 
→ Udp (T , m, ε) is well defined on the domain Sdp,θ,h′|ε| ×R where h′ > 0 is some real 
number, for all ε ∈ D(0, ε0) \ {0}. Moreover, Udp (T , m, ε) can be written as a Laplace transform 
of order k in the direction dp ,

Udp (T ,m, ε) = k

∫
Lγp

ω
dp

k (u,m, ε)e−( u
T

)k du

u
(121)

along a halfline Lγp = R+eiγp ∈ Sdp ∪ {0} (the direction γp may depend on T ), where 

ω
dp

k (τ, m, ε) defines a continuous function on (D̄(0, ρ) ∪ Sdp ) × R × D(0, ε0) \ {0} which is 
holomorphic with respect to (τ, ε) on (D̄(0, ρ) ∪ Sdp ) × D(0, ε0) \ {0} for any m ∈ R and satis-
fies the estimates: there exists a constant �dp (independent of ε) such that

|ωdp

k (τ,m, ε)| ≤ �dp (1 + |m|)−μe−β|m| | τ
ε
|

1 + | τ
ε
|2k

exp(ν|τ
ε
|k) (122)

for all τ ∈ D(0, ρ) ∪ Sdp , all m ∈ R, all ε ∈ D(0, ε0) \ {0}. It is worth noticing that all the 

functions τ 
→ ω
dp

k (τ, m, ε) are analytic continuation on the sectors Sdp of a common function 
denoted by

ωk(τ,m, ε) =
∑

Un(m, ε)
τn

�(n
k
)

n≥1
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which is a convergent series on D(0, ρ) with coefficients in E(β,μ) and where Un(m, ε) ∈ E(β,μ)

are the coefficients of the formal series Û(T , m, ε) = ∑
n≥1 Un(m, ε)T n solution of equation

(120), for all ε ∈ D(0, ε0) \ {0}. Using the estimates (122), we get that the function

(T , z) 
→ Udp (T , z, ε) =F−1(m 
→ Udp (T ,m, ε))(z)

defines a bounded holomorphic function on Sdp,θ,h′|ε| × Hβ ′ , for all ε ∈ D(0, ε0) \ {0} and any 
0 < β ′ < β . For all 0 ≤ p ≤ ς − 1, we define

up(t, z, ε) = Udp (εt, z, ε) = k

(2π)1/2

+∞∫
−∞

∫
Lγp

ω
dp

k (u,m, ε)e−( u
εt

)k eizm du

u
dm. (123)

By construction (see 3) in Definition 5), the function up(t, z, ε) defines a bounded holomorphic 
function on the domain (T ∩D(0, h′)) ×Hβ ′ ×Ep . Moreover, we have up(0, z, ε) ≡ 0 and using 
the properties of the Fourier inverse transform from Proposition 7, we deduce that up(t, z, ε)
solves the main equation (113) on (T ∩ D(0, h′)) × Hβ ′ × Ep .

Now, we proceed to the proof of the estimates (119). Let p ∈ {0, . . . , ς − 1}. Using the fact 
that the function u 
→ ωk(u, m, ε) exp(−( u

εt
)k)/u is holomorphic on D(0, ρ) for all (m, ε) ∈

R × (D(0, ε0) \ {0}), its integral along the union of a segment starting from 0 to (ρ/2)eiγp+1 , an 
arc of circle with radius ρ/2 which connects (ρ/2)eiγp+1 and (ρ/2)eiγp and a segment starting 
from (ρ/2)eiγp to 0, is equal to zero. Therefore, we can write the difference up+1 − up as a sum 
of three integrals,

up+1(t, z, ε) − up(t, z, ε) = k

(2π)1/2

+∞∫
−∞

∫
Lρ/2,γp+1

ω
dp+1
k (u,m, ε)e−( u

εt
)k eizm du

u
dm

− k

(2π)1/2

+∞∫
−∞

∫
Lρ/2,γp

ω
dp

k (u,m, ε)e−( u
εt

)k eizm du

u
dm

+ k

(2π)1/2

+∞∫
−∞

∫
Cρ/2,γp,γp+1

ωk(u,m, ε)e−( u
εt

)k eizm du

u
dm (124)

where Lρ/2,γp+1 = [ρ/2, +∞)eiγp+1 , Lρ/2,γp = [ρ/2, +∞)eiγp and Cρ/2,γp,γp+1 is an arc of 
circle with radius connecting (ρ/2)eiγp and (ρ/2)eiγp+1 with a well chosen orientation.

We give estimates for the quantity

I1 =

∣∣∣∣∣∣∣∣
k

(2π)1/2

+∞∫
−∞

∫
Lρ/2,γ

ω
dp+1
k (u,m, ε)e−( u

εt
)k eizm du

u
dm

∣∣∣∣∣∣∣∣
.

p+1
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By construction, the direction γp+1 (which depends on εt) is chosen in such a way that 
cos(k(γp+1 − arg(εt))) ≥ δ1, for all ε ∈ Ep ∩ Ep+1, all t ∈ T ∩ D(0, h′), for some fixed δ1 > 0. 
From the estimates (122), we get that

I1 ≤ k

(2π)1/2

+∞∫
−∞

+∞∫
ρ/2

�dp+1(1 + |m|)−μe−β|m|
r
|ε|

1 + ( r
|ε| )2k

× exp(ν(
r

|ε| )
k) exp(−cos(k(γp+1 − arg(εt)))

|εt |k rk)e−mIm(z) dr

r
dm

≤ k�dp+1

(2π)1/2

+∞∫
−∞

e−(β−β ′)|m|dm

+∞∫
ρ/2

1

|ε| exp(−(
δ1

|t |k − ν)(
r

|ε| )
k)dr

≤ 2k�dp+1

(2π)1/2

+∞∫
0

e−(β−β ′)mdm

+∞∫
ρ/2

|ε|k−1

( δ1
|t |k − ν)k(

ρ
2 )k−1

×
( δ1
|t |k − ν)krk−1

|ε|k exp(−(
δ1

|t |k − ν)(
r

|ε| )
k)dr

≤ 2k�dp+1

(2π)1/2

|ε|k−1

(β − β ′)( δ1
|t |k − ν)k(

ρ
2 )k−1

exp(−(
δ1

|t |k − ν)
(ρ/2)k

|ε|k )

≤ 2k�dp+1

(2π)1/2

|ε|k−1

(β − β ′)δ2k(
ρ
2 )k−1

exp(−δ2
(ρ/2)k

|ε|k ) (125)

for all t ∈ T ∩ D(0, h′) and |Im(z)| ≤ β ′ with |t | < ( δ1
δ2+ν

)1/k , for some δ2 > 0, for all ε ∈
Ep ∩ Ep+1.

In the same way, we also give estimates for the integral

I2 =

∣∣∣∣∣∣∣
k

(2π)1/2

+∞∫
−∞

∫
Lρ/2,γp

ω
dp

k (u,m, ε)e−( u
εt

)k eizm du

u
dm

∣∣∣∣∣∣∣ .

Namely, the direction γp (which depends on εt) is chosen in such a way that cos(k(γp −
arg(εt))) ≥ δ1, for all ε ∈ Ep ∩ Ep+1, all t ∈ T ∩ D(0, h′), for some fixed δ1 > 0. Again from the 
estimates (122) and following the same steps as in (125), we get that

I2 ≤ 2k�dp

(2π)1/2

|ε|k−1

(β − β ′)δ2k(
ρ
2 )k−1

exp(−δ2
(ρ/2)k

|ε|k ) (126)

for all t ∈ T ∩ D(0, h′) and |Im(z)| ≤ β ′ with |t | < ( δ1
δ2+ν

)1/k , for some δ2 > 0, for all ε ∈
Ep ∩ Ep+1.
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Finally, we give upper bound estimates for the integral

I3 =

∣∣∣∣∣∣∣∣
k

(2π)1/2

+∞∫
−∞

∫
Cρ/2,γp,γp+1

ωk(u,m, ε)e−( u
εt

)k eizm du

u
dm

∣∣∣∣∣∣∣∣
.

By construction, the arc of circle Cρ/2,γp,γp+1 is chosen in such a way that cos(k(θ −
arg(εt))) ≥ δ1, for all θ ∈ [γp, γp+1] (if γp < γp+1), θ ∈ [γp+1, γp] (if γp+1 < γp), for all t ∈ T , 
all ε ∈ Ep ∩ Ep+1, for some fixed δ1 > 0. Bearing in mind (122) and (22), we get that

I3 ≤ k

(2π)1/2

+∞∫
−∞

∣∣∣∣∣∣∣
γp+1∫
γp

max
0≤p≤ς−1

�dp (1 + |m|)−μe−β|m|
ρ/2
|ε|

1 + (
ρ/2
|ε| )2k

× exp(ν(
ρ/2

|ε| )k) exp(−cos(k(θ − arg(εt)))

|εt |k (
ρ

2
)k) e−mIm(z)dθ

∣∣∣dm

≤ k(max0≤p≤ς−1 �dp )

(2π)1/2

+∞∫
−∞

e−(β−β ′)|m|dm × |γp − γp+1|ρ/2

|ε| exp(−
( δ1
|t |k − ν)

2
(
ρ/2

|ε| )k)

× exp(−
( δ1
|t |k − ν)

2
(
ρ/2

|ε| )k)

≤ 2k(max0≤p≤ς−1 �dp )|γp − γp+1|
(2π)1/2(β − β ′)

sup
x≥0

x1/ke
−(

δ1
|t |k −ν)x × exp(−

( δ1
|t |k − ν)

2
(
ρ/2

|ε| )k)

≤ 2k(max0≤p≤ς−1 �dp )|γp − γp+1|
(2π)1/2(β − β ′)

(
1/k

δ2
)1/ke−1/k exp(−δ2

2
(
ρ/2

|ε| )k) (127)

for all t ∈ T ∩ D(0, h′) and |Im(z)| ≤ β ′ with |t | < ( δ1
δ2+ν

)1/k , for some δ2 > 0, for all ε ∈
Ep ∩ Ep+1.

Finally, gathering the three above inequalities (125), (126) and (127), we deduce from the 
decomposition (124) that

|up+1(t, z, ε) − up(t, z, ε)|

≤ 2k(�dp + �dp+1)

(2π)1/2

|ε|k−1

(β − β ′)δ2k(
ρ
2 )k−1

exp(−δ2
(ρ/2)k

|ε|k )

+ 2k(max0≤p≤ς−1 �dp )|γp − γp+1|
(2π)1/2(β − β ′)

(
1/k

δ2
)1/ke−1/k exp(−δ2

2
(
ρ/2

|ε| )k)

for all t ∈ T ∩ D(0, h′) and |Im(z)| ≤ β ′ with |t | < ( δ1
δ2+ν

)1/k , for some δ2 > 0, for all ε ∈
Ep ∩ Ep+1. Therefore, the inequality (119) holds. �
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6. Existence of k-summable formal series in the complex parameter of the initial value 
problem

6.1. k-Summable formal series and the Ramis–Sibuya theorem

We recall the definition of k-Borel summability of formal series with coefficients in a Banach 
space, see [1].

Definition 6. Let k ≥ 1 be an integer. A formal series

X̂(ε) =
∞∑

j=0

aj

j ! ε
j ∈ F[[ε]]

with coefficients in a Banach space (F, ||.||F) is said to be k-summable with respect to ε in the 
direction d ∈ R if

i) there exists ρ ∈ R+ such that the following formal series, called formal Borel transform of 
X̂ of order k

Bk(X̂)(τ ) =
∞∑

j=0

aj τ
j

j !�(1 + j
k
)

∈ F[[τ ]],

is absolutely convergent for |τ | < ρ,
ii) there exists δ > 0 such that the series Bk(X̂)(τ ) can be analytically continued with respect 

to τ in a sector Sd,δ = {τ ∈ C
∗ : |d − arg(τ )| < δ}. Moreover, there exist C > 0, and K > 0 such 

that

||B(X̂)(τ )||F ≤ CeK|τ |k

for all τ ∈ Sd,δ .

If this is so, the vector valued Laplace transform of order k of Bk(X̂)(τ ) in the direction d is 
defined by

Ld
k (Bk(X̂))(ε) = ε−k

∫
Lγ

Bk(X̂)(u)e−(u/ε)k kuk−1du,

along a half-line Lγ = R+eiγ ⊂ Sd,δ ∪ {0}, where γ depends on ε and is chosen in such a way 
that cos(k(γ − arg(ε))) ≥ δ1 > 0, for some fixed δ1, for all ε in a sector

Sd,θ,R1/k = {ε ∈ C
∗ : |ε| < R1/k, |d − arg(ε)| < θ/2},

where π
k

< θ < π
k

+ 2δ and 0 < R < δ1/K . The function Ld
k (Bk(X̂))(ε) is called the k-sum of 

the formal series X̂(t) in the direction d . It is bounded and holomorphic on the sector Sd,θ,R1/k

and has the formal series X̂(ε) as the Gevrey asymptotic expansion of order 1/k with respect to 
ε on Sd,θ,R1/k . This means that for all π < θ1 < θ , there exist C, M > 0 such that
k
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||Ld
k (Bk(X̂))(ε) −

n−1∑
p=0

ap

p! ε
p||F ≤ CMn�(1 + n

k
)|ε|n

for all n ≥ 1, all ε ∈ Sd,θ1,R
1/k .

Now, we state a cohomological criterion for k-summability of formal series with coefficients 
in Banach spaces (see [2], p. 121 or [14], Lemma XI-2-6) which is known as the Ramis–Sibuya 
theorem in the literature. This result is a crucial tool in the proof of our main result (Theorem 2).

Theorem (RS). Let (F, ||.||F) be a Banach space over C and {Ep}0≤i≤ς−1 be a good covering 
in C∗. For all 0 ≤ p ≤ ς − 1, let Gp be a holomorphic function from Ep into the Banach space 
(F, ||.||F) and let the cocycle �p(ε) = Gp+1(ε) − Gp(ε) be a holomorphic function from the 
sector Zp = Ep+1 ∩ Ep into E (with the convention that Eς = E0 and Gς = G0). We make the 
following assumptions.

1) The functions Gp(ε) are bounded as ε ∈ Ep tends to the origin in C, for all 0 ≤ p ≤ ς − 1.
2) The functions �p(ε) are exponentially flat of order 1/k on Zp , for all 0 ≤ p ≤ ς − 1. This 

means that there exist constants Cp, Ap > 0 such that

||�p(ε)||F ≤ Cpe−Ap/|ε|k

for all ε ∈ Zp , all 0 ≤ p ≤ ς − 1.
Then, for all 0 ≤ p ≤ ν − 1, the functions Gp(ε) are the k-sums on Ep of a common 

k-summable formal series Ĝ(ε) ∈ F[[ε]].

6.2. Construction of k-summable formal series in the complex parameter of the initial value 
problem

In this subsection, we establish the second main result of our work, namely the existence of 
a formal power series in the parameter ε whose coefficients are bounded holomorphic functions 
on the product of a sector with small radius centered at 0 and a strip in C2, that is a solution of 
equation (113) and which is the common Gevrey asymptotic expansion of order 1/k of the actual 
solutions up(t, z, ε) of (113) constructed in Theorem 1.

The second main result of this work can be stated as follows.

Theorem 2. Let us assume that the hypotheses of Theorem 1 hold. Then, there exists a formal 
power series

û(t, z, ε) =
∑
m≥0

hm(t, z)εm/m!

solution of equation (113), whose coefficients hm(t, z) belong to the Banach space F of bounded 
holomorphic functions on (T ∩ D(0, h′′)) × Hβ ′ equipped with supremum norm, where h′′ > 0
is constructed in Theorem 1, and such that the functions up(t, z, ε) defined in Theorem 1, seen 
as holomorphic functions from Ep into F, are its k-sums on the sectors Ep, for all 0 ≤ p ≤ ς − 1. 
In other words, for all 0 ≤ p ≤ ς − 1, there exist two constants Cp, Mp > 0 such that
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sup
t∈T ∩D(0,h′′),z∈Hβ′

|up(t, z, ε) −
n−1∑
m=0

hm(t, z)
εm

m! | ≤ CpMn
p�(1 + n

k
)|ε|n (128)

for all n ≥ 1, all ε ∈ Ep .

Proof. We consider the family of functions up(t, z, ε), 0 ≤ p ≤ ς − 1 constructed in Theo-
rem 1. For all 0 ≤ p ≤ ς − 1, we define Gp(ε) := (t, z) 
→ up(t, z, ε), which is by construction 
a holomorphic and bounded function from Ep into the Banach space F of bounded holomorphic 
functions on (T ∩ D(0, h′′)) × Hβ ′ equipped with the supremum norm, where T is introduced 
in Definition 5, h′′ > 0 is set in Theorem 1 and β ′ > 0 is the width of the strip Hβ ′ on which 
the coefficients c0 and f are defined with respect to z (see (114)). Bearing in mind the estimates 
(119), we see that the cocycle �p(ε) = Gp+1(ε) − Gp(ε) is exponentially flat of order k on 
Zp = Ep ∩ Ep+1, for any 0 ≤ p ≤ ς − 1.

From Theorem (RS) stated above, there exists a formal power series Ĝ(ε) ∈ F[[ε]] such that 
the functions Gp(ε) are the k-sums on Ep of Ĝ(ε) as F-valued functions, for all 0 ≤ p ≤ ς − 1. 
We set

Ĝ(ε) =
∑
m≥0

hm(t, z)εm/m! =: û(t, z, ε).

It remains to show that the formal series û(t, z, ε) satisfies the main equation (113). Since the 
functions Gp(ε) are the k-sums of Ĝ(ε), we have in particular that

lim
ε→0,ε∈Ep

sup
t∈T ∩D(0,h′′),z∈Hβ′

|∂m
ε up(t, z, ε) − hm(t, z)| = 0 (129)

for all 0 ≤ p ≤ ς − 1, all m ≥ 0. Now, we choose some p ∈ {0, . . . , ς − 1}. By construction, 
the function up(t, z, ε) is a solution of (113). We take the derivative of order m ≥ 0 with respect 
to ε on the left and right handside of equation (113). From the Leibniz rule, we deduce that 
∂m
ε up(t, z, ε) verifies the following equation

Q(∂z)(∂t ∂
m
ε up(t, z, ε)) =

∑
m1+m2=m

m!
m1!m2! (Q1(∂z)∂

m1
ε up(t, z, ε))(Q2(∂z)∂

m2
ε up(t, z, ε))

+
D∑

l=1

( ∑
m1+m2=m

m!
m1!m2!∂

m1
ε (ε�l )tdl ∂

δl
t Rl(∂z)∂

m2
ε up(t, z, ε)

)

+
∑

m1+m2=m

m!
m1!m2!∂

m1
ε c0(t, z, ε)R0(∂z)∂

m2
ε up(t, z, ε) + ∂m

ε f (t, z, ε)

(130)

for all m ≥ 0, all (t, z, ε) ∈ (T ∩ D(0, h′′)) × Hβ ′ × Ep . If we let ε tend to zero in (130) and if 
we use (129), we get the recursion
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Q(∂z)(∂thm(t, z)) =
∑

m1+m2=m

m!
m1!m2! (Q1(∂z)hm1(t, z))(Q2(∂z)hm2(t, z))

+
D∑

l=1

m!
(m − �l)! t

dl ∂
δl
t Rl(∂z)hm−�l

(t, z)

+
∑

m1+m2=m

m!
m1!m2! (∂

m1
ε c0)(t, z,0)R0(∂z)hm2(t, z) + (∂m

ε f )(t, z,0)

(131)

for all m ≥ max1≤l≤D �l , all (t, z) ∈ (T ∩ D(0, h′′)) × Hβ ′ . Since the functions c0(t, z, ε) and 
f (t, z, ε) are analytic with respect to ε at 0, we know that

c0(t, z, ε) =
∑
m≥0

(∂m
ε c0)(t, z,0)

m! εm, f (t, z, ε) =
∑
m≥0

(∂m
ε f )(t, z,0)

m! εm (132)

for all ε ∈ D(0, ε0), all z ∈ Hβ ′ . On other hand, one can check by direct inspection from the 
recursion (131) and the expansions (132) that the formal series û(t, z, ε) = ∑

m≥0 hm(t, z)εm/m!
solves equation (113). �
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