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Abstract

We address the analyticity and large time decay rates for strong solutions of the Hall-MHD equations. By 
Gevrey estimates, we show that the strong solution with small initial date in Hr (R3) with r > 5

2 becomes 
analytic immediately after t > 0, and the radius of analyticity will grow like 

√
t in time. Upper and lower 

bounds on the decay of higher order derivatives are also obtained, which extends the previous work by Chae 
and Schonbek (2013) [4].
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1. Introduction and main results

In this paper we address the analyticity of strong solutions to the incompressible viscous 
resistive Hall-Magnetohydrodynamic equations. The incompressible viscous resistive Hall-MHD 
equations take the following form:{

∂tu + u · ∇u + ∇π = B · ∇B + �u,

∂tB − ∇ × (u × B) + ∇ × ((∇ × B) × B) = �B,

divu = divB = 0,

(1.1)
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where u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and B(x, t) = (B1(x, t), B2(x, t), B3(x, t)), (x, t) ∈
R3 × [0, ∞), are the fluid velocity and magnetic field, π = p + 1

2 |B|2, where p is the pressure. 
We will consider the Cauchy problem for (1.1), so we prescribe the initial data

u(x,0) = u0(x), B(x,0) = B0(x).

The initial data u0 and B0 satisfy the divergence free condition,

divu0(x) = divB0(x) = 0.

The application of Hall-MHD equations is mainly from the understanding of magnetic reconnec-
tion phenomena [10,12,13], where the topology structure of the magnetic field changes dramat-
ically and the Hall effect must be included to get a correct description of this physical process. 
The authors in [1] had derived the Hall-MHD equations from a two-fluid Euler–Maxwell system 
for electrons and ions by some scaling limit arguments. They also provided a kinetic formulation 
for the Hall-MHD. Recently, there are many researches on the Hall-MHD equations, concerning 
global weak solutions [1,5], local and global (small) strong solutions [5,7,3,8], singularity for-
mation in Hall-MHD [6], and the asymptotic behavior of weak and strong solutions [4,23]. In [6]
we have showed that the Hall-MHD (1.1) without resistivity is not globally in time well-posed 
in any Hm(R3) with m > 7

2 , i.e. for some axisymmetric smooth data, either the solution will 
become singular instantaneously, or the solution blows up in finite time. Note that singularity 
formation in compressible fluid was proved long time ago, however, the question whether the 
incompressible Navier–Stokes equation will develop singularity in finite time is still open. So we 
believe the Hall-MHD model is not only of physical importance but also mathematically inter-
esting, since it provides an example where singularity may develop in incompressible fluids as 
shown in [6].

Chae and Schonbek [4] investigated the temporal decay estimates for weak solutions to Hall-
MHD system with initial data in L1 ∩ L2. They also obtained algebraic decay rates for higher 
order Sobolev norms of strong solutions to (1.1) with small initial data. It turned out that the Hall 
term does not affect the time asymptotic behavior, and the time decay rates behave like those 
of the corresponding heat equation. Here we generalized their results to cover more classes of 
initial data. The proof follows the Fourier splitting method developed by Schonbek and many 
other authors, one may refer to [2,16–20,24] and the references therein.

Consider the heat system with same initial data (u0, B0)

∂tv = �v, v(x,0) = u0(x),

∂tw = �w, w(x,0) = B0(x). (1.2)

Before introducing the result, we define some notations. ‖ · ‖p(1 ≤ p ≤ ∞) denotes the 
usual Lp(R3) norm. Let V = {v ∈ (C∞

0 (R3))3 : ∇ · v = 0} and H be the closure of V in 
(L2(R3))3. We also introduce the following weighted function space W2 = {v : ‖v‖2

W2
:=∫

R3 |x||v(x)|2dx < ∞}.

Theorem 1.1 (Upper bound). Let (u0, B0) ∈ H × H and (u(x, t), B(x, t)) be a weak solution of 
the Hall-MHD equations with initial datum (u(x, 0), B(x, 0)) = (u0(x), B0(x)).
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(1) Assume that the solution (v, w) of (1.2) satisfies

‖v(t)‖2
2 + ‖w(t)‖2

2 ≤ C(t + 1)−α (1.3)

for all t ≥ 0, some constant C > 0 and α ≥ 0. Then

‖u(t)‖2
2 + ‖B(t)‖2

2 ≤ C(t + 1)−ᾱ, ᾱ = min{α,
5

2
}. (1.4)

(2) If 0 ≤ α ≤ 5/2, then there is a constant C, depending only on the L2-norm of the initial 
datum (u0, B0) such that for D(x, t) = (u − v, B − w)(x, t), we have

‖D(t)‖2
2 ≤

⎧⎨⎩
C(t + 1)−5/2, if 1 < α ≤ 5/2,

C(t + 1)−5/2(1 + log2(t + 1)), if α = 1,

C(t + 1)−5/2+2(1−α), if 0 ≤ α < 1.

(1.5)

Following the ideas developed in [18,19], we also investigate the lower bounds of large time 
decay rates for weak solutions to the Hall-MHD equations (1.1). Given u = (u1, u2, u3) and B =
(B1, B2, B3) in [L1(0, ∞; L2(R3))]3, introduce the matrices Ã= [Ãij ], C̃ = [C̃ij ], and 〈x, B0〉 =
[〈x, B0〉ij ], where

Ãij =
∞∫

0

∫
R3

(uiuj − BiBj )(x, t)dxdt,

C̃ij =
∞∫

0

∫
R3

(uiBj − Biuj )(x, t)dxdt,

〈x,B0〉ij =
∫
R3

xjB0i (x)dx.

Finally we define

M0 = {(u,B) ∈ [L1(0,∞;L2(R3))]6 : Ã is scalar and C̃ = 〈x,B0〉}.
Now we can state the lower bound results.

Theorem 1.2 (Lower bound). Let (u0, B0) ∈ H × H and (u(x, t), B(x, t)) be a weak solution of 
the Hall-MHD equations with initial datum (u0(x), B0(x)).

(1) Assume that the solution (v, w) of (1.2) satisfies

c1(t + 1)−α ≤ ‖v(t)‖2
2 + ‖w(t)‖2

2 ≤ C1(t + 1)−α (1.6)

for all t ≥ 0, some constants c, C > 0 and 0 ≤ α < 5
2 . Then there exist c2, C2 > 0 such that

c2(t + 1)−α ≤ ‖u(t)‖2
2 + ‖B(t)‖2

2 ≤ C2(t + 1)−α. (1.7)
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(2) If (u0, B0) ∈ [W2 ∩ H ∩ [L1(Rn)]n]2 (so that û0(0) = 0 and B̂0(0) = 0), and (u, B) /∈ M0, 
then there exist c3, C3 > 0 such that

c3(t + 1)−5/2 ≤ ‖u(·, t)‖2
2 + ‖B(·, t)‖2

2 ≤ C3(t + 1)−5/2.

In [5], the authors constructed the local and global in time strong solutions to the Hall-
MHD (1.1). We record their results here as a lemma.

Lemma 1.3. (Theorems 2.2 and 2.3 in [5]) Let (u0, B0) ∈ Hr(R3) with r > 5
2 , then there exists a 

unique strong solution (u, B) ∈ L∞([0, T ); Hr(R3)) ∩ Lip([0, T ); Hr−2(R3)) to the Hall-MHD 
equations (1.1) with (u0, B0), where T = T (‖u0‖Hr +‖B0‖Hr ). Moreover, there exists a positive 
constant K1(r), such that if ‖u0‖Hr + ‖B0‖Hr ≤ K1(r), then T = ∞ and the solution becomes 
global.

Remark 1.4. We remark that the result in [5] is a little stronger, since the authors required that 
the exponent r should be an integer. However, one can extend their result to any real r > 5

2 by 
using the commutator estimates proved in [11].

Remark 1.5. The weak and strong solutions obtained in Theorem 1.1 and Lemma 1.3 are the 
same, i.e. the weak–strong uniqueness holds for the Hall-MHD system (1.1). Indeed by using 
the standard methods developed for the Navier–Stokes equations [15,21,22], one can resolve this 
problem easily. For example, assume that (u, B) and (v, H) are weak and strong solutions to the 
Hall-MHD equations proved in Theorem 1.1 and Lemma 1.3 respectively. We need to show that 
w := u − v ≡ 0 and G := B −H ≡ 0. We only deal with the Hall-term, since the other terms can 
be dealt similarly as in the Navier–Stokes case. Note that H ∈ L4([0, T ); H 2(R3)), it suffices to 
show the following estimate

∣∣∣∣ ∫
R3

∇ × ((∇ × H) × G) · Gdx

∣∣∣∣ =
∣∣∣∣ ∫
R3

((∇ × H) × G) · (∇ × G)dx

∣∣∣∣
≤ ‖∇H‖L6‖G‖L3‖∇G‖L2 ≤ ‖∇2H‖L2‖G‖1/2

L2 ‖∇G‖3/2
L2

≤ 1

2
‖∇G‖2

L2 + ‖G‖2
L2‖∇2H‖4

L2 .

Here we are interested in the smoothing effect of these strong solutions. We will show that 
the local in time strong solution will become smooth after t > 0, indeed, it becomes analytic for 
strong solutions with small initial data. We expect that the strong solution with general initial 
data is also analytic at least local in time. Our method is based on Gevrey estimates developed 
in [9,14] and the references therein.

Theorem 1.6.

(1) Let (u, B) be a strong solution to the Hall-MHD equations (1.1), with initial value (u0, B0) ∈
Hr(R3) with r > 5

2 , then the local strong solution (u, B) in Lemma 1.3 becomes smooth after 
t > 0.
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(2) There exists a constant 0 < K2 ≤ K1 such that if ‖(u0, B0)‖Hr ≤ K2, then the global strong 
solution (u, B) in Lemma 1.3 becomes analytic after t > 0 and the radius of analyticity 
grows like 

√
t in time. Furthermore, if there exist κ1 > 0 and γ ≥ 0 such that for any t ≥ 0, 

there holds

‖u(t)‖2
2 + ‖B(t)‖2

2 ≤ κ1

(t + 1)γ
(1.8)

then there exists a constant c5 = c5(m, κ1, γ ) such that for every real number m > 0

‖∇mu(t)‖2
2 + ‖∇mB(t)‖2

2 ≤ c5
1

(t + 1)γ+m
. (1.9)

(3) If, in addition, (u0, B0) ∈ L1(R3) and there exist κ2, κ3, κ4, which may depend on (u0, B0), 
such that for ∀ε > 0, there exists t1 ≥ 0, so that for all t ≥ t1,

‖u(t) − v(t)‖2
2 + ‖B(t) − w(t)‖2

2 ≤ εκ2

(t + 1)γ
(1.10)

and for every m ∈N,

κ3(m)

(t + 1)γ+m
≤ ‖∇mv(t)‖2

2 + ‖∇mw(t)‖2
2 ≤ κ4(m)

(t + 1)γ
, (1.11)

then there exists a positive constant c6 = c6(κ2, κ3, κ4, γ, m) such that

‖∇mu(t)‖2
2 + ‖∇mB(t)‖2

2 ≥ c6

(1 + t)γ+m
. (1.12)

Here we remark that by Theorem 1.1, we know that (1.10) will be satisfied when (1.3) holds 
for 0 ≤ α < 5

2 . In the following, we will give the proofs of Theorems 1.1, 1.2 and 1.6.

2. Proofs of Theorems 1.1 and 1.2

2.1. Proof of Theorem 1.1

Let

H(x, t) = (u · ∇)u − (B · ∇)B + ∇π,

M(x, t) = (u · ∇)B − (B · ∇)u + ∇ × ((∇ × B) × B)

= (u · ∇)B − (B · ∇)u + ∇ × (div(B ⊗ B)),

then Fourier transform of (u, B) can be rewritten as

û(ξ, t) = e−t |ξ |2 û0(ξ) − ∫ t

0 e−(t−s)|ξ |2Ĥ (ξ, s)ds,

B̂(ξ, t) = e−t |ξ |2B̂0(ξ) − ∫ t
e−(t−s)|ξ |2M̂(ξ, s)ds. (2.1)
0
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Since ∇ · u = ∇ · B = 0, applying the divergence operator to the first set of the Hall-MHD 
equations gives

−�π =
n∑

k,j=1

∂2

∂xk∂xj

(ukuj − BkBj ).

Hence

π̂(ξ, t) = − 1

|ξ |2
∑
k,j

ξkξj (ûkuj − B̂kBj ). (2.2)

Then it follows that

Ĥ (ξ, t) = i
∑
j

ξj (ûj u − B̂jB) − i
∑
k,j

ξkξj

|ξ |2 (ûj uk − B̂jBk)ξ,

M̂(ξ, t) = i
∑
j

ξj (ûjB − B̂j u) − ξ × (ξj B̂jB).

Set

akj = ûkuj , bkj = B̂kBj , ckj = ûjBk.

Introduce A = [Akj ], C = [Ckj ], μ = [μkj ], where

Akj (ξ, t) = akj (ξ, t) − ajk(ξ, t), Ckj (ξ, t) = ckj (ξ, t) − cjk(ξ, t), μkj (ξ, t) = ξkξj

|ξ |2 .

Then

Ĥ (ξ, t) = i(I − μ(ξ))A(ξ, t)ξ,

M̂(ξ, t) = iC(ξ, t)ξ − ξ × (ξj B̂jB).

Since I − μ(ξ) is an orthogonal projection matrix for each ξ ∈R3 \ {0}, we get

|Ĥ (ξ, t)| ≤ C(‖u(t)‖2
2 + ‖B(t)‖2

2)|ξ | (2.3)

|M̂(ξ, t)| ≤ C(‖u(t)‖2
2 + ‖B(t)‖2

2)|ξ | + C‖B(t)‖2
2|ξ |2. (2.4)

By the energy estimate, we have

d

dt
(‖u(t)‖2

2 + ‖B(t)‖2
2) = −(‖∇u(t)‖2

2 + ‖∇B(t)‖2
2).

Set E(t) = ‖u(t)‖2
2 + ‖B(t)‖2

2 and let g(t) ≥ 0 for t ≥ 0 (to be determined later) and G(t) =
exp

(
2 
∫ t

0 g(s)2ds

)
, so that G′ = 2g2G. We have
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d

dt
(G(t)E(t)) = 2G(t)(g(t)2E(t) − ‖∇u(t)‖2

2 − ‖∇B(t)‖2
2)

≤ 2g2(t)G(t)

∫
|ξ |≤g(t)

(|û(ξ, t)|2 + |B̂(ξ, t)|2)dξ

≤ 2g2(t)G(t)

∫
|ξ |≤g(t)

|v̂(ξ, t)|2 + |ŵ(ξ, t)|2 +
( t∫

0

E(s)ds

)2

(|ξ |2 + |ξ |4)dξ

≤ 2g2(t)G(t)(‖v(t)‖2
2 + ‖w(t)‖2

2) + g2(t)(g5(t) + g7(t))G(t)

( t∫
0

E(s)ds

)2

. (2.5)

Suppose

E(s) ≤ C(1 + s)−β, (2.6)

with β ≥ 0, we will use (2.5) to improve the estimate on E(t). By the energy inequality, 
(2.6) holds with β = 0. Take g2(t) = γ

2 (t + 1)−1 with γ > max{1 + α, 32 + 2β}, and hence 
G(t) = (t + 1)γ , integrating (2.5) over [1, t], yields

E(t)(t + 1)γ ≤ 2γ E(1) + c(t + 1)γ−α + c(t + 1)γ− 1
2 −2β if β < 1,

which improves the previous decay rate

E(t) ≤ C(t + 1)−β̄

with β̄ = min{α, 2β + 1
2 } > β . Start with this new exponent, and after finitely many iterations we 

conclude that

E(t) ≤ C(t + 1)−α if α ≤ 1.

If α > 1, after finitely many iterations we achieve β̄ of the form β̄ = 1 + ε with ε > 0. Now

s∫
0

E(r)dr ≤ C,

which is independent of s, and by integrating (2.5) for γ large, we obtain

E(t)(t + 1)γ ≤ C + c(t + 1)γ−α + c(t + 1)γ− 5
2 ;

hence we finish the first part. For (2), since

∂tD1 = �D1 − H, ∂tD2 = �D2 − M
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and D(0) = (0, 0), we have

D̂1(ξ, t) = −
t∫

0

e−(t−s)|ξ |2Ĥ (ξ, s)ds, D̂2(ξ, t) = −
t∫

0

e−(t−s)|ξ |2M̂(ξ, s)ds.

Then by (2.3) and (2.4), we have

|D̂(ξ, t)| ≤ C(|ξ | + |ξ |2)
t∫

0

E(s)ds =: C(|ξ | + |ξ |2)�(t), (2.7)

d

dt
‖D(t)‖2

2 = −2‖∇D(t)‖2
2 − 2〈D1, u · ∇v〉 + 2〈D1,B · ∇w〉

− 2〈D2, u · ∇w〉 + 2〈D2,B · ∇v〉 + 2〈∇ × D2, (∇ × w) × B〉
≤ −‖∇D(t)‖2

2 + C‖∇w(t)‖2∞‖B(t)‖2
2

+ CE(t)1/2‖D(t)‖2(‖∇v(t)‖∞ + ‖∇w(t)‖∞). (2.8)

Let G(t) = exp

(∫ t

0 g2(s)ds

)
, then (2.8) implies

d

dt
(G(t)‖D(t)‖2

2) ≤ G(t)(g(t)2‖D(t)‖2
2 − ‖∇D(t)‖2

2) + CG(t)‖∇ × w(t)‖2
L∞‖B(t)‖2

2

+ CG(t)E(t)1/2‖D(t)‖(‖∇v‖∞ + ‖∇w‖∞) (2.9)

≤ g2(t)G(t)

∫
|ξ |≤g(t)

|D̂(ξ, t)|2dξ + CG(t)‖∇ × w(t)‖2
L∞‖B(t)‖2

2

+ CG(t)E(t)1/2‖D(t)‖(‖∇v‖∞ + ‖∇w‖∞). (2.10)

By Lemma 2.6 in [19], we have

‖∇v(t)‖2∞ + ‖∇w(t)‖2∞ ≤ C(t + 1)−
5
2 −α. (2.11)

Select g(t) =
√

γ
(t+1)

, then G(t) = (1 + t)γ , where γ > max{ 7
2 , 52 + 2α}. Together with (2.7)

and (2.11), we obtain

d

dt
((t + 1)γ ‖D(t)‖2

2) ≤ C�(t)2(t + 1)−
7
2 +γ + C‖D(t)‖2(t + 1)−

5
4 −α+γ

+ C(t + 1)−
5
2 −2α+γ . (2.12)

Integrating over [0, t], since �(t) is non-decreasing, we get

‖D(t)‖2
2 ≤ C�(t)2(t + 1)−

5
2 + C(t + 1)−γ

t∫
(s + 1)−

5
4 −α+γ ‖D(s)‖2ds + C(t + 1)−

3
2 −2α.
0
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Setting Y(t) = sup0≤s≤t (s + 1)5/4‖D(s)‖2, the last inequality reduces

Y(t)2 ≤ C�(t)2 + C(t + 1)1−αY (t) + C(t + 1)1−2α,

thus

Y(t) ≤ C�(t) + C(t + 1)1−α.

Since

�(t) =
t∫

0

E(s)ds ≤
⎧⎨⎩ C(t + 1)1−α if 0 ≤ α < 1,

C log(t + 1) if α = 1,

C if α > 1,

we have finished the proof of Theorem 1.1.

2.2. Proof of Theorem 1.2

The conclusions in (1) follow from Theorem 1.1 immediately. To prove (2), we follow the 
proof in [19] for the MHD case. Since û0(0) = B̂0(0) = 0, it is well known that (1.3) holds with 
α = 5

2 , so ‖u(t)‖2
2 + ‖B(t)‖2

2 ≤ C(t + 1)− 5
2 .

We observe that A, C are continuously differentiable in ξ with bounded partial derivatives, 
although there is a new Hall term. This will be proved in Lemma 2.1. Then A(ξ, t) = A(0, t) +
Ot(ξ)|ξ |, C(ξ, t) = C(0, t) + Ot(ξ)|ξ |. It follows that

Ĥ (ξ, t) = i(I − μ(ξ))A(0, t)ξ + Ot(ξ)|ξ |2,
M̂(ξ, t) = iC(0, t)ξ + Ot(ξ)|ξ |2.

We use this expansion in (2.1) to get

û(ξ, t) = P1(ξ, t)ξ + Ot(ξ)|ξ |2,
B̂(ξ, t) = P2(ξ, t)ξ + Ot(ξ)|ξ |2, (2.13)

where

P1(ξ, t) = Dξ û0(0) − i(I − μ(ξ))A(t),

P2(t) = DξB̂0(0) − iC(t).

Hence the expansion of û(ξ, t) and B̂(ξ, t) near ξ = 0 is exactly same as in the MHD case, 
then one can argue as in [19] to show that if (u, B) /∈ M0, then there exist T0 > 0, ρ > 0 such 
that either ∫

n−1

|P1(ω, t)ω|2dω ≥ ρ (2.14)
S
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or ∫
Sn−1

|P2(t)ω|2dω ≥ ρ (2.15)

for t ≥ T0. Let T ≥ T0 (to be determined later) and let (v(t), w(t)) be the solution of the heat 
equation with initial datum (v(0), B(0)) = (u(T ), B(T )). In view of the representation (2.13)
(with t = T ) for the initial datum of (v, w), as was shown in Lemma 2.3 in [19] there exists a 
constant c > 0, such that

‖v(t)‖2
2 + ‖w(t)‖2

2 ≥ cρt−5/2 + O(t−3).

Now we will compare the solution (u(t + T ), B(t + T )) with (v(t), w(t)). We set D(t) =
(D1(t), D2(t)) = (u(t + T ), B(t + T )) − (v(t), w(t)) so that D satisfies

∂tD1 = �D1(t) − H(t + T ), ∂tD2 = �D2(t) − M(t + T )

and D(0) = 0. As (2.12), we have

d

dt
(tγ ‖D(t)‖2

2) ≤ tγ−1
∫

|ξ |≤γ /
√

t

|D̂(ξ, t)|2dξ + Ctγ ‖∇w(t)‖2∞‖B(t + T )‖2
2

+ Ctγ E(t)1/2‖D(t)‖2(‖∇v(t)‖∞ + ‖∇w(t)‖∞).

Note that

|D̂(ξ, t)| ≤ C(|ξ | + |ξ |2)
t∫

0

(‖u(s + T )‖2
2 + ‖B(s + T )‖2

2)ds ≤ C(|ξ | + |ξ |2)T −3/2.

This yields

d

dt
(tγ ‖D(t)‖2

2) ≤ CT −3tγ−7/2 + CT tγ−5.

Taking γ > 5 and integrating over [1, t], we finally obtain

‖D(t)‖2
2 ≤ CT −3t−5/2 + CT t−3.

Taking T large enough so that CT −3 ≤ 1
4cρ, we get

‖u(t + T )‖2
2 + ‖B(t + T )‖2

2 ≥ (‖v(t)‖2 + ‖w(t)‖2 − ‖D(t)‖2)
2

≥ 1

2
(‖v(t)‖2

2 + ‖w(t)‖2
2) − ‖D(t)‖2

2

≥ 1

4
cρt−5/2 + O(t−3).

It remains to establish the following lemma.
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Lemma 2.1. Let (u0, B0) belong to [H 1(R3) ∩ H ∩ W2]2. Suppose that (u(t), B(t)) are regular 
global solutions of the Hall-MHD equations with initial data (u0, B0). Then for all t ≥ 0,

|∇ξ aij (ξ, t)| + |∇ξ bij (ξ, t)| + |∇ξ cij (ξ, t)| ≤ C(t),

where aij = ûiuj , bij = B̂iBj and cij = ûiBj . Here C(t) = (‖u0‖2
W2

+‖B0‖2
W2

) +c(1 +‖u0‖2 +
‖B0‖2)

2(t + 1).

Proof. Clearly,

|∇ξ aij | + |∇ξ bij | + |∇ξ cij | ≤ C

∫
R3

|x||uiuj |dx + C

∫
R3

|x||BiBj |dx + C

∫
R3

|x||u||B|dx

≤ C

∫
R3

|x|(|u|2 + |B|2)dx.

It suffices to prove that ∫
R3

|x|(|u|2 + |B|2)dx ≤ C(t).

Dot-multiplying both sides of the first MHD equation by |x|u, and the second MHD equation 
by |x|B , adding and integrating over R3, we get after some integration by parts

d

dt

∫
R3

|x|(|u|2 + |B|2)dx = −
∫
R3

|x|(|∇u|2 + |∇B|2)dx +
∫
R3

|u|2 + |B|2
|x| dx

+ 1

2

∫
R3

(x · u)|u|2
|x| dx −

∫
R3

(x · B)(u · B)

|x| dx + 1

2

∫
R3

(x · u)|B|2
|x| dx +

∫
R3

1

|x| (x · u)pdx

−
∫
R3

(
x

|x| × B

)
· ((∇ × B) × B)dx

≤
∫
R3

1

|x| (|u|2 + |B|2)dx + 1

2

∫
R3

|u|3dx + 2
∫
R3

|u||B|2dx +
∫
R3

|u||p|dx +
∫
R3

|∇B||B|2dx

=: I1 + I2 + I3 + I4 + I5.

We estimate Ii, i = 1, · · · , 5 as follows.

I2 + I3 + I4 ≤ C‖u‖2(‖u‖2
4 + ‖B‖2

4)

|I5| ≤ C‖∇B‖2‖B‖2
4 ≤ C‖∇B‖2‖B‖2‖B‖6 ≤ C‖∇B‖2

2‖B‖2,

|I1| =
∫

1

|x| (|u|2 + |B|2)dx +
∫

1

|x| (|u|2 + |B|2)dx
|x|≤1 |x|>1
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≤ C(‖u‖2
6 + ‖B‖2

6) + (‖u‖2
2 + ‖B‖2

2).

By the Sobolev embedding theorem, we have

d

dt

∫
R3

|x|(|u|2 + |B|2)dx ≤ C(‖u‖2
H 1 + ‖B‖2

H 1)(1 + ‖u‖2 + ‖B‖2).

This yields∫
R3

|x|(|u|2 + |B|2)dx ≤ (‖u0‖2
W2

+ ‖B0‖2
W2

)

+ C(1 + ‖u0‖2 + ‖B0‖2)

t∫
0

(‖u(s)‖2
H 1 + ‖B(s)‖2

H 1)ds

≤ (‖u0‖2
W2

+ ‖B0‖2
W2

) + C(1 + ‖u0‖2 + ‖B0‖2)
2(t + 1). �

3. Proof of Theorem 1.6

3.1. Smoothing effects of the local strong solution

We start with the proof of (1) in Theorem 1.6. We need the following energy estimate, which 
is slightly different from those in [5]: for any integer m > 5

2 , there exists a constant C(m) > 0, 
such that

1

2

d

dt
(‖u‖2

Hm + ‖B‖2
Hm) + ‖∇u‖2

Hm + ‖∇B‖2
Hm

≤ C(m)(‖u‖2
Hm + ‖B‖2

Hm)(‖∇u‖Hm + ‖∇B‖Hm). (3.1)

The inequality (3.1) follows from the simple energy estimates. For any multi-index α ∈ N3
0 with 

m = |α|, from the Hall-MHD equations (1.1), we have

1

2

d

dt
(‖u‖2

Hm + ‖B‖2
Hm) + ‖∇u‖2

Hm + ‖∇B‖2
Hm

= −
∑

0≤|α|≤m

∫
∇α(u · ∇u) · ∇αudx +

∑
0≤|α|≤m

∫
∇α(B · ∇B) · ∇αu + ∇α(B · u) · ∇αBdx

−
∑

0≤|α|≤m

∫
∇α(u · ∇B) · ∇αBdx −

∑
0≤|α|≤m

∫
∇α((∇ × B) × B) · ∇α(∇ × B)dx

=: I + II + III + IV.

By using the calculus inequality:∑
‖∇α(fg) − (∇αf )g‖2 ≤ C(m)(‖f ‖Hm−1‖∇g‖∞ + ‖f ‖∞‖g‖Hm),
|α|≤m
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we can bound I to IV as follows, which immediately yields (3.1) by Sobolev embedding theorem.

|I | =
∣∣∣∣ −

∑
0≤|α|≤m

∫
[∇α(u · ∇u) − u · ∇∇αu] · Dαudx

∣∣∣∣ ≤ C‖u‖2
Hm‖∇u‖∞,

|II| =
∣∣∣∣ ∑

0≤|α|≤m

∫
[∇α(B · ∇u) − B · ∇∇αu] · DαB

+ [∇α(B · ∇B) − B · ∇∇αB] · ∇αudx

∣∣∣∣
≤ C‖u‖Hm‖B‖Hm‖∇B‖∞ + C‖∇u‖∞‖B‖2

Hm,

|III| =
∣∣∣∣ −

∑
0≤|α|≤m

∫
[∇α(u · ∇B) − u · ∇∇αB] · ∇αBdx

∣∣∣∣
≤ C(‖∇B‖Hm−1‖∇u‖∞ + ‖∇B‖∞‖u‖Hm)‖B‖Hm,

|IV| =
∣∣∣∣ −

∑
0≤|α|≤m

∫
[∇α((∇ × B) × B) − ∇α(∇ × B) × B] · ∇α(∇ × B)dx

∣∣∣∣
≤ C(‖∇ × B‖Hm−1‖∇B‖∞ + ‖∇ × B‖∞‖B‖Hm)‖∇B‖Hm

≤ C‖B‖Hm‖∇B‖∞‖∇B‖Hm.

For ∀t1 ∈ (0, T ), we want to show that ‖u(t1)‖Hm + ‖B(t1)‖Hm < ∞ for any positive integer 
m ∈ N. By the local existence theorem in [5], there exist C1, C2 > 0 which may depend on t1
such that

‖u(t)‖Hr + ‖B(t)‖Hr ≤ C1(‖u0‖Hr + ‖B0‖Hr ),∫ t1
0 ‖∇u(s)‖Hr + ‖∇B(s)‖Hr ds ≤ C2(‖u0‖Hr + ‖B0‖Hr ). (3.2)

Without loss of generality, we assume that r ∈ N. By (3.2), there exists t2 ∈ (0, t1) such that 
‖∇u(t2)‖Hr + ‖∇B(t2)‖Hr < ∞, hence ‖u(t2)‖Hr+1 + ‖B(t2)‖Hr+1 < ∞. We integrate (3.1)
with m = r + 1 over [t2, t1], yielding that for ∀t ∈ [t2, t1]

‖u(t)‖2
Hr+1 + ‖B(t)‖2

Hr+1 ≤ e

∫ t
t2

(‖∇u(s)‖Hr +‖∇B(s)‖Hr )ds
(‖u(t2)‖2

Hr+1 + ‖B(t2)‖Hr+1)
2

< ∞. (3.3)

Especially, we have ‖u(t1)‖Hr+1 + ‖B(t1)‖Hr+1 < ∞. With (3.3), (3.1) also produces

t1∫
t2

‖∇u(s)‖Hr+1 + ‖∇B(s)‖Hr+1ds < ∞. (3.4)

By (3.3) and (3.4), we can find another t3 ∈ (t2, t1) such that ‖u(t3)‖Hr+2 +‖B(t3)‖Hr+2 < ∞ and 
then argue as previously to show that ‖u(t1)‖Hr+2 + ‖B(t1)‖Hr+2 < ∞. Continuing this process, 
we finish the proof.
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3.2. Analyticity of small strong solutions and upper bound

We will use Gevrey estimates to show the analyticity of the strong solutions to the Hall-MHD. 
Setting � = (−�)1/2, for τ ≥ 0, we introduce the spaces

D(eτ�;Hr) = {w ∈ Hr(R3) : eτ�w ∈ Hr(R3)}.

As shown in [14], for every w ∈ D(eτ�; Hr) with τ > 0, r > 0, then for ∀x ∈ R3 and every 
multi-index α ∈ N3

0, there exist M and ρ = τ/
√

3, such that

|∂αw(x)| ≤ M
α!
ρ|α| .

That is, w is analytic with radius τ/
√

3 on the whole of R3. In the following, we only need 
to show that the strong solution (u, B) belongs to D(eτ�; Hr) with τ > 0. First, we need the 
following lemmas, which were proved in [14].

Lemma 3.1. Let τ ≥ 0, r > 3/2, and s < 3/2. Then there exists a constant C = C(r, s) such that 
any two functions v and w in D(eτ�; Hr) satisfy the inequality

‖�reτ�(vw)‖2 ≤ C(r, s)(‖�seτ�w‖Hr−s‖�reτ�v‖2 + ‖�seτ�v‖Hr−s ‖�reτ�w‖2). (3.5)

Lemma 3.2. The following inequalities hold:

‖�reτ�u‖2
2 ≤ 2‖�ru‖2

2 + 2τ 2‖�r+1eτ�u‖2
2, for all r ≥ 0 and τ ≥ 0; (3.6)

‖�peτ�u‖2
2 ≤ e‖�pu‖2

2 + (2τ)2q‖�p+qeτ�u‖2
2, for all nonnegative p,q and τ ; (3.7)

‖�qu‖2
2 ≤ c(p, q)τp−2q‖u‖2‖�peτ�u‖2, for 2q ≥ p ≥ 0 and τ > 0. (3.8)

Now we start to prove the conclusion (2) in Theorem 1.6. Set

Jr = ‖�ru‖2
2, Hr = ‖�rB‖2

2, Gr = ‖�reτ�u‖2
2, Kr = ‖�reτ�B‖2

2,

Nr = Hr + Jr , Mr = Gr + Kr.

First, we show the local in time analyticity by choosing τ = τ(t). In the following, we as-
sume (u, B) is the global strong solution to the Hall-MHD with small initial data (u0, B0) in 
Lemma 1.3. Then Nr(t) ≤ C(r)Nr(0). And

1

2

d

dt
Mr = τ ′(t)

∫
R3

�r+1eτ�u · �reτ�u + �r+1eτ�B · �reτ�B

+
∫
R3

�reτ�u · �reτ�ut + �reτ�B · �reτ�Bt

= τ ′(t)Mr+1/2 − Mr+1 −
∫

�reτ�(u · ∇u) · �reτ�u +
∫

�reτ�(B · ∇B)�reτ�u
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−
∫

�reτ�(u · ∇B)�reτ�B +
∫

�reτ�(B · ∇u) · �reτ�B

−
∫

∇ × (�reτ�)((∇ × B) × B) · �reτ�B

=: τ ′(t)Mr+1/2 − Mr+1 +
5∑

i=1

Ii . (3.9)

By Lemma 3.1, Lemma 3.2, with r > 3
2 and s < 3

2 , we have

|I1| ≤ ‖�reτ�(u · ∇u)‖2‖�reτ�u‖2

≤ c(‖�seτ�∇u‖Hr−s ‖�reτ�u‖2 + ‖�seτ�u‖Hr−s‖�reτ�∇u‖2)G
1/2
r

≤ c(G
1/2
s G

1/2
r G

1/2
r+1 + G

1/2
s+1Gr + GrG

1/2
r+1)

≤ c[(J 1/2
s + τ r−sG

1/2
r )G

1/2
r G

1/2
r+1 + (J

1/2
s+1 + τ r−sG

1/2
r+1)Gr + GrG

1/2
r+1]

≤ c(JsMr + J
1/2
s+1)Mr + c(1 + τ r−s)2M2

r + 1

100
Mr+1.

Similarly, we have

4∑
i=2

|Ii | ≤ c(1 + Hs + Js + H
1/2
s+1 + J

1/2
s+1 + Hs+1)Mr + c(1 + τ r−s)2M2

r + 1

10
Mr+1

≤ c(Nr)Mr + c(1 + τ r−s)2M2
r + 1

10
Mr,

|I5| =
∣∣∣∣ ∫ (�reτ�)((∇ × b) × b) · (∇ × �reτ�b)dx

∣∣∣∣
≤ c

(
(K

1/2
s+1 + K

1/2
r+1)K

1/2
r + (K

1/2
s + K

1/2
r )K

1/2
r+1

)
K

1/2
r+1

≤ cHs+1Mr + c(H
1/2
s + (1 + τ r−s)M

1/2
r )Mr+1 + 1

10
Mr+1,

where c(Nr) is a smooth function of Nr , the function c(Nr) may change in different line. Since 
we are considering the local in time analyticity, we restrict ourself on t ∈ [0, 1], and select τ =
τ(t) = t , then Mr(0) = Nr(0) and

1

2

d

dt
Mr ≤ cM

1/2
r M

1/2
r+1 − 3

4
Mr+1 + c(Nr)Mr + cM2

r + c(N
1/2
r + M

1/2
r )Mr+1

≤ c(Nr)Mr + cM2
r −

(
1 − c(N

1/2
r + M

1/2
r )

)
Mr+1. (3.10)
2
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Suppose c(N1/2
r (0) + M

1/2
r (0)) = 2c(‖u0‖Hr + ‖B0‖Hr ) < 1

4 , then in short time, (3.10) reduces 
to

d

dt
Mr ≤ c(Nr(0))Mr + cM2

r .

Hence we can choose Nr(0) small enough so that in short time [0, σ ], such that for ∀t ∈ [0, σ ]

Mr(t) ≤ 2Mr(0) = 2(‖u0‖Hr + ‖B0‖Hr )2, (3.11)

which can also guarantee that c(N1/2
r (t) +M

1/2
r (t)) < 1

2 . So we have showed that Mr(t) is finite 
in some time interval [0, σ ].

Now we will refine our estimate to show that Mr is finite at any time. Without loss of general-
ity, we assume that (u0, B0) ∈ D(eη�; Hr) for some η > 0. The point is to explore the dissipation 
term Mr+1. Indeed, by Lemma 3.2, we have Mr−2Nr

2τ 2 ≤ Mr+1 and Nr ≤ 1
τ 2r N0 + 1

8Mr . Hence 
(3.9) reduces to

1

2

d

dt
Mr ≤ 1

2

τ ′(t)
τ

Mr + 1

2
ττ ′Mr+1 − Mr+1 +

5∑
i=1

Ii

≤ 1

2

τ ′(t)
τ

Mr + 1

2
ττ ′Mr+1 − Mr − 2Nr

4τ 2
− 1

2
Mr+1 +

5∑
i=1

Ii

≤
(

1

2

τ ′

τ
− 1

8τ 2

)
Mr +

(
1

2
τ ′τ − 1

8

)
Mr+1 − 1

8τ 2
Mr

+ 1

2τ 2
(

1

τ 2r
N0 + 1

8
Mr) − 3

8
Mr+1 +

5∑
i=1

Ii . (3.12)

We choose τ(t) =
√

τ 2
0 + αt , where τ0 > 0 and 0 < α ≤ 1

2 will be determined later. The point is 
1
2ττ ′ = α

4 ≤ 1
8 , then (3.12) will reduce to

1

2

d

dt
Mr ≤ − 1

16τ 2
Mr − 3

8
Mr+1 + 1

2τ 2r+2
N0 +

5∑
i=1

Ii . (3.13)

We will refine our estimates on Ii, i = 1, · · · , 5 by using the “good” term Mr+1. We will also 
replace Js, Hs, Js+1, Hs+1 by J0, H0 and Mr , since by assumptions, we have got the decay rates 
for H0, J0. By Lemma 3.2, we have

Js ≤ c(r, s)τ r−2sJ
1/2
0 G

1/2
r , Js+1 ≤ c(r, s)τ r−2s−2J

1/2
0 G

1/2
r ,

Hs ≤ c(r, s)τ r−2sH
1/2
0 K

1/2
r , Hs+1 ≤ c(r, s)τ r−2s−2H

1/2
0 K

1/2
r .

Then the bounds for Ii, i = 1, · · · , 5 are followed in order.
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|I1| ≤ c1J
1/2
s G

1/2
r G

1/2
r+1 + c1J

1/2
s+1Gr + c1(1 + τ r−s)GrG

1/2
r+1

≤ c1τ
r/2−sJ

1/4
0 G

3/4
r G

1/2
r+1 + c1τ

r/2−s−1J
1/4
0 G

5/4
r + c1(1 + τ r−s)GrG

1/2
r+1

≤ cτ r−2sJ
1/2
0 M

3/2
r + cτ r/2−s−1J

1/4
0 M

5/4
r + c(1 + τ 2r−2s)M2

r + 3

80
Gr+1.

Similarly, we also have

5∑
i=2

|Ii | ≤ cτ r−2sN
1/2
0 M

3/2
r + cτ r/2−s−1N

1/4
0 M

5/4
r + c(1 + τ 2r−2s)M2

r + 3

80
Kr+1.

Back to (3.13), we obtain

1

2

d

dt
Mr ≤ − 1

16τ 2
Mr − 3

16
Mr+1 + c

τ 2r+2
N0

+ c

[
τ r−2sN

1/2
0 M

1/2
r + τ r/2−s−1N

1/4
0 M

1/4
r + (1 + τ 2r−2s)Mr

]
Mr

+ c[τ r/2−sH
1/4
0 M

1/2
r + (1 + τ r−s)M

1/2
r ]Mr+1. (3.14)

For our purpose, we want to choose initial data (u0, B0) small enough, such that

g1(τ ) := c[τ r/2−sH
1/4
0 M

1/2
r + (1 + τ r−s)M

1/2
r ] <

3

16
, (3.15)

g2(τ ) := c

[
τ r−2sN

1/2
0 M

1/2
r + τ r/2−s−1N

1/4
0 M

1/4
r + (1 + τ 2r−2s)Mr

]
<

1

32τ 2
. (3.16)

By (3.11), we have that (3.15) holds in [0, σ ]. Note that at t = 0, ‖�eη0�(u0, B0)‖2
2 for 

0 ≤ η0 ≤ η is bounded by ‖�r(u0, B0)‖2
2 < ∞ and ‖�eη�(u0, B0)‖2

2 < ∞. By choosing 
s ∈ [r/2, r/2 + 1), the power of τ in g2 is less than 2, so that 1

32τ 2 diverges faster as τ → 0. 
Then we can choose τ(0) = τ0 ∈ (0, η] small enough such that (3.16) is satisfied at t = 0. More-
over, the differential inequality (3.14) admits a local smooth solution, then (3.16) is satisfied near 
t = 0. The restriction s ∈ [r/2, r/2 + 1) and s < 3

2 , r > 3
2 will require r < 3. Here for conve-

nience, we choose s = r/2 = 11
8 . However, this is not a serious restriction, since the initial data 

(u0, B0) in Hr(R3) with r > 3 is automatically in H 11/4(R3).
So as long as (3.15)–(3.16) are satisfied, (3.14) is reduced to

d

dt
Mr ≤ − 1

16τ 2
Mr + c

τ 2(r+1)
N0.

Note that if we choose α ≤ τ 2
0 , then (1 + t)−1/2 ≤ (1 + α

τ 2
0
t)−1/2 = τ0/τ , so that H0 + J0 ≤

κ1(τ0/τ)2γ . Then we conclude that

d
Mr ≤ − 1

Mr + cκ1
.

dt 16τ 2 τ 2(γ+r+1)
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Multiplying the corresponding integral factor, it produces

d

dt
(τ

1
8α Mr) ≤ cτ 2( 1

16α
−γ−r−1).

Choosing α small enough such that 1 > 16α(γ + r), we obtain

Mr(t) ≤
(

Mr(0) − 16c

1 − 16α(γ + r)

1

τ
2(γ+r)

0

)(
τ 2

0

τ 2

) 1
16α

+ 16cκ1

1 − 16α(γ + r)

1

τ 2(γ+r)

≤ cκ1τ
−2(γ+r), (3.17)

if we choose

Mr(0) ≤ 16c

1 − 16α(γ + r)

1

τ
2(γ+r)

0

.

Estimate (3.17) and the choice of s = r/2 = 11
8 show that

g1(τ ) ≤ cκ1(τ
−γ−s−r/2 + τ−γ−s) ≤ κ1τ

−s
0 <

3

16
,

g2(τ ) ≤ cκ1(τ
−γ−2s + τ−s−1−γ /2 + τ−2γ−2s) ≤ cκ1τ

−s−1 <
1

32τ 2

if κ1 is small enough, which is guaranteed by a small initial data.
Finally, we can conclude that there exists a K2 > 0 such that ‖(u0, B0)‖Hr ≤ K2, then for all 

t ≥ 0

Mr(t) ≤ cκ1τ
−2(γ+r).

By Lemma 3.2, we have

‖�mu(t)‖2
2 + ‖�mB(t)‖2

2 ≤ c(m, r)τ r−2mN
1/2
0 M

1/2
r

≤ c(m, r)τ−2(γ+m).

3.3. The lower bound for higher order derivatives

In the proof of (3) in Theorem 1.6, we will do the Gevrey estimates for the difference D =
(u − v, B − W) between the Hall-MHD and heat system. Set

Mr (t) = ‖�reτ�D1(t)‖2
2 + ‖�reτ�D2(t)‖2

2.

As previously, we derive
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d

dt
Mr = τ ′(t)Mr+1/2 −Mr+1 −

∫
�reτ�(u · ∇u) · �reτ�D1

+
∫

�reτ�(B · ∇B)�reτ�D1

−
∫

�reτ�(u · ∇B)�reτ�D2 +
∫

�reτ�(B · ∇u) · �reτ�D2

−
∫

∇ × (�reτ�)((∇ × B) × B) · �reτ�D2

=: τ ′(t)Mr+1/2 −Mr+1 +
5∑

i=1

I ′
i ,

where

|I ′
1| ≤ C(r, s)(G

1/2
s G

1/2
r+1 + G

1/2
s+1G

1/2
r + G

1/2
r G

1/2
r+1)M

1/2
r

≤ C(r, s)(MsMr+1 + Ms+1Mr + MrMr+1) + 1

200
Mr ,

4∑
i=2

|I ′
i | ≤ C(r, s)(MsMr+1 + Ms+1Mr + MrMr+1) + 1

200
Mr ,

|I ′
5| =

∣∣∣∣ ∫ �reτ�((∇ × B) × B) · (∇ × �reτ�D2)dx

∣∣∣∣
≤ C(r, s)(K

1/2
s K

1/2
r+1 + K

1/2
s+1K

1/2
r + K

1/2
r K

1/2
r+1)M

1/2
r+1

≤ C(r, s)(MsMr+1 + Ms+1Mr + MrMr+1) + 1

200
Mr+1.

Then

1

2

d

dt
Mr ≤ τ ′(t)Mr+1/2 −Mr+1 + C(MsMr+1 + Ms+1Mr + MrMr+1)

+ 1

40
Mr + 1

200
Mr+1

≤ − 1

16τ 2
Mr + 1

2τ 2
(H0 + J0) + C(MsMr+1 + Ms+1Mr + MrMr+1)

≤ − 1

16τ 2
Mr + c8ε

τ 2(γ+r+1)
+ O(τ−4γ−2s−2r−2).

By integrating as above, we finally get

Mr (t) ≤ c9ε

τ 2(γ+r)
+ O(τ−4γ−2s−2r ) + O(τ−32α),

which implies that

‖�mD(t)‖2
2 ≤ εc(m, r)

.

τ 2(γ+m)
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For a given m, we choose ε small enough so that κ3(m) > c(m, r)ε, whence the triangle inequal-
ity implies the required lower bound.
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