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Abstract

In this paper, we study the Cauchy problem for the linear and semilinear Moore-Gibson-Thompson 
(MGT) equation in the dissipative case. Concerning the linear MGT model, by utilizing WKB analysis 
associated with Fourier analysis, we derive some L2 estimates of solutions, which improve those in the 
previous research [51]. Furthermore, asymptotic profiles of the solution and an approximate relation in a 
framework of the weighted L1 space are derived. Next, with the aid of the classical energy method and 
Hardy’s inequality, we get singular limit results for an energy and the solution itself. Concerning the semi-
linear MGT model, basing on the obtained sharp L2 estimates and constructing time-weighted Sobolev 
spaces, we investigate global (in time) existence of Sobolev solutions with different regularities. Finally, 
under a sign assumption on initial data, nonexistence of global (in time) weak solutions is proved by apply-
ing a test function method.
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1. Introduction

In the last two decades, research of the Moore-Gibson-Thompson (MGT) equation, which is 
the linearized model for the wave propagation in viscous thermally relaxing fluids, have caught 
a lot of attention. The MGT model is considered through the third-order (in time) strictly hyper-
bolic partial differential equation as follows:

τuttt + utt − c2�u − c2β�ut = 0, (1)

where the scalar unknown u = u(t, x) ∈ R denotes an acoustic velocity potential. The MGT 
model (1) exhibits a variety of dynamical behaviors for solutions, which heavily depend on the 
physical parameters in the equation. To be specific, concerning the model (1), c stands for the 
speed of sound and τ denotes the thermal relaxation in the view of the physical context of acous-
tic waves. Moreover, the parameter β = τ + b/c2, where b denotes the diffusivity of the sound.

Without loss of generality, we set the speed of the sound by c2 = 1 in the model. Actu-
ally, one may distinguish behaviors of solutions to the model (1) according to the dissipative 
case when τ ∈ (0, β) and the conservative case when τ = β . Precisely, in the case of bounded 
domains for the linear MGT model, there exists a transition from the case τ ∈ (0, β) with an 
energy being exponentially stable to the limit case τ = β with an energy being conserved. Con-
cerning some studies for the linear or nonlinear MGT equations, we refer interested readers 
to the related works [45,57,36,22,38,37,44,35,43,52,9,18,42,19,41,51,7,1,17,8,54,50,53,13,14,6,
46,47] and references therein.

It is well-known that the study qualitative properties of solutions to the linear problem is not 
only significant for us to understand some underlying physical phenomena, but also the crucial 
point for proving existence results of solutions to its corresponding nonlinear models. Let us 
come to the Cauchy problem for the linear MGT equation which has been firstly studied by 
the recent paper [51]. By reducing the third-order (in time) equation to the first-order (in time) 
coupled system, the authors of [51] employed energy methods in the Fourier space combined 
with suitable Lyapunov functionals to derive some energy estimates, and eigenvalues expansions 
to investigate some estimates for the solution itself. However, the obtained estimates for solutions 
in [51] seem not sharp, especially, in some low-dimensional cases. In this paper, we will improve 
their results and derive some optimal estimates with weighted L1 data. What’s more, in the view 
of the limit case τ = 0, the linear MGT equation formally turns out to be the viscoelastic damped 
wave equation. For this reason, one may conjecture that there exist some relations between them. 
We will answer this conjecture from two points of view which are singular limits and approximate 
relation in the sense of diffusion phenomena, respectively.

Our first aim in this paper is to investigate qualitative properties of solutions to the following 
linear MGT equation in the dissipative case:{

τuttt + utt − �u − β�ut = 0, x ∈ Rn, t > 0,

u(0, x) = 0, ut (0, x) = 0, utt (0, x) = u2(x), x ∈ Rn,
(2)

where τ ∈ (0, β) and n � 1. To be specific, in Section 2 by preparing representation of solutions 
in the Fourier space and using asymptotic expansions of eigenvalues as well as WKB analysis, 
we deduce some L2 estimates of solutions to the Cauchy problem (2) for initial data taken from 
L2 space with or without additional Lm regularity carrying m ∈ [1, 2). By a different treatment of 
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some singularities, our results of L2 estimates improve those in [51], especially, the estimates of 
solutions in one and two spatial dimensions. Moreover, the regular assumption on initial data is 
relaxed. Later in Section 3 we obtain asymptotic profiles of the solution to the Cauchy problem 
(2) in a framework of weighted L1 data, where we provide sharp estimates for lower bounds 
and upper bounds of the solution itself in the L2 norm. Namely, in the consideration of L2

data with additional weighted L1 regularity, the derived estimates are optimal for any n � 1. In 
Subsection 3.2, in the frame of L2 space, we describe an approximate relation (strongly related 
to diffusion phenomena) between the linear MGT equation and the linear viscoelastic damped 
wave equation, where gained decay rates are obtained for one- and two-dimensional cases. Next, 
in Section 4 we consider the singular limit problem, in which we find the solution of the linear 
MGT equation converges to the solution of the linear viscoelastic damped wave equation as the 
thermal relaxation tending to 0, i.e. τ → 0+. Particularly, under different assumptions for initial 
data, we observe different rates of such tendency with respect to τ .

Our next purpose is to consider the Cauchy problem for the semilinear MGT equation in the 
dissipative case with the nonlinearity of power type, namely,{

τuttt + utt − �u − β�ut = |u|p, x ∈ Rn, t > 0,

u(0, x) = 0, ut (0, x) = 0, utt (0, x) = u2(x), x ∈ Rn,
(3)

where τ ∈ (0, β), n � 1 and p > 1. Recently, the blow-up results of the Cauchy problem for the 
semilinear MGT equation in the conservative case, i.e. the limit case τ = β , with the nonlinear-
ity of power type |u|p in [13], or of derivative type |ut |p in [14] have been obtained by applying 
iteration methods with suitable slicing procedure for unbounded multipliers. These works inter-
pret the semilinear MGT equation in the conservative case as the semilinear wave equation with 
power source nonlinearities. Nevertheless, this statement does not hold anymore for the MGT 
equation in the dissipative case due to the damping effect that we derived in the corresponding 
linear problem. For this reason, it seems interesting to study existence as well as nonexistence of 
global (in time) solutions to the semilinear MGT models in the dissipative case.

Let us now turn to the Cauchy problem (3). To the best of authors’ knowledge, not only global 
(in time) existence but also blow-up results for (3) are still open. We will answer these questions 
in the present paper. By making use of the improved L2 − L2 estimates with an additional L1

regularity and employing Banach’s fixed point theory, we prove global (in time) existence of 
small data Sobolev solutions to the Cauchy problem (3) in Section 5. Particularly, we analyze 
the interplay effect between dimension n, regularity s and power p on the existence of global (in 
time) Sobolev solution such that

u ∈ C([0,∞),H s(Rn)),

with some positive parameters s. Soon afterward in Section 6, we apply a test function method 
to prove nonexistence of global (in time) weak solutions to the semilinear Cauchy problem (3) if 
the power p fulfills some conditions. We should underline that the result in the one-dimensional 
case is optimal due to the blow-up result holding for any 1 < p < ∞.

Lastly, throughout Sections 2, 3, 5 and 6, we will consider the MGT equations with vanishing 
first and second data. Indeed, non-vanishing third data will exert some dominant influences on the 
total estimates and existence results of solutions. We expect that one may derive the correspond-
ing results with non-vanishing data by following the same approaches as we did later without 
any additional difficulties. Clearly, additional regularities for initial data would be necessary.
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Notation: We give some notations to be used in this paper. Later, c and C denote some positive 
constants, which may be changed from line to line. We denote that f � g if there exists a positive 
constant C such that f � Cg and, analogously, for f � g. We denote �r� := min{y ∈ N : 0 <
r � y} as the positive ceiling function. BR stands for the ball around the origin with radius R in 
Rn. Moreover, Ḣ s

q (Rn) with s � 0 and 1 � q < ∞, denote the Riesz potential spaces based on 
the Lebesgue spaces Lq(Rn). Finally, |D|s with s � 0 stands for the pseudo-differential operator 
with the symbol |ξ |s .

2. Estimates of solutions to the linear MGT equation in the dissipative case

2.1. Pointwise estimates in the Fourier space

At first, we apply the partial Fourier transform with respect to spatial variables to the Cauchy 
problem (2). Then, it yields the following initial value problem for the third-order |ξ |-dependent 
ordinary differential equation:

{
τ ûtt t + ût t + β|ξ |2ût + |ξ |2û = 0, ξ ∈Rn, t > 0,

û(0, ξ) = 0, ût (0, ξ) = 0, ûtt (0, ξ) = û2(ξ), ξ ∈Rn,
(4)

whose solution can be given by

û(t, ξ) = K̂(t, ξ)û2(ξ) :=
⎛⎝ ∑

j=1,2,3

exp(λj (|ξ |)t)∏
k=1,2,3, k �=j

(
λj (|ξ |) − λk(|ξ |))

⎞⎠ û2(ξ), (5)

where λj = λj (|ξ |) with j = 1, 2, 3, are three pairwise distinct roots to the cubic equation

τλ3 + λ2 + β|ξ |2λ + |ξ |2 = 0. (6)

Here, the case for multiple roots can be regarded as a zero measure set with respect to |ξ |, and 
precisely, the discriminant of (6) is zero, that is

	Cub = |ξ |2
(
−4β3τ |ξ |4 +

(
18βτ + β2 − 27τ 2

)
|ξ |2 − 4

)
= 0,

if and only if

|ξ |2 = 0 or |ξ |2 = 18βτ + β2 − 27τ 2 ±√(18βτ + β2 − 27τ 2)2 − 64β3τ

8β3τ
. (7)

Under these preparations, we just need to discuss the case when the cubic equation (6) does not 
have any roots of double multiply. Estimates of solutions in a zero measure set (7) do not give 
any influence on total estimates. Indeed, the pointwise estimates of solutions in the zero measure 
set were shown in [51].
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Remark 2.1. The principal symbol of the equation in (2) is given by τη3 − βη|ζ |2. Thus, the 
characteristic equation η(τη2 − β|ζ |2) = 0 has pairwise distinct real roots η = 0, η = √

β/τ |ζ |
and η = −√

β/τ |ζ |. In other words, the linear MGT equation in the dissipative case is strictly 
hyperbolic. Therefore, it is clear that the Cauchy problem (2) is well-posedness, e.g. there exists 
a unique Sobolev solution u ∈ C([0, ∞), Hs(Rn)) for s ∈ [0, 2] if u2 ∈ Hs−2(Rn) ⊂ L2(Rn). 
Furthermore, the theory in the strictly hyperbolic equation (see, for example, Section 3.4 in [56]) 
shows that finite propagation speed property holds.

Before deriving some L2 estimates of solutions in the next subsection, we will prepare point-
wise estimates of solutions in the Fourier space by investigating asymptotic behaviors of the 
kernel function K̂(t, ξ). It is well-known that the explicit formula of the cubic equation (6) can 
be uniquely given by Cardano’s formula. Nevertheless, this would be a complex way to ana-
lyze behaviors of the kernel. To overcome the difficulty, we will employ asymptotic expansions 
of eigenvalues in small and large frequency zones, and demonstrate an exponential stability of 
solutions in bounded frequency zone. We define these zones in Fourier space by

Zint(ε) := {ξ ∈Rn : |ξ | < ε � 1
}
,

Zmid(ε,N) := {ξ ∈Rn : ε � |ξ | � N
}
,

Zext(N) := {ξ ∈Rn : |ξ | > N 
 1
}
.

Let us set the cut-off functions χint(ξ), χmid(ξ), χext(ξ) ∈ C∞(Rn) owning their supports in 
Zint(ε), Zmid(ε/2, 2N) and Zext(N), respectively. Furthermore, they fulfill χmid(ξ) = 1 −
χint(ξ) − χext(ξ) for all ξ ∈Rn.

Proposition 2.1. Let τ ∈ (0, β). Then, the solution û = û(t, ξ) to the initial value problem (4)
fulfills the following estimates:

χint(ξ)|û(t, ξ)| � χint(ξ)

((
| cos(|ξ |t)| + | sin(|ξ |t)|

|ξ |
)

e− β−τ
2 |ξ |2t + e− 1

τ
t

)
|û2(ξ)|, (8)

χmid(ξ)|û(t, ξ)| � χmid(ξ)e−ct |û2(ξ)|, (9)

χext(ξ)|û(t, ξ)| � χext(ξ)
1

|ξ |2 exp

(
−min

{
β − τ

2βτ
,

1

β

}
t

)
|û2(ξ)|, (10)

for some constants c > 0.

Proof. Let us begin with estimating the solution û(t, ξ) for small frequencies. Motivated by the 
recent research [51], we deduce that the eigenvalues λj(|ξ |) with j = 1, 2, 3, have the asymptotic 
expansions for |ξ | → 0 such that

λj (|ξ |) = λ
(0)
j + λ

(1)
j |ξ | + λ

(2)
j |ξ |2 + · · · , (11)

where the coefficients λ(k)
j ∈C for all k ∈N0. What we need now is the dominant part of pairwise 

distinct eigenvalues. So, by plugging (11) into (6) and processing lengthy but straightforward 
computations, until different characteristic roots appear, the eigenvalues behave asymptotically 
for |ξ | → 0 as
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λ1,2(|ξ |) = ±i|ξ | − β − τ

2
|ξ |2 +O(|ξ |3),

λ3(|ξ |) = − 1

τ
+ (β − τ)|ξ |2 +O(|ξ |3).

Let us denote a |ξ |-dependent function by

T0(|ξ |) := 1

τ
− 3

2
(β − τ)|ξ |2 = O(1) as |ξ | → 0. (12)

According to the representation of the kernel given in (5), the Fourier transform of the kernel 
localized in small frequency zone can be estimated by

χint(ξ)|K̂(t, ξ)|

� χint(ξ)
exp
(
−β−τ

2 |ξ |2t
)

T 2
0 (|ξ |) + |ξ |2

(
| cos(|ξ |t)| + | sin(|ξ |t)|

|ξ | T0(|ξ |)
)

+ χint(ξ)
exp
(− 1

τ
t + (β − τ)|ξ |2t)

T 2
0 (|ξ |) + |ξ |2

� χint(ξ)

((
| cos(|ξ |t)| + | sin(|ξ |t)|

|ξ |
)

exp

(
−β − τ

2
|ξ |2t

)
+ exp

(
− 1

τ
t + (β − τ)|ξ |2t

))
,

which immediately implies the desired estimate (8).
Next, let us turn to the case of large frequencies. The eigenvalues to the cubic equation (6) for 

|ξ | → ∞ have the asymptotic expansions such that

λj (|ξ |) = λ̄
(0)
j |ξ |2 + λ̄

(1)
j |ξ | + λ̄

(2)
j + λ̄

(3)
j |ξ |−1 + · · · , (13)

where the coefficients λ̄(k)
j ∈ C for all k ∈ N0. By substituting (13) into (6), it yields that the 

eigenvalues have asymptotic behaviors for |ξ | → ∞ as follows:

λ1(|ξ |) = − 1

β
+O(|ξ |−1),

λ2,3(|ξ |) = ±i

√
β√
τ

|ξ | − β − τ

2βτ
+O(|ξ |−1).

Hence, the next chain inequalities hold:

χext(ξ)|K̂(t, ξ)|

� χext(ξ)

⎛⎜⎜⎝ e− 1
β
t(

β−3τ
2βτ

)2 + β
τ
|ξ |2

+

⎛⎜⎜⎝
∣∣∣sin

(√
β√
τ
|ξ |t
)∣∣∣

|ξ |
((

β−3τ
2βτ

)2 + β
τ
|ξ |2
) +

∣∣∣cos
(√

β√
τ
|ξ |t
)∣∣∣(

β−3τ
2βτ

)2 + β
τ
|ξ |2

⎞⎟⎟⎠ e− β−τ
2βτ

t

⎞⎟⎟⎠
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� χext(ξ)
1

|ξ |2
(

e− β−τ
2βτ

t + e− 1
β
t

)
.

The previous estimate combined with the formula of solution in (5) proves our desired assertion 
(10).

Finally, let us prove an exponential decay estimate of solutions localized in bounded frequency 
zone. With the aim of deriving an exponential stability of solutions, we now follow the idea of 
Subsection 2.3 in [11]. Let us assume that there exists an eigenvalue λ = id with d ∈ R\{0}. In 
other words, according to (6), the non-zero real number d should fulfill the equalities

id
(
τd2 − β|ξ |2

)
= 0 and d2 − |ξ |2 = 0.

Due to the settings that d �= 0 and τ ∈ (0, β), it immediately finds a contradiction. Namely, there 
does not exists any pure imaginary roots to the cubic equation (6) for ξ ∈ Zmid(ε, N). Viewing 
the expansions of eigenvalues, we know Reλj (|ξ |) < 0 for any j = 1, 2, 3 as ξ ∈ Zint(ε) ∪
Zext(N). Therefore, by applying the compactness of bounded frequency zone Zmid(ε, N) and 
the continuity of the eigenvalues, the derivation of the exponential decay estimates (9) and the 
proof of this proposition are complete. �
2.2. L2 estimates of solutions

Basing on the pointwise estimates shown in Proposition 2.1, we next investigate L2 −L2 esti-
mates with or without additional Lm regularity with m ∈ [1, 2), respectively. These estimates will 
play an essential role in the forthcoming part to consider global (in time) existence of solutions 
to the semilinear MGT model.

Theorem 2.1. Let τ ∈ (0, β). Then, the solution u = u(t, x) to the Cauchy problem (2) fulfills the 
following estimates:

‖ |D|su(t, ·)‖L2(Rn) �
{

(1 + t)1− s
2 ‖u2‖L2(Rn) if s ∈ [0,1),

(1 + t)
1
2 − s

2 ‖u2‖Hmax{s−2,0}(Rn) if s ∈ [1,∞),

for any t � 0.

Remark 2.2. Concerning the derived estimates in (2.1), it seems to be sharp at least for s ∈
[1, ∞) since the boundedness of the sine function in (15). However, to rigorously justify the 
sharpness, one needs to derive some lower bound estimates for ‖ |D|su(t, ·)‖L2(Rn) in a frame 
related to L2(Rn) or Hmax{s−2,0}(Rn).

Proof. By applying Proposition 2.1 and the Parseval equality, we arrive at

‖ |D|su(t, ·)‖L2(Rn)

�
∥∥∥∥χint(ξ)|ξ |s

((
| cos(|ξ |t)| + | sin(|ξ |t)|

|ξ |
)

e− β−τ
2 |ξ |2t + e− 1

τ
t

)∥∥∥∥
L∞(Rn)

‖u2‖L2(Rn)

+ e−ct‖u2‖L2(Rn) + e−ct
∥∥∥χext(ξ)|ξ |s−2û2(ξ)

∥∥∥
L2(Rn)

, (14)
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with the aid of the norm inequality ‖ · ‖L2(Rn) � ‖ · ‖L∞(Rn)‖ · ‖L2(Rn).
Let us estimate the first L∞ norm on the right-hand side of (14). Obviously, by using 

| cos(|ξ |t)| � 1, then for any t � 0 we get∥∥∥χint(ξ)|ξ |s | cos(|ξ |t)|e− β−τ
2 |ξ |2t

∥∥∥
L∞(Rn)

�
∥∥∥χint(ξ)|ξ |se− β−τ

2 |ξ |2t
∥∥∥

L∞(Rn)
� (1 + t)−

s
2 .

We will divide the remaindering estimate into two parts.
Concerning the case for small time, i.e. t ∈ [0, 1], one may directly obtain

∥∥∥χint(ξ)|ξ |s−1| sin(|ξ |t)|e− β−τ
2 |ξ |2t

∥∥∥
L∞(Rn)

� t

∥∥∥∥χint(ξ)|ξ |s | sin(|ξ |t)|
|ξ |t e− β−τ

2 |ξ |2t
∥∥∥∥

L∞(Rn)

� 1,

which immediately shows bounded estimates for small time.
For another, concerning the case of large time, i.e. t ∈ (1, ∞), one applies | sin(|ξ |t)| � 1 to have

∥∥∥χint(ξ)|ξ |s−1| sin(|ξ |t)|e− β−τ
2 |ξ |2t

∥∥∥
L∞(Rn)

� t−
s−1

2

∥∥∥∥χint(ξ)
(
|ξ |2t

) s−1
2

e− β−τ
2 |ξ |2t

∥∥∥∥
L∞(Rn)

� t
1
2 − s

2 (15)

for s ∈ [1, ∞). In the case s ∈ [0, 1), we do by another way that∥∥∥χint(ξ)|ξ |s−1| sin(|ξ |t)|e− β−τ
2 |ξ |2t

∥∥∥
L∞(Rn)

� t1− s
2

∥∥∥∥χint(ξ)
(
|ξ |2t

) s
2 | sin(|ξ |t)|

|ξ |t e− β−τ
2 |ξ |2t

∥∥∥∥
L∞(Rn)

� t1− s
2 .

Thus, it completes that

∥∥∥χint(ξ)|ξ |s−1| sin(|ξ |t)|e− β−τ
2 |ξ |2t

∥∥∥
L∞(Rn)

�
{

(1 + t)1− s
2 if s ∈ [0,1),

(1 + t)
1
2 − s

2 if s ∈ [1,∞),

for any t � 0. Particularly, decay estimates hold for any s ∈ (1, ∞).
On the other hand, we know∥∥∥χext(ξ)|ξ |s−2û2(ξ)

∥∥∥
L2(Rn)

� ‖u2‖Hmax{s−2,0}(Rn),

where we used χext(ξ)|ξ |s−2 � 1 if s ∈ [0, 2] and χext(ξ)|ξ |s−2 � (1 +|ξ |2)(s−2)/2 if s ∈ (2, ∞).
Summarizing the derived estimates, the proof is now complete. �

Theorem 2.2. Let τ ∈ (0, β). Then, the solution u = u(t, x) to the Cauchy problem (2) fulfills the 
following estimates:
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‖ |D|su(t, ·)‖L2(Rn) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F(t)‖u2‖Hmax{s−2,0}(Rn)∩Lm(Rn)

if 2sm + (2 − m)n < 2 + m,

(1 + t)
1
2 − s

2 − n(2−m)
4m ‖u2‖Hmax{s−2,0}(Rn)∩Lm(Rn)

if 2sm + (2 − m)n � 2 + m,

for any t � 0, where s ∈ [0, ∞) and m ∈ [1, 2). In the above case 2sm + (2 − m)n < 2 + m, the 
time-dependent coefficient is denoted by

F(t) :=

⎧⎪⎪⎨⎪⎪⎩
(1 + t)1−s− n(2−m)

2m if 2sm + (2 − m)n < 2m,

(1 + t)
1
2 − s

2 − n(2−m)
4m (ln(e + t))

2−m
2m if 2sm + (2 − m)n = 2m,

(1 + t)
1
2 − s

2 − n(2−m)
4m

+ 2+m−2sm−(2−m)n
2(2+m) if 2sm + (2 − m)n > 2m.

Remark 2.3. Let us consider the special case m = 1. The estimates stated in Theorem 2.2
improve those results of Theorem 5.1 and Theorem 5.3 in [51]. For example, concerning the 
estimate of the solution itself, i.e. s = 0, according to Theorem 2.2, we arrive at

‖u(t, ·)‖L2(Rn) �

⎧⎪⎨⎪⎩
(1 + t)

1
2 ‖u2‖L2(R)∩L1(R) if n = 1,

(ln(e + t))
1
2 ‖u2‖L2(R2)∩L1(R2) if n = 2,

(1 + t)
1
2 − n

4 ‖u2‖L2(Rn)∩L1(Rn) if n � 3,

where the derived estimates in the low-dimensional cases n = 1 and n = 2 are sharper than those 
in [51]. Generally speaking, we replace the restriction s +n � 3 in Theorem 5.3 shown in [51] by 
2s + n � 3, which allows us to get shaper estimates in a larger admissible range of dimensions, 
e.g. n = 2 with s = 1/2. For another, the requirement of the regularity for initial data is relaxed 
from Hs to Hmax{s−2,0}.

Proof. We may start by discussing the case for small frequencies. Employing Hölder’s inequality 
and the Hausdorff-Young inequality, one has

‖χint(D)|D|su(t, ·)‖
L2(Rn)

�
∥∥∥∥χint(ξ)|ξ |s

((
| cos(|ξ |t)| + | sin(|ξ |t)|

|ξ |
)

e− β−τ
2 |ξ |2t + e− 1

τ t

)∥∥∥∥
L

2m
2−m (Rn)

‖u2‖Lm(Rn)

�
∥∥∥∥χint(ξ)

(
|ξ |s | cos(|ξ |t)| + |ξ |s−1| sin(|ξ |t)|

)
e− β−τ

2 |ξ |2t

∥∥∥∥
L

2m
2−m (Rn)

‖u2‖Lm(Rn) + e− 1
τ t‖u2‖Lm(Rn)

�

⎛⎝ ε∫
0

r
2(s−1)m

2−m
+n−1| sin(rt)| 2m

2−m exp

(
− (β − τ)m

2 − m
r2t

)
dr

⎞⎠
2−m
2m

‖u2‖Lm(Rn) + (1 + t)
− s

2 − n(2−m)
4m ‖u2‖Lm(Rn),

where we applied

∥∥∥χint(ξ)|ξ |s | cos(|ξ |t)|e− β−τ
2 |ξ |2t

∥∥∥ 2m
n
L 2−m (R )
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�

⎛⎝ ε∫
0

r
2sm
2−m

+n−1| cos(rt)| 2m
2−m exp

(
− (β − τ)m

2 − m
r2t

)
dr

⎞⎠
2−m
2m

� (1 + t)−
s
2 − n(2−m)

4m .

Let us now estimate the term including the sine function which is denoted by

G(t) :=
⎛⎝ ε∫

0

r
2(s−1)m

2−m
+n−1| sin(rt)| 2m

2−m exp

(
− (β − τ)m

2 − m
r2t

)
dr

⎞⎠
2−m
2m

.

Due to the interplay between the diffusive part from exp
(
− (β−τ)m

2−m
r2t
)

and the oscillating part 

from | sin(rt)|/r , one should analyze a delicate equilibrium as well as the singularity as r → 0+
in the case for negative power of r . This treatment is the difference from those in [51]. For one 
thing, as usual approach by considering t ∈ [0, 1], we find

G(t) =t

⎛⎝ ε∫
0

r
2ms
2−m

+n−1
( | sin(rt)|

rt

) 2m
2−m

exp

(
− (β − τ)m

2 − m
r2t

)
dr

⎞⎠
2−m
2m

�1,

where we used 2ms/(2 − m) + n − 1 � 0. For another, we consider t ∈ (1, ∞) to derive

G(t) = t−
2(s−1)m+n(2−m)

4m

⎛⎝ ε∫
0

(r2t)
2(s−1)m+(n−1)(2−m)

2(2−m) exp

(
− (β − τ)m

2 − m
r2t

)
d(r2t)

1
2

⎞⎠
2−m
2m

� t
1
2 − s

2 − n(2−m)
4m ,

where we restricted 2sm + (2 −m)n � 2 +m to guarantee the nonnegativity of the power for r2t

in the integral term, otherwise, a singularity will come as r → 0+.
Let us use another approach to get the result when 2sm + (2 − m)n < 2 + m for t ∈ (1, ∞). 
Setting a new variable ω = rt

1
2 , it holds that

G(t) � t−
s−1

2 − n(2−m)
4m (I(t))

2−m
2m , (16)

where the time-dependent function on the right-hand side is defined by

I(t) := I(1)(t) + I(2)(t)

:=
⎛⎜⎝ t−1/α∫

0

+
∞∫

t−1/α

⎞⎟⎠ω
2sm+(2−m)n−(2+m)

2−m | sin(t1/2ω)| 2m
2−m exp

(
− (β − τ)m

2 − m
ω2
)

dω.
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Here, we used WKB analysis to separate the integral over (0, ∞) to (0, t−1/α) and [t−1/α, ∞)

carrying a suitable positive constant α to be determined later. The choice of the parameter α is 
helpful for us to understand sharper estimates.
To estimate I(1)(t), by the boundedness of | sin(y)/y|, we obtain

I(1)(t) � t
m

2−m

t−1/α∫
0

∣∣∣∣ sin(t1/2ω)

t1/2ω

∣∣∣∣
2m

2−m

ω
2sm+(2−m)n

2−m
−1 exp

(
− (β − τ)m

2 − m
ω2
)

dω

� t
mα−2sm−(2−m)n+2−m

(2−m)α

t−1/α∫
0

dω � t
mα−2sm−(2−m)n

(2−m)α , (17)

where we observed 2sm + (2 − m)n � (2 − m) for any s ∈ [0, ∞) and m ∈ [1, 2).
To investigate the estimate for I(2)(t), we divide the discussion into three cases. If 2sm + (2 −
m)n < 2m, then we may directly apply integration by parts to find

I(2)(t)

�
∞∫

t−1/α

ω
2sm+(2−m)n−(2+m)

2−m exp

(
− (β − τ)m

2 − m
ω2
)

dω

� 2 − m

2sm + (2 − m)n − 2m

(
ω

2sm+(2−m)n−2m
2−m exp

(
− (β − τ)m

2 − m
ω2
))∣∣∣ω=∞

ω=t−1/α

+ 2(β − τ)m

2sm + (2 − m)n − 2m

∞∫
t−1/α

ω
2sm+(2−m)n−2m

2−m
+1 exp

(
− (β − τ)m

2 − m
ω2
)

dω

� t
2m−2sm−(2−m)n

(2−m)α exp

(
− (β − τ)m

2 − m
t−2/α

)
−

∞∫
t−1/α

ω
2sm+(2−m)n+2−3m

2−m exp

(
− (β − τ)m

2 − m
ω2
)

dω

� t
2m−2sm−(2−m)n

(2−m)α . (18)

By considering (17) and (18), in the case 2sm + (2 − m)n < 2m, we may obtain the sharp 
estimates

I(t) � t
mα−2sm−(2−m)n

(2−m)α + t
2m−2sm−(2−m)n

(2−m)α � t
2m−2sm−(2−m)n

2(2−m) ,

providing that mα − 2sm − (2 − m)n = 2m − 2sm − (2 − m)n if and only if α = 2.
Let us turn to the case 2sm + (2 − m)n = 2m. Therefore, by the similar procedure to the above, 
we estimate

I(2)(t) �
∞∫

−1/α

ω−1 exp

(
− (β − τ)m

2 − m
ω2
)

dω
t
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�
(

(lnω) exp

(
− (β − τ)m

2 − m
ω2
))∣∣∣ω=∞

ω=t−1/α

+ 2(β − τ)m

2 − m

∞∫
t−1/α

ω| lnω| exp

(
− (β − τ)m

2 − m
ω2
)

dω

� 1

α
(ln t) exp

(
− (β − τ)m

2 − m
t−2/α

)

+
∞∫

0

ω| lnω| exp

(
− (β − τ)m

2 − m
ω2
)

dω � ln t. (19)

Then, by choosing α = 2 again, it follows from (17) and (19) that

I(t) � t
mα−2sm−(2−m)n

(2−m)α + ln t � ln t,

when 2sm + (2 − m)n = 2m.
In the remaindering case 2sm + (2 − m)n > 2m, we found that

I(2)(t) �
∞∫

t−1/α

ω
2sm+(2−m)n−(2+m)

2−m exp

(
− (β − τ)m

2 − m
ω2
)

dω

� t
2+m−2sm−(2−m)n

(2−m)α

∞∫
0

exp

(
− (β − τ)m

2 − m
ω2
)

dω � t
2+m−2sm−(2−m)n

(2−m)α . (20)

For the moment, we would like to remark that since

∞∫
0

exp

(
− (β − τ)m

2 − m
ω2
)

dω =
√

π(2 − m)

2(β − τ)m
,

the restriction on the dissipative case, i.e. τ ∈ (0, β), acts a pivotal part in the way that

lim
τ→β−

∞∫
0

exp

(
− (β − τ)m

2 − m
ω2
)

dω = ∞,

which somehow shows the limit case τ = β having singularities.
Combining (17) and (20), it yields

I(t) � t
mα−2sm−(2−m)n

(2−m)α + t
2+m−2sm−(2−m)n

(2−m)α � t
m(2+m−2sm−(2−m)n)

(2+m)(2−m) ,

where we chose α = (2 + m)/m to guarantee the optimality of the last competition.
All in all, from (16), for t ∈ (1, ∞) we assert that
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G(t) �

⎧⎪⎪⎨⎪⎪⎩
t1−s− n(2−m)

2m if 2sm + (2 − m)n < 2m,

t
1
2 − s

2 − n(2−m)
4m (ln t)

2−m
2m if 2sm + (2 − m)n = 2m,

t
1
2 − s

2 − n(2−m)
4m

+ 2+m−2sm−(2−m)n
2(2+m) if 2sm + (2 − m)n > 2m,

in the case 2sm + (2 − m)n < 2 + m.
The estimates of solutions for bounded frequencies and large frequencies are exactly the same 

as those in Theorem 2.1. Thus, the summary of the derived estimates completes the proof. �
3. Asymptotic profiles in a framework of weighted L1 space

3.1. Optimal estimates with weighted L1 data

In this subsection, we will derive asymptotic profiles for the linear MGT equation in the 
dissipative case in a framework of L1,1 space, where

L1,1(Rn) :=
⎧⎨⎩f ∈ L1(Rn) : ‖f ‖L1,1(Rn) :=

∫
Rn

(1 + |x|)|f (x)|dx < ∞
⎫⎬⎭ .

As a preparation, we now define a time-dependent function

Dn(t) :=

⎧⎪⎨⎪⎩
t

1
2 if n = 1,

(ln t)
1
2 if n = 2,

t− n−2
4 if n � 3.

In order to derive asymptotic profiles of solutions, we will estimate upper bounds and lower 
bounds of the solution itself with u2 ∈ L2(Rn) ∩ L1,1(Rn). Before processing these estimates, 
let us introduce the notation for the integral of f (x) by Pf := ∫Rn f (x)dx, and recall Lemma 2.1 
from [28].

Lemma 3.1. Let us assume f ∈ L1,1(Rn). Then, the following estimate holds:

|f̂ (ξ)| � C1|ξ | ‖f ‖L1,1(Rn) + |Pf |,

with a positive constant C1 > 0.

Moreover, due to the support condition for χint(ξ), by minor modifications of some derived 
lemmas in [29,32], one may show the validity of Lemma 3.2. Or one may use the inequality

‖χint(ξ)f̂ (t, |ξ |)‖L2(Rn) � ‖f̂ (t, |ξ |)‖L2(Rn)

−
(
‖χmid(ξ)f̂ (t, |ξ |)‖L2(Rn) + ‖χext(ξ)f̂ (t, |ξ |)‖L2(Rn)

)
for t 
 1, where f̂ (t, |ξ |) = | sin(|ξ |t)|e−c|ξ |2t /|ξ | or f̂ (t, |ξ |) = | cos(|ξ |t)|e−c|ξ |2t and esti-
mates
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‖χmid(ξ)f̂ (t, |ξ |)‖L2(Rn) + ‖χext(ξ)f̂ (t, |ξ |)‖L2(Rn) � e−c0t ,

with a suitable constant c0 > 0, to prove the next lemma.

Lemma 3.2. Let n � 1. The following estimates hold:

Dn(t) �
∥∥∥∥χint(ξ)

| sin(|ξ |t)|
|ξ | e−c|ξ |2t

∥∥∥∥
L2(Rn)

� Dn(t),

t−
n
4 �

∥∥∥χint(ξ)| cos(|ξ |t)|e−c|ξ |2t
∥∥∥

L2(Rn)
� t−

n
4 ,

with c > 0, for t 
 1.

Let us state our result on asymptotic profiles of the solution. Particularly, in one and two-
dimensional cases, we can easily observe the glow-up properties of the solution u(t, ·) in the L2

norm for the linear MGT equation in the dissipative case with initial data belonging to L2 ∩L1,1.

Theorem 3.1. Let τ ∈ (0, β). Let us assume u2 ∈ L2(Rn) ∩ L1,1(Rn) and |Pu2 | �= 0. Then, the 
solution u = u(t, x) to the Cauchy problem (2) fulfills the following estimates:

Dn(t)|Pu2 | � ‖u(t, ·)‖L2(Rn) � Dn(t)‖u2‖L2(Rn)∩L1,1(Rn)

for any t 
 1.

Remark 3.1. According to Theorem 3.1 and concerning t 
 1, we may observe that the decay 
rate for the estimates of ‖u(t, ·)‖L2(Rn) from the above and the below are the same for any n � 1. 
Moreover, u2 ∈ L1,1(Rn) implies |Pu2 | < ∞ for n � 1. Namely, the decay estimates stated in 
Theorem 3.1 are optimal for all spatial dimensions in a framework of weighted L1 space.

Proof. Initially, let us estimate upper bounds of solutions by modifying the estimate for small 
frequencies. The philosophy of derivative is essentially the same as those in Theorem 2.2. By 
applying Lemma 3.1 and Proposition 2.1, we arrive at

χint(ξ)|û(t, ξ)| � χint(ξ)
(
(|ξ | | cos(|ξ |t)| + | sin(|ξ |t)|) e− β−τ

2 |ξ |2t + |ξ |e− 1
τ
t
)

‖u2‖L1,1(Rn)

+ χint(ξ)

((
| cos(|ξ |t)| + | sin(|ξ |t)|

|ξ |
)

e− β−τ
2 |ξ |2t + e− 1

τ
t

)
|Pu2 |.

Clearly, for the sake of the polar co-ordinate transform, we may deduce∥∥∥χint(ξ)
(
(|ξ | | cos(|ξ |t)| + | sin(|ξ |t)|) e− β−τ

2 |ξ |2t + |ξ |e− 1
τ
t
)∥∥∥

L2(Rn)

�

⎛⎝ ε∫
0

rn+1| cos(rt)|2e−(β−τ)r2tdr

⎞⎠
1
2

+
⎛⎝ ε∫

0

rn−1| sin(rt)|2e−(β−τ)r2tdr

⎞⎠
1
2

+ e− 1
τ
t

� t−
n+2

4 + t−
n
4 + e− 1

τ
t � t−

n
4
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for t 
 1. Repeating the same procedure as those in Theorem 2.2, we have

‖χint(D)u(t, ·)‖L2(Rn) � t−
n
4 ‖u2‖L1,1(Rn) +Dn(t)|Pu2 | (21)

for t 
 1. In the case for bounded and large frequencies, we just need to use the same estimates 
as those in Theorem 2.1. Finally, by using the fact that |Pu2 | � ‖u2‖L1,1(Rn), we are able to prove 
upper bound estimates for the solution itself in the L2 norm.

Let us now turn to lower bound estimates. According to the study in Section 2, we may 
represent the solution for small frequencies by

χint(ξ)û(t, ξ) = χint(ξ)I (t, |ξ |)û2(ξ)

= χint(ξ)(I1(t, |ξ |) + I2(t, |ξ |) + I3(t, |ξ |))û2(ξ),

where for the sake of convenience in the proof, we denoted I (t, |ξ |) := K̂(t, ξ) which was shown 
in (5), furthermore, we introduced

I1,2(t, |ξ |) :=
exp
((

±i|ξ | − β−τ
2 |ξ |2 +O(|ξ |3)

)
t
)

(±2i|ξ | +O(|ξ |3)) ( 1
τ

± i|ξ | − 3
2 (β − τ)|ξ |2 +O(|ξ |3)) ,

I3(t, |ξ |) := exp
((− 1

τ
+ (β − τ)|ξ |2 +O(|ξ |3)) t)( 1

τ
+ i|ξ | − 3

2 (β − τ)|ξ |2 +O(|ξ |3)) ( 1
τ

− i|ξ | − 3
2 (β − τ)|ξ |2 +O(|ξ |3)) .

By omitting the terms containing O(|ξ |3), we may regard next three functions as the leading 
term of Ij (t, |ξ |) for small frequencies:

J1,2(t, |ξ |) :=
exp
((

±i|ξ | − β−τ
2 |ξ |2

)
t
)

±2i|ξ | ( 1
τ

± i|ξ | − 3
2 (β − τ)|ξ |2) ,

J3(t, |ξ |) := exp
((− 1

τ
+ (β − τ)|ξ |2) t)( 1

τ
+ i|ξ | − 3

2 (β − τ)|ξ |2) ( 1
τ

− i|ξ | − 3
2 (β − τ)|ξ |2) ,

respectively, whose sum can be shown by

J (t, |ξ |) :=
∑

k=1,2,3

Jk(t, |ξ |)

=
exp
(
−β−τ

2 |ξ |2t
)

T 2
0 (|ξ |) + |ξ |2

(
sin(|ξ |t)

|ξ | T0(|ξ |) + exp

(
− 1

τ
t + 3

2
(β − τ)|ξ |2t

)
− cos(|ξ |t)

)
,

(22)

where we recalled (12). Now, we should be carefully analyze that the error estimates between the 
leading term Jj (t, |ξ |) the formulas Ij (t, |ξ |) for j = 1, 2, 3, individually. It proves the additional 
decay estimates. Concerning the case for J1(t, |ξ |), denoting

g1(|ξ |) := 1

τ
+ i|ξ | − 3

2
(β − τ)|ξ |2 = O(1) as |ξ | → 0,
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we may handle

χint(ξ)|I1(t, |ξ |) − J1(t, |ξ |)|

� χint(ξ)e− β−τ
2 |ξ |2t

∣∣∣∣∣ eO(|ξ |3)t

2i|ξ |g1(|ξ |) +O(|ξ |3) − 1

2i|ξ |g1(|ξ |)

∣∣∣∣∣
� χint(ξ)e− β−τ

2 |ξ |2t
∣∣∣∣∣∣
2i|ξ |g1(|ξ |)

(
eO(|ξ |3)t − 1

)
+O(|ξ |3)

4|ξ |2(g1(|ξ |))2 +O(|ξ |4)

∣∣∣∣∣∣
� χint(ξ)e− β−τ

2 |ξ |2t 1

|ξ |2

⎛⎝O(|ξ |4)t
1∫

0

exp
(
O(|ξ |3)ts

)
ds −O(|ξ |3)

⎞⎠
� χint(ξ)

(
O(|ξ |2)te−c|ξ |2t +O(|ξ |)e−c|ξ |2t

)
,

since there exists a constant c > 0 such that

χint(ξ)e− β−τ
2 |ξ |2t

1∫
0

exp
(
O(|ξ |3)ts

)
ds � χint(ξ)e− β−τ

4 |ξ |2t exp

(
−1

4
((β − τ) −O(|ξ |))|ξ |2t

)

� χint(ξ)e−c|ξ |2t .

Next, by repeating the same way as the previous one, we get

χint(ξ)|I2(t, |ξ |) − J2(t, |ξ |)| � χint(ξ)
(
O(|ξ |2)te−c|ξ |2t +O(|ξ |)e−c|ξ |2t

)
.

Considering the last term, by defining

g2(|ξ |) :=
(

1

τ
− 3

2
(β − τ)|ξ |2

)2

+ |ξ |2 = O(1) as |ξ | → 0,

one has

χint(ξ)|I3(t, |ξ |) − J3(t, |ξ |)|

� χint(ξ) exp

(
− 1

τ
t + (β − τ)|ξ |2t

)∣∣∣∣∣ exp
(
O(|ξ |3)t)

g2(|ξ |) +O(|ξ |3) − 1

g2(|ξ |)

∣∣∣∣∣
� χint(ξ) exp

(
− 1

τ
t + (β − τ)|ξ |2t

)∣∣∣∣∣g2(|ξ |)O(|ξ |3)t ∫ 1
0 exp

(
O(|ξ |3)ts)ds −O(|ξ |3)

(g2(|ξ |))2 +O(|ξ |3)

∣∣∣∣∣
� χint(ξ)e−ctO(|ξ |3)t
� χint(ξ)e−ct
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for any t 
 1, which still provides us an exponential decay.
In conclusion, we can claim

χint(ξ)|(I (t, |ξ |) − J (t, |ξ |))û2(ξ)| � χint(ξ)
(
O(|ξ |2)t +O(|ξ |)

)
e−c|ξ |2t |û2(ξ)|. (23)

Let us decompose initial data by

û2(ξ) = Pu2 + A(ξ) − iB(ξ),

where

A(ξ) :=
∫
Rn

u2(x)(1 − cos(x · ξ))dx and B(ξ) :=
∫
Rn

u2(x) sin(x · ξ)dx.

In the view of Lemma 2.2 in [29], these ξ -dependent functions can be controlled by

|A(ξ)| + |B(ξ)| � |ξ | ‖u2‖L1,1(Rn).

As a consequence, we may represent the solution in the Fourier space by

û(t, ξ) = I (t, |ξ |)Pu2 + (A(ξ) − iB(ξ))I (t, |ξ |).
From the derived estimate (23), it yields∥∥∥χint(D)u(t, ·) − χint(D)F−1

ξ→x(J (t, |ξ |))Pu2

∥∥∥
L2(Rn)

� ‖χint(ξ)(I (t, |ξ |) − J (t, |ξ |))‖L2(Rn) |Pu2 | + ‖χint(ξ)(A(ξ) − iB(ξ))I (t, |ξ |)‖L2(Rn)

�
∥∥∥χint(ξ)

(
|ξ |2t + |ξ |

)
e−c|ξ |2t

∥∥∥
L2(Rn)

|Pu2 | + ‖χint(ξ)|ξ |I (t, |ξ |)‖L2(Rn)‖u2‖L1,1(Rn)

� t−
n
4 ‖u2‖L1,1(Rn) (24)

for t 
 1, where we used

‖χint(ξ)|ξ |I (t, |ξ |)‖L2(Rn) �
∥∥∥χint(ξ)(|ξ | + 1)e− β−τ

2 |ξ |2t
∥∥∥

L2(Rn)
� t−

n
4 .

Additionally, let us recall the function J (t, |ξ |) in (22). By employing Lemma 3.2 and the Parse-
val equality, it is valid that∥∥∥χint(D)F−1

ξ→x(J (t, |ξ |))
∥∥∥

L2(Rn)

�
∥∥∥∥χint(ξ)

(
sin(|ξ |t)

|ξ | T0(|ξ |) + exp

(
− 1

τ
t + 3

2
(β − τ)|ξ |2t

)
− cos(|ξ |t)

)
e− β−τ

2 |ξ |2t
∥∥∥∥

L2(Rn)

�
∣∣∣∣∥∥∥χint(ξ)H(t, |ξ |)e− β−τ

2 |ξ |2t
∥∥∥

L2(Rn)
−
∥∥∥χint(ξ) cos(|ξ |t)e− β−τ

2 |ξ |2t
∥∥∥

L2(Rn)

∣∣∣∣
� |Dn(t) − t−

n
4 | � Dn(t)
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for t 
 1, where we denoted

H(t, |ξ |) := sin(|ξ |t)
|ξ | T0(|ξ |) + exp

(
− 1

τ
t + 3

2
(β − τ)|ξ |2t

)
,

moreover, we used upper bound estimates as follows:∥∥∥χint(ξ)H(t, |ξ |)e− β−τ
2 |ξ |2t

∥∥∥
L2(Rn)

� Dn(t)

and estimates from the below such that∥∥∥χint(ξ)H(t, |ξ |)e− β−τ
2 |ξ |2t

∥∥∥
L2(Rn)

�
∣∣∣∣∣∥∥∥χint(ξ)e− 1

τ
t+(β−τ)|ξ |2t

∥∥∥
L2(Rn)

−
∥∥∥∥χint(ξ)

| sin(|ξ |t)|
|ξ | e− β−τ

2 |ξ |2t
∥∥∥∥

L2(Rn)

∣∣∣∣∣
� |e−ct −Dn(t)| � Dn(t)

for any n � 1 and t 
 1.
Finally, by using the Minkowski inequality, we conclude

‖χint(D)u(t, ·)‖L2(Rn) �
∥∥∥χint(D)F−1

ξ→x(J (t, |ξ |))
∥∥∥

L2(Rn)
|Pu2 |

−
∥∥∥χint(D)u(t, ·) − χint(D)F−1

ξ→x(J (t, |ξ |))Pu2

∥∥∥
L2(Rn)

� Dn(t)|Pu2 | − t−
n
4 ‖u2‖L1,1(Rn)

for t 
 1. Actually, in the above by taking t 
 1, the time-dependent coefficients of |Pu2 | play 
dominant influence for all n � 1. Thus, with the help of the fact that

‖u(t, ·)‖L2(Rn) � ‖χint(D)u(t, ·)‖L2(Rn) � Dn(t)|Pu2 |,
the proof is complete. �
3.2. Approximate relation in one- and two-dimensional cases

Our purpose in this part is to give an approximate relation between the linear MGT equation 
and the linear viscoelastic damped wave equation (or the strongly damped wave equation). This 
approximate relation is strongly related to the so-called diffusion phenomenon (see, for example, 
[48]), which bridges a connection for the damped wave equation and the heat equation such that{

τudw
t t − �udw + udw

t = 0, x ∈ Rn, t > 0,

udw(0, x) = 0, udw
t (0, x) = udw

1 (x), x ∈ Rn,

=⇒
τ = 0{

−�vh + vh
t = 0, x ∈ Rn, t > 0,

vh(0, x) = udw
1 (x), x ∈ Rn.
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It is well-known that the decay rates of udw(t, ·) and vh(t, ·) in the L2 norm are the same. Fur-
thermore, the decay estimates of the difference∥∥∥udw(t, ·) − vh(t, ·)

∥∥∥
L2(Rn)

is faster than the decay estimates for each of them in the L2 norm. The gained decay rate is 
(1 + t)−1. Namely, diffusion phenomena bridge the connection between second-order (in time) 
evolution equations and first-order (in time) evolution equations.

Before giving our result, let us recall some derived estimates of solutions to the following 
linear Cauchy problem:

{
ũt t − �ũ − β�ũt = 0, x ∈Rn, t > 0,

ũ(0, x) = 0, ũt (0, x) = ũ1(x), x ∈Rn,
(25)

where β > 0. The Cauchy problem for the viscoelastic damped wave equation has been deeply 
studied in [55,34,16,29,30,32,3,2] and references therein. Particularly, in the paper [29], the au-
thor proved estimates of solutions to (25) as follows:

‖ũ(t, ·)‖L2(Rn) � Dn(t)‖ũ1‖L2(Rn)∩L1,1(Rn) (26)

for t 
 1, providing that |Pũ1 | �= 0. Concerning the Cauchy problem, we found that the estimates 
for the linear MGT equation (2) in Theorem 3.1, and for the viscoelastic damped wave equation 
(25) in (26), are exactly the same. Therefore, we conjecture that behaviors of solutions for the 
linear MGT equation are similar to those for the linear viscoelastic damped wave equation, espe-
cially the decay property. Furthermore, it becomes interesting to derive the approximate relation 
between them with suitable initial data, and to find a gained decay rate.

From the previous study, we know the decay rates of (L2 ∩ L1,1) − L2 estimates are deter-
mined by the behavior of the eigenvalues for small frequencies only. In the case for bounded and 
large frequencies, the behaviors of the eigenvalues together with the suitable regularity for initial 
data show immediately some exponential decays. For this reason, the next approximate relation 
is explained by the behavior of solutions localized in small frequency zone, which is the most 
interesting one.

Theorem 3.2. Let τ ∈ (0, β). Let us assume u2 ∈ L1,1(Rn) and |Pu2 | �= 0. Then, the solution 
u = u(t, x) to the Cauchy problem (2) and the solution ũ = ũ(t, x) to the Cauchy problem (25)
with ũ1(x) = u2(x) fulfill the following estimates:

‖χint(D) (u(t, ·) − τ ũ(t, ·))‖L2(Rn) � t
1
2 − n

4 ‖u2‖L1,1(Rn)

for any n � 1 and t 
 1.

Remark 3.2. By subtracting τ ũ(t, ·) in the L2 norm, we find the derived estimates for u(t, ·) in 
Theorem 3.1 can be improved t− 1

4 if n = 1 and (ln t)− 1
2 if n = 2 for t 
 1. It is still open that 

the gained decay rate for n � 3.
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Remark 3.3. Indeed, from Theorems 3.1 and 3.2, one may derive

‖u(t, ·) − τ ũ(t, ·)‖L2(Rn)

= ‖χint(D)(u(t, ·) − τ ũ(t, ·))‖L2(Rn) + ‖(1 − χint(D))(u(t, ·) − τ ũ(t, ·))‖L2(Rn)

� t
1
2 − n

4 ‖u2‖L1,1(Rn) + e−ct‖u2‖L2(Rn) � t
1
2 − n

4 ‖u2‖L2(Rn)∩L1,1(Rn)

for t � t0 
 1. Moreover, concerning 0 � t � t0, it is trivial that

‖u(t, ·) − τ ũ(t, ·)‖L2(Rn) � ‖u(t, ·)‖L2(Rn) + τ‖ũ(t, ·)‖L2(Rn) � ‖u2‖L2(Rn)∩L1,1(Rn).

Therefore, the approximate relation holds for all t � 0 and the whole spaces such that

‖u(t, ·) − τ ũ(t, ·)‖L2(Rn) � (1 + t)
1
2 − n

4 ‖u2‖L2(Rn)∩L1,1(Rn),

where we assumed u2 ∈ L2(Rn) ∩ L1,1(Rn). Namely, the solution for the linear MGT equation 
approximate to that for the linear viscoelastic damped wave equation at least for n = 1, 2.

Proof. By applying the partial Fourier transform ˆ̃u(t, ξ) = Fx→ξ (ũ(t, x)), let us recall the de-
rived inequality stated in Lemma 2.1 in [29] such that∥∥∥∥χint(ξ)

(
ˆ̃u(t, ξ) − sin(|ξ |t)

|ξ | e− β
2 |ξ |2tPu2

)∥∥∥∥
L2(Rn)

� t−
n
4 ‖u2‖L1,1(Rn) (27)

for t 
 1. Again, ũ(t, x) is the solution to the viscoelastic damped wave equation (25) with initial 
data choosing by ũ1(x) = u2(x).

We notice that the difference of the solutions can be decomposed by three components as 
follows:

û(t, ξ) − τ ˆ̃u(t, ξ) = (û(t, ξ) − J (t, |ξ |)Pu2

)+(J (t, |ξ |) − τ
sin(|ξ |t)

|ξ | e− β
2 |ξ |2t

)
Pu2

+
(

τ
sin(|ξ |t)

|ξ | e− β
2 |ξ |2tPu2 − τ ˆ̃u(t, ξ)

)
.

Therefore, employing the Parseval equality and the norm inequality, we arrive at

‖χint(D) (u(t, ·) − τ ũ(t, ·))‖L2(Rn) =
∥∥∥χint(ξ)

(
û(t, ξ) − τ ˆ̃u(t, ξ)

)∥∥∥
L2(Rn)

�
∥∥χint(ξ)

(
û(t, ξ) − J (t, |ξ |)Pu2

)∥∥
L2(Rn)

+
∥∥∥∥χint(ξ)

(
J (t, |ξ |) − τ

sin(|ξ |t)
|ξ | e− β

2 |ξ |2t
)∥∥∥∥

L2(Rn)

|Pu2 |

+ τ

∥∥∥∥χint(ξ)

(
ˆ̃u(t, ξ) − sin(|ξ |t)

|ξ | e− β
2 |ξ |2tPu2

)∥∥∥∥
L2(Rn)

� t−
n
4 ‖u2‖L1,1(Rn) +J (t)|Pu2 |,
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where we used (24) and (27). In the above inequality, we denoted

J (t) :=
∥∥∥∥χint(ξ)

(
J (t, |ξ |) − τ

sin(|ξ |t)
|ξ | e− β

2 |ξ |2t
)∥∥∥∥

L2(Rn)

.

In other words, we just need to estimate J (t) in the remaindering part of the proof.
Recalling (12), from the definition of J (t) in the last subsection, we may estimate

J (t) �

∥∥∥∥∥∥χint(ξ)
exp
(
−β−τ

2 |ξ |2t
)

T 2
0 (|ξ |) + |ξ |2

(
− cos(|ξ |t) + exp

(
− 1

τ
t + 3

2
(β − τ)|ξ |2t

))∥∥∥∥∥∥
L2(Rn)

+
∥∥∥∥∥χint(ξ)

sin(|ξ |t)
|ξ | e− β

2 |ξ |2t
(
T0(|ξ |) exp

(
τ
2 |ξ |2t)

T 2
0 (|ξ |) + |ξ |2 − τ

)∥∥∥∥∥
L2(Rn)

=: J (1)(t) +J (2)(t).

For one thing, it is clear that

J (1)(t) �
∥∥∥χint(ξ)| cos(|ξ |t)|e−c|ξ |2t

∥∥∥
L2(Rn)

+ e−ct � t−
n
4

for t 
 1. Before estimating J (2)(t), the explicit computation shows the identity as follows:

T0(|ξ |)e τ
2 |ξ |2t − τ

(
T 2

0 (|ξ |) + |ξ |2
)

= T0(|ξ |)
(

e
τ
2 |ξ |2t − 1 + 3

2
τ(β − τ)|ξ |2

)
− τ |ξ |2

= τ

2
|ξ |2t T0(|ξ |)

1∫
0

e
τ
2 |ξ |2tsds + τ

(
T0(|ξ |)3

2
(β − τ) − 1

)
|ξ |2.

Thus, we compute

J (2)(t) � t

∥∥∥∥∥∥χint(ξ)| sin(|ξ |t)|e− β
2 |ξ |2t |ξ | |T0(|ξ |)|

1∫
0

e
τ
2 |ξ |2tsds

∥∥∥∥∥∥
L2(Rn)

+
∥∥∥∥χint(ξ)| sin(|ξ |t)|e− β

2 |ξ |2t
∣∣∣∣T0(|ξ |)3

2
(β − τ) − 1

∣∣∣∣ |ξ |
∥∥∥∥

L2(Rn)

� t

∥∥∥χint(ξ)|ξ | | sin(|ξ |t)|e−c|ξ |2t
∥∥∥

L2(Rn)
� t

1
2 − n

4

for t 
 1. Summarizing the derived estimates, one has

‖χint(D) (u(t, ·) − τ ũ(t, ·))‖L2(Rn) � t−
n
4 ‖u2‖L1,1(Rn) + t

1
2 − n

4 |Pu2 |,
and the proof is immediately complete. �
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Remark 3.4. Although we can observe a similar decay property between the linear MGT equa-
tion (2) and the linear viscoelastic damped wave equation (25), there is a great difference between 
them. Recalling that the property of finite propagation speed (FPS) is valid for the linear MGT 
equation in the conservative case, we refer to Section 2 in [13]. Actually, the property of FPS 
holds for the linear MGT equation even in the dissipative case (see Remark 2.1). To estimate the 
propagation speed, we construct an energy for (2), namely,

EFPS[u](t) := β

∫
�β,τ

∣∣∣∣∇ut (t, x) + 1

β
∇u(t, x)

∣∣∣∣2 dx + τ

∫
�β,τ

∣∣∣∣utt (t, x) + 1

β
ut (t, x)

∣∣∣∣2 dx

+ 1

β

(
1 − τ

β

) ∫
�β,τ

|ut (t, x)|2dx,

where the domain is defined by

�β,τ :=
{
(t, x) : t ∈ [0, T ], |x − x0| �

√
β/τ (T − t)

}
.

So, taking the derivative with respect to t , we arrive at

d

dt
EFPS[u](t) = 2β

∫
�β,τ

∇
(

ut (t, x) + 1

β
u(t, x)

)
· ∇
(

utt (t, x) + 1

β
ut (t, x)

)
dx

+ 2τ

∫
�β,τ

(
utt (t, x) + 1

β
ut (t, x)

)(
uttt (t, x) + 1

β
utt (t, x)

)
dx

+ 2

β

(
1 − τ

β

) ∫
�β,τ

ut (t, x)utt (t, x)dx

− β

√
β

τ

∫
∂�β,τ

∣∣∣∣∇ut (t, x) + 1

β
∇u(t, x)

∣∣∣∣2 dS

− τ

√
β

τ

∫
∂�β,τ

∣∣∣∣utt (t, x) + 1

β
ut (t, x)

∣∣∣∣2 dS

+ 1

β

√
β

τ

(
1 − τ

β

) ∫
∂�β,τ

|ut (t, x)|2dS.

Integration by parts and the Cauchy-Schwarz inequality yield

2β

∫
�

∇
(

ut (t, x) + 1

β
u(t, x)

)
· ∇
(

utt (t, x) + 1

β
ut (t, x)

)
dx
β,τ
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� −2β

∫
�β,τ

(
�ut(t, x) + 1

β
�u(t, x)

)(
utt (t, x) + 1

β
ut (t, x)

)
dx

+ β

√
β

τ

∫
∂�β,τ

∣∣∣∣∇ut (t, x) + 1

β
∇u(t, x)

∣∣∣∣2 dS + β

√
τ

β

∫
∂�β,τ

∣∣∣∣utt (t, x) + 1

β
ut (t, x)

∣∣∣∣2 dS.

Finally, summarizing them, one has

d

dt
EFPS[u](t) � −2

(
1 − τ

β

) ∫
�β,τ

|utt (t, x)|2dx − 1√
βτ

∫
∂�β,τ

|ut (t, x)|2dS � 0.

In other words, for all t ∈ [0, T ], it is valid that EFPS[u](t) � EFPS[u](0) = 0 if u(0, x) =
ut (0, x) = utt (0, x) = 0 in a set �0

β,τ := {|x − x0| � √
β/τ T

}
. According to the definition of 

energy EFPS[u](t), it follows immediately that ut(t, x) = 0 and ∇u(t, x) = 0 in �β,τ . This im-
plies u(t, x) = 0 in �β,τ due to u(0, x) = 0 in �0

β,τ . The propagation speed reads as 
√

β/τ . In 
the limit case τ = β , the propagation speed is equal to 1, which corresponds to the statement of 
Section 2 in [13]. In particular, formally taking τ = 0, i.e. the viscoelastic damped wave equa-
tion, the propagation speed is infinite. However, the property of FPS does not hold anymore in the 
linear viscoelastic damped wave equation, and the solution to (25) has some smoothing effects.

Remark 3.5. Actually, there is another aspect to analyze the linear MGT equation. Let us con-
sider the conservative case (τ = β) in the Cauchy problem (2), whose local (in spaces) energy 
with R > 0 can be defined by

EMGT,R[u](t) := 1

2
‖∂t (βut (t, ·) + u(t, ·))‖L2(BR) + 1

2
‖∇(βut (t, ·) + u(t, ·))‖L2(BR).

Motivated by [13], we may rewrite the Cauchy problem (2) with τ = β by the next way:{
(βut + u)tt − �(βut + u) = 0, x ∈Rn, t > 0,

(βut + u)(0, x) = 0, (βut + u)t (0, x) = βu2(x), x ∈Rn.

Then, by applying Theorem 1.2 with c(x) ≡ 1, n � 3 and L = 0 in the recent paper [10], we can 
get

EMGT,R[u](t) = O(t−1)

for each R > 0 and t 
 1, provided that u2 ∈ L1(Rn) and∫
Rn

(1 + |x|)|u2(x)|2dx < ∞.

In other words, local (in spaces) energy for the linear MGT equation in the conservative case 
τ = β decays with an algebraic decay order.
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4. Singular limit problem

In this section, we focus on the following Cauchy problem for the singular limit problem of 
the form:{

τuτ,tt t + uτ,tt − �uτ − β�uτ,t = 0, x ∈ Rn, t > 0,

uτ (0, x) = u0(x), uτ,t (0, x) = u1(x), uτ,tt (0, x) = u2(x), x ∈ Rn,
(28)

where τ ∈ (0, β) with β > 0. Moreover, the time-derivative for the unknown uτ = uτ (t, x) is 
denoted by uτ,t := ∂tuτ , and similarly for uτ,tt as well as uτ,tt t . Particularly, we consider τ to 
be a small parameter such that 0 < τ � β . In other words, our main purpose in the section is to 
understand the asymptotic profiles of the solution uτ = uτ (t, x) as τ → 0+. This property has 
been studied between damped wave equations and heat equations. We refer readers to [40,27,31,
15,25,21,33] and references therein. Nevertheless, concerning the study of the Cauchy problem 
for the linear MGT equation, it seems new from the knowledge of authors.

Quite recently, the behavior of singular limit for linear or nonlinear MGT equations has been 
studied in the bounded domain, see [39,4,5] and references therein. From the knowledge of au-
thors, their convergence results mainly focus on the energy norms with convergence rate τ . It 
seems not difficult to get convergence result for the solution itself in the bounded domain, e.g. 
with the Dirichlet boundary condition, thanks to the Poincaré inequality. Nevertheless, the situ-
ation has been greatly changed in the case for Cauchy problem. So, the novelty of this section 
is to derive the singular limit not only for some energies but also for the solution itself in Rn. 
Particularly, the convergence rate τ can be improved by τ 2 provided the consistency assumption 
on initial data is taken (see Remark 4.3).

Let us introduce the Cauchy problem for the viscoelastic damped wave equation, namely,{
vtt − �v − β�vt = 0, x ∈ Rn, t > 0,

v(0, x) = u0(x), vt (0, x) = u1(x), x ∈ Rn,
(29)

where β > 0. As mentioned in the last section, the Cauchy problem for the viscoelastic damped 
wave equation has been widely studied. For instance, considering Theorem 14.3.2 and Corollary 
14.3.1 in the book [20], we know solutions to the Cauchy problem (29) fulfill∥∥∥ |D|kv(t, ·)

∥∥∥2

L2(Rn)
� C

(
(1 + t)−k‖u0‖2

Hk(Rn)
+ (1 + t)−(k−1)‖u1‖2

Hk−1(Rn)

)
for k � 1,∥∥∥ |D|kvt (t, ·)

∥∥∥2

L2(Rn)
� C

(
(1 + t)−(k+1)‖u0‖2

Hk(Rn)
+ (1 + t)−k‖u1‖2

Hk(Rn)

)
for k � 1.

Therefore, it is easy to observe that

∑
j,k=1,2

∥∥∥∇j ∂k
t v(t, ·)

∥∥∥2

L2(Rn)
�
{

C(1 + t)−1‖(u0, u1)‖2
H 4(Rn)×H 4(Rn)

if u1 �= 0,

C(1 + t)−2‖u0‖2
H 4(Rn)

if u1 = 0,
(30)

∑
j,k=0,1

∥∥∥∇1+j ∂k
t v(t, ·)

∥∥∥2

L2(Rn)
�
{

C‖(u0, u1)‖2
H 2(Rn)×H 2(Rn)

if u1 �= 0,

C(1 + t)−1‖u0‖2
H 2(Rn)

if u1 = 0,
(31)
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where we employed ‖∇jf (t, ·)‖L2(Rn) ≈ ‖ |D|j f (t, ·)‖L2(Rn).
Finally, let us define w = w(t, x) such that

w(t, x) := uτ (t, x) − v(t, x), (32)

where uτ = uτ (t, x) is the solution to the Cauchy problem (28) and v = v(t, x) is the solution to 
the Cauchy problem (29).

4.1. Singular limit for an energy

Theorem 4.1. Let us assume (u0, u1, u2) ∈ H 4(Rn) × H 4(Rn) × L2(Rn), where u0 and u1 are 
not zero simultaneously. Then, the difference w = w(t, x) defined in (32) fulfills the following 
estimates for small τ such that 0 < τ � β:

E[w](t) + (2 − ε1 − 2τk)

t∫
0

‖wηη(η, ·)‖2
L2(Rn)

dη + (2βk − ε1 − 2)

t∫
0

‖∇wη(η, ·)‖2
L2(Rn)

dη

� τ‖u2 − �u0 − β�u1‖2
L2(Rn)

+
{

Cτ 2 ln(e + t)‖(u0, u1)‖2
H 4(Rn)×H 4(Rn)

if u1 �= 0,

Cτ 2‖u0‖2
H 4(Rn)

if u1 = 0,

where C is a positive constant independent of τ , and k ∈
[

2+ε1
2β

, 2−ε1
2τ

]
carrying ε1 ∈

(
0,

2β−2τ
β+τ

]
. 

Moreover, the energy E[w](t) is defined by

E[w](t) := β

∥∥∥∥∇wt(t, ·) + 1

β
∇w(t, ·)

∥∥∥∥2

L2(Rn)

+ τ‖wtt (t, ·) + kwt (t, ·)‖2
L2(Rn)

+ k(1 − τk)‖wt(t, ·)‖2
L2(Rn)

+
(

k − 1

β

)
‖∇w(t, ·)‖2

L2(Rn)
.

Remark 4.1. The assumption that u0 and u1 are not zero simultaneously, is natural to guarantee 
nontrivial solution for the viscoelastic damped wave equation (29).

Remark 4.2. Actually, the choice of parameters k and ε1 can be independent of τ for a small 
value of τ > 0. For example, by taking a small τ such that 0 < τ � 39β/41, we can fix ε1 = 1/20
and k = 41/(40β). Particularly, by considering τ → 0+, we can immediately enlarge the choice 
of parameters k and ε1.

Remark 4.3. Let us consider t ∈ (0, T ). In Theorem 4.1 with T < ∞, we may observe

• if u2 �= �u0 + β�u1, it holds E[w](t) =O(τ ) as τ → 0+;
• if u2 = �u0 + β�u1, it holds E[w](t) =O(τ 2) as τ → 0+.

So, the speeds of convergence are different under different choices of initial data. However, con-
cerning T = ∞, the property for singular limit holds if and only if u1 = 0. Otherwise, we found 
that E[w](t) = O(ln(e + t)) as t → ∞. In conclusion, the choice for initial data is extremely 
important in the consideration of singular limit property.
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Proof. Let us act τ∂t on the equation in (29) and then add itself to arrive at

τvttt + vtt − �v − β�vt = τ(�vt + β�vtt ). (33)

Let us recall w = w(t, x) as a difference such that w(t, x) = uτ (t, x) − v(t, x). Then, by sub-
tracting the equation in (28) with (33), we have

τwttt + wtt − �w − β�wt = −τ(�vt + β�vtt ). (34)

To achieve our aim, we next will apply the classical energy method for the Cauchy problem. For 
one thing, we construct an energy as follows:

E1[w](t) := τ‖wtt (t, ·)‖2
L2(Rn)

+ β‖∇wt(t, ·)‖2
L2(Rn)

− 2
∫
Rn

�w(t, x)wt (t, x)dx.

It shows that

d

dt
E1[w](t) = 2τ

∫
Rn

wttt (t, x)wtt (t, x)dx + 2β

∫
Rn

∇wtt (t, x) · ∇wt(t, x)dx

− 2
∫
Rn

�wt(t, x)wt (t, x)dx − 2
∫
Rn

�w(t, x)wtt (t, x)dx

= −2‖wtt (t, ·)‖2
L2(Rn)

+ 2‖∇wt(t, ·)‖2
L2(Rn)

− 2τ

∫
Rn

(�vt (t, x) + β�vtt (t, x))wtt (t, x)dx,

where we considered (34).
For another, let us introduce the other auxiliary energy

E2[w](t) := ‖∇w(t, ·)‖2
L2(Rn)

+ ‖wt(t, ·)‖2
L2(Rn)

+ 2τ

∫
Rn

wtt (t, x)wt (t, x)dx.

Taking the derivative with respect to time variable, we have

d

dt
E2[w](t) =2

∫
Rn

∇wt(t, x) · ∇w(t, x)dx + 2
∫
Rn

wtt (t, x)wt (t, x)dx

+ 2τ

∫
Rn

wttt (t, x)wt (t, x)dx + 2τ

∫
Rn

wtt (t, x)wtt (t, x)dx

= − 2β‖∇wt(t, ·)‖2
L2(Rn)

+ 2τ‖wtt (t, ·)‖2
L2(Rn)

+ 2τ

∫
Rn

(∇vt (t, x) + β∇vtt (t, x)) · ∇wt(t, x)dx.
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Let k be a positive parameter to be fixed later. Hence, by applying

−2
∫
Rn

�w(t, x)wt (t, x)dx =2
∫
Rn

∇w(t, x) · ∇wt(t, x)dx

=β

∥∥∥∥ 1

β
∇w(t, ·) + ∇wt(t, ·)

∥∥∥∥2

L2(Rn)

−
(

1

β
‖∇w(t, ·)‖2

L2(Rn)
+ β‖∇wt(t, ·)‖2

L2(Rn)

)
and

2τk

∫
Rn

wtt (t, x)wt (t, x)dx = τ‖wtt (t, ·) + kwt (t, ·)‖2
L2(Rn)

− τ
(
‖wtt (t, ·)‖2

L2(Rn)
+ k2‖wt(t, ·)‖2

L2(Rn)

)
,

one may rewrite the total energy by

E1[w](t) + kE2[w](t) = β

∥∥∥∥∇wt(t, ·) + 1

β
∇w(t, ·)

∥∥∥∥2

L2(Rn)

+ τ‖wtt (t, ·) + kwt (t, ·)‖2
L2(Rn)

+ k(1 − τk)‖wt(t, ·)‖2
L2(Rn)

+
(

k − 1

β

)
‖∇w(t, ·)‖2

L2(Rn)
.

To guarantee the non-negativity of the above combined energy, we need to restrict k ∈
[

1
β
, 1

τ

]
. 

Here, we should underline in advance that

E1[w](0) + kE2[w](0) = τ‖u2 − �u0 − β�u1‖2
L2(Rn)

,

since w(0, x) = wt(0, x) = 0 and wtt (0, x) = u2(x) − �u0(x) − β�u1(x).
Furthermore, the application of Cauchy’s inequality indicates that there exists a small constant 

ε1 > 0 such that

− 2τ

∫
Rn

(�vt (t, x) + β�vtt (t, x))wtt (t, x)dx

+ 2kτ

∫
Rn

(∇vt (t, x) + β∇vtt (t, x)) · ∇wt(t, x)dx

� 2τ 2

ε1

(
‖�vt(t, ·)‖2

L2(Rn)
+ β2‖�vtt (t, ·)‖2

L2(Rn)

+k2
(
‖∇vt (t, ·)‖2

L2(Rn)
+ β2‖∇vtt (t, ·)‖2

L2(Rn)

))
+ ε1

(
‖wtt (t, ·)‖2

L2(Rn)
+ ‖∇wt(t, ·)‖2

L2(Rn)

)
.
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We summarize the derived inequalities, which lead to

d

dt
(E1[w](t) + kE2[w](t))
+ (2 − ε1 − 2τk)‖wtt (t, ·)‖2

L2(Rn)
+ (2βk − ε1 − 2)‖∇wt(t, ·)‖2

L2(Rn)

� 2τ 2

ε1

(
‖�vt(t, ·)‖2

L2(Rn)
+ k2‖∇vt (t, ·)‖2

L2(Rn)

+β2
(
‖�vtt (t, ·)‖2

L2(Rn)
+ k2‖∇vtt (t, ·)‖2

L2(Rn)

))
.

By choosing k ∈
[

2+ε1
2β

, 2−ε1
2τ

]
, we found that 2 − ε1 − 2τk � 0 and 2βk − ε1 − 2 � 0. To guar-

antee the non-empty set of k, we restrict ourselves ε1 ∈
(

0,
2β−2τ
β+τ

]
.

Using the derived L2 estimates (30), we see

d

dt
(E1[w](t) + kE2[w](t)) + (2 − ε1 − 2τk)‖wtt (t, ·)‖2

L2(Rn)
+ (2βkε1 − 2)‖∇wt(t, ·)‖2

L2(Rn)

�
{

Cτ 2(1 + t)−1‖(u0, u1)‖2
H 4(Rn)×H 4(Rn)

if u1 �= 0,

Cτ 2(1 + t)−2‖u0‖2
H 4(Rn)

if u1 = 0,

where C is a positive constant independent of τ . Finally, integrating the above inequality over 
[0, t], one gets our desired inequality. �
4.2. Singular limit for the solution itself

Let us turn to the single limit for the solution itself, which is not a trivial generalization of the 
last result because the L2 norm for the solution itself is not included in an energy of the MGT 
equation in the dissipative case. Motivated by [27,31], we will use Hardy’s inequality associated 
with a new variable to overcome the difficulty.

Theorem 4.2. Let n � 3. Let us assume (u0, u1, u2) ∈ H 2(Rn) × H 2(Rn) × L2(Rn) and ad-
ditionally |x|u2 ∈ L2(Rn), where u0 and u1 are not zero simultaneously. Then, the difference 
w(t, x) defined in (32) fulfills the following estimates for small τ such that 0 < τ � β:

C̄‖w(t, ·)‖2
L2(Rn)

+ (2k̃β − ε2 − 2)

t∫
0

‖∇w(η, ·)‖2
L2(Rn)

dη

+ (2 − ε2 − 2k̃τ )

t∫
0

‖wη(η, ·)‖2
L2(Rn)

dη

� Cτ 2
(
‖u2‖2

L2(Rn)
+ ‖ |x|u2‖2

L2(Rn)

)
+
{

Cτ 2t‖(u0, u1)‖2
H 2(Rn)×H 2(Rn)

if u1 �= 0,

Cτ 2 ln(e + t)‖u0‖2
2 n if u1 = 0,
H (R )
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where C, C̄ are positive constants independent of τ , and k̃ ∈
[

2+ε2
2β

, 2−ε2
2τ

]
carrying ε2 ∈(

0,
2β−2τ
β+τ

]
and ε2 < 2.

Remark 4.4. In the case when u1 �= 0, by using Theorem 2.1 in [26], we still can provide the 
estimate with ln(e + t) rather than t , where we need to assume the additional condition ‖(1 +
|x|)(u1 − �u0)‖L2(Rn) < ∞.

Remark 4.5. In the remaindering case for n = 1, 2, we may use the integral formula w(t, x) =∫ t

0 wη(η, x)dη with w(0, x) = 0. Then, by applying Minkowski’s integral inequality and the de-
rived inequality in Theorem 4.1, we have

‖w(t, ·)‖2
L2(Rn)

=
∫
Rn

∣∣∣∣∣∣
t∫

0

wη(η, x)dη

∣∣∣∣∣∣
2

dx �

⎛⎝ t∫
0

‖wη(η, ·)‖L2(Rn)dη

⎞⎠2

� Cτt2‖u2 − �u0 − β�u1‖2
L2(Rn)

+
⎧⎨⎩Cτ 2

(∫ t

0 (ln(e + η))
1
2 dη
)2 ‖(u0, u1)‖2

H 4(Rn)×H 4(Rn)
if u1 �= 0,

Cτ 2t2‖u0‖2
H 4(Rn)

if u1 = 0,

providing that we assume (u0, u1, u2) ∈ H 4(Rn) × H 4(Rn) × L2(Rn).

Proof. To begin with the proof, we introduce W = W(t, x) fulfilling

W(t, x) :=
t∫

0

w(η,x)dη.

Then, carrying out direct computations, we find that the new variable W(t, x) also fulfills a kind 
of inhomogeneous linear MGT equation in the dissipative case. Precisely, it holds

τWttt + Wtt − �W − β�Wt = τwtt + wt −
t∫

0

�w(η,x)dη − β�w

= τwtt + wt −
t∫

0

(τwηηη + wηη − β�wη + τ(�vη + β�vηη))(η, x)dη − β�w,

where we applied (34). In other words, one has

τWttt + Wtt − �W − β�Wt = τu2 − τ�v − τβ�vt , (35)

since w(0, x) = wt(0, x) = 0 and wtt (0, x) = u2(x) − �u0(x) − β�u1(x).
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Let us set two auxiliary energies as follows:

Ẽ1[W ](t) := τ‖Wtt (t, ·)‖2
L2(Rn)

+ β‖∇Wt(t, ·)‖2
L2(Rn)

+ 2
∫
Rn

∇W(t, x) · ∇Wt(t, x)dx,

Ẽ2[W ](t) := ‖Wt(t, ·)‖2
L2(Rn)

+ ‖∇W(t, ·)‖2
L2(Rn)

+ 2τ

∫
Rn

Wtt (t, x)Wt (t, x)dx.

Clearly, from integration by parts and Cauchy’s inequality, we see

− 2τ

∫
Rn

(�v(t, x) + β�vt (t, x))Wtt (t, x)dx

− 2k̃τ

∫
Rn

(�v(t, x) + β�vt (t, x))Wt (t, x)dx

� 2τ 2

ε2

(
‖�v(t, ·)‖2

L2(Rn)
+ k̃2‖∇v(t, ·)‖2

L2(Rn)

+β2
(
‖�vt(t, ·)‖2

L2(Rn)
+ k̃2‖∇vt (t, ·)‖2

L2(Rn)

))
+ ε2

(
‖Wtt (t, ·)‖2

L2(Rn)
+ ‖∇Wt(t, ·)‖2

L2(Rn)

)
,

where we set ε2 ∈
(

0,
2β−2τ
β+τ

]
. Here, k̃ is a positive constant to be restricted later. We now apply 

the similar procedure to those in the proof of Theorem 4.1, then from (35) we may obtain

Ẽ1[W ](t) + k̃Ẽ2[W ](t) = β

∥∥∥∥∇Wt(t, ·) + 1

β
∇W(t, ·)

∥∥∥∥2

L2(Rn)

+ τ‖Wtt (t, ·) + k̃Wt (t, ·)‖2
L2(Rn)

+ k̃(1 − τ k̃)‖Wt(t, ·)‖2
L2(Rn)

+
(

k̃ − 1

β

)
‖∇W(t, ·)‖2

L2(Rn)
,

and

d

dt

(
Ẽ1[W ](t) + k̃Ẽ2[W ](t)

)
� (2k̃τ + ε2 − 2)‖Wtt (t, ·)‖2

L2(Rn)
+ (2 + ε2 − 2k̃β)‖∇Wt(t, ·)‖2

L2(Rn)

+ 2τ 2

ε2

(
‖�v(t, ·)‖2

L2(Rn)
+ k̃2‖∇v(t, ·)‖2

L2(Rn)

+β2
(
‖�vt(t, ·)‖2

L2(Rn)
+ k̃2‖∇vt (t, ·)‖2

L2(Rn)

))
+ 2τ

d

dt

⎛⎝∫
Rn

u2(x)(Wt (t, x) + k̃W(t, x))dx

⎞⎠ .
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Due to the estimates (31), we observe that

d

dt

(
Ẽ1[W ](t) + k̃Ẽ2[W ](t)

)
+ (2 − ε2 − 2k̃τ )‖Wtt (t, ·)‖2

L2(Rn)

+ (2k̃β − ε2 − 2)‖∇Wt(t, ·)‖2
L2(Rn)

� 2τ
d

dt

⎛⎝ ∫
Rn

u2(x)(Wt (t, x) + k̃W(t, x))dx

⎞⎠
+
{

Cτ 2‖(u0, u1)‖2
H 2(Rn)×H 2(Rn)

if u1 �= 0,

Cτ 2(1 + t)−1‖u0‖2
H 2(Rn)

if u1 = 0.

According to Wtt (0, x) = wt(0, x) = 0, we get Ẽ1[W ](0) + k̃Ẽ2[W ](0) = 0. Integrating the pre-
vious inequality over [0, t] yields

β

∥∥∥∥∇Wt(t, ·) + 1

β
∇W(t, ·)

∥∥∥∥2

L2(Rn)

+ τ‖Wtt (t, ·) + k̃Wt (t, ·)‖2
L2(Rn)

+ k̃(1 − τ k̃)‖Wt(t, ·)‖2
L2(Rn)

+
(

k̃ − 1

β

)
‖∇W(t, ·)‖2

L2(Rn)
+ (2 − ε2 − 2k̃τ )

t∫
0

‖Wηη(η, ·)‖2
L2(Rn)

dη

+ (2k̃β − ε2 − 2)

t∫
0

‖∇Wη(η, ·)‖2
L2(Rn)

dη

� 2τ

∫
Rn

u2(x)(Wt (t, x) + k̃W(t, x))dx

+
{

Cτ 2t‖(u0, u1)‖2
H 2(Rn)×H 2(Rn)

if u1 �= 0,

Cτ 2 ln(e + t)‖u0‖2
H 2(Rn)

if u1 = 0.
(36)

Let us now estimate the first term on the right-hand side of (36). For one thing, there exists a 
positive constant ε3 such that

2τ

∫
Rn

u2(x)Wt(t, x)dx � τ 2

ε3
‖u2‖2

L2(Rn)
+ ε3‖Wt(t, ·)‖2

L2(Rn)
.

For another, making use of Hardy’s inequality for n � 3, we get

2k̃τ

∫
n

u2(x)W(t, x)dx � k̃τ 2

ε3
‖ |x|u2‖2

L2(Rn)
+ ε3k̃

∫
n

|W(t, x)|2
|x|2 dx
R R
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� k̃τ 2

ε3
‖ |x|u2‖2

L2(Rn)
+ n

n − 2
ε3k̃‖∇W(t, ·)‖2

L2(Rn)
.

All in all, we derive

β

∥∥∥∥∇Wt(t, ·) + 1

β
∇W(t, ·)

∥∥∥∥2

L2(Rn)

+ τ‖Wtt (t, ·) + k̃Wt (t, ·)‖2
L2(Rn)

+ (k̃ − τ k̃2 − ε3)‖Wt(t, ·)‖2
L2(Rn)

+
(

k̃ − 1

β
− n

n − 2
ε3k̃

)
‖∇W(t, ·)‖2

L2(Rn)

+ 2
(

1 − ε2

2
− k̃τ

) t∫
0

‖Wηη(η, ·)‖2
L2(Rn)

dη + 2
(
k̃β − ε2

2
− 1
) t∫

0

‖∇Wη(η, ·)‖2
L2(Rn)

dη

� Cτ 2

ε3

(
‖u2‖2

L2(Rn)
+ ‖ |x|u2‖2

L2(Rn)

)
+
{

Cτ 2t‖(u0, u1)‖2
H 2(Rn)×H 2(Rn)

if u1 �= 0,

Cτ 2 ln(e + t)‖u0‖2
H 2(Rn)

if u1 = 0.

Eventually, we just need to discuss the nonnegativity of coefficients for the norms. In the 
above, we need to restrict k̃ such that

1 − ε2

2
− k̃τ � 0 and k̃β − ε2

2
− 1 � 0, iff k̃ ∈

[
1 + ε2/2

β
,

1 − ε2/2

τ

]
.

Let us choose a small constant ε3 > 0 satisfying

k̃ − τ k̃2 − ε3 > 0 and

(
1 − n

n − 2
ε3

)
k̃ − 1

β
> 0.

Namely, we can determine small constant ε3 such that

k̃ ∈
[

1 + ε2/2

β
,

1 − ε2/2

τ

]
⊂
(

(n − 2)/(n − 2 − nε3)

β
,

1/2 + √
1/4 − τε3

τ

)
.

So, the set of k̃ is not empty, providing that additional assumption ε2 < 2 and

0 < ε3 < min

{
n − 2

n
,

1

4τ
,

ε2

2 + ε2
,

2ε2 − ε2
2

4τ

}
,

hold for n � 3. Indeed, the choice for these parameters can be independent of τ . Let us give 
an example. Similarly to Remark 4.2, in the case of small τ such that 0 < τ � min{39β/41, 1}, 
we may choose ε2 = 1/20, k̃ = 41/(40β) and ε3 = 1/1600. Providing that τ → 0+, one may 
enlarge the choices of k̃, ε2, ε3. Recalling the relation

Wt(t, x) = w(t, x) = uτ (t, x) − v(t, x),

we immediately conclude our result. �
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5. Global (in time) existence of small data Sobolev solutions

5.1. Philosophy of the proof

According to Section 2, we may represent the solution to the linear MGT equation in dissipa-
tive case by the form

ulin(t, x) := K(t, x) ∗(x) u2(x),

where the partial Fourier transform of K(t, x) with respect to x was defined in (5). Furthermore, 
some L2 estimates have been obtained. In Theorem 2.2, by choosing m = 1, we see

‖ |D|sulin(t, ·)‖L2(Rn) � g̃n,s(t)‖u2‖L2(Rn)∩L1(Rn),

where the time-dependent coefficient is given by

g̃n,s(t) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ln(e + t))

1
2 if n = 2, s = 0,

(1 + t)
1−5s

6 if n = 2, s ∈ (0,1/2),

(1 + t)− s
2 if n = 2, s ∈ [1/2,2],

(1 + t)
1
2 − s

2 − n
4 if n � 3, s ∈ [0,2].

Particularly, we denote gn(t) := g̃n,0(t). Moreover, from Theorem 2.1, one observes

‖ |D|sulin(t, ·)‖L2(Rn) � hs(t)‖u2‖L2(Rn),

where the time-dependent coefficient is given by

hs(t) :=
{

(1 + t)1− s
2 if s ∈ [0,1),

(1 + t)
1
2 − s

2 if s ∈ [1,2].

For T > 0, we introduce the operator N such that

N : u ∈ Xs(T ) → Nu(t, x) := ulin(t, x) + unon(t, x),

where Xs(T ) is an evolution space such that

Xs(T ) := C([0, T ],H s(Rn)), (37)

with some suitable positive constants s to be fixed later, and the integral operator is denoted by

unon(t, x) :=
t∫

0

K(t − σ,x) ∗(x) |u(σ, x)|pdσ,

which is motivated by Duhamel’s principle.
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In the forthcoming parts, we are going to demonstrate global (in time) existence of small data 
Sobolev solutions to the semilinear MGT equation (3) by proving a fixed point of operator N
which means Nu ∈ Xs(T ). In other words, the next two crucial inequalities:

‖Nu‖Xs(T ) � ‖u2‖L2(Rn)∩L1(Rn) + ‖u‖p

Xs(T ), (38)

‖Nu − Nv‖Xs(T ) � ‖u − v‖Xs(T )

(
‖u‖p−1

Xs(T ) + ‖v‖p−1
Xs(T )

)
, (39)

will be proved. Throughout this section, u and v are two solutions to the semilinear MGT equa-
tion (3). Precisely, if we assume ‖u2‖L2(Rn)∩L1(Rn) = ε to be a sufficiently small constant, then 
we together (38) with (39) to conclude that there exists a uniquely determined local (in time) 
large data and global (in time) small data solution u∗ = u∗(t, x) belonging to the Sobolev space 
Xs(T ) by using Banach’s fixed point theorem.

To end this subsection, we recall the fractional Gagliardo-Nirenberg inequality, whose proof 
can be found in [24].

Lemma 5.1. Let p, p0, p1 ∈ (1, ∞) and κ ∈ [0, s) with s ∈ (0, ∞). Then, it holds for all f ∈
Lp0(Rn) ∩ Ḣ s

p1
(Rn)

‖f ‖Ḣ κ
p (Rn) � ‖f ‖1−γ

Lp0 (Rn)
‖f ‖γ

Ḣ s
p1

(Rn)
,

where γ =
(

1
p0

− 1
p

+ κ
n

)/(
1
p0

− 1
p1

+ s
n

)
∈ [ κ

s
,1
]
.

5.2. Lower regular Sobolev solution

It is well-known that the study of lower regular Sobolev solution is more challenging than the 
study of higher regular one since the Sobolev embedding theory does not work well. In this part, 
we will study global (in time) existence of small data Sobolev solutions with low regularity in the 
evolution space Xs(T ), in which we will focus on the cases s ∈ [1/2, 2] if n = 2, and s ∈ (0, 2]
if n � 3.

Theorem 5.1. Let τ ∈ (0, β). Let us consider s ∈ [1/2, 2] if n = 2, and s ∈ (0, 2] if n � 3. Re-
calling that p is the power exponent for the nonlinearity of the semilinear MGT equation (3), we 
suppose that p � 2, and p � 2n/(n − s) if s < n � 3s, p � n/(n − 2s) if 3s < n � 4s. If

p

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

> 5 if n = 2, s ∈ [1/2,1),

> s + 3 if n = 2, s ∈ [1,2],
� (n + 3)/(n − 1) if 3 � n � 6, s ∈ (0,1),

> (n + 2)/(n − 1) if 3 � n � 6, s ∈ [1,2],
� max{3n/2 − 1, n + 3}/(n − 1) if n � 7, s ∈ (0,1),

� (3n/2 − 1)/(n − 1) if n � 7, s ∈ [1,2],

(40)

there exists a sufficiently small constant ε > 0 such that for u2 ∈ L2(Rn) ∩ L1(Rn) satisfying 
the assumption ‖u2‖L2(Rn)∩L1(Rn) � ε, there is a uniquely determined global (in time) Sobolev 
solution
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u ∈ C([0,∞),H s(Rn))

to the semilinear MGT equation (3). Furthermore, the solution fulfills the following estimates:

‖u(t, ·)‖L2(Rn) � gn(t)‖u2‖L2(Rn)∩L1(Rn),

‖ |D|su(t, ·)‖L2(Rn) � g̃n,s(t)‖u2‖L2(Rn)∩L1(Rn).

Example 5.1. Let us consider s = 2. Then, the observation of Theorem 5.1 with s = 2 shows the 
global (in time) small data Sobolev solution (in the classical energy sense)

u ∈ C([0,∞),H 2(Rn))

to the semilinear MGT equation (3) with τ ∈ (0, β) uniquely exists providing that

• when n = 2, we assume p > 5;
• when n = 3, 4, we assume (n + 2)/(n − 1) < p � 2n/(n − 2);
• when n = 5, 6, we assume 2 � p � 2n/(n − 2);
• when n = 7, 8, we assume 2 � p � n/(n − 4).

Remark 5.1. Comparing the result of the linearized problem in Theorem 2.2 with m = 1, the 
estimates stated in Theorem 5.1 are no loss of decay with respect to the corresponding linear 
Cauchy problem.

Remark 5.2. Indeed, one may also follow the proof of Theorem 5.1 to prove global (in time) 
existence results for other regularity assumptions on initial data. By considering u2 ∈ L2(Rn) ∩
Lm(Rn) for m ∈ (1, 2), one just need to use Theorem 2.2, and the lower bound of the exponent 
p � 2 will be replaced by p � 2/m due to the application of the fractional Gagliardo-Nirenberg 
inequality.

Remark 5.3. From the restriction n � 4s in Theorem 5.1, we should control the dimension satis-
fying n � 8 due to s ∈ (0, 2]. For the global (in time) existence result in high-dimensional space 
n � 9 with additional L1 data, one may study higher regular Sobolev solution, i.e.

u ∈ C([0,∞),H s(Rn)) with s ∈ (2,∞).

We should emphasize that due to s ∈ (2, ∞) in Theorem 2.2, it is necessary to estimate

‖ |u(σ, ·)|p‖Ḣ s−2(Rn) and ‖ |u(σ, ·)|p − |v(σ, ·)|p‖Ḣ s−2(Rn).

To estimate the first norm, one may apply the fractional chain rule with the additional restriction 
p > �s − 2�. While in the estimate of the second norm, the main tools are the fractional Leibniz 
rule and the fractional chain rule (see [23] and [49]) carrying a stronger condition p > 1 + �s −
2� � 2. Furthermore, if s − 2 > n/2 and p > s − 1, one may apply the fractional powers rule 
to estimate the last mentioned norms to prove existence of large regular (s > n/2 + 2) Sobolev 
solutions.
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Proof. To begin with the proof, we construct the time-weighted norm for the evolution space 
Xs(T ) with s ∈ (0, 2] for T > 0 by

‖u‖Xs(T ) := sup
t∈[0,T ]

(
(gn(t))

−1‖u(t, ·)‖L2(Rn) + (g̃n,s(t))
−1‖u(t, ·)‖Ḣ s (Rn)

)
.

From Theorem 2.2 with m = 1, we easily get

‖ulin‖Xs(T ) � ‖u2‖L2(Rn)∩L1(Rn).

Thus, we may claim that ulin ∈ Xs(T ) for any s ∈ (0, 2]. In the view of the desired inequality 
(38), we just have to justify the next one:

‖unon‖Xs(T ) � ‖u‖p

Xs(T ).

Initially, we apply the derived (L2 ∩ L1) − L2 estimate stated in Theorem 2.2 in the interval 
[0, t] to get

‖unon(t, ·)‖L2(Rn) �
t∫

0

gn(t − σ)‖ |u(σ, ·)|p‖L2(Rn)∩L1(Rn)dσ.

To estimate the power nonlinear term in the norm, we employ the fractional Gagliardo-Nirenberg 
inequality, i.e. Lemma 5.1, that

‖ |u(σ, ·)|p‖L1(Rn) = ‖u(σ, ·)‖p

Lp(Rn)
� (gn(σ ))(1−γ1)p(g̃n,s(σ ))γ1p‖u‖p

Xs(σ ),

‖ |u(σ, ·)|p‖L2(Rn) = ‖u(σ, ·)‖p

L2p(Rn)
� (gn(σ ))(1−γ2)p(g̃n,s(σ ))γ2p‖u‖p

Xs(σ ),

where the parameters are γ1 := n
s

(
1
2 − 1

p

)
∈ [0, 1] and γ2 := n

s

(
1
2 − 1

2p

)
∈ [0, 1].

The previous restrictions lead to

2 � p

⎧⎪⎨⎪⎩
< ∞ if 1 < n � s,

� 2n/(n − s) if s < n � 3s,

� n/(n − 2s) if 3s < n � 4s.

(41)

Here, the restriction for n � 4s comes from the nonempty set of p ∈ [2, n/(n − 2s)].
Obviously, we know that

1 >
g̃n,s(σ )

gn(σ )
=
{

(1 + σ)− s
2 (ln(e + σ))− 1

2 if n = 2, s ∈ [1/2,2],
(1 + σ)− s

2 if n � 3, s ∈ (0,2],

which implies from γ1 < γ2,

‖ |u(σ, ·)|p‖L2(Rn)∩L1(Rn) � (gn(σ ))(1−γ1)p(g̃n,s(σ ))γ1p‖u‖p

Xs(σ ).
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For one thing, by some direct computations, they yield

(gn(σ ))(1−γ1)p(g̃n,s(σ ))γ1p =
{

(1 + σ)−
p
2 +1(ln(e + σ))

(s−1)p+2
2s if n = 2, s ∈ [1/2,2],

(1 + σ)−
(n−1)p

2 + n
2 if n � 3, s ∈ (0,2],

and

(gn(σ ))(1−γ2)p(g̃n,s(σ ))γ2p =
{

(1 + σ)−
p
2 + 1

2 (ln(e + σ))
(s−1)p+1

2s if n = 2, s ∈ [1/2,2],
(1 + σ)−

(n−1)p
2 + n

4 if n � 3, s ∈ (0,2].

According to the assumption

p

⎧⎪⎨⎪⎩
> max{s + 3,4} if n = 2, s ∈ [1/2,2],
> (n + 2)/(n − 1) if 3 � n � 6, s ∈ (0,2],
� (3n − 2)/(2n − 2) if n � 7, s ∈ (0,2],

(42)

it is true that

t/2∫
0

(gn(σ ))(1−γ1)p(g̃n,s(σ ))γ1pdσ � 1,

and

(gn(t))
(1−γ1)p(g̃n,s(t))

γ1p

t∫
t/2

gn(t − σ)dσ �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 + t)−

p
2 + 3

2 (ln(e + t))
(s−1)p+s+2

2s if n = 2,

(1 + t)−
(n−1)p

2 + 3
2 + n

4 if 3 � n � 5,

(1 + t)−
5p
2 +3 ln(e + t) if n = 6,

(1 + t)−
(n−1)p

2 + n
2 if n � 7,

� gn(t).

Then, by dividing [0, t] into [0, t/2] and [t/2, t], one may immediately arrive at

‖unon(t, ·)‖L2(Rn) � gn(t)‖u‖p

Xs(T )

t/2∫
0

(gn(σ ))(1−γ1)p(g̃n,s(σ ))γ1pdσ

+ (gn(t))
(1−γ1)p(g̃n,s(t))

γ1p‖u‖p

Xs(T )

t∫
t/2

gn(t − σ)dσ

� gn(t)‖u‖p

Xs(T ),

where we used ‖u‖Xs(σ ) � ‖u‖Xs(T ) for any σ ∈ [0, T ] and taking account into the fact that
212



W. Chen and R. Ikehata Journal of Differential Equations 292 (2021) 176–219
(1 + t − σ) ≈ (1 + t) for σ ∈ [0, t/2] and (1 + σ) ≈ (1 + t) for σ ∈ [t/2, t].

Next, we will estimate the solution in the Ḣ s norm. At this time, viewing Theorems 2.1 and 
2.2, we employ the obtained (L2 ∩L1) −L2 estimate in [0, t/2], and L2 −L2 estimate in [t/2, t]
leading to

‖unon(t, ·)‖Ḣ s (Rn) �
t/2∫
0

g̃n,s(t − σ)‖ |u(σ, ·)|p‖L2(Rn)∩L1(Rn)dσ

+
t∫

t/2

hs(t − σ)‖ |u(σ, ·)|p‖L2(Rn)dσ

� g̃n,s(t)‖u‖p

Xs(T )

t/2∫
0

(gn(σ ))(1−γ1)p(g̃n,s(σ ))γ1pdσ

+ (gn(t))
(1−γ2)p(g̃n,s(t))

γ2p(1 + t)hs(t)‖u‖p

Xs(T )

� g̃n,s(t)‖u‖p

Xs(T ),

where we used our assumption (42) and additionally,

p

⎧⎪⎪⎪⎨⎪⎪⎪⎩
> 5 if n = 2, s ∈ [1/2,1)

> 4 if n = 2, s ∈ [1,2],
� (n + 3)/(n − 1) if n � 3, s ∈ (0,1),

� (n + 2)/(n − 1) if n � 3, s ∈ [1,2],
(43)

to derive

1 � (gn(t))
(1−γ2)p(g̃n,s(t))

γ2p(1 + t)hs(t)(g̃n,s(t))
−1

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 + t)−

p
2 + 5

2 (ln(e + t))
(s−1)p+1

2s if n = 2, s ∈ [1/2,1),

(1 + t)−
p
2 +2(ln(e + t))

(s−1)p+1
2s if n = 2, s ∈ [1,2],

(1 + t)−
(n−1)p

2 + n
2 + 3

2 if n � 3, s ∈ (0,1),

(1 + t)−
(n−1)p

2 + n
2 +1 if n � 3, s ∈ [1,2].

By assuming (41), (42), (43) and summarizing the derived estimates, it is proved that the operator 
N maps Xs(T ) into itself, namely, Nu ∈ Xs(T ).

Finally, with the aim of proving the Lipschitz condition, we may take two solutions u, v ∈
Xs(T ). From the derived result of (38), it is clear that Nu, Nv ∈ Xs(T ). Therefore, we have

‖Nu − Nv‖Xs(T ) =
∥∥∥∥∥∥

t∫
0

K(t − σ,x) ∗(x) (|u(σ, x)|p − |v(σ, x)|p)dσ

∥∥∥∥∥∥
Xs(T )

.
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We assume that (41) and (40) hold. For the estimate in the L2 norm, we apply Hölder’s inequality 
and the fractional Gagliardo-Nirenberg inequality to arrive at

‖(Nu − Nv)(t, ·)‖L2(Rn)

�
t∫

0

gn(t − σ)‖ |u(σ, ·)|p − |v(σ, ·)|p‖L2(Rn)∩L1(Rn)dσ

�
t∫

0

gn(t − σ)‖u(σ, ·) − v(σ, ·)‖Lp(Rn)

(
‖u(σ, ·)‖p−1

Lp(Rn)
+ ‖v(σ, ·)‖p−1

Lp(Rn)

)
dσ

+
t∫

0

gn(t − σ)‖u(σ, ·) − v(σ, ·)‖L2p(Rn)

(
‖u(σ, ·)‖p−1

L2p(Rn)
+ ‖v(σ, ·)‖p−1

L2p(Rn)

)
dσ

�
t∫

0

gn(t − σ)(gn(σ ))(1−γ1)p(g̃n,s(σ ))γ1pdσ ‖u − v‖Xs(T )

(
‖u‖p−1

Xs(T )
+ ‖v‖p−1

Xs(T )

)
� gn(t)‖u − v‖Xs(T )

(
‖u‖p−1

Xs(T ) + ‖v‖p−1
Xs(T )

)
.

By repeating the same approach as before, we conclude

‖(Nu − Nv)(t, ·)‖Ḣ s (Rn) � g̃n,s(t)‖u − v‖Xs(T )

(
‖u‖p−1

Xs(T ) + ‖v‖p−1
Xs(T )

)
.

Therefore, the crucial estimates (38) and (39) are valid. By using Banach’s fixed point the-
orem, there exists a unique determined global (in time) low regular Sobolev solution to the 
semilinear MGT equation (3). The proof is complete. �
Remark 5.4. Let us now give a conjecture by an example on the singular limit behavior for 
the semilinear MGT equation. Let us take n = 3, 4 in the Cauchy problem for semilinear MGT 
equation

τuτ,tt t + uτ,tt − �uτ − β�uτ,t = |uτ |p, x ∈ Rn, t > 0, (44)

which can be formally reduced to the semilinear viscoelastic damped wave equation

vtt − �v − β�vt = |v|p, x ∈Rn, t > 0. (45)

In the view of Theorem 5.1, the global (in time) small data Sobolev solution with s = 2 (in the 
classical energy sense) to (44) uniquely exists if 1 +3/(n −1) < p � 2n/(n −2). In Theorem 2 of 
[16], the global (in time) small data Sobolev solution to (45) uniquely exists if 1 +3/(n −1) < p. 
Additionally, the restriction of upper bound for p relies very much on techniques of the proof, and 
the lower bound for p depends on the behavior of solutions in this case. Therefore, concerning 
the lower bound estimate for the exponent p for global (in time) Sobolev solution with H 2(Rn)

regularity for (44) and (45), it exactly provides us the same behavior. By this way, we conjecture 
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that the limiting behavior for (44) and (45) holds for τ → 0+ at least for some dimensions. 
It would be very interesting to have a global (in time) singular limits for the semilinear MGT 
equation with the help of some weighted energy methods, but such a result would be beyond the 
purposes of the present manuscript from our prospective.

6. Nonexistence of global (in time) weak solutions

Before showing our main result on blow-up of solutions, let us first give a definition of weak 
solutions to the semilinear MGT equation (3).

Definition 6.1. Let p > 1. We say u ∈ L
p

loc([0, ∞) × Rn) is a global (in time) weak solution to 
the semilinear MGT equation (3) if the integral equality

∞∫
0

∫
Rn

u(t, x)(−τψttt (t, x) + ψtt (t, x) − �ψ(t, x) + β�ψt(t, x))dxdt

= τ

∫
Rn

u2(x)ψ(0, x)dx +
∞∫

0

∫
Rn

|u(t, x)|pψ(t, x)dxdt (46)

holds for any ψ ∈ C∞
0 ([0, ∞) ×Rn).

Theorem 6.1. Let τ ∈ (0, β). Let us assume that u2 ∈ L1(Rn) and∫
Rn

u2(x)dx > 0.

Then, the global (in time) weak solutions to the semilinear MGT equation (3) in the sense of 
Definition 6.1 does not exist providing that the exponent of nonlinearity satisfies

1 < p

{
< ∞ if n = 1,

� (n + 1)/(n − 1) if n � 2.

Remark 6.1. In the one-dimensional case, every weak solution according to Definition 6.1 blows 
up for any 1 < p < ∞, which means that the result in 1D is optimal.

Remark 6.2. We may derive blow-up results for other regularity assumptions on initial data. Let 
us assume u2 ∈ Lm(Rn) with m ∈ (1, 2) and

u2(x) � |x|− n
m (ln(1 + |x|))−1 for |x| 
 1.

Then, one may also prove blow-up of weak solutions to the semilinear MGT equation (3) pro-
viding that 1 < p < ∞ if n = 1, and 1 < p < (n + m)/(n − m) if n � 2. The proof is strictly 
following those of Theorem 4.1 in [12].
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Proof. Let us now introduce two bump functions η ∈ C∞
0 ([0, ∞)) and φ ∈ C∞

0 (Rn) such that 
η = η(t) is decreasing with η = 1 on [0, 1/2] and suppη ⊂ [0, 1]; φ = φ(x) is radial symmetric, 
decreasing with respect to |x| with φ = 1 on B1/2 and suppφ ⊂ B1. Moreover, we assume

(η(t))
− p′

p

(
|η′′′(t)|p′ + |η′′(t)|p′ + |η′(t)|p′)� C, (47)

(φ(x))
− p′

p |�φ(x)|p′ � C, (48)

where p′ is the conjugate of p, i.e. 1/p + 1/p′ = 1, and C is a positive constant, with η, φ ∈
[0, 1].

To begin with, we define a test function

ψR(t, x) := ηR(t)φR(x) := η(t/R)φ(x/R),

where R ∈ [1, ∞) is a large parameter. Furthermore, we may introduce

IR :=
∞∫

0

∫
Rn

|u(t, x)|pψR(t, x)dxdt.

By considering (46) in the definition of weak solution with the test function ψ(t, x) = ψR(t, x), 
one immediately has

IR + τ

∫
Rn

u2(x)φR(x)dx

=
∞∫

0

∫
Rn

u(t, x)
(
−τ∂3

t ψR(t, x) + ∂2
t ψR(t, x) − �ψR(t, x) + β∂t�ψR(t, x)

)
dxdt

� 1

p
IR + 1

p′

∞∫
0

∫
Rn

(ηR(t)φR(x))
− p′

p

(
τp′ |d3

t ηR(t)φR(x)|p′ + |d2
t ηR(t)φR(x)|p′)

dxdt

+ 1

p′

∞∫
0

∫
Rn

(ηR(t)φR(x))
− p′

p

(
|ηR(t)�φR(x)|p′ + βp′ |dt ηR(t)�φR(x)|p′)

dxdt,

where we employed Young’s inequality ab � ap/p + bp′
/p′.

Due to the fact that

�φR(x) = R−2�φ(x/R), and dk
t ηR(t) = R−kdk

t η(t/R) for k = 1,2,3,

we are able to deduce
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IR � 1

p′ IR + τ

∫
Rn

u2(x)φR(x)dx

� R−2p′
∞∫

0

∫
Rn

(
(η(t/R))

− p′
p + |η′′(t/R)|p′

φ(x/R) + η(t/R)(φ(x/R))
− p′

p |�φ(x/R)|p′
)

dxdt

+ R−3p′
∞∫

0

∫
Rn

(η(t/R))
− p′

p

(
|η′′′(t/R)|p′

φ(x/R) + |η′(t/R)|p′
(φ(x/R))

− p′
p |�φ(x/R)|p′

)
dxdt

� R−2p′+1+n + R−3p′+1+n � R−2p′+1+n,

where the conditions for test functions in (47) and (48) were used. Moreover, we applied our 
assumption on initial data such that

τ

∫
Rn

u2(x)dx > 0 ⇒ τ

∫
Rn

u2(x)φR(x)dx > 0

for any R 
 1 because of the fact that

lim
R→∞

∫
Rn

u2(x)φR(x)dx =
∫
Rn

u2(x)dx.

According to the condition on p leading to −2p′ + 1 + n < 0, and letting R → ∞, we get 
limR→∞ IR = 0, which leads to u = 0 a.e., however, this contradicts to our assumption. In other 
words, the global (in time) weak solution does not exist.

To prove the blow-up result in the limit case when p = (n + 1)/(n − 1) if n � 2, we can 
also conclude the contradiction that limR→∞ IR = 0 by following the approach in [58], i.e. the 
monotone convergence theorem and the dominant convergence theorem. All in all, the proof is 
completed. �
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