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In this paper, we study the global existence and the global nonexistence of doubly
nonlinear degenerate parabolic systems with nonlinear boundary conditions. We first
prove a local existence result by the regularization method. Next, we construct a
weak comparison principle. Then we discuss the large time behavior of solutions by
using a modified upper and lower solution methods and constructing various upper
and lower solutions. Necessary and sufficient conditions on the global existence of all
positive (weak) solutions are obtained. © 2002 Elsevier Science (USA)
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1. INTRODUCTION AND MAIN RESULTS

In this paper, we study the existence and nonexistence of global solutions
of the following problem:

(ul™ "), = (el ), O<x<l, >0,
(o™ o), = (ol ” 00, 0<x<l, >0,

Url—g = 0, Ul = dulnote| _,, >0, (1.1)
Uyl = 0, Uelyy = Ao, >0,

u(x, 0) = up(x), v(x, 0) = vo(x), 0<x<l,
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where m;, p; >0, i = 1,2, I12,131 >0,/11,120>0 and 4> 0 are all constants.
According to physical settings, ¢;(s) = |s|" 's stands for the mass
concentration, the term A;(s) = |sy|” 's, reflects the diffusion effect which
do not conform to Darcy’s law [15, 30], u’v/2 the forced flux at the
boundary x = 1. The differential equations in (1.1), which is the typical
example of the non-Newtonian filtration equations, have been suggested as
some models, see [1, 7-9, 15, 17, 36, 37, 39] and the references therein. For
example, the gas flow equation through a porous medium and the
completely turbulent flow fall in the class of equations we consider. The
nonlinear boundary conditions in (1.1) can be physically interpreted as a
nonlinear radiation law, which here is actually an absorption law, see
[3, 19, 34].

In the recent years, the questions like blow-up and global solvability for
semilinear parabolic equation or systems with nonlinear boundary condition
have been intensively studied, see [3-8, 14, 16, 18-22, 24, 27-29, 34, 37,
40-48] and references therein. The Dirichlet or Cauchy Problem for the
p-Laplacian has also been studied in that extent, see [2, 25, 26, 33] and
references therein.

For problem (1.1) with p; = p» = 1 or more general form of (1.1) with
the Darcy’s law diffusion, there were many results on the local existence,
global existence and blow-up in finite time, see [3, 4, 16, 23, 37, 38, 42, 44,
46]. Amann [3,4] considered the (classical) local solvability and the
geometric theory of the following quasilinear problem:

u + A (t,uwu = f(t,u), xeQ, t>0,
AB(t,u)u = g(t,u), x € 0Q, (1.2)
u(x, 0) = up(x), xeQ

together with certain results concerning the continuous dependence of the
solutions upon the data of the problem, by means of semigroups methods,
and proved that the semilinear parabolic problem (1.2) possesses a unique
maximal classical solution. Escher [16] considered the global existence and
global nonexistence of problem (1.2) and obtained some sufficient
conditions on which the solution of (1.2) blows up in finite time by means
of “concavity method” of abstract Cauchy problem. Pao [37] established the
upper and lower solutions method, and gave some sufficient conditions on
the global solutions and blow-up in finite time for a more general problem.
Samarskii et al. [38] considered global solvability and blow-up of solutions
to semilinear parabolic systems with Dirichlet boundary conditions and
gave optimal conditions of global existence of arbitrary solutions to the
initial boundary value problem of the porous medium flows. Galaktionov
et al. [23] studied blow-up phenomena for nonlinear parabolic equations
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and systems with nonlinear diffusivity, source terms and boundary
conditions. Wang et al. [46] and M.X. Wang et al. [42, 44] considered the
following porous medium flow problem:

u, = V"Vu) + Aulioh?, xeQ, t>0,
v, = VW'Vu) + JuoP2, xeQ, t>0,
0 ov

A uoP — = utvh, x € 09, t>0,
on 0

u(x, 0) = up(x), v(x, 0) = vo(x), x € Q,

respectively, and obtained necessary and sufficient conditions on the global
existence of all positive (classical) solutions.

Recently, S. Wang et al. [47] considered the single doubly nonlinear
parabolic equation with nonlinear boundary conditions, namely,

(|u|m71u)t = (luxlpilux)xy 0<x< 1, t> 07
uX'x:O = 0: uX'x:l = /lua|x:13 t> 0, (13)
u(x,0) = up(x), 0<x<l1

and obtained necessary and sufficient conditions on the global existence of
all positive (weak) solutions by using upper and lower methods. Filo [20]
considered the multidimensional variant of (1.3) and a local existence result
of weak solution was obtained by using the semidiscretization method. Filo
and Kalur [21] also considered the local existence of a more general scalar
case of (1.3) and gave some sufficient conditions on the global existence of
weak solutions under some assumptions of general nonlinear term by using
L*>-estimate methods.

In this paper we will consider large time behaviors of weak solutions to
(1.1).

Throughout the paper we assume that (A)

(i) uo(x), vo(x) € C2#([0, 1]) for some 0< pu< 1, up(x), vo(x) > 0;
(iD) (lutox]” ™ tt00),» (Jvox >~ vox), € L3([0,1]) on [0, 1];
(ii1) up(x), vo(x) satisfy the compatibility conditions:

uoe(0) = 0, uge(1) = Au (1)wp(1),
v0x(0) = 0, vor(1) = Zug (k2 (1).

Our main result is
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THEOREM. Al positive (weak) solutions of (1.1) exist globally if and only if

. [my o m+1 . my my+1
l11 <minq —, , I <minq —, ,
popr+1 P ppt1

. 1 . 1
112121 < (mln{ml,ml + } — 111> <m1n{mz, my + } — lzz). (14)
popr+1 P ptl

The rest of the paper is organized as follows: In Section 2, the definition of
weak solution is given and a weak comparison principle is established to
serve as the basis of the study. Local existence and continuation results are
proved by the regularization method in Section 3. In Sections 4 and 5,
our main theorem is proved by constructing various upper and lower
solutions.

2. PRELIMINARIES. COMPARISON PRINCIPLE

Due to the gradient degeneration or singularity of the equation, we
cannot expect problem (1.1) to be solvable in the classical sense even for
smooth data. Therefore, a notion of weak solution to problem (1.1) is
needed.

DEFINITION.  For any 7 >0, denote Or = (0,1) x (0,7]. A pair of
nonnegative function (u(x, t), v(x, t)) € C(Qr) x C(Qyr) is called a weak upper
(or lower) solution of problem (1.1) in Qr with 4 if

(i) w0 e L0, T; WH((0,1))) 0 W0, T;L2((0, 1)), (u(x, 0), v(x, 0)) >
(<)(uo(x), vo(x));

(i) for any nonnegative functions w(x, ), wa(x, ) € L1(0, T; W'2((0, 1))) n
L*(QOr), we have

T
// [wl(um‘)t+w1x|ux|p‘_lux]dxdt>(<)/ wi(Au o) _ d
T 0
and
T
/ / [Wa ("), + wae|vy|?? o] dx dt > (<) /0 wy(Au"v™2) 2| _ dt.
T

(u(x, 1), v(x, 1)) is called a (weak) solution of problem (1.1) if it is both
a (weak) upper solution and lower solution of problem (1.1) in Qr
with A.
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The main purpose of this paper is to give the necessary and sufficient
conditions on the existence of global positive (weak) solutions. The basic
technique used in the present paper is constructing various upper and lower

solutions and comparing them with the solutions of problem (1.1). To this
aim, we first prove a weak comparison principle.

ProrosiTION 2.1 (Comparison Principle). Assume that 1< A<l. Let
(u,v) = (9, 0) and (u,v) be a lower and upper solution of (1.1) in Or with J and
2, respectively. Then (u,v) < (u,v)< (i1, ) on Q.

Proof. For small 6 > 0. Let
Hs(z) = min (1 ,max (%, 0))

and set wy; = Hs(u — u), then according to the definitions of solution and
lower solution we have

/ / (H(— )™ — ™)+ (o — ) ofliel” s — olP g} b
[0

< / Hy(w — oG ')? — Qo™ dr,  ©e[0,7]
0
As in [2], by letting 6 — 0 we get

/ W" — ™)l > ) d e
O
< / [ o) — (G o' o>l di
0

< /T{vplllz[(/luln)m _ (/lul”)'”‘]
) AU
+ 2P pu 100" 0 — o)l > ull,y de

for some 0, > 0 lying between v(1,¢) and v(1,¢). If

flx,t) = Qplllz[@yln)pl _ (iulll)Pl] + /‘Lplupllllplllzg{’llu_l(y —v),
then

/ / W" — ")y > ddvd < / Cflus ull d te[0,T]
Qf 0
2.1)
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Similarly, we have

/ W — ) lo> ddedt < / 90Ozl > iy dr,  Te[0.7],
[0 0
2.2)

where

glx, 1) = uPP [(2e2)7 = (A0'2)P] + 2707 py 1 0827w — w)

for some 0, > 0 lying between u(1,#) and u(1,?).

Since (0,0)<(0,0)<(u(1,0),v(1,0)) <(u(1,0),v(1,0)) and 1</, we follow
from the continuity of u,v,u and v that there exists a time 7; > 0 such that
f(1,5)<0 and ¢(1,7)<0 for all ¢ €[0,7;]. Therefore, we have that (u,v)<
(u,v) on er- Define

™ =sup{t [0, T]: u(1,H)<u(l,?) and v(1,H)<v(1,?) for all t € [0, 1]}.

We claim that t* = 7. Otherwise, from the continuity of u,v,u and v there
exists ¢ > 0 such that 7* + e< T, f(1,7)<0 and g(1,#) <0 for all z € [0, 7* + ¢].
By (2.1) and (2.2) we have that (u, v) < (u,v) on QT* +¢» Which contradicts the
definition of t*. Hence, (u, v)<(u,v) on Qj. B

Obviously, (d,0) is a lower solution of (1.1) on Qr with 4. Therefore,
(u,v)=(0,0) > (0,0) on Q7. Using this fact, as in the above proof we can
prove that (u,v)<(&,v) on Q.

The proof of Proposition 2.1 is completed. 1§

Remark 2.1. The above comparison principle do not imply the
uniqueness. The uniqueness of solutions to problem (1.1) is open.

3. LOCAL EXISTENCE

In this section, we prove the following local existence result.

PropPOSITION 3.1.  Let (A) be satisfied. Then there exists a time T: 0<T
< + oo such that (1.1) has a weak solution (u, v) satisfying (u,v)=(5,9) > 0 on
QT. Moreover, as a solution (u,v) can be extended to Oy with a maximum
T >0, that is, either T = +00, or T < + 00 so that

tim - sup ([ju, Dlloc + o€, Dlle) = +oo.

=17 xg0,1]



DOUBLY NONLINEAR DEGENERATE PARABOLIC SYSTEMS 437

To prove the above local existence result, we need the following lemmas
from Sobolev’s space.

Let Q be a bounded domain in R" of boundary dQ and for 0 < T < oo let
Or denote the cylindrical domain Q x (0, 77.

Let / be any real number and for a function u consider the truncations of
u given by

(u—h)" = max{u — h,0}.

LemMma 3.2 (Ladyzenskaja et al. [31]; Ladyzenskaja and Ural’ceva [32]).
Let u € L'(Qr) satisfy

T
/ / (u—h'Fdedt<F|Or 0 {u>hy|'"P, VYh=ky>0,
0.Ja
where F, 8 are positive constants. Then
1
esssupy, u” <ko + (1 + E)F|Q|pTﬁ.

Lemma 3.3 (Dibenedetto [15]). Let m, p=1 and u € V"™?(Qr) = L*(0,T
(L"(Q)) N LP(0, T; WhP(Q)). Then there exists a constant ¢ depending only
upon N, p,m and the structure of 0Q such that

1/1
llullziop <€ (1 + |Q|(N(Pm)+mp)/(Nm)> llullymriop),

where [ = p ™32 and |ullymr,) = esssupo< <1 UG, Dllna + 1Dull o,

We shall prove Proposition 3.1 in two steps: First, we consider a
regularized problem and derive some necessary estimates; then, by an
approximation process and passing to limit a solution to the original
problem is obtained. To this end, put

M = |luo(¥)llos + lloo@lloos K = [fut0x (0l + llvox(0)l

and consider the problem

-l
Oy (u)uy = (U2, +6) 2 tn),, O<x<l, O<t<r,
n-l
DOy (ve)vy = ((vfx +8) 2 Uy O<x<l, O<t<r,
3.1
todo =0, waly = Giunv)l, O<t<t, (.1
Verly—o = 0, Verlye1 = Ga(ttg, U)|y—1» O<t<r,

Uy (¥, 0) = uop(x), ve(x, 0) = vo(x), 0<x<l
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for any 7 € (0, +00) and any fixed ¢ € (0, 1). We define ®;(w) and G;(w,z) as
follows: ®;(w) € C*(R), Gi(w,z) € C¥(R?), ®;(w) =mw" ' Gi(w,z) = Iwh
z' for § <w,z<M + 1, there exist positive constants /, L such that

0<I<Di(w), Giw,z) <L < + 00, i=1,2

for any w,z € R and % >0 and % >0 for any w,z € R. Moreover, let
a;(z) € C¥(R),0< p,<d,(z)<p, ' on R for some 0<p,<1 and

pi—l
ai(z) = (P +¢e) 2 z  for |Z|[<K+L+1

and consider the following problem:

DO (ue)uy = (a1:(Uex))ys 0<x<l, O<r<r,
Dy (v,)ver = (@2:(Vex))ss 0<x<l, O<t<r,
Uel—g = 0, Ueclm) = G, V)=, 0<2<7, (3.2)
Vexle—o = 0, Vaclem1 = Ga(utg, 0) =y, 0<1<7,
u(x,0) = up(x), v,(x, 0) = vo(x), 0<x<l.

Now, the standard parabolic theory (see [31, 37]) guarantees the existence of

a unique solution (u,v,) to (3.2) in the class H>*A14A/2(Q ) for some

p € (0, 1). Obviously, Comparison principle holds for (3.2). Therefore,
u(x,1)=0>0, vy(x,£)=0 >0 and uy, v, =0 on QT.

Firstly, we have

lltexllo <K + L [l <K +L on Q..

In fact, let w = u,,z = v, then (w,z) satisfies

D (u)wy — a/]g(u&x)wxx - alllg(”ax)w)zc + “Dll (tz)uew = 0, O<t<r,
ch(Us)Zt - alzg(vax)zm - alzlg(vwc)z)zc + CDIZ(US)UMZ =0, O<t<r,
W|x:() = 05 W|x:1 = G] (uaa vS)'le bl 0 <t< T,
Z|X:0 = 0, Z|x:1 = Gz(ug, Ug)lle, 0<t<f,
W(xs O) = ”Ox(x), Z(-xa O) = UOX(X): 0 <x< 1

The maximum principle yields that

[IWlloo <max{luoxlloo, llvoxllo, L}
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and
lIzll oo < max{|[uoxlo, [lvoxllo, L}
Therefore, we have
l[tslloo <K + L, ol (o <K+ L on Q..

Thus,

) p-l 5 p-l
ar(uy) = (ugx +8) 2 ug, a2:(Vex) = (ng +8) 2 vy
on Qr. And hence (ug, v;) is a solution of (3.1) in QT.
Secondly, we shall show that there exists T € (0, ), independent of &, such
that
us(x, <M +1 and ov,(,)SM+1  on Q.
Let s € (0, 1) and fix ¢ € [0, s]. Denote ko = |[uoll« + ltolls,z" = max{z, 0},
Aty = {x € (0,1): uy(x, ) > h} and pu(h) = [ i) A ds.

We may think that u(k)<1.
From (3.1) we easily derive

t prl tprl pi—1
// CI)1(ug)ug,(ug—h)+ dxdt+// (uix—&—.g) 2 ugx(us—h):dxdt
0J0 0J0
4 pi—1
= / (G, 0) + &) 2 Gi(ug, v:)(u, — )|,y dt.
0

Owing to the fact that 0 </<®(u,), G1(u,, v;) <L, we see that

1 t rl t
/ (”1: - h)+_ dx + // |uz;x|plil(u1: - h):_ dth<c / (u - h)+|x:l dt
0 0J0 0

for some positive constant ¢ independent of ¢. By using trace embedding
theorem we have for any 7> 1 and a.e. 1 € [0, s]

(: = ) oy <cllw. =GOl o,
e o)

Therefore, the above inequality and Holder’s inequality yield

1 t prl
/ (uy — hy* v + / / Py — )Y e di
0 0J0

t
<c / O R
0 w

RERN(O3))
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(ol ” /&4
<c<// (u, — byt ! dxdt>
0J0
0l ” )]
+c<//‘K%—hﬁﬁ*Uhm) .
0J0

Young’s inequality yields

1 t rl
/ (u, — h)* dx+// P (s — B)T dx
0 0J0

<cll =l pi,, 4 eu™,
Lt (Q)

+l(

where

1 (1 —€'+1> 1
o = — X .
TR pt+1) -4

By using Lemma 3.3, Holder’s inequality and Young’s inequality we have

1otz — h)+||L3(m+U(Q[) <cll(u; — h)+||V2»m+1(Q,)

<cll, =m'l m, + M““(h))2 + cllus — B

1
0\ AT
_+1(Q _+l r)+ﬂ 1)1714‘r
3 e A
<cll(u: — h)+||2p1 Lt C,u2 (h) + cll(u. — h)+||pl + curti(h)
((on) o)

1
1= 1)/3(p +1 S o
<c(|l(u; — h)+||Lz<p,+1>(Q N ~CEEDBPED) ()2 /DD 4 cp2 (h)

+ 1= )/3(p+1) NCYoES o
+ c(||(u$ h) HL‘(I’IH)(Q )'u T (h))(P1+ (pi/o+1) 4 CM(P1+ )(h)

1 ] X
<50t = Bl gy + €t (h) + cu™ () + i (h) + e (),

1 <1 241 )
oy = — ,
P 3(pr+ 1)

1 < P‘+1> 1
o3 = T
(m+DE+D 3(m+1D) " 1-1

where
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Hence,

o %
Gate — B) gy < e () + cp>(h) + cp (h) + eup 1 (h).

By using Holder’s inequality we have

T 1
// (ug - l’l)Jr dxdt< ||(u.p - h)+||L3(p1+1)(Qt) . ,Ltl_(3p1+l)(h)
0J0
1 o 1
<c[ul_m+7|(h) +,Ul_m+m(h)

1

7++oc 1
+ o 3D () +

S BT
3D e ().

Choose 7 > 1 to be sufficiently large such that

o1 1 1 o 1
>0, max{o, 03} — >0, — >0
> ;D) e T ) R gy

Then there exists § > 0 such that

£l
// (uy — h)" dxdt<c(uh))'™F,  Yh=ky>0.
0Jo
By Lemma 3.2 we have
AW
u(x,)<ko+ ( 1 +E ct’.
Therefore, there exists 7 > 0 independent of ¢ such that
u(x, ) <M + 1 on QT.
Similarly, we have
v (x, ) <M + 1 on Q.
Thus, we have the following:

LEMMA 3.4. There exist T and a positive constant C independent of ¢ such
that

§<u(x,0),0:(6,0)<C, ltllgs ol <SC - on Q. (3.3)

Next, we will get an L?-estimates.
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LEMMA 3.5.  There exists a positive constant C independent of ¢ such that
¢l

// (> 4+ v2)dedt<C< + . (3.4)
0Jo

Proof of Proposition 3.1. Differentiate the first equation of (3.1) with
respect to ¢ and multiply it by @ (u,)u,,. Then integrate it over [0, 1] x [0, T]
to get

1! 2 o, ool 2 2
5/0 (D (1)) (x,t)dx—i—/o/o (uy, +¢) 2 (pu,, + e, dx dt
1 2 oy ool 2
=5 [ @mre o [ [ T il o
0 0 Jo
r n-l
X q),l(ug)usxusthdt+ / ((“gx+3) 2 " uax)zq)l(uﬂ)ust(lat) dt.
0

Using Holder’s inequality, we have

1 T rl pi—1
/ (@1 (ue)ue) (x, 1) dx + / / W +e) T N + ey, dudt
0 0J0
1
< / (@1 ()i, 0) e
0
Tl pi—1
+ / / W2+ &) T (pra, + e} ) e
0J0
T n-l
+2 [ @+ 0T )0t (3.5)
0

Using u,(x, 1), v.(x, #) = 0 and the boundary conditions in (3.1), we know that
there exists xg € [0, 1) such that

Il }5/21122
2 ) Uz;x(x: t)> 2 >

Uee(x, 1) = (x,0) € [x0, 1] x [0, T7T.

Hence, we have

T, ol T rl
// (ufx—l—s) 2 - (pluic—l—s)uigdxdt}c // ufxtdx (3.6)
0Jo 0 Jxo

for some positive constant ¢ independent of .
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Then, (3.5), together with (3.6), gives
1 T,
| @wmrenare [, aa

0 0 Jxo

1 T pl

< / (q)l(us)ust)z(x: O) dX +c / / ugz,t dX dt
0 0J0
T
+c/ W2+ )1, 1) db. (3.7
0

with the help of the boundary conditions and Young’s inequality.
Similarly, we have

1 T rl
| @errenacre [ aa
0 0 Jx
1 ' T prl T
</ ((Dz(vz;)vct)2(xso)dx+c// vgtdxdt—l— C/ (ugt—i—ligt)(l,t)dt.
0 0J0 0
(3.9)

Using Sobolev’s inequalities, we have
T
C / 2, + v2)(1, ) dt
0
T pl T,
<7 / / (2, +v2) dxdt + c(t1) / (uZ, +v3)dedt  (3.9)
0 Jxo 0 Jxo

for any positive constant 7; independent of e.
Combining (3.7)—(3.9), we have

1
A(@mwm%u%mmfmww

<Au@wmﬁ+@mmﬁmmw+lxué+@mw(Mm

Gronwall’s inequality leads to the desired results.

Thus, we need only let ¢ » 0. From (3.3) (3.4) and (3.10) we know that
Ug, Ugy Ugy, Vg AIC Weakly * compact in LOO(QT) and Ugt, Ugts q)l(ul;)usta (DZ(UL‘)UM
are weakly compact in L*(Qr).

By Aubin’s Lemma (see [10, 11, 35]), it turns out that (for some
subsequence, also denoted by (u, v;) in the sequel for simplicity)

(15, ;) = (u,v) in (C(Q;))* uniformly on compact subsets of Q.
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Therefore, (u,v) € (C(Q7))*, uy, vy € L(Or), uy, v, € L*(Qr) and
@ (up)uy — O (),  weakly in L*(Qr),
D5(v,)vy — D (v), weakly in L*(Qr).
By the standard monotonicity argument it follows that
() = | 'uy  weak x — L¥(Op),

aZs(st) - |Ux|p271Ux weak * — L%(QT)

Therefore, it is easy to verify that function (u(x,?),v(x,)) is a solution of

(1.1).
The proof of Proposition 3.1 is completed. 1

4. PROOF OF THE SUFFICIENCY

Assume that (1.4) holds, we will prove that all positive solutions of (1.1)
exist globally.

We will divide proof of the sufficiency into some lemmas.

Throughout this section we denote

b b;(x) 1(1 %) =12
.= . = — —_ J =
Tj pj+1: ]x 2 X7)y ] 5

and use A to denote a positive constant satisfying 1 > 1.

LEMMA 4.1. Assume that m;<pj, i = 1,2. Ifll] < , 122<% and 1121y
ﬂ —In) ’”—2 — [2), then the solution (u,v) of (1.1) exzsts globally.

Proof. First, it is easy to prove that there exist /;,/; > 1 such that

—lll 112
- >
liﬂll 1fm12/0’
P
l mzilz
1 A+ >0, (4.1)
T ey

By (1.4) and Iy,051 >0 we have that ’”‘ — i, ’"2 — Iy, 1 ’1”)1‘ 1 — ’”2 are
1

positive. Set y;(x,#) = a(l +xﬁ) + elhD) yz(x )= b(l +x7) + e”z(’“) and
take

__ L, Pr—m L p2—m
W_yl > Z—)’z ]
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where /1, /, > 1 satisfy (4.1) and

_ _plin _ pib
7(171 WH)‘L’] 2p—m, b= 7(}72 my)ty 2pi—mi

p1 )2}
I =max{log (2a)/1,log(2b)/ 1>,

P p=loogm apym
¥4l 1+ 4
p1—my my it p1— my

< P )pzl 2a?? (1 n aprmy )
P2 —my my 1ot p—my)’

(p1 — my) log(max uo(x))/(11 p1),

(p2 — m2) log(max vy(x)) /(12 p2)}-
By the choices of a,b and / we have
n<2eMED -y, <2eMPHD, (4.2)

By direct computations and (4.2) we have, for (x,7) € (0, 1) x [0, +00),

( ml) plmllllypllj my -1 111(t+1)
mi ! ’

ap P A
w I 1 S 2 b xl—_f ,
g (p1 —m)Ty oy
mopm
ap] —m
waPy = (4P pr—m
(( x) )x ((Pl _ ml)fl> (yl )X
p pimi pimy
() o e
(p1 —mp)1 p1—m
poam 1
:( api ) y{717MI {yl _~_me}
(pr —mp)Ty pr—m
a pro apym
<[ ) 0 e (1 )
pimi
plmllll plfmfleul(zﬂ)
pl — m

= ("Vm1 )n
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1e.
W), <(w™),.

Similarly, we have

() <(E™),
And
Wyly=0 = 07 Zxlx=0 = 0’
ap mi
] —
Wy = lp1 "
(p1 — mp)Ty
mi—pili rlo
api — T
— winghe Lylp' m 2p2 "
(pr —m)t
I mo_ g
. ap _ Pl 11 12
> whigh __ 4, p-mexp{ |2 ol — o |1+ 1)
(p1 — mp)Ty == 1-%
/
a __»mln _
> winzhe ¢2 Py — j,wl“zllz, x=1, t>0.
(p1 —m)Ty
Similarly, we have
= w2 x=1, t>0.

For x €0, 1], we have

1 _n
w(x, ()) :(g(] +x1]) + e”‘)Pl*ml >elll

= max u(x) = up(x),

1 11 2 _ 1453
2(x,0) = (a(1 + x7) + /) > ™

= max v(x) = vo(x).

D1
p1—my

)23
pr—m

(4.3)

4.4)

(4.5)

(4.6)

4.7)

(4.8)

From (4.3)(4.8) we see that (w,z) is an upper solution of (1.1) with 2.
Therefore, (u,v)<(w,z), and hence (u, v) exists globally.

LEMMA 4.2. Assume my = p1, my<ps. If [11<]1, 122<% and 121 <
(1- 111)(% — Iy), then the solution (u,v) of (1.1) exists globally.
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Proof. First, it is easy to prove that there exist /1, /; > 1 such that

/
(1= )l = =l >0,

)22
22— Iy

— Il + pf

1,>0. (4.9)

_m
P2

Set
1 1 P
w = a(l + x0)e! D), z = [b(1 4 x7) 4 /2D ]p=m2

where [y, [, satisfy (4.9).

Similar to the proof of Lemma 4.1 we can prove that there exist a,b,/ >0
such that (w, z), defined by this manner, is an upper solution of (1.1) with 4,
therefore (u, v) exists globally. 1

LeEmMA 4.3.  Assume my < p, my= pp. If 111<m—11, ln<1 and Il <

% — 111)(1 — [23), then the solution (u,v) of (1.1) exists globally.

Proof. The proof is similar to that of Lemma 4.2. 1

LEMMA 4.4. Assume m; = p1, my = pr. If <1, In<l and Il <
(1 = 111)(1 = [2), then the solution (u,v) of (1.1) exists globally.

Proof. First, it is easy to prove that there exist /1, /; > 1 such that
(I —h)l — 2l 20,
—Inly + (1 = In)h =>0. (4.10)

Set

1 1
w=a(l _’_x;)elll(tﬂ), z=b(1 _,'_xg)ellg(t-o—]),

where [y, [, satisfy (4.10).

Similar to the above arguments it is easy to prove that there exist a, b,/ > 0
such that (w, z), defined by this manner, is an upper solution of (1.1) with A,
therefore (u,v) exists globally. 1

- ~ I I
LEMMA 4.5.  Assume that m; > p;, i = 1,2. If I <’;:L, I <’;§L and 11>

I <(";]‘—ﬂ — 111)(21% — Ip), then the solution (u,v) of (1.1) exists globally.

Proof. 1t suffices to prove that for any 7 > 0 there exists C(T') > 0 such
that

u(x, 1), v(x, ) < C(T) < + 00, (x,1) € Q. (4.11)
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To this aim, denote 0 = -2, [ =1, ¢ = 22— and
mp—p1 my—p2
o —maxd E07 T Q4 pi(0+2) 0P 2n + palo +2)
SPIrf‘Hml ’ 8P2‘c§2+1m2 ’

(711'7

§ o3 0ol (B0 toln iz <Tz i) (I=I)o+n

(1=In)o+12
0\ o

It is obvious that for any given 7: 0<7 < + oo there exists natural
number N = N(7) such that Bgz >T> (NflA)/llog 2 Take

ke
i) = fafe T — 201 gy T = oy

and

—M(—T; 1 % -0 —0.,,—0
zilx, 1) = {n,le MO=Ti) Z(l — O, =0y, 7,

where Tp = 0,7; = “;ffz, i=1,...,N and ¢;,n; >0 are all constants to be
determined later.

It is obvious that for any given i =1,...,N, yi(x,¢), j=1,2 are well
defined on Q; :=[0,1] x [T;_1, T;] n [0, 1] x [0, T] and % <y <1, j=12

By the direct calculations we have for (x,¢) € O;

MOm
(W;nl)[ _ MQWI18[8;"“0)/17’”]971 2718;””6»
kO _(01v) —o-1 S L
Wiy = 8—7:18i oo (=) xm

X

I .
(W) = (k_g)ps'”“““’(yl”‘w“)(l o E )y

ix Jx 87, i
KONP ) oven | - £

— (_) g P10+ 1){))l p1(9+1)(1 . ¢l(x))Pl (sil )

k £ )11

+ pl(— 1>y11’1“’+”(1 — o) ( ) -

O+ 1 (1) L
JrMyl*Pl(OH)*l(l _ ¢1(x))(p1+ )(3,'] >x11}

7]
8‘[181-
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(k@) 6_p,(e+z1>yl-pl<e+1>{l+ pik +p1k(e+1)}

8‘51 ! 2‘[18;1 2‘[18;1
kO —Om, pik  pk(0+1)
m 4p](0+1) ‘L'1
(8‘5]) K R 2‘C] * 2‘(1
< ﬁ *9m14P1(0+1) 22 pik 7[)11((9 +1)
= 8711 2’[1 274
<Mzml _m](-)<( :n])[

Similarly, we have

m Y23
(Zi 2)t>(zix x> (xa t) € Qi~
Obviously,
Wixlx:() = 09 Zixlx=0 = 0’
—(O0+11) kO . —0—1
Wiy —8 8‘L'1y1
(In—1)0+0l1,—1
111 1128—(9+T1)+l119 1120 k) M(t T1)
l 8‘[]
>/{ Il _ T, t<T,
= w;"z,"2, x=1, 1< i

holds if the following inequality holds:

_ k0 -
6 (0+T[)+11]U’1£120’ 8_1147(1110+<7112) Zl (412)

Similarly, we have
Z,XZ}LWIZI In
holds if the following inequality holds:

_ lo -
R N 4.13)

By the choices of k, one see that (4.12) and (4.13) hold if

/12[2](')0’
:[(1 111)0+T1]+(1 122)0+12>1

g4~ (210+01) m%
= <T) g (4.14)
2

&
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Set & = a(}), n;=b(}), i=1,...,N, then (4.14) holds if

ol 00

N “lA=I0+n 727, o,
=1
(s
1 o du0
'<O.4—(1210+(rlzz)>(1—122)0+12 <1>l (I-In)o+12
b=4——— al - .
8’[2}. 4

A direct calculation shows

l1212100

o (G 111)9-|—T1]‘|'—(1 T n)o+ 5

B a0 [11 <m1+1 l)(szrl l)}
(1 =In)g+1 120 p+1 ! p+1 2

<0.

(4.15)

Hence, for fixed i we can choose a and b sufficiently small such that (4.15)

holds and

0<x<l1

1 £ - a\ 0
wi(x, 0) = {e] [1 il —(p])mH Sel = (Z) > max uo(x) = uo(x),

| 21 b\ °
z1(x,0) = {111 [1 _Z(l - ¢2)’7'“] } =’ = (Z) > max vo(x) = vo(x).

SXS

For the above fixed @ and b, when i = 2,...,N, we have

-0
1 -
wio1(x, ;1) = {81‘1 [E_M(T”_T’Z) - 4_1(1 - ¢1)”"]‘] }

-0
< <8i1i> =& <wix, Ti1)

and

1 1
Zi*l(xs T}*l) =9 N1 [E_M(EI_EZ) — Z(l — ¢l)ﬂx’_l‘| }

< (o) =00 <zx, Ty,
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This shows that (w,z) is an upper solution of (1.1) with A on 0;. By
comparison principle we have (u, v) <(w;,z;)on Q;,i = 1,...,N. Itis obvious
that there exist C(7): 0<C(T)< + oo such that (4.11) holds. This completes
the proof of Lemma 4.5. 1

LEMMA 4.6  Assume my < p1, my > po. If [ <%, 122<'Z§ﬂ and 11511 <

(';—1‘ — 111)("12111 — Ip), then the solution (u,v) of (1.1) exists globally.

Proof. First, we consider the following cases:

() pi<l; @) pp>1and m<1; 3) pp>1, m>1and ) >%=

As in Lemma 4.5, it suffices to prove that for any 7 >0 there exists

C(T)> 0 such that (4.11) holds. To this aim, denote 0 :ﬁ> 1, 6=

0—
i d=pom, k=g >l = maxd LG (1 + 2
(kmle)} M = maX{1*(1[)2“0'1)27](21'2‘5’[72(0'4»2))} and

1
p21;2+ nmy

32002+ Qop D= In)o+o] /{Tz[l + c(log2 + 1)]9121

l = 2 alip
o
(=In)ott,
/IT] oh>
0

It is obvious that for any given T: 0<7 < + oo there exists natural
number N = N(7) such that Y1982 > 77> &=Dloe2 ype

wix, 1) = e{[1 + ceX(t + 1 — T — @)} = &)

and
M(—T; 1 na -
zie, ) = g [ M = (L= yP | b =0T
where 7o = 0,7, = ”sz, i=1,...,N and ¢;,n;, >0 are all constants to be

determined later.
It is also obvious that for any given i = 1,...,N, y;(x,?), j = 1,2 are well
defined on Q; .= [0, 1] x [T;—, T;] n [0, 1]0 x [0, T] and

I 1
NS+l +log) 2 <p<] (4.16)

if ¢; is sufficiently large.
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Thus, by direct calculations we have for (x,1) € Q0;,i=1,...,N

W), = & ekmy 071 4 cel(e+ 1 = T,

ON” ol po-n , p(O—1) WIS
(o) o B

n 2p1(0 -1
gplyinl(gl)(l +M)

11

_ (2i) p18?11+“y;n19_1ygp]_nll)e_p]+l <1 + 2p1(0 — 1)>.
11 11

For the present case, a direct calculation shows that (p; — m;)0 — p; + 1>0
and k> 1if(py —m)0— pr+1>0whilek=1if (py —m)0— p1 +1=0.
Therefore,

0 b1 01
P1 my+o _myo—
(Wi )x < <2T1> & N

x [+ ce?(t+ 1 — T;_p)ln—m0=prtl] (1 + 2n@=1 1))
T1

0N\ 2:(0—1
— (_) 8711+o<ym10 1[ +CFO((1+ 1 — ._1)]]{1(1 + 1( ))

211 T1
<y ’”‘9 M et + 1= T, ) chm, 0
= (W;nl)r

As in Lemma 4.5, we have

(er'nz)t > (211)7(2 X (x’ t) € Qi-
Obviously,

Wix x=0 — O, Zix x=0 — 0
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Using 0(1 — ;1) — 1 = 0 we see that

0 0
_ 0—-1 __ 111 lw 1=y, o 0(1-L)—1_alys
Wix f8i2—r1y1 = & N 21 Pyt by

453

0 /1 ol
>W111211281 1117]1170 <_> > Aw I 112 x=1, T_<t<T

l l ’

! 2’!,‘1 4

holds if the following inequality holds:

_ 0
81 I ,l0

, oo~ S 1
1 1 .C1220'[]2+] =

Using (4.16) we know that
f(0+‘tz)a_l —o—1

! 81’2

_ ol =y, — (04 t) o lo —00y _ (In—1)o—1
W Z ? 11 7)/1 y2

! 8‘(2
(04+12)+Inalo[1+c(log 2+1)] 21

Zix =

(1 4oak®y yy013
> Wl{zlzl{zzgi (1+ak0)121 722

> i 1212122

l [

holds if the following inequality holds:

ok (ot o lo[l + c(log 2 + 1]~
& n; T222lzza+3

By the choice of / one see that (4.17) and (4.18) hold if

Lo b1 (14+0k0)a

=l —7— N
e (I=In)o+12 >1,

i

B ( lo )(1 In)o+1,
1=\ 02231 1 elog 2 + D2

1 (14-0k0)
“(1-In)o+1s

X &

kOi .
Set & = a(2 + log 2)T+40, 5, = by, i=1,...,N, then (4.19) holds if

by (1+ak0)a

== et >1,

kOi
(a2 + log 2)T+40)

>

(4.17)

(4.18)

(4.19)
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1
b :4i< lo . _>(1122)0+T2
‘E222122”+3[1 + c(log?2 + 1)]""™'A

_Dy(1+akf)
x g 1R (4.20)

l

A direct calculation shows that

112121(1 + OCk@)O’
(1 =In)o+r1

a(l + ak0) [ (ml ) (mz +1 )}
=———"|lpplyy— | ——1 —1 =0.
ol — Ip) + 1, | 1202 PEA T

Hence, for fixed i we can choose a sufficiently large and then choose b
sufficiently small to satisfy (4.20) and

1 -1 —

wi@,0) = a1 {1 +cefl — (@)} Zer(§)’ = a2 + log 2O’

> max  uo(x) = uo(x),

0<x<

—
21(6,0) = {m[1 =31 =) [} 7 =) " = ()’ > Jmax vo(x) = vo(x).

<x<

For the above fixed a,b and i = 2,...,N, we have

wi 106, T) <el 1 4 e(log 2 4+ 1Y

)
<0k983j11k9[2 + log 2]k( — Ck98}+xk9 gwi(x, Ti—l),

e -0
zio1(x, Timr) = {71,-1 [eM(T"T”) — 41— ¢1)""~‘1 }

<(’7i—1}1)_0 =1n; " <zix, Ti-1).

This shows that (ws,z) is an upper solution of (1.1) with 4 on Q;. By
comparison principle we have (u,v)<(w;,z;) on Q;, i = 1,...,N. Therefore,
there exist C(T): 0<C(T)< + oo such that (4.11) holds. And hence the
solution (u, v) of (1.1) exists globally.

Secondly, we consider the following case:

(4) P> 1, my>1and 111<y;:—j.
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As above, it suffices to prove that there exist C(T): 0<C(T)< + oo such

. is ai _ -l — U=mi/p)  pi=m
that (4.11) holds. To this aim, denote 6 = rh o= Y mRTTE 0,

c=-2— ¢=max{2, (%)p'(l + 7;;1(3:1))/(”“0)}’ T = 7“’("1‘]]’"”) and M,! as

my—p2’°
above.

For the present case, a direct calculation shows that 0 <o < p; — my, <0,

t+of(1 = 11)0 — 1]= 0 and {75 =" — /. Take

wi, 1) = e{l +ce?(t+ 1 — Tr) + (1 — (07} = epl.

and

e
2, 1) = (e T — 31— Gy T = Ty

where 7y = 0,7T; = %, i=1,...,N and ¢;,n; >0 are all constants to be
determined later.

It is obvious that for any given i=1,...,N, yi(x,¢), j= 1,2, are well
defined on Q; =[0,1] x [T;—1, T;] n [0, 1] x [0, T] and

1
I<cf<n<efll +e(l +log2],  z<p<I (421)

if ¢; is sufficiently large.
By direct calculations we have for (x,7) € O;

m my+ao mi0—1
W), =" em 0y,

0 <
i =l (1= gy )T
T1

0\" I+1 0—1 & —
0t = (32 ) MO0 = iy,

0 \" _ :
(E) glgyl(m){ylpl(e D(1 — ¢, ()P

n p1(82f - 1)ylpl(071)(1 ()P D
T1

6 - 1 "': T
+ i " )gl ylpl(O*l)*l(l _ ¢l(x))(P1+1)(3il)x1/Tl}



456 SHU WANG

0 D B (9 _ 1)
< (L) ¢pU0,pm@-D(op P op+l
(211) K N + 21

= (2) s (14,20 )
T1 T

x " em Gym‘(l 1<(wm‘)t

(Here, we have used that &l <1, 1 =1,(p1 —m1)0 — pr +1=0.)
As in Lemma 4.5, we have

(25”2)12(21{’7(2 X (X, t) € Qi-
Obviously,
Wlx|x:0 = 07 Zix|x:0 = 0
Using 7+ of0(1 — I1;) — 1] =0, Hly‘é =™ — ]} and (4.21) we have
0 4, 0 a-n0-1 o1,
Wiy = 83+12‘E y(l 1 _ Wlnzlllzgllﬂ I 111202 yg 1) y¢2711
il A=l +t4a((1=1)0-1) g Iy O 1\
51— T+o((1— - o
> Wi“Zil Sl 11 11 81/’1'12 2_‘[1(2)

0 (1\"
wihzleg g o <4> . ox=1, T <e<T.

Therefore, if (4.17) and (4.18) with k£ = 1 hold, then for x = 1,7, <t<T;
Wix 2 /in”lez, Zi = ZWIZI Zn

hold.
Thus, as above we can get our results.
This completes the proof of Lemma 4.6. 1

LEMMA 4.7.  Assume my > pi,m>< py. If 11 <plli], I <" and 11215 <
(’;;—ﬂ — l11)(% — [), then the solution (u,v) of (1.1) exists globally.

Proof. The proof is similar to that of Lemma 4.6. 1

LEMMA 4.8. Assume m; = P1,mMy > po. If I <1, l22<mZ+I and Il <
(1- l”)(';’jﬂ — Iy), then the solution (u,v) of (1.1) exists globally.

Proof. As in Lemma 4.5, it suffices to prove that there exist C(T):
0<C(T)< + oo such that (4.11) holds. To this aim, take

wite, ) = e[l + et + 1 =TI — 10} = eiy!
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and

1
zi(x, 1) = (e MO0 — L1 — gy () 7 = 0005,

where TO:O,T,-:’li/IgZ, i=1,...,,N, 0= 1 —— o,1,M,c as above, and

1, my = p; =1,
k =

e m=p1< 1.
Similar to the above arguments we can show that there exist positive
constants ¢ and 5, such that (w;, z;) is an upper solution of (1.1) with 1 on Q;.
By comparison principle we have (u,v)<(w;,z) on Q;, i=1,...,N.
Therefore, there exist C(7): 0<C(T)< + oo such that (4.11) holds. And
hence the solution (u,v) of (1.1) exists globally.

This completes the proof of Lemma 4.8. 1

LeEmMA 4.9.  Assume m; > p1,my = po. If 111<ml+1 In <1 and 11hln <

(';’)l‘ill — 111)(1 — I22), then the solution (u,v) of (1.1) exists globally.

Proof. The proof is similar to that of Lemma 4.8.

By Lemmas 4.1-4.9 we get the proof of the sufficiency. |

5. PROOF OF THE NECESSITY

We will complete the proof of the necessity by a series of lemmas.

In this section we denote 7; = ﬁ, i = 1,2 and use / to denote a positive
constant satisfying A </4.

First we will prove a result, which are useful as we proceed, from linear
algebra.

LEMMA 5.1.  Assume that ay1,a»n >0, ap,ax >0 and ayax > ajjan.
Then for any given ay,as> € R', there exist k,1> 1 such that

ank —apn! +a; <0,
—asrk + anl + a; <0. (5.1)

Proof. When a;; >0, a» >0, by apay) > ajjax we have O<a11/a12<
a1 /ax. Therefore, there exists ¢ > 0 such that 0<ay;/a;n <pu<az /an.
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Set

2
k:maX{2, = A=A, —2/<u—@)}, I = kp,
noapn ann an an
then &,/ > 1 satisfy (5.1).
When a1 =0, ax» >0, set

= max{2,axl}, k = max{2, (azgl + a2)/a21}.
arz

When a;; =0, a» =0, set

l—max{2,al}, k—max{2,az}.
an an

When a;; > 0,a2»n = 0, set

k= max{2,az}, I = max{2, (a1ik + a1)/ap}.
az|

Then k, [ > 1 satisfy (5.1). 1

LEMMA 52, If Iy >min{Z,240 o 1y >min{™2, (my + 1)/(p2 + 1}

Then the solution (u,v) blows up in finite time.

Proof. When [} > min{%,’;;—ill}, the local solution (u, v) of (1.1) satisfies

(u, v) = (9, 9), it follows that
u, = Aol =200 x=1, ¢>0.

Consider the following single parabolic problem:

(W™ '), = (el 7wy, O0<x<1, £>0,
Wx'x:O = 09 WX'x:l = /:“5llzwl” |x:1a t> 0,
w(x,0) = up(x) =0 >0, 0<x<l.

Then w(x, t) blows up in finite time (see [47]). Choose (u, v) = (w, d), by using
(u,v)=(9,9), it is easy to verify that (u,v) is a lower solution of (1.1) with
A(<A). By the comparison principle we have that (u,v)>(u,v), and hence
(u,v) blows up in finite time.

. my my+l . .
When [, > mm{pz, p2+1}’ the proof is similar. |}

LEMMA 5.3.  Assume that m;< p;, i = 1,2. If I3 <%, I <% and 11, >

(% — 111)(% — Ip), then the solution (u,v) blows up in finite time.
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Proof. By Lemma 5.1 we see that there exist k, / > 1 satisfying

s:%_l”k_ e, e 1-ln g
_m _m _ —m
1-= s P—m pr—m
! T ! 1—1
r=——_k42 e — =) (5.2)
1= 1= p—m pp—m

1
Let k[ satisfy (5.2), define y(x,) =a(l +x7)+ (b —ct) ¥, z(x,H) =a
1

(1+x2)+(b—cty”’, 0=(pi+H/(p —m), 6 =(p2+D/(p»—m) and
take

ute,t) =)', (1) =27,
where

b = max{(6~120)!/*0) (57129)1/lo)y

a= min{zflbfk’zflbfl’%T1071b521+111070’%T2071br21+122070},

(gl gpgml
¢ = min .
kmit?'” Imod?

By direct computations we have for x € (0,1),0<¢<b/c

0 1
(yml)t — m19cky’”‘071(b _ ct)fkfl’ Uy = i_y@—lxrl 1
1
0 P
(@ = (2) omeh),
1

pi
B (ﬁ) | (ypl(e_l) * My”l“"””x%).
T 7]

Since 0 = (p1 + D /(p1 —m) >-L—>1,by y=(b— ct) ™% we have

pr—m
pi pi
((]ilx)pl )x > (a@) ypl(()*l) — (ag) ym1071y(p17ml)0—p]+1
T1 T1
p1 k+1 p1
—_ <(’;16> ymlgflyT> (i?) ymlé'fl(b o Ct)f(kJrl)

>mick0y" ' (b —cty TV = @w™),  xe(0,1), 0<t<b/c,
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1e.,

(w)™),=@W™),,  xe(0,1), 0<t<b/c.

Similarly, we have

(™), >@™),  xe(.1), 0<t<b/c.

Obviously,

Uel—o = Uxl—o = 0, 0<t<b/c.

By the choices of a,b and ¢ we have

(b—ct)y F<y<2(b—et)F, (b—ct)'<z<2(b—ct).

(5.3)

(5.4)

(5.5)

(5.6)

By the expressions of 0, g, the assumptions of this lemma and (5.2) we have

6(17111)>1, 7k[(17]11)971]+1121617S20.

Using (5.6) and (5.7) we get

aegl

ab v
Uy =—y glnyllz_ye(l ) IZ Iho

11 11

< gt 920(1 W0-1(p — gy HO0=I)=1klo

ab
71

_ulll ha 27 50(1=5i)— 1(b C't)_S

<u1|1 I 029(1 h=lp= <lu11| 112’ x=1,
71

1e.,

L_lx<£ul”12112, x =

—_—

Similarly, we have

n<uMy?, x=

—_—

, O<t<b/e.

, O<t<b/e.

0O<t<b/e,

(5.7)

(5.8)

(5.9)
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By the choices of @ and b we have that for x € [0, 1],

u(x,0) = (a(l + x%) + b M <2b ) <o<up(x),

u(x, 0) = (a(l er%) + b7 <(2b7’ <5 <vp(x). (5.10)
From (5.3)(5.5), (5.8)—(5.10) we see that (u,v) is a lower solution of (1.1)
with 4. Therefore, (u, v) = (u, v). Obviously, (1, v) blows up in finite time. And

hence (u,v) blows up in finite time. o

LEMMA 5.4. Assume my < pi, my= ps. If I < ’Zl’ In<1 and 1 >
’"—‘ — 111)(1 = I3), then the solution (u,v) of (1.1) blows up in finite time.

Proof. 1t follows from Lemma 5.1 that there exist &,/ > 1 such that

2 1—1
s=2 ik — Il 1 <o,
n pr—m
!
12‘ k(1= )l — 52 4 1<0. (5.11)
D1

Set  y(x,t) =a(l + x%) +b—ct)y ™, 2, )= +doE+x—-2)"" -
0= (p1+p/(p1 —m) and let

ute,t) = Y00, o) =z(x,0),

where £, [ satisfy (5.11) and

b =max{s /1, (512040 a:min{ bt 2]_(,_;11)0}
’ ’ 27 70

g i ] b2 i d)P2bP+2dps(1 — 1) aP 0P !
a3 [ T 202 I Tkl

By the expression of d we have for 0<x<1, 0<t<b/c

1
5 b+d(x +x—2) 0<z<2b (5.12)

Using (5.12), by direct computations we have

(l_)mz)t — ClmzZ_mzl_l, l_)x — dlZ—l—l(b—l +d(x2 +x_2))—2(2x+ 1),
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@), =@ PG 4 0 +x = 2) P2 DR,

=@P {z PGB p d(P 4 x - 2)) P2 py(2x + 1P D

X (b7 +d( +x—2) P22+ 1) dp,

X [[4+1—=22(b7" +d(* +x —2)]}
> (dD)Pz 1 2b) P dpy(1 - 1)
=(d)Pz™I ) PP 2 dpy (1 — 1)
> clmyz ™1 = w™),,  xe(0,1), 0<t<b/c,

1e.,

(@)™, >@"™), xe@1), 0<i<ble.

As in Lemma 5.3, we have

()™, =W™),, xe(0,1), 0<t<b/c.

Obviously,

Uyl =0, U0 =0, O0<t<b/c.

Using (5.11) we get forx =1, 0<t<b/c

al al -
L_tX:—yO lgul”vl”—yo(l hn)—1,al

T1 T T
a@ 29(1 h)— l(b )_k[e(l_lll)_l]‘HlZIuZIIUllz
a@ 29(1 1)~ l(b Ct)_su[”l)llz
“0200 =15yt e
T -
< Juno'e, x=1, 0<t<b/c,

1e.,

uy < M2, x=1, O<t<b/c.

(5.13)

(5.14)

(5.15)

(5.16)
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And
ve = 31db*(b — ct)”'!
=u"y231db?y 0P (b — cr)>
< uP231db3 (b — =IOk
=up231db* (b — ct)™”
< u™31dp? b < v,
ie.,

v <™ x=1, O0<r<b/e. (5.17)
For x €0, 1], we have

u(x,0) = (a(l + x%) + bM< @2b ) <O<up(x),

v, 0) = (b7 +d(* +x —2)) <b ' << (). (5.18)

From (5.13)-(5.18) we see that (u,v) is a lower solution of (1.1) with 4.
Therefore, (u,v) = (u, v). Obviously, (u, v) blows up in finite time. And hence
(u, v) blows up in finite time. 1

LEMMA 5.5. Assume my = p;, my<pr. If 111<1,122<ﬁ and 171y >
2
(1- 111) ™ — Iyy), then the solution (u,v) of (1.1) blows up in finite time.

Proof. The proof is similar to that of Lemma 5.4. 1

LEMMA 5.6. Assume my = py, my = ps. If <1, 1n<1l and 130 >
(1 — 11)(1 = ), then the solution (u,v) of (1.1) blows up in finite time.

Proof. The proof is similar to that of Lemma 5.4. |

LEMMA 5.7. Assume that m;> p;, i=1,2. If ;<™ H,lzz\'[”,’ﬂ
and 1120 > (L — 1)L — 15,), then the solution (u,v) blows up in finite

pi+1 p+1

time.
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Proof. By Lemma 5.1 we see that there exist &, / > 1 satisfying

my+1 _

ot — L l12 l12 1 -1
ST _’"Z“—ll—i_mz—[’z_ml—l?lgo’

p1+1 p+l

my+1 _
. [ mt 2 Dy 1= _, (5.19)
T om+l m+1 _ _ = :
o1 sl pr—m pr—m

Define y(x,7) = a(l — x) + (b — ct)", z(x,t) = a(1 —x)+ (b —ct)', 0= (p1 +
EY/(mi — p1), 0= (pr+5/(my — po), ulx,t) =y, v(x,t) =277, where
k, [ satisfy (5.19) and

b = max{(52%) /"0, (527)" /U3,

a = min{bk,bl,%,{l; },

. [(@Pap(0+1) (ac)apr(c+ 1)
¢ = min , )
m, 0k myol

By direct computations we have

W), = m0cky ™" (b — ety ", u.=aly !

>

(™), = (@d)” ("=,
= (@) api(0 4 1)y~m0=" ylm=pi-p
> (a0)” api(0 + 1)y """ (b — cpyfltm=r0=r1]
= (@0)”api(0+ 1)y ™" — ctf!
> m Okey ™ (b — et} = @™),, xe(0,1), O0<t<b/c

(here we have used that 0> -2
i.e.,

(W)”)=W™),  xe€(0,1), 0<tr<b/e. (5.20)
Similarly, we have

(@), =W"™), xe1), 0<i<b/c. (521)
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Obviously,
Urli—o = Uxly—g = 0, 0<t<b/ec. (5.22)

By the expressions of 6, g, the assumptions of this lemma and (5.19) we have
lolo 4+ k(1110 —1—0)=—s5=0. (5.23)
Using (5.23) we get
wy = al(b — ety OFD = yhiyleg(h — ey KOFDTRNO+10l

=u""2al(b — ct) <u'v'2abb™S < Julv2, x=1, 0<t<b/c,

1e.,
u <", x=1, 0<t<b/c. (5.24)
Similarly, we have

n<iuM™™ x=1, 0<t<b/e. (5.25)

By the choices of @ and b we have that for x € [0, 1],
u(x,0) = (a(l —x) + 6" < (26" <5 <ug(),

v(x,0) = (a(1 —x) + b~ )7 <(2b) " <I<v(x). (5.26)

From (5.20)—(5.22), (5.24)—(5.26) we see that (u, v) is a lower solution of (1.1)
with 4. Therefore (u,v) > (u,v). Obviously, (u,v) blows up in finite time.
And hence (1, v) blows up in finite time. 1

LEMMA 5.8. Assume that my = p| and my > pr. If 11 <1, 122<””Ll, and

ol > (1 — I )(';jil 123), then the solution (u,v) blows up in ﬁmte time.

Proof. By Lemma 5.1, we see that there exist &, / > 1 satisfying

2 / l12

s=0-L)k - + +1<0,
my+1
sl 5 1—1
r=—Ink+ p;jl !+ 2 <0.
ﬁ—l p2—my

Let k,I be as above, define y(x,7) = (b~! +d(x* +x—2))' —ct, z(x,1) =
(1(1 - X) + (b - Ct)l» 0= (pZ + 171)/(’”2 - p2)7 ]il(xs t) = yik, l_)(xr t) =z "
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As in Lemmas 5.4 and 5.7, it is easy to verify that there exist positive
constants a,b,c,d such that (u,v) is a lower solution of (1.1) with 4.
Therefore, (u, v) = (u, v). Obviously, (u,v) blows up in finite time. And hence
(u,v) blows up in finite time. 1

LEMMA 5.9. Assume that m; > p| and my = py. If I} <';]'7ﬂ, In<1 and

lialy > (’Z:—Ll — 111)(1 — [22), then the solution (u,v) blows up in finite time.

Proof. The proof is similar to that of Lemma 5.8. 1

LeEMMA 5.10.  Assume that my > py and my < pp. If I <""i}, I» <% and

l12lr1 > (’;;—L1 — ln)(% — Iy), then the solution (u,v) blows up in finite time.

Proof. By Lemma 5.1 we see that there exist &,/ > 1 satisfying

+1
T l12 2 1 — I
PR Ry S A <0,
= =2 " m—p m—p
l — I [ 1-1
m1+121 k+ P{ my [ - = + = <0.
m—l ' pr—my pr—nmp

Let ky/ be as above, define y(x,f)=a(l—x)+(b- ct)k, 2(x, 1) =
a(l+x2)+ (b —c)™', o =(p+D/(pr—m2), 0= (p1+1-1/(m — py),
ule,0)=y ', vx,t) ==z

As in Lemmas 5.3 and 5.7, it is easy to verify that there exist positive
constants a, b, ¢ such that (u, v) is a lower solution of (1.1) with 4. Therefore,
(u, v) = (u, v). Obviously, (i, v) blows up in finite time. And hence (u, v) blows
up in finite time.

LEMMA 5.11.  Assume that m| < p; and my > po. If [y <%, I»n <’"2+l and

lialo > (% - l“)(’!”;ﬂ — Iy), then the solution (u,v) blows up in ﬁmte time.

Proof. The proof is similar to that of Lemma 5.10. 1
By Lemmas 5.2-5.11 we get that the necessity holds.

Remark 5.1. The above blow up results turn out to be valid for the
following N-dimensional form of problem (1.1):

N
(uml)t = Z (|ux,'|p]71ux,')xis X € Q, t> 0&

(Um7)[ Z(|UX p2 lv"r X ° X € Q7 t> 0,
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@:u’“u’w, xedQ, >0
on
@:ulz‘vlzz, xeodQ, t>0
on

u(x,0) = ug(x),  v(x,0) = vo(x), xeQ,

where Q < RV is a bounded open set with smooth boundary 0Q, y stands

th

e unit outward normal of 6Q to Q.
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