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This paper concerns optimal investment problem of a CRRA
investor who faces proportional transaction costs and finite time
horizon. From the angle of stochastic control, it is a singular control
problem, whose value function is governed by a time-dependent
HJB equation with gradient constraints. We reveal that the problem
is equivalent to a parabolic double obstacle problem involving two
free boundaries that correspond to the optimal buying and selling
policies. This enables us to make use of the well-developed theory
of obstacle problem to attack the problem. The C2,1 regularity
of the value function is proven and the behaviors of the free
boundaries are completely characterized.
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1. Introduction

Merton [19] pioneered in applying continuous-time stochastic models to the study of financial
markets. In the absence of transaction costs, he showed that an optimal investment problem can
be formulated as a Hamilton–Jacobi–Bellman (HJB) equation that allows an explicit solution for a
constant relative risk aversion (CRRA) investor. The corresponding optimal investment policy is to keep
a constant fraction of total wealth in each asset during the whole investment period. To implement
the policy, the investor would have to indulge in incessant trading which is completely unrealistic in
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the face of transaction costs and violates the conventional largely buy-and-hold investment strategy
as well.

To overcome the shortages, Magill and Constantinides [17] introduced proportional transaction
costs to Merton’s model. They provided a fundamental insight that there is a no-trading region in
the presence of transaction costs and the no-trading region must be a wedge. But, their argument is
heuristic at best. In terms of a rigorous mathematical analysis, Davis and Norman [6] showed that
for an infinite-horizon investment and consumption with transaction costs, the optimal policies are
determined by the solution of a free boundary problem, where the free boundaries correspond to the
optimal buying and selling policies. Relying on the concept of viscosity solutions to HJB equations,
Shreve and Soner [21] fully characterized the infinite-horizon optimal policies. Using a martingale
approach, Cvitanic and Karatzas [4] proved the existence of an optimal solution to the portfolio
optimization problem with transaction costs. Other existence results can be found in Bouchard [3],
Guasoni [12] and Guasoni and Schachermayer [13]. Akian, Menaldi and Sulem [1] and Kabanov and
Kluppelberg [14] considered a multi-asset investment–consumption model with transaction costs.

This paper concerns the finite-horizon optimal investment with transaction costs, and aims to pro-
vide a theoretical analysis of the optimal investment policies. From the angle of stochastic control,
it is a singular control problem for the displacement of the state variables due to transaction costs
might not be continuous. It can be shown that the value function is governed by a time-dependent
HJB equation involving gradient constraints which leads to two time-dependent free boundaries. Due
to the convexity of utility functions, the value function is expected to be twice continuously differ-
entiable in the spatial direction. Since such regularity of the value function generally leads to free
boundary conditions, this regularity property, first observed by Benes et al. [2], is called the principle
of smooth fit and plays a critical role in the study of singular control problems. For an infinite-horizon
problem, Davis and Norman [6] and Shreve and Soner [21] proved the regularity property using an
ordinary differential equation approach and the viscosity solution approach, respectively. However, for
a finite-horizon problem, the resulting free boundaries change through time such that it is hard to
follow their approaches.

One paper related to the present work is Liu and Loewenstein [16] where the authors adopted an
indirect method. They first considered an optimal investment problem with a stochastic time horizon
following Erlang distribution. For this tractable problem, they derived some analytical properties on
the optimal investment policies. They then extended those results to the situation of a determinis-
tic time horizon using the fact that the optimal investment policies of the Erlang distributed case
converge to those of the deterministic time case. They obtained some interesting characterization of
optimal investment policies (i.e. free boundaries). However, their results are incomplete and some are
not sharp. In addition, their approach cannot be extended to including the consumption term.

We will attack the problem directly by virtue of a partial differential equation (PDE) approach. Our
key idea is to establish a link between the singular control problem and the obstacle problem. More
precisely, we will show that the spatial partial derivative of the value function is the solution to a dou-
ble obstacle problem. Since the solution to an obstacle problem is once continuously differentiable in
the spatial direction, the above link will immediately yield the desired principle of smooth fit. The link
also enables us to make use of the well-developed theory of obstacle problem to study the present
problem and the behaviors of the resulting free boundaries can then be completely characterized.

The rest of this paper is arranged as follows. In the next section, we present the model formu-
lation. In Section 3, we formally derive the parabolic double obstacle problem regarding the spatial
partial derivative of the value function, and study the existence and regularity of solution. Section 4 is
devoted to the analysis of the behaviors of the free boundaries (i.e. optimal investment policies). The
equivalence between the double obstacle problem and the original problem is proven in Section 5. To
examine the asymptotic behaviors of the free boundaries as time to maturity goes to infinity, we study
the stationary solution to the double obstacle problem in Section 6. The paper ends with conclusive
remark in Section 7.
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2. Formulation of the model

We take into account the optimal investment problem with transaction costs and a finite hori-
zon T . Except for notational changes, the model formulation is that of Liu and Loewenstein [16]. Most
notations are from Davis and Norman [6] and Shreve and Soner [21].

2.1. The asset market

Suppose that there are only two assets available for investment: a riskless asset (bank account)
and a risky asset (stock). Their prices, denoted by P0(t) and P1(t), respectively, evolve according to
the following equations:

dP0t = r P0t dt,

dP1t = P1t[α dt + σ dBt],

where r > 0 is the constant riskless rate, α > r and σ > 0 are constants called the expected rate of
return and the volatility, respectively, of the stock. The process {Bt; t > 0} is a standard Brownian
motion on a filtered probability space (S,F , {Ft}t�0, P ) with B0 = 0 almost surely. We assume
F = F∞, the filtration {Ft}t�0 is right-continuous and each Ft contains all null sets of F∞.

Assume that a CRRA investor holds Xt and Yt in bank and stock respectively, expressed in mone-
tary terms. In the presence of transaction costs, the equations describing their evolution are

dXt = r Xt dt − (1 + λ)dLt + (1 − μ)dMt , (2.1)

dYt = αYt dt + σ Yt dBt + dLt − dMt , (2.2)

where Lt and Mt are right-continuous (with left-hand limits), nonnegative, and nondecreasing
{Ft}t�0-adapted processes with L0 = M0 = 0, representing cumulative dollar values for the purpose
of buying and selling stock respectively. The constants λ ∈ [0,∞) and μ ∈ [0,1) appearing in these
equations account for proportional transaction costs incurred on purchase and sale of stock respec-
tively.

2.2. The investor’s problem

Due to transaction costs, the investor’s net wealth in monetary terms at time t is

Wt =
{

Xt + (1 − μ)Yt if Yt � 0,

Xt + (1 + λ)Yt if Yt < 0.

Since it is required that the investor’s net wealth be positive, following Davis and Norman [6], we
define the solvency region

S = {
(x, y) ∈ R2: x + (1 + λ)y > 0, x + (1 − μ)y > 0

}
.

Assume that the investor is given an initial position in S . An investment strategy (L, M) is admissible
for (x, y) starting from s ∈ [0, T ) if (Xt, Yt) given by (2.1)–(2.2) with Xs = x and Ys = y is in S for
all t ∈ [s, T ]. We let As(x, y) be the set of admissible investment strategies.

The investor’s problem is to choose an admissible strategy so as to maximize the expected utility
of terminal wealth, that is,

sup
(L,M)∈A (x,y)

Ex,y
0

[
U (W T )

]

0
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subject to (2.1)–(2.2). Here Ex,y
t denotes the conditional expectation at time t given that initial en-

dowment Xt = x, Yt = y, and the utility function

U (W ) =
{

W γ

γ if γ < 1, γ �= 0,

log W if γ = 0.

We define the value function by

ϕ(x, y, t) = sup
(L,M)∈At (x,y)

Ex,y
t

[
U (W T )

]
, (x, y) ∈ S , t ∈ [0, T ).

2.3. Merton’s result with no transaction costs

If λ = μ = 0, the problem reduces to the case of no transaction costs in which the wealth process
Wt can be chosen as state variable, and Yt be control variable (cf. [19]). Consequently, the control
problem becomes a classical one and allows an explicit expression of the value function:

ϕ(x, y, t) =

⎧⎪⎨⎪⎩ e
γ (r+ (α−r)2

2σ2(1−γ )
)(T −t) (x+y)γ

γ if γ < 1, γ �= 0,

(r + (α−r)2

2σ 2 )(T − t) + log(x + y) if γ = 0.

Correspondingly, the optimal policy is to keep a constant proportion of wealth in the bank account
and the stock, namely,

x

y
= −α − r − (1 − γ )σ 2

α − r
� xM . (2.3)

Here xM is called “Merton line.”

2.4. HJB equation

Throughout the rest of this paper, we take into account the case of transaction costs, namely,
λ + μ > 0. The problem is indeed a singular control problem for the displacement of the state vari-
ables (Xt, Yt) due to control effort might be discontinuous. The value function is shown to be the
viscosity solution to the following HJB equation (cf. [9] or [21])

min
{−ϕt − L ϕ,−(1 − μ)ϕx + ϕy, (1 + λ)ϕx − ϕy

} = 0, (x, y) ∈ S , t ∈ [0, T ), (2.4)

with the terminal condition

ϕ(x, y, T ) =
{

U (x + (1 − μ)y) if y > 0,

U (x + (1 + λ)y) if y � 0,
(2.5)

where

L ϕ = 1

2
σ 2 y2ϕyy + αyϕy + rxϕx.

The uniqueness of solution of problem (2.4)–(2.5) is proven by Davis et al. [7] in the sense of viscosity
solution.

Due to the homotheticity of the utility function, we have for any positive constant ρ,

ϕ(ρx,ρ y, t) =
{

ργ ϕ(x, y, t) if γ < 1, γ �= 0,

ϕ(x, y, t) + logρ if γ = 0.
(2.6)



M. Dai, F. Yi / J. Differential Equations 246 (2009) 1445–1469 1449
It is well known that under the assumption α > r, short selling is always suboptimal. Hence, we only
need to consider y > 0. Denote

V (x, t) = ϕ(x,1, t).

Then, it follows from (2.6) that for y > 0,

ϕ(x, y, t) =
{

yγ V ( x
y , t) if γ < 1, γ �= 0,

V ( x
y , t) + log y if γ = 0.

Accordingly, (2.4)–(2.5) are reduced to

⎧⎨⎩min
{−Vt − L1 V ,−(x + 1 − μ)V x + γ V , (x + 1 + λ)V x − γ V

} = 0 in Ω,

V (x, T ) = 1

γ
(x + 1 − μ)γ ,

if γ < 1, γ �= 0,

(2.7)

or {
min

{−Vt − L2 V ,−(x + 1 − μ)V x + 1, (x + 1 + λ)V x − 1
} = 0 in Ω,

V (x, T ) = log(x + 1 − μ),
if γ = 0, (2.8)

where Ω = (−(1 − μ),+∞) × [0, T ),

L1 V = 1

2
σ 2x2 V xx + β2xV x + β1 V

with β1 = γ (α − 1
2 σ 2(1 − γ )) and β2 = −(α − r − σ 2(1 − γ )), and

L2 V = 1

2
σ 2x2 V xx − (

α − r − σ 2)xV x + α − 1

2
σ 2.

In the following, we will concentrate on the problem (2.7) and the problem (2.8).

3. A parabolic double obstacle problem

In this section, we will formally derive and study the parabolic double obstacle problem regarding
the spatial partial derivative of the value function.

3.1. Derivation

Let us first take into account the case of γ �= 0, γ < 1. Eq. (2.7) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Vt − L1 V = 0 if
1

x + 1 + λ
<

V x

γ V
<

1

x + 1 − μ
,

−Vt − L1 V � 0 if
V x

γ V
= 1

x + 1 + λ
or

V x

γ V
= 1

x + 1 − μ
,

V (x, T ) = 1

γ
(x + 1 − μ)γ .

(3.1)
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Consider the transformation

w(x, t) = 1

γ
log(γ V ).

Apparently wx = V x
γ V . It is easy to see that w(x, t) satisfies

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−wt − L3 w = 0 if

1

x + 1 + λ
< wx <

1

x + 1 − μ
,

−wt − L3 w � 0 if wx = 1

x + 1 + λ
or wx = 1

x + 1 − μ
,

w(x, T ) = log(x + 1 − μ),

(3.2)

where

L3 w = 1

2
σ 2x2(wxx + γ w2

x

) + β2xwx + 1

γ
β1

= 1

2
σ 2x2(wxx + γ w2

x

) − (
α − r − σ 2(1 − γ )

)
xwx + α − 1

2
σ 2(1 − γ ).

It is worth pointing out that (3.2) reduces to (2.8) when γ = 0. Hence the following arguments cover
the case of γ = 0.

Set

v(x, t) = wx(x, t).

Formally we have

∂

∂x
(L3 w) = 1

2
σ 2x2(wxxx + 2γ wx wxx) + σ 2x

(
wxx + γ w2

x

) + β2xwxx + β2 wx

= 1

2
σ 2x2 vxx − (

α − r − (2 − γ )σ 2)xvx − (
α − r − (1 − γ )σ 2)v + γ σ 2(x2 v vx + xv2)

� Lv. (3.3)

We then postulate that v satisfies the following parabolic double obstacle problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−vt − Lv = 0 if
1

x + 1 + λ
< v <

1

x + 1 − μ
,

−vt − Lv � 0 if v = 1

x + 1 + λ
,

−vt − Lv � 0 if v = 1

x + 1 − μ
,

v(x, T ) = 1

x + 1 − μ

(3.4)

in Ω. Here 1
x+1+λ

and 1
x+1−μ correspond to lower and upper obstacles, respectively. We stress that

−vt − Lv � 0 on the lower obstacle and −vt − Lv � 0 on the upper obstacle, which has a clear
physical interpretation (cf. [11]).
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Remark 3.1. It is well known that an optimal stopping time problem can be described as an obstacle
problem (variational inequality problem) (cf. [20]). To some extent, our approach is identical to finding
a connection between the singular control problem and the optimal stopping time problem pursued
by Karatzas and Shreve [15].

The proof of the equivalence between the double obstacle problem (3.4) and the original problem
(3.2) is deferred to Section 5. Let us first study the double obstacle problem (3.4). For later use, we
define

SR =
{
(x, t) ∈ Ω: v(x, t) = 1

x + 1 − μ

}
,

BR =
{
(x, t) ∈ Ω: v(x, t) = 1

x + 1 + λ

}
,

NT =
{
(x, t) ∈ Ω:

1

x + 1 + λ
< v(x, t) <

1

x + 1 − μ

}
.

In finance, the three regions defined above stand for the selling region, buying region and no trans-
action region, respectively.

3.2. Existence and regularity of solution to problem (3.4)

We aim to prove the existence and regularity of solution to the double obstacle problem. One
technical difficulty is that the upper obstacle is infinite on the boundary x = −(1 − μ). To avoid the
singularity, we confine ourselves within Ω̃ = {x > x∗, 0 < t < T }, where x∗ > −(1 − μ) is sufficiently
close to −(1 − μ), and the following boundary condition will be imposed on x = x∗:

v(x∗, t) = 1

x∗ + 1 − μ
, t ∈ [0, T ). (3.5)

Later we will see that (3.5) is indeed true because {x � x∗} is contained in SR when x∗ � xs,∞ defined
in Section 4.

Proposition 3.2. The double obstacle problem (3.4) has a unique solution v(x, t) ∈ W 2,1
p (Ω̃N \ {|x| < δ}), for

any δ > 0, 1 < p < +∞, where Ω̃N is any bounded set in Ω̃. Moreover,

v(x, t) ∈ C∞(NT), (3.6)

vt(x, t) � 0, (3.7)

and

v(0, t) = 1

1 − μ
when α − r − (1 − γ )σ 2 � 0, (3.8)

v(0, t) =
⎧⎨⎩ e−(α−r−(1−γ )σ 2)(T −t) 1

1−μ for t1 < t � T ,

1
1+λ

for 0 � t � t1,
when α − r − (1 − γ )σ 2 > 0, (3.9)

where

t1 = T − 1

α − r − (1 − γ )σ 2
log

1 + λ

1 − μ
. (3.10)
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The main difficulty of the proof lies in the degeneracy of the operator L at x = 0. Before providing
a proof, we would like to give its sketch. Thanks to the Fichera criterion (cf. [8]), we are able to deal
with the problem in {x∗ < x < 0} and in {x > 0} independently in order to avoid the degeneracy of the
operator L at x = 0, and no boundary value is required on x = 0. The standard penalty method can be
adopted to show the W 2,1

p regularity of solution (cf. [11]), and (3.7) can be deduced from maximum
principle. Regarding (3.6), we only need to show the smoothness on {x = 0} ∩ NT. For γ = 0 in which
case the operator L is linear, it can be directly obtained by the hypoellipticity of the operator L
(cf. [18]). In the case of γ < 1 and γ �= 0, a careful analysis will be made due to the nonlinearity of
the operator L.

3.3. The proof of Proposition 3.2

We will only confine our attention to {x∗ < x < 0}, and the case of {x∗ < x < 0} is similar. By
transformation x = −e y and u(y, t) = v(x, t), (3.4) and (3.5) become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ut − L yu = 0 if
1

−e y + 1 + λ
< u <

1

−e y + 1 − μ
,

−ut − L yu � 0 if u = 1

−e y + 1 + λ
,

−ut − L yu � 0 if u = 1

−e y + 1 − μ
,

u(y, T ) = 1

−e y + 1 − μ
,

u(y∗, t) = 1

−e y∗ + 1 − μ
,

−∞ < y < y∗,
0 � t < T ,

(3.11)

where y∗ = log(−x∗), and

L yu = 1

2
σ 2u yy −

(
α − r −

(
3

2
− γ

)
σ 2

)
u y − (

α − r − (1 − γ )σ 2)u − γ σ 2e yu(u y + u).

First we prove the comparison principle for the problem (3.11).

Lemma 3.3. Let ui, i = 1,2, satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−uit − L yui = 0 if
1

−e y + 1 + λ
< ui <

1

−e y + 1 − μ
,

−uit − L yui � 0 if ui = 1

−e y + 1 + λ
,

−uit − L yui � 0 if ui = 1

−e y + 1 − μ
,

ui(y, T ) = ψi(y),

ui(y∗, t) = 1

−e y∗ + 1 − μ
,

−∞ < y < y∗,
0 � t < T .

(3.12)

Assume that (a) ψi(y∗) = 1
−e y∗+1−μ

; (b) ψi(y) is bounded; (c) for any N > 0, ui(y, t) ∈ W 2,1
p ((−N, y∗) ×

[0, T )); (d) ∂yu1 is bounded. If ψ1(y) � ψ2(y), then u1(y, t) � u2(y, t).

Proof. Denote

N = {
(y, t): u1(y, t) < u2(y, t), −∞ < y < y∗, 0 � t < T

}
.



M. Dai, F. Yi / J. Differential Equations 246 (2009) 1445–1469 1453
We use the method of contradiction. Suppose not. Then N must be a nonempty open set, and

u1 <
1

−e y + 1 − μ
, u2 >

1

−e y + 1 + λ
in N .

It follows that

−u1t − L yu1 � 0, −u2t − L yu2 � 0 in N .

Let w̄ = u1 − u2, which satisfies {−w̄t − L y w̄ � 0 in N ,

w̄ = 0 on ∂p N ,

where ∂p N is the parabolic boundary of N , and

L y w̄ = 1

2
σ 2 w̄ yy −

(
α − r −

(
3

2
− γ

)
σ 2

)
w̄ y − (

α − r − (1 − γ )σ 2)w̄

− γ σ 2e y[u2 w̄ y + (u1y + u1 + u2)w̄
]
.

Since w̄ is bounded and all coefficients in the above equation are bounded as well, applying the
maximum principle, we have w̄ � 0 in N , namely u1 − u2 � 0 in N , which contradicts the definition
of N . �

Since the interval (−∞, y∗) is unbounded, we confine our attention to (3.11) in a finite domain
(−N, y∗) × [0, T ) with N > 0, namely,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−uN
t − L yuN = 0 if

1

−e y + 1 + λ
< uN <

1

−e y + 1 − μ
,

−uN
t − L yuN � 0 if uN = 1

−e y + 1 + λ
,

−uN
t − L yuN � 0 if uN = 1

−e y + 1 − μ
,

uN (y, T ) = 1

−e y + 1 − μ
,

uN (y∗, t) = 1

−e y∗ + 1 − μ
, uN (−N, t) = 1

−e−N + 1 − μ
,

−N < y < y∗,
0 � t < T ,

(3.13)

where a boundary condition on y = −N is imposed.

Lemma 3.4. For any N > 0 given, the problem (3.13) has a solution uN (y, t) ∈ W 2,1
p ((−N, y∗) ×[0, T )),

1 < p < +∞, and

uN
t � 0, (3.14)∣∣uN

∣∣
W 2,1

p ((−Ñ,y∗)×[0,T ))
� c, (3.15)

where Ñ < N and c depends only on Ñ but is independent of N. Moreover∣∣uN
y

∣∣
L∞((−N,y∗)×[0,T ))

� M, (3.16)

where M is independent of N.
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Proof. Following Friedman [11], we consider a penalty approximation of the problem (3.13):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−uN,ε
t − L yuN,ε + βε

(
uN,ε − 1

−e y + 1 + λ

)
+ γε

(
uN,ε − 1

−e y + 1 − μ

)
= 0,

uN,ε(y, T ) = 1

−e y + 1 − μ
,

uN,ε(y∗, t) = 1

−e y∗ + 1 − μ
, uN,ε(−N, t) = 1

−e−N + 1 − μ
,

−N < y < y∗,
0 � t < T ,

(3.17)

where

βε(ξ) � 0, γε(ξ) � 0,

βε(ξ) = 0 if ξ � ε, γε(ξ) = 0 if ξ � −ε,

βε(0) = −c1 (c1 > 0), γε(0) = c2 (c2 > 0),

β ′
ε(ξ) � 0, γ ′′

ε (ξ) � 0,

β ′′
ε (ξ) � 0, γ ′′

ε (ξ) � 0

with constants c1 and c2 to be chosen later. For any ε > 0 given, it is not hard to show by the fixed
point theorem that the above semi-linear problem has a unique solution uN,ε ∈ W 2,1

p ((−N, y∗) ×
[0, T )).

Next we want to prove

1

−e y + 1 + λ
� uN,ε � 1

−e y + 1 − μ
in (−N, y∗) × [0, T ). (3.18)

Let

g(y) = 1

−e y + 1 − μ
.

Then

g′(y) = e y

(−e y + 1 − μ)2
, g′′(y) = e2y + (1 − μ)e y

(−e y + 1 − μ)3
.

Notice(
− ∂

∂t
− L y

)
g(y) + βε

(
g(y) − 1

−e y + 1 + λ

)
+ γε

(
g(y) − 1

−e y + 1 − μ

)
= 1 − μ

(−e y + 1 − μ)3

[−(α − r)e y + (
α − r − (1 − γ )σ 2)(1 − μ)

]
+ βε

(
λ + μ

(−e y + 1 − μ)(−e y + 1 + λ)

)
+ γε(0)

� − (1 − μ)2(1 − γ )σ 2

(x∗ + 1 − μ)3
+ βε

(
λ + μ

(−e y + 1 − μ)(−e y + 1 + λ)

)
+ γε(0) in (−N, y∗) × [0, T ).
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When ε is sufficiently small, βε(
λ+μ

(−e y+1−μ)(−e y+1+λ)
) ≡ 0. Take

c2 = γε(0) = (1 − μ)2(1 − γ )σ 2

(x∗ + 1 − μ)3
.

Then 1
−e y+1−μ is a supersolution, and thus

uN,ε � 1

−e y + 1 − μ
in (−N, y∗) × [0, T ).

In the same way, we can choose

c1 = −βε(0) = |α − r − (1 − γ )σ 2|(1 + λ)2

(x∗ + 1 + λ)3

such that 1
−e y+1+λ

is a subsolution. So, we obtain (3.18).
Due to (3.18), we get

−c1 � βε

(
uN,ε − 1

−e y + 1 + λ

)
� 0 and 0 � γε

(
uN,ε − 1

−e y + 1 − μ

)
� c2.

We then deduce from (3.17) that |uN,ε|W 2,1
p ((−N,y∗)×[0,T ))

� c, where c is independent of ε because

both c1 and c2 are independent of ε. Using W 2,1
p interior estimate, we further have for any Ñ < N,∣∣uN,ε

∣∣
W 2,1

p ((−Ñ,y∗)×[0,T ))
� c,

where c depends on Ñ but is independent of ε and N.

Due to (3.18), we infer uN,ε
t |t=T � 0. Differentiating the equation in (3.17) w.r.t. t, we get an equa-

tion that uN,ε
t satisfies. Applying the maximum principle, we then deduce

uN,ε
t � 0,

which gives (3.14) by letting ε → 0.
Now we prove (3.16). Since the bound of uN,ε and the C2 norm of terminal value are independent

of N and ε, we obtain by the W 2,1
p interior estimate∣∣uN,ε

∣∣
W 2,1

p ((−y−1,y)×[0,T ))
� M,

for any y � 0, where M is independent of N and ε. Applying the embedding theorem, we have∣∣uN,ε
y

∣∣
L∞((−y−1,y)×[0,T ))

� M.

Since y is arbitrary, it follows ∣∣uN,ε
y

∣∣
L∞((−N,y∗)×[0,T ))

� M,

which yields (3.16) by letting ε → 0. The proof is complete. �
In Lemma 3.4, we let N go to +∞, which immediately leads to the existence of solution to

the problem (3.11). The uniqueness of solution can be deduced from the comparison principle
(Lemma 3.3). Therefore, we arrive at the following lemma.
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Lemma 3.5. The problem (3.11) has a unique solution u(y, t),

u(y, t) ∈ W 2,1
p

(
(−N, y∗) × [0, T )

)
for any N > 0,

ut � 0,

|u y|L∞((−∞,y∗)×[0,T )) � M.

Now we come back to the problem (3.4) with (3.5). By Lemma 3.5, (3.4) with (3.5) has a unique
solution v(x, t) ∈ W 2,1

p (Ω̃ ∩ {x < −δ}), for any δ > 0. Similarly we can show that v(x, t) ∈ W 2,1
p (Ω̃ ∩

{x > δ}), for any δ > 0. So, we have the desired W 2,1
p regularity. (3.7) also follows from Lemma 3.5.

In the following, we will prove (3.6). As mentioned earlier, we only need to show the C∞ smooth-
ness on {x = 0} ∩ NT if it is nonempty. Let us first prove

v(x, t) ∈ C∞(
NT ∩ {x∗ � x � 0}). (3.19)

Assume that NT ∩ {x∗ � x � 0} is nonempty. It is sufficient to prove that for any compact set
E ⊂ NT ∩ {x∗ � x � 0}, all derivatives of v are bounded on E . Notice that E may contain a part of
line x= 0.

Let us start from the first equation in (3.11). Observe that the bound of the coefficient −γ σ 2e yu
is independent of y, and so are the bound of u(y, t) and the C1 norm of the initial value function. As
a result, we infer by the Cθ,θ/2 estimate

|u|Cθ,θ/2(E y) � c,

where E y denotes the counterpart of E w.r.t. y, and c depends only on the C1 norm of the ini-
tial value function and the bounds of u(y, t) and of those coefficients appeared in L y . Using the
C2+θ,1+θ/2 estimate, we have

|u|C2+θ,1+θ/2(E y) � c.

We can further use the bootstrap argument to get the boundedness of any order partial derivative of
u(y, t) w.r.t. y.

We assert that vx = −e−yu y is bounded. Indeed, denote ũ(y, t) = −e−yu y, which satisfies

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−ũt − 1

2
σ 2ũ yy +

(
α − r −

(
5

2
− γ

)
σ 2

)
ũ y + 2

(
α − r −

(
3

2
− γ

)
σ 2

)
ũ

= −γ σ 2(uu yy + u2
y + 3uu y + u2) in E y,

ũ(y, T ) = − 1

(−e y + 1 − μ)2
.

Because both the right-hand side terms of the above equation and the terminal value are bounded,
we deduce that ũ is bounded, so is vx . Using the same argument, we can show the boundedness of
vxx = e−2y(u yy − u y) as well as of any order partial derivatives in x. (3.19) then follows.
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Due to (3.19), we obtain an ordinary differential inequality by letting x → 0− in (3.4)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−vt(0, t) + (
α − r − (1 − γ )σ 2)v(0, t) = 0 if

1

1 + λ
< v(0, t) <

1

1−μ
,

−vt(0, t) + (
α − r − (1 − γ )σ 2)v(0, t) � 0 if v(0, t) = 1

1 + λ
,

−vt(0, t) + (
α − r − (1 − γ )σ 2)v(0, t) � 0 if v(0, t) = 1

1−μ
,

v(0, T ) = 1

1 − μ
.

0 � t < T , (3.20)

In the same way, we can show v(x, t) ∈ C∞(NT ∩ {x � 0}) and obtain the same differential inequality
(3.20) by letting x → 0+. This implies the continuity of v(x, t) across NT ∩{x = 0}. Solving (3.20) gives
(3.8)–(3.9), from which we infer that NT ∩{x = 0} = ∅ when α − r − (1 −γ )σ 2 � 0, and NT ∩{x = 0} =
{x = 0, t1 < t < T } when α − r − (1 − γ )σ 2 > 0. Assume that NT ∩ {x = 0} �= ∅ (i.e., α − r −
(1 −γ )σ 2 > 0). We differentiate the first equation of (3.4) w.r.t. x and let x → 0+ and x → 0− respec-
tively. Then we obtain the same ordinary differential equation and terminal condition for vx(0+, t)
and vx(0−, t) in NT ∩ {x = 0}, which implies the continuity of vx(x, t) across NT ∩ {x = 0}. Using the
same argument we can show that any order derivative of v(x, t) is continuous across NT ∩ {x = 0}. So,
v(x, t) ∈ C∞(NT) and the proof is complete.

4. Characterization of free boundaries

This section is devoted to the theoretical analysis of free boundaries. A double obstacle problem
usually gives rise to two free boundaries. We will first show that each free boundary can be expressed
as a single-value function of time t. Then we will examine the properties of the free boundaries.

To begin with, we introduce a lemma which will play a critical role in the existence proof of free
boundaries.

Lemma 4.1. Let v(x, t) be the solution to the double obstacle problem (3.4). Then

vx + v2 � 0 in Ω.

Proof. It is clear that vx + v2 = 0 in BR and SR. So, the rest is to show vx + v2 � 0 in NT. Denote

p(x, t) = vx(x, t) and q(x, t) = v2(x, t).

It is not hard to check that

−pt − 1

2
σ 2x2 pxx + (

α − r − (3 − γ )σ 2)xpx + (
2α − 2r − (3 − 2γ )σ 2)p

= γ σ 2(4xv vx + x2 v2
x + x2 v vxx + v2) in NT

and

−qt − 1

2
σ 2x2qxx + (

α − r − (2 − γ )σ 2)xqx + (
2α − 2r − (2 − 2γ )σ 2)q

= −σ 2x2 v2
x + γ σ 2(2x2 v2 vx + 2xv3) in NT.

Let H(x, t) = vx(x, t) + v2(x, t) = p(x, t) + q(x, t). Then H(x, t) satisfies
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−Ht − 1

2
σ 2x2 Hxx + (

α − r − (3 − γ )σ 2)xHx + (
2α − 2r − (3 − 2γ )σ 2)H

= −σ 2x2 v2
x − σ 2xqx − σ 2q + γ σ 2(2x2 v2 vx + 2xv3 + 4xv vx + x2 v2

x + x2 v vxx + v2)
= −σ 2(x2 v2

x + 2xv vx + σ 2 v2) + γ σ 2[x2 v
(

vx + v2)
x + 2xv

(
v2 + vx

) + (xvx + v)2]
= −(1 − γ )σ 2(xvx + v)2 + γ σ 2[x2 v Hx + 2xv H

]
in NT,

namely,

−Ht − 1

2
σ 2x2 Hxx + (

α − r − (3 − γ )σ 2 − γ σ 2xv
)
xHx + (

2α − 2r − (3 − 2γ )σ 2 − 2γ σ 2xv
)

H

= −(1 − γ )σ 2(xvx + v)2 � 0 in NT.

Obviously H(x, t) = 0 on the parabolic boundary of NT. Applying the maximum principle yields the
desired result. �
Remark 4.2. Assume that we already have wx = v , then it is easy to verify that Lemma 4.1 is equiva-
lent to

ϕxxϕyy − ϕ2
xy � 0,

which implies the concavity of the original value function ϕ(x, y, t) in x and y. Note that the con-
cavity is obvious from the definition of ϕ(x, y, t) for the dynamics are linear and the utility function
is concave. However, we emphasize that at the moment the relation wx = v has not yet been estab-
lished, so we cannot utilize the concavity to prove Lemma 4.1.

Now we can prove the existence of two free boundaries.

Theorem 4.3. There are two monotonically increasing functions xs(t) : [0, T ] → [−(1 − μ),+∞] and
xb(t) : [0, T ] → [−(1 − μ),+∞], such that

SR = {
(x, t) ∈ Ω: x � xs(t), t ∈ [0, T )

}
and

BR = {
(x, t) ∈ Ω: x � xb(t), t ∈ [0, T )

}
.

Moreover,

xs(t) < xb(t) for all t ∈ [0, T ). (4.1)

Proof. Notice

∂

∂x

(
v − 1

x + 1 + λ

)
= vx + 1

(x + 1 + λ)2
� vx + v2.

It follows from the above lemma

∂

∂x

(
v − 1

x + 1 + λ

)
� 0.
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As a consequence, if (x1, t) ∈ BR, i.e., v(x1, t) = 1
x1+1+λ

, then for any x2 > x1,

0 � v(x2, t) − 1

x2 + 1 + λ
� v(x1, t) − 1

x1 + 1 + λ
= 0,

from which we infer v(x2, t) = 1
x2+1+λ

, i.e., (x2, t) ∈ BR. This indicates the connection of each t-section
of BR. The existence of xb(t) (as a single-value function) follows.

To prove the existence of xs(t), we instead consider v̄(x, t) = (x + 1 − μ)2 v(x, t). Notice BR =
{(x, t) ∈ Ω: v̄(x, t) = x + 1 − μ} and

∂

∂x

[
v − (x + 1 − μ)

] = ∂

∂x

[
(x + 1 − μ)2

(
v − 1

x + 1 − μ

)]
= 2(x + 1 − μ)

(
v − 1

x + 1 − μ

)
+ (x + 1 − μ)2

(
vx + 1

(x + 1 − μ)2

)
= −[

(x + 1 − μ)v − 1
]2 + (x + 1 − μ)2(vx + v2)

� 0.

The desired result then follows.
The monotonicity of xs(t) and xb(t) can be similarly deduced by virtue of

∂

∂t

(
v − 1

x + 1 + λ

)
= ∂

∂t

(
v − 1

x + 1 − μ

)
= vt � 0.

(4.1) is clear because SR ∩ BR = ∅. �
Remark 4.4. The monotonicity of xs(t) and xb(t) indicates that the shorter the maturity, the less the
chance of buying risky asset and the more the chance of selling risky asset. This is consistent with the
investment criterion that younger investors should allocate a greater share of wealth to stocks than
older investors.

In finance, xs(t) and xb(t) stand for the optimal selling and buying boundaries, respectively. In
what follows we study their behaviors. To begin with, we study the selling boundary xs(t).

Theorem 4.5. Let xs(t) be the optimal selling boundary in Theorem 4.3. Then

(i) xs(t) � (1 − μ)xM , (4.2)

where xM is defined in (2.3), and

xs(T −) � lim
t→T − xs(t) = (1 − μ)xM; (4.3)

(ii) xs(t) ≡ 0 when α − r − (1 − γ )σ 2 = 0, (4.4)

xs(t) > 0 when α − r − (1 − γ )σ 2 < 0, (4.5)

xs(t) < 0 when α − r − (1 − γ )σ 2 > 0; (4.6)

(iii) xs(t) is continuous. Moreover, xs(t) ∈ C∞[0, T ).
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Proof. For any (x, t) ∈ SR,

0 �
(

− ∂

∂t
− L

)(
1

x + 1 − μ

)
= −L

(
1

x + 1 − μ

)
= 1 − μ

(x + 1 − μ)3

[
(α − r)x + (1 − μ)

(
α − r − (1 − γ )σ 2)]. (4.7)

Then

x � −α − r − (1 − γ )σ 2

α − r
(1 − μ) = (1 − μ)xM ,

which implies (4.2).
To prove the rest part, we will utilize (3.7) many times. Let us first consider (4.3). Suppose not, we

then have xs(T −) < (1 −μ)xM . For any x0 ∈ (xs(T −), (1 −μ)xM), applying the equation −vt − Lv = 0
at t = T gives vt |t=T , x=x0 = −Lv|t=T , x=x0 = −L( 1

x+1−μ)|x=x0 < 0, where the last (strict) inequality
is due to (4.7). This, however, contradicts (3.7).

(4.6) is a corollary of (4.2). Now we prove (4.5). Again we use the method of contradiction. Suppose
not. Since xs(T −) > 0 when α − r − (1 −γ )σ 2 < 0, there must be a t̃ < T such that xs(t) � 0 for t � t̃.
Then Eq. (3.4) on x = 0 reduces to⎧⎪⎨⎪⎩

−vt + (
α − r − (1 − γ )σ 2)v

∣∣
x=0 � 0 for t < t̃,

v(0, t) = 1

x + 1 − μ
for t̃ � t � T .

So, vt(0, t) � (α − r − (1 − γ )σ 2)v(0, t) < 0 for t < t̃, which also contradicts (3.7). So (4.5) follows.
Combining (4.2) and (4.5), we get

0 < xs(t) � (1 − μ)xM = −(1 − μ)
α − r − (1 − γ )σ 2

α − r
when α − r − (1 − γ )σ 2 < 0.

We then obtain (4.4) by letting α − r − (1 − γ )σ 2 → 0.

At last, let us prove the continuity of xs(t). Suppose not, i.e., there is a time t∗ < T at which xs(t)
is discontinuous. Then

v(x, t∗) = 1

x + 1 − μ
, x ∈ [

xs(t
∗−), xs(t

∗+)
]
.

Applying the equation −vt − Lv = 0 on t = t∗, x ∈ (xs(t∗−), xs(t∗+)), we have

vt(x, t∗) = −L
(

1

x + 1 − μ

)
= 1 − μ

(x + 1 − μ)3

[
(α − r)x + (1 − μ)

(
α − r − (1 − γ )σ 2)] < 0,

which is again in contradiction with (3.7). So, we obtain the continuity of xs(t). Thanks to (3.7), we
can take advantage of the same arguments as in Friedman [10] to obtain xs(t) ∈ C∞[0, T ). The proof
is complete. �
Remark 4.6. From (4.4)–(4.5), we deduce xs(t) � 0 (i.e. NT ⊂ {x > 0}) if and only if α − r − (1 −
γ )σ 2 � 0, which indicates that the leverage is always suboptimal when α − r − (1 − γ )σ 2 � 0. This
conclusion is the same as in the absence of transaction costs.
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Now we move on to the buying boundary xb(t).

Theorem 4.7. Let xb(t) be the optimal buying boundary in Theorem 4.3. Denote

t0 = T − 1

α − r
log

(
1 + λ

1 − μ

)
. (4.8)

Then,

(i) xb(t) � (1 + λ)xM , (4.9)

where xM is defined in (2.3), and

xb(t) = ∞ if and only if t0 � t < T ; (4.10)

(ii) xb(t) > 0 when α − r − (1 − γ )σ 2 � 0 (4.11)

and

xb(t) > 0 for t ∈ (t1, T ), xb(t1) = 0,

xb(t) < 0 for t ∈ (0, t1) when α − r − (1 − γ )σ 2 > 0. (4.12)

Here t1 is defined in (3.10).
(iii) xb(t) is continuous.

Proof. (4.9) is a counterpart of (4.2) and can be similarly deduced by(
− ∂

∂t
− L

)(
1

x + 1 + λ

)
= 1+λ

(x + 1 + λ)3

[
(α − r)x + (1+λ)

(
α − r − (1 − γ )σ 2)] � 0.

Combination of (4.1), (4.4) and (4.5) yields (4.11), and (4.12) can be directly inferred from (3.9). The
proof of the continuity of xb(t) is the same as that of xs(t). Hence, what remains is to prove (4.10).
By the transformation

z = x

x + 1 + λ
, ṽ(z, t) =

(
v(x, t) − 1

x + 1 + λ

)
(x + 1 + λ)2

1 + λ
,

the problem (3.4) becomes

−ṽt − L̃ṽ = 0 if 0 < ṽ <
λ + μ

(1 − μ) + (λ + μ)z
,

−ṽt − L̃ṽ � 0 if ṽ = 0,

−ṽt − L̃ṽ � 0 if ṽ = λ + μ

(1 − μ) + (λ + μ)z
,

ṽ(z, T ) = λ + μ

(1 − μ) + (λ + μ)z
.

1 − μ

λ + μ
< z < 1,

0 � t < T ,

(4.13)

Here

L̃ṽ = 1

2
σ 2z2(1 − z)2 ṽ zz − ((

α − r − (2 − γ )σ 2) + 3σ 2z
)
z(1 − z)ṽ z

− (
α − r − (1 − γ )σ 2 − 2

(
α − r − (2 − γ )σ 2)z − 3σ 2z2)ṽ

− (
σ 2z + α − r − (1 − γ )σ 2) + γ σ 2z

[
1 + (1 − z)ṽ

][
z(1 − z)ṽ z + (1 − 2z)ṽ + 1

]
.
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It is easy to verify

ṽ z = vx + v2 −
(

v − 1

x + 1 + λ

)2

� 0. (4.14)

Define

zb(t) = sup

{
z ∈

[
λ + μ

1 − μ
,1

]
: ṽ(z, t) > 0

}
, t ∈ [0, T ).

Clearly

zb(t) = xb(t)

xb(t) + 1 + λ
.

In order to prove (4.10), it suffices to show

zb(t) = 1 if and only if t ∈ [t0, T ).

Note that at z = 1, the problem (4.13) is reduced to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ṽt(1, t) − (α − r)ṽ(1, t) + α − r = 0 if 0 < ṽ(1, t) <
λ + μ

1 + λ
,

−ṽt(1, t) − (α − r)ṽ(1, t) + α − r � 0 if ṽ(1, t) = 0,

−ṽt(1, t) − (α − r)ṽ(1, t) + α − r � 0 if ṽ(1, t) = λ + μ

1 + λ
,

ṽ(1, T ) = λ + μ

1 + λ
,

0 � t < T ,

whose solution is

ṽ(1, t) = max

(
1 − e(α−r)(T −t) 1 − μ

1 + λ
,0

)
=

{
1 − e(α−r)(T −t) 1−μ

1+λ
when t0 < t � T ,

0 when 0 � t � t0.

Combining with (4.14), we immediately obtain zb(t) = 1 for t ∈ (t0, T ) and zb(t) < 1 for t ∈ [0, t0).

So, we only need to further prove zb(t0) = 1. Using the strong maximum principle, we can de-
duce vx(x, t0) + v2(x, t0) < 0 for −(1 − μ) < x < +∞ and thus ṽ z(z, t0) < 0 for z < 1, which implies
ṽ(z, t0) > 0 for z < 1. Hence, we must have zb(t0) = 1. This completes the proof. �
Remark 4.8. (4.2) and (4.4) in Theorem 4.5 and part (i) in Theorem 4.7 are also obtained by Liu and
Loewenstein [16] in terms of another approach.

5. Equivalence

This section is devoted to the equivalence between the double obstacle problem (3.4) and the
original problem (3.2).

Theorem 5.1. Let v(x, t) be the solution to the double obstacle problem (3.4). Define

w(x, t) = A(t) + log
(
xs(t) + 1 − μ

) +
x∫

x (t)

v(ξ, t)dξ, (5.1)
s
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where

A(t) =
T∫

t

rx2 + (α + r)(1 − μ)x + (α − 1
2 σ 2(1 − γ ))(1 − μ)2

(x + 1 − μ)2

∣∣∣∣
x=xs(τ )

dτ . (5.2)

Then w(x, t) is the solution to the problem (3.2). Moreover,

w(x, t) ∈ C2,1(Ω \ F ), (5.3)

where F is the intersection of the free boundaries and the line x = 0, i.e., F = {(0, t) | xs(t) = 0 or xb(t) = 0,
t ∈ [0, T )}.

Remark 5.2. We exclude the set F on which some partial derivatives of v(x, t) or w(x, t) are dis-
continuous because of the degeneracy of the differential operator L or L3. Thanks to Theorems 4.5
and 4.7,

F =
⎧⎨⎩∅ if α − r − (1 − γ )σ 2 < 0,

{x = 0} if α − r − (1 − γ )σ 2 = 0,

(0, t1) if α − r − (1 − γ )σ 2 > 0,

where t1 is defined in (3.10).

Proof of Theorem 5.1. Since v(x, t) = 1
x+1−μ for x � xs(t), it is not hard to get by (5.1)

w(x, t) = A(t) + log(x + 1 − μ), x � xs(t). (5.4)

Clearly w(x, t) satisfies the terminal condition. Therefore, to prove that w(x, t) is the solution to the
problem (3.2), it suffices to show {−wt − L3 w � 0 in SR and BR,

−wt − L3 w = 0 in NT.
(5.5)

Observe

wx(x, t) = v(x, t). (5.6)

According to the definition of A(t), we claim

−wt − L3 w = 0 on x = xs(t). (5.7)

Indeed, because of (5.6),

L3 w|x=xs(t) = 1

2
σ 2x2(vx + γ v2) − (

α − r − σ 2(1 − γ )
)
xv + α − 1

2
σ 2(1 − γ )

∣∣∣
x=xs(t)

= 1

2
σ 2xs(t)

2
(

− 1

(xs(t) + 1 − μ)2
+ γ

(xs(t) + 1 − μ)2

)
− (

α − r − σ 2(1 − γ )
) xs(t)

xs(t) + 1 − μ
+ α − 1

2
σ 2(1 − γ )

= 1

(xs(t) + 1 − μ)2

[
rxs(t)

2 + (α + r)(1 − μ)xs(t) +
(
α − 1

2
σ 2(1 − γ )

)
(1 − μ)2

]
= −A′(t) = −wt

(
xs(t), t

)
, (5.8)

where the last equality is due to (5.4).
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Furthermore, due to (3.3), (5.6) and the fact that v(x, t) is the solution to the problem (3.4), we
have

∂

∂x
(−wt − L3 w) � 0, wx = 1

x + 1 − μ
if x � xs(t) (i.e. in SR),

∂

∂x
(−wt − L3 w) = 0 if xs(t) < x < xb(t) (i.e. in NT),

∂

∂x
(−wt − L3 w) � 0, wx = 1

x + 1 + λ
if x � xb(t) (i.e. in BR).

Combining with (5.7), we then deduce (5.5).
Now we prove (5.3). By Proposition 3.2, v ∈ C1,0(Ω \ F ) and then w ∈ C2,0(Ω \ F ). What remains

is to show wt ∈ C(Ω \ F ). Owing to (5.1),

wt(x, t) = A′(t) + x′
s(t)

xs(t) + 1 − μ
− v

(
xs(t), t

)
x′

s(t) +
x∫

xs(t)

vt(ξ, t)dξ

= A′(t) +
max(min(x,xb(t)),xs(t))∫

xs(t)

vt(ξ, t)dξ = A′(t) −
max(min(x,xb(t)),xs(t))∫

xs(t)

Lv(ξ, t)dξ

= A′(t) −
max(min(x,xb(t)),xs(t))∫

xs(t)

dL3 w = A′(t) + L3 w|xs(t) − L3 w|max(min(x,xb(t)),xs(t))

= −L3 w|max(min(x,xb(t)),xs(t)), (5.9)

which implies the continuity of wt . The proof is complete. �
6. A semi-explicit stationary solution to the obstacle problem

In this section, we aim to investigate the asymptotic behavior of xs(t) and xb(t) as T − t → +∞
through the stationary double obstacle problem, which can be written as a stationary free boundary
problem:

Lv∞ = 0, x ∈ (xs,∞, xb,∞), (6.1)

v∞(xs,∞) = 1

xs,∞ + 1 − μ
, v ′∞(xs,∞) = − 1

(xs,∞ + 1 − μ)2
, (6.2)

v∞(xb,∞) = 1

xb,∞ + 1 + λ
, v ′∞(xb,∞) = − 1

(xb,∞ + 1 + λ)2
. (6.3)

Here

xs,∞ = lim
T −t→+∞ xs(t) and xb,∞ = lim

T −t→+∞ xb(t)

and clearly

xs,∞ < xb,∞ < 0 when α − r − (1 − γ )σ 2 > 0;
0 < xs,∞ < xb,∞ when α − r − (1 − γ )σ 2 < 0.
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We will reduce Eq. (6.1) to a Riccati equation, through which we can find a semi-explicit solution
to problem (6.1)–(6.3) if α − r − (1 − γ )σ 2 �= 0. The main result is summarized as follows.

Theorem 6.1. Assume α − r − (1 − γ )σ 2 �= 0. The solution of the stationary problem (6.1)–(6.3) takes the
form

v∞(x) =

⎧⎪⎪⎨⎪⎪⎩
C
x + 1

g(x) if xs,∞ < x < xb,∞,

1
x+1−μ if x � xs,∞,

1
x+1+λ

if x � xb,∞,

where

g(x) =
(

xs,∞
x

)β(
xs,∞(xs,∞ + 1 − μ)

(1 − C)xs,∞ − (1 − μ)C
− γ xs,∞

β + 1

)
+ γ x

β + 1
if β �= −1, (6.4)

g(x) = x(xs,∞ + 1 − μ)

(1 − C)xs,∞ − (1 − μ)C
+ γ x log

x

xs,∞
if β = −1, (6.5)

xs,∞ = − a

a + k
(1 − μ), xb,∞ = − a

a + k
k−1

(1 + λ), (6.6)

a = α − r − (1 − γ )σ 2

1
2 (1 − γ )σ 2

, (6.7)

β = (1 − γ )a − 2γ C, (6.8)

C = − 2(k − 1)a2

k2(a + 1
1−γ +

√
(a + 1

1−γ )2 + 4 γ
1−γ

k−1
k2 a2)

, (6.9)

and k is the root to the following equation in (1,2) when a > 0, or in (2,∞) when a < 0,

a + k
k−1

a + k

( γ
β+1 + 1

1
k a+C

γ
β+1 + 1

k−1
k a+C

) 1
β+1

= 1 + λ

1 − μ
if β �= −1, (6.10)

a + k
k−1

a + k
exp

(
1

γ

(
1

1
k a + C

− 1
k−1

k a + C

))
= 1 + λ

1 − μ
if β = −1. (6.11)

Let us give a remark before the proof.

Remark 6.2. For α − r − (1 −γ )σ 2 > 0 (i.e. a > 0), using (6.6) and noticing k ∈ (1,2), we immediately
obtain

xs(t) �
[

(1 − γ )σ 2

2(α − r) − (1 − γ )σ 2
− 1

]
(1 − μ). (6.12)

Liu and Loewenstein [16] obtained another estimate:

xs(t) �
[

(1 − γ )σ 2

2(α − r)
− 1

]
(1 − μ), (6.13)

which is obviously not sharp because we have shown xs(t) � 0 when α − r − (1 − γ )σ 2 � 0. For
α − r − (1 − γ )σ 2 > 0, our estimate (6.12) is also better than (6.13).
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Proof of Theorem 6.1. Define

f (x) = − x2

1 − γ

(
v ′∞(x) + γ v2∞(x)

) + axv∞(x).

Note that

Lv∞ = −1

2
(1 − γ )σ 2 d

dx
f (x).

Owing to (6.1),

− x2

1 − γ

(
v ′∞(x) + γ v2∞(x)

) + axv∞(x) = f (xs,∞), x ∈ (xs,∞, xb,∞). (6.14)

This is a Riccati equation that we need to solve subject to the free boundary conditions (6.2)–(6.3).
Applying the boundary condition (6.2), we have

f (xs,∞) = − x2
s,∞

1 − γ

(
− 1

(xs,∞ + 1 − μ)2
+ γ

(xs,∞ + 1 − μ)2

)
+ axs,∞

xs,∞ + 1 − μ

= (a + 1)x2
s,∞ + a(1 − μ)xs,∞

(xs,∞ + 1 − μ)2
. (6.15)

Similarly, the boundary condition (6.3) gives

f (xb,∞) = (a + 1)x2
b,∞ + a(1 + λ)xb,∞

(xb,∞ + 1 + λ)2
.

Due to (6.14), f (xs,∞) = f (xb,∞) or

(a + 1)x2
s,∞ + a(1 − μ)xs,∞

(xs,∞ + 1 − μ)2
= (a + 1)x2

b,∞ + a(1 + λ)xb,∞
(xb,∞ + 1 + λ)2

. (6.16)

To illustrate method, we only consider a > 0 in which case xs,∞ < xb,∞ < 0 and xb,∞ � (1+λ)xM =
− a

a+2 (1 + λ) by Theorem 4.7. So

(a + 1)xb,∞ + a(1 + λ) � (a + 2)xb,∞ + a(1 + λ) � 0.

Then, it follows from (6.16) that (a + 1)xs,∞ + a(1 − μ) � 0, namely

xs,∞ � − a

a + 1
(1 − μ).

By Theorem 4.5, we know

xs,∞ � xM(1 − μ) = − a

a + 2
(1 − μ).

Therefore xs,∞ must take the form of

xs,∞ = − a
(1 − μ), (6.17)
a + k
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where k ∈ [1,2] is to be determined. Substituting this into (6.15), we have

f (xs,∞) = (a + 1)( a
a+k )2(1 − μ)2 − a a

a+k (1 − μ)2

(− a
a+k (1 − μ) + 1 − μ)2

= −k − 1

k2
a2. (6.18)

In virtue of (6.16) and (6.18), xb,∞ satisfies the quadratic equation

(a + 1)x2
b,∞ + a(1 + λ)xb,∞ = −k − 1

k2
a2(xb,∞ + 1 + λ)2,

which has two solutions

− a

a + k
k−1

(1 + λ) or − a

a + k
(1 + λ).

Because the latter is less than xs,∞ = − a
a+k (1 − μ) (remember xs,∞ < xb,∞), we choose the former,

namely,

xb,∞ = − a

a + k
k−1

(1 + λ). (6.19)

Now we come back to (6.14). Due to (6.18), we are able to rewrite (6.14) as

− x2

1 − γ

(
v ′∞ + γ v2∞

) + axv∞ = −k − 1

k2
a2, x ∈ (xs,∞, xb,∞). (6.20)

This is a Riccati equation which has a special solution C
x . Here C satisfies the quadratic algebraic

equation

γ

1 − γ
C2 −

(
a + 1

1 − γ

)
C − k − 1

k2
a2 = 0,

solving which we get (6.9) (the smaller root is chosen).
Then, the general solution of the Riccati equation (6.20) in (xs,∞, xb,∞) is

v∞(x) = C

x
+ 1

g(x)
, (6.21)

where g(x) satisfies

g′(x) + β
g(x)

x
− γ = 0

or (
xβ g(x)

)′ = γ xβ . (6.22)

Integrating the equation, we obtain

g(x) =
⎧⎨⎩ (

xs,∞
x )β(g(xs,∞) − γ

β+1 xs,∞) + γ
β+1 x if β �= −1,

x( g(xs,∞)

x + γ log x
x ) if β = −1.

(6.23)

s,∞ s,∞
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Let us focus on β �= −1. At x = xb,∞,

g(xb,∞) =
(

xs,∞
xb,∞

)β(
g(xs,∞) − γ

β + 1
xs,∞

)
+ γ

β + 1
xb,∞,

or equivalently,

( γ
β+1 − g(xs,∞)

xs,∞
γ

β+1 − g(xb,∞)

xb,∞

) 1
β+1

= xb,∞
xs,∞

. (6.24)

Thanks to (6.21) and boundary conditions (6.2) and (6.3), we have

g(xs,∞)

xs,∞
= 1

xs,∞
xs,∞+1−μ − C

, (6.25)

g(xb,∞)

xb,∞
= 1

xb,∞
xb,∞+1+λ

− C
. (6.26)

Substitution of (6.25) into (6.23) gives (6.4). Combining (6.24)–(6.26) with (6.17) and (6.19), we obtain
(6.10).

When β = −1, we can obtain (6.5) and (6.11) using a similar argument. The proof is complete. �
7. Conclusion

In this paper, we study the optimal investment problem for a CRRA investor who faces a finite
horizon and transaction costs. From the angle of stochastic control, it is a singular control problem,
whose value function is governed by a time-dependent HJB equation with gradient constraints. Using
an elegant transformation, we reveal that the problem is equivalent to a parabolic double obstacle
problem involving two free boundaries which correspond to the optimal buying and selling bound-
aries, respectively. This enables us to make use of the well-developed theory of obstacle problem to
attack the problem. The C2,1 regularity of the value function is proven.

Another purpose of the paper is to characterize the free boundaries (i.e. optimal investment poli-
cies). Relying on the double obstacle problem, the behaviors of the free boundaries can be completely
characterized. In addition to the results obtained by Liu and Loewenstein [16], we show that the free
boundaries increase with time and their behaviors depend sensitively on the relative magnitude of
α − r and (1 −γ )σ 2. When the maturity goes to infinity, the asymptotic behaviors of the free bound-
aries are determined by the solution of a Riccati equation with free boundary conditions for which a
semi-explicit solution is gained.

Our approach can be generalized to a larger class of problems. For example, it can be extended to
including the consumption term (see Dai et al. [5]). Also, the approach can be used to deal with the
infinite-horizon problem discussed by Davis and Norman [6] and Shreve and Soner [21]. However, it
seems to us that it is not straightforward to extend our approach to the case of multiple risky assets
or general utility functions, and more efforts should be made to tackle a general setting.
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