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1. Introduction

Let Ω be a nonempty bounded connected open subset of RN (N = 2 or 3) of class C∞ . Let T > 0
and let ω ⊂ Ω be a (small) nonempty open subset which is the control domain. We will use the
notation Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ).

Let us recall the definition of some usual spaces in the context of Stokes equations (see, for in-
stance, [13]):

V = {
y ∈ H1

0(Ω)N : ∇ · y = 0 in Ω
}
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and

H = {
y ∈ L2(Ω)N : ∇ · y = 0 in Ω, y · n = 0 on ∂Ω

}
.

In this paper, we deal with the following Stokes control system:⎧⎪⎪⎨⎪⎪⎩
yt − �y + ∇p = v1ω in Q ,

∇ · y = 0 in Q ,

y = 0 on Σ,

y|t=0 = y0 in Ω,

(1)

where y0 ∈ H is the initial condition and v = (v j)
N
j=1 is the control function.

It is well known that the null controllability for this system holds, that is to say, for every y0 ∈ H
and every T > 0, there exists v ∈ L2(Q )N such that the solution y ∈ L2(0, T ; V ) ∩ C0([0, T ]; H) of (1)
satisfies

y|t=T = 0 in Ω.

For a proof of this result, see, for instance, [9] or [4].
The main objective of this paper is to prove that system (1) is null controllable by means of N − 1

scalar controls, that is to say, when vi = 0 for some given i ∈ {1, . . . , N}. This result has been proved
in [5] when ω “touches” the boundary ∂Ω , that is to say, when ω∩∂Ω �= ∅. The major novelty of this
paper is to remove this geometric property and prove the null controllability result for every open set
ω ⊂ Ω .

Our main result is given in the following theorem.

Theorem 1. There exists a constant C > 0 depending only on Ω and ω such that, for every y0 ∈ H and every
i ∈ {1, . . . , N}, there exists a control v ∈ L2(Q )N with vi ≡ 0 in Q satisfying

‖v‖L2(Q )N � eC(1+1/T 9)‖y0‖L2(Ω)N

and such that the solution y of (1) satisfies

y|t=T = 0 in Ω.

Remark 1. As proved in [11], there are nonempty Lipschitz bounded connected open subset Ω of R3

such that, even with ω := Ω , the null controllability of the control system (1) does not hold with two
vanishing components for the control (i.e. if one imposes, for example, v1 = v2 = 0). See also [2] for
a torus.

In order to prove Theorem 1, we introduce the adjoint system:⎧⎪⎪⎨⎪⎪⎩
−ϕt − �ϕ + ∇π = 0 in Q ,

∇ · ϕ = 0 in Q ,

ϕ = 0 on Σ,

ϕ|t=T = ϕT in Ω,

with ϕT ∈ H . Then, it is well known (see, e.g. [1, Theorem 2.44, pp. 56–57]) that the result stated in
Theorem 1 is equivalent to the following observability inequality:∫

Ω

|ϕ|t=0|2 dx � eC(1+1/T 9)

N∑
j=1, j �=i

∫ ∫
ω×(0,T )

|ϕ j |2 dt dx, (2)

for some C depending only on Ω and ω.
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The proof of this inequality is based on Carleman inequalities. The general idea is to get profit of
the fact that �π = 0 in order to have equations in ϕ j ( j �= i) which do not depend neither on ϕi nor
on π (see Eq. (18) below). The only problem is that these equations are heat equations which are
satisfied by some derivatives of ϕ j ( j �= i) and so no boundary conditions are prescribed. Therefore,
for the moment, we have only

N∑
j=1, j �=i

∫ ∫
Q

ρ1(t, x)|ϕ j |2 dt dx � C
N∑

j=1, j �=i

( ∫ ∫
ω×(0,T )

ρ1(t, x)|ϕ j |2 dt dx +
∫ ∫
Σ

ρ2(t, x)

∣∣∣∣∂∇�ϕ j

∂n

∣∣∣∣2

dt dσ

)
,

where the boundary terms on the right-hand side have to be estimated. For that, the idea is to use
a priori estimates relying on the regularizing effect of the Stokes system (see Lemma 1 below). This
will provide an estimate of the boundary terms but with an additional integral depending on ϕi :

N∑
j=1, j �=i

∫ ∫
Q

ρ1(t, x)|ϕ j |2 dt dx � C

(
N∑

j=1, j �=i

∫ ∫
ω×(0,T )

ρ1(t, x)|ϕ j |2 dt dx +
∫ ∫
Q

ρ3(t, x)|ϕi |2 dt dσ

)
.

Finally, using the divergence-free condition on ϕ and the properties of the weight functions, we can
absorb the term depending on ϕi with the help of the left-hand side.

Let us remark that, even in the case of N scalar controls, our proof of (2) is simpler than the ones
given in [9] and [4]: in these papers, a local estimate of the pressure had to be performed. Indeed,
the main advantage of our estimate is that we do not have to deal with the pressure all along the
proof. These ideas were already developed in [8].

This paper is organized as follows. In Section 2, we present some technical results, most of them
known, which will be used in the proof of Theorem 1. Finally, in Section 3 we prove the observability
inequality (2).

2. Some previous results

For the proof of the observability inequality needed to establish Theorem 1, we follow a classical
approach, consisting of obtaining a suitable weighted-like estimate (so-called Carleman estimate) for
the associated adjoint system. For a systematic use of this kind of estimates see, for instance, [7]
or [9].

In order to establish these Carleman inequalities, we need to define some weight functions:

α(t, x) = exp{20λ‖η0‖∞} − exp{λ(18‖η0‖∞ + η0(x))}
t9(T − t)9

,

α∗(t) = max
x∈Ω

α(t, x), ξ(t, x) = eλ(18‖η0‖∞+η0(x))

t9(T − t)9
, ξ∗(t) = min

x∈Ω

ξ(t, x). (3)

Here, η0 ∈ C2(Ω) satisfies

∣∣∇η0
∣∣ > 0 in Ω \ ω0, η0 > 0 in Ω and η0 ≡ 0 on ∂Ω, (4)

where ω0 is a nonempty open subset of RN such that ω0 ⊂ ω. The existence of such a function η0

is given in [7, Lemma 1.1, Chapter 1] (see also [1, Lemma 2.68, Chapter 1]). Weights of the kind (3)
were first considered in [7].



J.-M. Coron, S. Guerrero / J. Differential Equations 246 (2009) 2908–2921 2911
Accordingly, we define I0(s, λ; ·) as follows:

I0(s, λ, g) := sλ2
∫ ∫
Q

e−2sαξ |∇g|2 dt dx + s3λ4
∫ ∫
Q

e−2sαξ3|g|2 dt dx,

for g : Ω → R and

I0(s, λ, g) :=
N∑

i=1

I0(s, λ, gi),

for g = (g1, . . . , gN) : Ω → RN . From this expression, we also introduce

I(s, λ; g) := s−1
∫ ∫
Q

e−2sαξ−1(|gt |2 + |�g|2)dt dx + I0(s, λ, g), (5)

for g = Ω → RN .
Now, we state all the technical results we need. The first one is a regularity result for the solutions

of Stokes system:

Lemma 1. For every T > 0 and every f ∈ L2(0, T ; H), there exists a unique

u ∈ L2(0, T ; H2(Ω)N) ∩ H1(0, T ; H)

such that, for some p ∈ L2(0, T ; H1(Ω)),⎧⎪⎪⎨⎪⎪⎩
ut − �u + ∇p = f in Q ,

∇ · u = 0 in Q ,

u = 0 on Σ,

u|t=0 = 0 in Ω.

(6)

Furthermore, there exists a constant C > 0 depending only on Ω such that

‖u‖L2(0,T ;H2(Ω)N ) + ‖u‖H1(0,T ;L2(Ω)N ) � C‖ f ‖L2(0,T ;L2(Ω)N ). (7)

In order to deal with more regular solutions, let us introduce some compatibility conditions. We
will say that f satisfies the compatibility condition of order r if, for any nonnegative integer k � r −1,
we have

∇pk(x) =
k∑

i=0

(
∂ i

t �
k−i f

)
(0, x), x ∈ ∂Ω,

where p0 ≡ 0 and, for k > 0, pk is the solution of the Neumann boundary-value problem⎧⎪⎪⎨⎪⎪⎩
�pk = 0 in Ω,

∂

∂n
pk =

k−1∑
i=0

(
∂ i

t �
k−i f

)
(0, x) on ∂Ω.

One has the following lemma (see, for instance, [12, Section IV], [10, Theorem 6, pp. 100–101], [14]):
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Lemma 2. Let T > 0 and let r be a positive integer. There exists C > 0 depending only on r and Ω such that, for
every f ∈ L2(0, T ; H2r(Ω)N ∩ H) ∩ Hr(0, T ; H) satisfying the compatibility condition of order r, the solution
u of (6) satisfies

u ∈ Xr := L2(0, T ; H2r+2(Ω)N) ∩ Hr+1(0, T ; L2(Ω)N)
,

‖u‖Xr � C
(‖ f ‖L2(0,T ;H2r(Ω)N ) + ‖ f ‖Hr (0,T ;L2(Ω)N )

)
. (8)

The second result is a nice property coming from the definition of the previous weights:

Lemma 3. Let r ∈ R. There exists C > 0 depending only on r, Ω , ω0 and η0 such that, for every T > 0 and
every u ∈ L2(0, T ; H1(Ω)),

s2λ2
∫ ∫
Q

e−2sαξ r+2|u|2 dt dx

� C

( ∫ ∫
Q

e−2sαξ r |∇u|2 dt dx + s2λ2
∫ ∫

ω0×(0,T )

e−2sαξ r+2|u|2 dt dx

)
, (9)

for every λ � C and every s � C T 18 .

Proof. In this proof, we denote by C various positive constants depending only on r, Ω ω0 and η0.
By a density argument, we can suppose that u ∈ C0([0, T ]; C1(Ω)). Then, we consider the following
integral

sλ

∫ ∫
Q

e−2sαξ r+1(∇η0 · ∇u
)
u dt dx,

where the weight functions ξ , α and η0 were introduced in (3)–(4). We integrate by parts with
respect to x; this gives

sλ

∫ ∫
Q

e−2sαξ r+1(∇η0 · ∇u
)
u dt dx

= sλ

2

∫ ∫
Σ

e−2sαξ r+1 ∂η0

∂n
|u|2 dt dσ − sλ

2

∫ ∫
Q

e−2sα∇ · (ξ r+1∇η0)|u|2 dt dx

− s2λ2
∫ ∫
Q

e−2sαξ r+2
∣∣∇η0

∣∣2|u|2 dt dx.

We observe that from (4), one has ∂η0

∂n � 0, so that we deduce

s2λ2
∫ ∫
Q

e−2sαξ r+2
∣∣∇η0

∣∣2|u|2 dt dx

� sλ

∫ ∫
Q

e−2sαξ r+1
∣∣∇η0

∣∣|∇u||u|dt dx + sλ

2

∫ ∫
Q

e−2sα
∣∣∇ · (ξ r+1∇η0)∣∣|u|2 dt dx. (10)



J.-M. Coron, S. Guerrero / J. Differential Equations 246 (2009) 2908–2921 2913
From (3), we obtain ∣∣∇ · (ξ r+1∇η0)∣∣ � Cλξ r+1,

for λ � C . Using Cauchy–Schwarz’s inequality for the first term in the right-hand side of (10), we
obtain, for every ε > 0,

s2λ2
∫ ∫
Q

e−2sαξ r+2
∣∣∇η0

∣∣2|u|2 dt dx

� C

ε

∫ ∫
Q

e−2sαξ r |∇u|2 dt dx + εs2λ2
∫ ∫
Q

e−2sαξ r+2|u|2 dt dx,

for s � C T 18/ε and λ � C . Taking ε small enough, we get the desired estimate (9). �
The third technical result concerns the Laplace operator:

Lemma 4. Let γ (x) = exp{λη0(x)} for x ∈ Ω and let r ∈ R. Then, there exists C > 0 depending only on r, Ω ,
ω0 and η0 such that, for every T > 0 and every u ∈ H1

0(Ω),

τ r+3λr+5
∫
Ω

e2τγ γ r+3|u|2 dx + τ r+1λr+3
∫
Ω

e2τγ γ r+1|∇u|2 dx

� C

(
τ rλr+1

∫
Ω

e2τγ γ r |�u|2 dx + τ r+3λr+5
∫
ω0

e2τγ γ r+3|u|2 dx

)
, (11)

for every λ � C and every τ � C.

The proof of this lemma can be readily deduced from the corresponding result for parabolic equa-
tions included in [7, Remark 1.2, Chapter 1]. The original result was stated for r = 0; then, using this
result for the function γ r/2u ∈ H1

0(Ω), we obtain (11).
The fourth and last technical result is an estimate which holds for energy solutions of heat equa-

tions with non-homogeneous Neumann boundary conditions:

Lemma 5. There exists C > 0 depending only on Ω , ω0 and η0 such that, for every T > 0, every u0 ∈ L2(Ω),
every f1 ∈ L2(Q ), every f2 ∈ L2(Q )N and every f3 ∈ L2(Σ), the weak solution u of⎧⎪⎨⎪⎩

ut − �u = f1 + ∇ · f2 in Q ,

∂u

∂n
+ f2 · n = f3 on Σ,

u|t=0 = u0 in Ω

(12)

satisfies

I0(s, λ; u) � C

(
s3λ4

∫ ∫
ω0×(0,T )

e−2sαξ3|u|2 dt dx +
∫ ∫
Q

e−2sα | f1|2 dt dx

+ s2λ2
∫ ∫
Q

e−2sαξ2| f2|2 dt dx + sλ

∫ ∫
Σ

e−2sα∗
ξ∗| f3|2 dt dσ

)
, (13)

for every λ � C and every s � C(T 9 + T 18).
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Let us recall the definition of a weak solution: we say that u is a weak solution to (12) if it satisfies

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ L2
(
0, T ; H1(Ω)

) ∩ C0
([0, T ]; L2(Ω)

)
,

d

dt

∫
Ω

uv dx +
∫
Ω

∇u · ∇v dx =
∫
Ω

f1(t, x)v dx −
∫
Ω

f2(t, x) · ∇v dx +
∫

∂Ω

f3(t, x)v dσ

in D′(0, T ), ∀v ∈ H1(Ω),

u(x,0) = u0(x) in Ω.

(14)

It is well known that, for f1 ∈ L2(Q ), f2 ∈ L2(Q )N , f3 ∈ L2(Σ) and u0 ∈ L2(Ω), (12) possesses exactly
one weak solution u.

Lemma 5 is essentially proved in [3]. In fact, the inequality proved there concerns the same weight
functions as in (13) but with t(T − t) instead of t9(T − t)9. Then, one can follow the steps of the proof
in [3] (see Theorem 1 in that reference) and adapt the arguments just taking into account that

∂tα := αt � C T ξ10/9 and ∂ttα := αtt � C T 2ξ11/9, (15)

with C > 0 independent of s, λ and T .

3. Proof of the observability inequality (2)

In this section we denote by C various positive constants which depend only on Ω and ω (they
depend also in general on the choice of η0 and ω0 but one can consider that η0 as well as ω0 depend
on Ω and ω). Without any lack of generality, we treat the case of dimension 2. The same proof can
be performed in dimension 3. We introduce the adjoint system:

⎧⎪⎪⎨⎪⎪⎩
−ϕt − �ϕ + ∇π = 0 in Q ,

∇ · ϕ = 0 in Q ,

ϕ = 0 on Σ,

ϕ|t=T = ϕT in Ω,

(16)

and define ϕ1 : Ω → R and ϕ2 : Ω → R by (ϕ1,ϕ2) = ϕ .
We are going to establish estimate (2) for i = 2. Of course, the same can be done for i = 1. One

has the following proposition.

Proposition 1. There exists a positive constant C depending only on Ω and ω such that

s8λ10
∫ ∫
Q

e−2sαξ8|ϕ1|2 dt dx + s6λ8
∫ ∫
Q

e−2sα∗
(ξ∗)6|ϕ2|2 dt dx

� C s9λ10
∫ ∫

ω×(0,T )

e−2sαξ9|ϕ1|2 dt dx, (17)

for every s � C(T 9 + T 18) and every λ � C.

Remark 2. From the Carleman inequality (17), one can follow the same steps as in [6] in order to
prove the observability inequality (2) for N = 2 and i = 2 and so once Proposition 1 is established,
the proof of Theorem 1 is finished.
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Proof of Proposition 1. Note that, by a simple density argument, we may assume, without loss of gen-
erality, that ϕ is of class C6 on [0, T ] × Ω . We also observe that, using the divergence-free condition,
we have that

�π = 0 in Ω × (0, T ).

Then, we apply the operator ∇� = (∂1�,∂2�) to the equation satisfied by ϕ1. Denoting ψ1 :=
∇�ϕ1 ∈ R2, we have

ψ1,t + �ψ1 = 0 in Q . (18)

We apply Lemma 5 to ψ1 and we have

I0(s, λ;ψ1) � C

(
s3λ4

∫ ∫
ω0×(0,T )

e−2sαξ3|ψ1|2 dt dx + sλ

∫ ∫
Σ

e−2sα∗
ξ∗

∣∣∣∣∂ψ1

∂n

∣∣∣∣2

dσ dt

)
, (19)

for every λ � C and s � C(T 9 + T 18).
The rest of the proof is divided in three steps.

• In Step 1, we will prove that I0(s, λ;ψ1) can be estimated from below by the left-hand side of
inequality (17).

• In Step 2, we will estimate the normal derivative appearing in the right-hand side of (19).
• Finally, in Step 3, we will estimate all the local terms by the local term of ϕ1 appearing in the

right-hand side of (17).

Step 1. (1.1) Estimate of ϕ1. We use Lemma 3 for u := �ϕ1 and r = 3. We get the existence of a positive
constant C such that

s5λ6
∫ ∫

Q

e−2sαξ5|�ϕ1|2 dt dx − C s5λ6
∫ ∫

ω0×(0,T )

e−2sαξ5|�ϕ1|2 dt dx

� C s3λ4
∫ ∫
Q

e−2sαξ3|ψ1|2 dt dx, (20)

for every λ � C and every s � C T 18.
Next, we would like to recover a term in ϕ1 and a term in ∇ϕ1 using �ϕ1. This is done by

applying Lemma 4 for u := ϕ1 ∈ H1
0(Ω) and r = 5:

τ 8λ10
∫
Ω

e2τγ γ 8|ϕ1|2 dx + τ 6λ8
∫
Ω

e2τγ γ 6|∇ϕ1|2 dx

� C

(
τ 5λ6

∫
Ω

e2τγ γ 5|�ϕ1|2 dx + τ 8λ10
∫
ω0

e2τγ γ 8|ϕ1|2 dx

)
,

for every λ, τ � C . Now, we take

τ := s exp{18λ‖η0‖∞}
9 9
t (T − t)
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in this inequality. Observe that this can be done whenever s � C T 18 and λ � C (recall that we must
have τ � C ): ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s8λ10
∫
Ω

e2sξ ξ8|ϕ1|2 dx + s6λ8
∫
Ω

e2sξ ξ6|∇ϕ1|2 dx

� C

(
s5λ6

∫
Ω

e2sξ ξ5|�ϕ1|2 dx + s8λ10
∫
ω0

e2sξ ξ8|ϕ1|2 dx

)
, t ∈ (0, T )

(the definition of ξ is given in (3)). Then, we multiply this inequality by

exp

{
−2s

e20λ‖η0‖∞

t9(T − t)9

}
,

we integrate in (0, T ) and we obtain (recall the definition of α also given in (3)):

s8λ10
∫ ∫
Q

e−2sαξ8|ϕ1|2 dt dx + s6λ8
∫ ∫
Q

e−2αξ6|∇ϕ1|2 dt dx

� C

(
s5λ6

∫ ∫
Q

e−2sαξ5|�ϕ1|2 dt dx + s8λ10
∫ ∫

ω0×(0,T )

e−2sαξ8|ϕ1|2 dt dx

)
,

for every s � C T 18 and every λ � C . Combining this with (20), we get the following estimate for ϕ1:

s8λ10
∫ ∫
Q

e−2sαξ8|ϕ1|2 dt dx + s6λ8
∫ ∫

Q

e−2sαξ6|∇ϕ1|2 dt dx + s5λ6
∫ ∫
Q

e−2sαξ5|�ϕ1|2 dt dx

� C

(
s3λ4

∫ ∫
Q

e−2sαξ3|ψ1|2 dt dx + s8λ10

T∫
0

∫
ω0

e−2sαξ8|ϕ1|2 dt dx

+ s5λ6
∫ ∫

ω0×(0,T )

e−2sαξ5|�ϕ1|2 dt dx

)
, (21)

for every s � C(T 9 + T 18) and every λ � C .
(1.2) Estimate of ϕ2. We recall that the minimum of the weights e−2sα and ξ is reached at the

boundary ∂Ω , where α = α∗ and ξ = ξ∗ do not depend on x; see (3) for more details. From the
divergence-free condition ∂2ϕ2 = −∂1ϕ1, we find

s6λ8
∫ ∫
Q

e−2sα∗
(ξ∗)6|∂2ϕ2|2 dt dx = s6λ8

∫ ∫
Q

e−2sα∗
(ξ∗)6|∂1ϕ1|2 dt dx

� s6λ8
∫ ∫
Q

e−2sαξ6|∇ϕ1|2 dt dx. (22)

Using ϕ2|∂Ω = 0 and Ω bounded we have that∫
|ϕ2|2 dx � C

∫
|∂2ϕ2|2 dx,
Ω Ω
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where C only depends on Ω . Since α∗ and ξ∗ do not depend on x, we also have that

s6λ8
∫ ∫
Q

e−2sα∗
(ξ∗)6|ϕ2|2 dt dx � C s6λ8

∫ ∫
Q

e−2sα∗
(ξ∗)6|∂2ϕ2|2 dt dx.

Combining this with (22), we obtain

s6λ8
∫ ∫
Q

e−2sα∗
(ξ∗)6|ϕ2|2 dt dx � s6λ8

∫ ∫
Q

e−2sαξ6|∇ϕ1|2 dt dx. (23)

Step 2. In this step, we estimate the boundary term in the right-hand side of (19):

∥∥∥∥s1/2λ1/2e−sα∗
(ξ∗)1/2 ∂∇�ϕ1

∂n

∥∥∥∥2

L2(Σ)

.

Using integrations by parts, we readily have

∥∥∥∥s1/2λ1/2e−sα∗
(ξ∗)1/2 ∂∇�ϕ1

∂n

∥∥∥∥2

L2(Σ)

�
∥∥(sξ∗)2/9λ1/2e−sα∗

ϕ1
∥∥

L2(H5(Ω))

∥∥(sξ∗)7/9λ1/2e−sα∗
ϕ1

∥∥
L2(H4(Ω))

(24)

(recall that α∗ and ξ∗ do not depend on x). Our goal is to estimate these two terms.
In order to do this, we first consider the function

ϕ̃ := s17/9λ1/2e−sα∗
(ξ∗)17/9ϕ := θ1(t)ϕ.

Let us point out that ϕ̃ , together with π̃ := θ1(t)π , fulfills the following problem (see (16)):⎧⎪⎪⎨⎪⎪⎩
−ϕ̃t − �ϕ̃ + ∇π̃ = −θ1,tϕ in Q ,

∇ · ϕ̃ = 0 in Q ,

ϕ̃ = 0 on Σ,

ϕ̃|t=T = 0 in Ω.

(25)

From (7), we get

‖ϕ̃‖L2(0,T ,H2(Ω)2) + ‖ϕ̃‖H1(0,T ,L2(Ω)2) � C‖θ1,tϕ‖L2(Q )2 .

From the definition of the weight functions (see (3)), we see that

|θ1,t | � C T s26/9λ1/2e−sα∗
(ξ∗)3 � C s3λ1/2e−sα∗

(ξ∗)3, (26)

for every s � C T 9 and every λ � C , so

‖ϕ̃‖L2(0,T ,H2(Ω)2) + ‖ϕ̃‖H1(0,T ,L2(Ω)2) � C
∥∥s3λ1/2e−sα∗

(ξ∗)3ϕ
∥∥

L2(Q )2 . (27)

Let now

ϕ̂ := s7/9λ1/2e−sα∗
(ξ∗)7/9ϕ := θ2(t)ϕ.
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It is clear that ϕ̂ , together with π̂ := θ2(t)π , fulfills system (25) with θ1 replaced by θ2. Using (8)
with r = 1, we find

‖ϕ̂‖L2(0,T ,H4(Ω)2)∩H2(0,T ;L2(Ω)2) � C
(‖θ2,tϕ‖L2(0,T ;H2(Ω)2) + ∥∥(θ2,tϕ)t

∥∥
L2(0,T ;L2(Ω)2)

)
. (28)

Estimating the weight functions as in (26), we have

|θ2,t | � C s17/9λ1/2e−sα∗
(ξ∗)17/9 = Cθ1

and

|θ2,tt | � C s3λ1/2e−sα∗
(ξ∗)3,

for every s � C T 9, so

‖ϕ̂‖L2(0,T ,H4(Ω)2) + ‖ϕ̂‖H2(0,T ;L2(Ω)2)

� C
(‖ϕ̃‖L2(0,T ;H2(Ω)2) + ‖ϕ̃‖H1(0,T ;L2(Ω)2) + ∥∥s3λ1/2e−sα∗

(ξ∗)3ϕ
∥∥

L2(0,T ;L2(Ω)2)

)
.

Using (27), we get

‖ϕ̂‖L2(0,T ,H4(Ω)2) + ‖ϕ̂‖H2(0,T ;L2(Ω)2) � C
∥∥s3λ1/2e−sα∗

(ξ∗)3ϕ
∥∥

L2(0,T ;L2(Ω)2)
. (29)

Finally, we define the function

ϕ∗ =: s−1/3λ1/2e−sα∗
(ξ∗)−1/3ϕ.

The same computations performed with ϕ̃ and ϕ̂ and an application of (8) with r = 2 lead to

‖ϕ∗‖L2(0,T ;H6(Ω)2) � C
(‖ϕ̂‖L2(0,T ,H4(Ω)2) + ‖ϕ̂‖H2(0,T ;L2(Ω)2)

+ ∥∥s3λ1/2e−sα∗
(ξ∗)3ϕ

∥∥
L2(0,T ;L2(Ω)2)

)
.

Combining this with (29), we get

‖ϕ∗‖L2(0,T ;H6(Ω)2) � C
∥∥s3λ1/2e−sα∗

(ξ∗)3ϕ
∥∥

L2(Q )2 . (30)

Thanks to an interpolation argument between the spaces L2(H6) and L2(H4), estimates (29) and (30)
provide ∥∥s2/9λ1/2e−sα∗

(ξ∗)2/9ϕ
∥∥

L2l(0,T ;H5(Ω)2)
� C

∥∥s3λ1/2e−sα∗
(ξ∗)3ϕ

∥∥
L2(Q )2 , (31)

for λ � C and s � C T 9. Coming back to (24) and using (28) and (31), we find that

∥∥∥∥s1/2λ1/2e−sα∗
(ξ∗)1/2 ∂∇�ϕ1

∂n

∥∥∥∥2

L2(Σ)

� C
∥∥s3λ1/2e−sα∗

(ξ∗)3ϕ
∥∥2

L2(Q )2 , (32)

for λ � C and s � C T 9.
This ends Step 2.
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Putting together (19), (21) and (32), we have for the moment the following inequality:

s8λ10
∫ ∫
Q

e−2sαξ8|ϕ1|2 dt dx + s6λ8
∫ ∫
Q

e−2sα∗
(ξ∗)6|ϕ2|2 dt dx

+ sλ2
∫ ∫
Q

e−2sαξ
(∣∣�2ϕ1

∣∣2 + s2λ2ξ2|∇�ϕ1|2 + s4λ4ξ4|�ϕ1|2
)

dt dx

� C

(
s6λ

∫ ∫
Q

e−2sα∗
(ξ∗)6|ϕ|2 dt dx + s8λ10

T∫
0

∫
ω0

e−2sαξ8|ϕ1|2 dt dx

+ s5λ6
∫ ∫

ω0×(0,T )

e−2sαξ5|�ϕ1|2 dt dx + s3λ4
∫ ∫

ω0×(0,T )

e−2sαξ3|∇�ϕ1|2 dt dx

)
, (33)

for every s � C(T 9 + T 18) and every λ � C .
Now, we see that the first term in the right-hand side can be absorbed by the left-hand side as

long as λ � C . For the moment, we have

s8λ10
∫ ∫
Q

e−2sαξ8|ϕ1|2 dt dx + s6λ8
∫ ∫
Q

e−2sα∗
(ξ∗)6|ϕ2|2 dt dx

+ sλ2
∫ ∫
Q

e−2sαξ
(∣∣�2ϕ1

∣∣2 + s2λ2ξ2|∇�ϕ1|2 + s4λ4ξ4|�ϕ1|2
)

dt dx

� C

(
s8λ10

T∫
0

∫
ω0

e−2sαξ8|ϕ1|2 dt dx + s5λ6
∫ ∫

ω0×(0,T )

e−2sαξ5|�ϕ1|2 dt dx

+ s3λ4
∫ ∫

ω0×(0,T )

e−2sαξ3|∇�ϕ1|2 dt dx

)
, (34)

for every s � C(T 9 + T 18) and every λ � C .

Step 3. In this final step, we estimate the two last local terms in the right-hand side of (34) in terms
of |ϕ1|2 and small constants multiplied by the left-hand side of (34).

We start by estimating the term on ∇�ϕ1. Let ω1 be an open subset satisfying ω0 � ω1 � ω and
let ρ1 ∈ C2

c (ω1) with ρ1 ≡ 1 in ω0 and 0 � ρ1. Then, an integration by parts gives

s3λ4
∫ ∫

ω0×(0,T )

e−2sαξ3|∇�ϕ1|2 dt dx

� s3λ4
∫ ∫

ω1×(0,T )

ρ1e−2sαξ3|∇�ϕ1|2 dt dx

= −s3λ4
∫ ∫

ω ×(0,T )

ρ1e−2sαξ3�2ϕ1 �ϕ1 dt dx + s3λ4

2

∫ ∫
ω ×(0,T )

�
(
ρ1e−2sαξ3)|�ϕ1|2 dt dx.
1 1
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Using the Cauchy–Schwarz’s inequality for the first term and estimate∣∣�(
ρ1e−2sαξ3)∣∣ � C s2λ2ξ5e−2sα, s � C T 18, λ � C,

for the second one, we obtain for every ε > 0

s3λ4
∫ ∫

ω0×(0,T )

e−2sαξ3|∇�ϕ1|2 dt dx

� C s5λ6
∫ ∫

ω1×(0,T )

e−2sαξ5|�ϕ1|2 dt dx + εsλ2
∫ ∫
Q

e−2sαξ
∣∣�2ϕ1

∣∣2
dt dx,

for every s � C T 18 and every λ � C (C depending also on ε). Using this in (34), we obtain

s8λ10
∫ ∫
Q

e−2sαξ8|ϕ1|2 dt dx + s6λ8
∫ ∫
Q

e−2sα∗
(ξ∗)6|ϕ2|2 dt dx

+ sλ2
∫ ∫
Q

e−2sαξ
(∣∣�2ϕ1

∣∣2 + s2λ2ξ2|∇�ϕ1|2 + s4λ4ξ4|�ϕ1|2
)

dt dx

� C

(
s8λ10

T∫
0

∫
ω0

e−2sαξ8|ϕ1|2 dt dx + s5λ6
∫ ∫

ω1×(0,T )

e−2sαξ5|�ϕ1|2 dt dx

)
, (35)

for every s � C(T 9 + T 18) and every λ � C .
Let us now estimate �ϕ1. Let ω2 be an open subset satisfying ω1 � ω2 � ω and let ρ2 ∈ C2

c (ω2)

with ρ2 ≡ 1 in ω1 and ρ2 � 0. Then, an integration by parts gives

s5λ6
∫ ∫

ω1×(0,T )

e−2sαξ5|�ϕ1|2 dt dx � s5λ6
∫ ∫

ω2×(0,T )

ρ2e−2sαξ5|�ϕ1|2 dt dx

= −s5λ6
∫ ∫

ω2×(0,T )

ρ2e−2sαξ5(∇�ϕ1 · ∇ϕ1)dt dx

− s5λ6
∫ ∫

ω2×(0,T )

∇(
ρ2e−2sαξ5) · ∇ϕ1�ϕ1 dt dx.

Using again the Cauchy–Schwarz’s inequality for the first term and estimate∣∣∇(
ρ2e−2sαξ5)∣∣ � C sλξ6e−2sα, s � C T 18, λ � C,

for the second one, we obtain for every ε > 0

s5λ6
∫ ∫

ω1×(0,T )

e−2sαξ5|�ϕ1|2 dt dx

� C s7λ8
∫ ∫

ω ×(0,T )

e−2sαξ7|∇ϕ1|2 dt dx + εs3λ4
∫ ∫
Q

e−2sαξ3|∇�ϕ1|2 dt dx, (36)
2
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for every s � C T 18 and every λ � C (C depending also on ε). Finally, we locally estimate ∇ϕ1 in terms
of ϕ1 by a completely analogous argument:

s7λ8
∫ ∫

ω1×(0,T )

e−2sαξ7|∇ϕ1|2 dt dx

� C s9λ10
∫ ∫

ω2×(0,T )

e−2sαξ9|ϕ1|2 dt dx + εs5λ6
∫ ∫
Q

e−2sαξ5|�ϕ1|2 dt dx.

This estimate, together with (35) and (36), readily gives the desired Carleman inequality (17). This
concludes the proof of Proposition 1. �
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