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1. Introduction

In a recent series of papers [3,4,11,12,15,25–27], the existence and multiplicity of positive periodic
solutions for the singular systems

ẍ + a(t)x = f (t, x) + e(t) (1.1)

and

−ẍ + a(t)x = f (t, x) + e(t) (1.2)
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have been studied, where a(t), e(t) ∈ C(R,R
n), f (t, x) ∈ C(R × (Rn \ {0}),R

n) are T -periodic in t with
a singularity at x = 0,

lim
x→0

f i(t, x) = ∞, i = 1, . . . ,n.

(1.1) and (1.2) represent singularities of repulsive type and attractive type respectively. One closely
related example of the above systems is

ẍ + ax + ∇x V (t, x) = e(t) (1.3)

with V (t, x) = ( 1√∑
x2

i

)α+1, α > 0, which was studied in [18]. A positive periodic solution of the above

systems is of interest because it is a non-collision periodic orbit of the singular systems. Periodic
solutions of singular systems have been studied over many years, see, for example, [1–5,10–15,17,18,
20–22,24–27,30]. One of the common assumptions to guarantee the existence of is a so-called strong
force assumption (corresponds to the case α � 1 in (1.3)), see, for example, [1,13] and references
therein. However, more recently, the existence of positive periodic solutions of the singular systems
has been established with a weak force condition [3,4,11,12,20,21,26,27].

The variational arguments have been the most used techniques to deal with the problem, see, for
example, [1,18,22–24]. More recently, the method of lower and upper solutions, the Schauder’s fixed
point theorem and the Krasnoselskii fixed point theorem in a cone have been employed to investigate
the existence of positive periodic solutions of the systems [2–4,11,12,14,15,19,25–27]. There is a rich
literature on the use of the Krasnoselskii fixed point theorem for the existence of positive solutions of
boundary value problems for general second-order differential equations (refer to [8,9,28] and many
other papers).

Motivated by these recent developments, we investigate the existence and multiplicity of positive
periodic solutions of the singular systems by the Krasnoselskii fixed point theorem. In this paper,
we are able to obtain several existence results based on the Krasnoselskii fixed point theorem by
constructing a cone defined on a product space. Similar cones have been proposed to study the exis-
tence of positive solutions of boundary value problems for systems of differential equations in several
papers of the author and his co-authors [6,7,29]. We also note a related cone is used to study the
existence of positive periodic solutions of singular periodic systems [11,26]. It seems that the Kras-
noselskii fixed point theorem on compression and expansion of cones is quite effective in dealing
with the problem. In fact, by choosing appropriate cones, the singularity of the systems is essentially
removed and the associated operator becomes well defined for certain ranges of functions even when
ei is negative.

This paper is organized as follows. Main results are given in Section 2. In Section 3, we define a
cone and discuss several properties of the equivalent operator on the cone. In order to simplify the
proof in Section 3, we establish a series of lemmas and corollaries to estimate the operator. All the
corollaries are the corresponding results for ei taking negative values. The proof of the main results is
presented in Sections 4 and 5.

2. Main results

In this section, we present our main results for the existence and multiplicity of positive periodic
solutions of singular systems of repulsive type (1.1). For (1.2), all the results can be proved in the same
way. First, we state a condition to guarantee the positiveness of the Green’s function of the following
scalar problems, i = 1,2, . . . ,n,

x′′
i + ai(t)xi = ei(t) (2.4)

with periodic boundary conditions xi(0) = xi(T ), x′
i(0) = x′

i(T ), where x = (x1, x2, . . . , xn), and
a1,a2, . . . ,an and e1, e2, . . . , en are T -periodic continuous functions. Let Gi(t, s) ∈ C([0, T ],R) be the
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Green functions associated with (2.4). Now the periodic solution x(t) = (x1(t), x2(t), . . . , xn(t)) of (2.4)

is given by

xi(t) =
T∫

0

Gi(t, s)ei(s)ds.

When ai(t) = k2, 0 < k < π
T , the Green function Gi takes the following form,

Gi(t, s) =
{ sin k(t−s)+sin k(T −t+s)

2k(1−coskT )
, 0 � s � t � T ,

sin k(s−t)+sin k(T −s+t)
2k(1−coskT )

, 0 � t � s � T .

We can verify that Gi is strictly positive. In fact, let Ĝ(x) = sin(kx)+sin k(T −x)
2k(1−cos kT )

, x ∈ [0, T ]. It is easy to

check that Ĝ is increasing on [0, T
2 ] and decreasing on [ T

2 , T ], and G(t, s) = Ĝ(|t − s|). Thus

0 <
sin kT

2k(1 − cos kT )
= Ĝ(0) � G(t, s) � Ĝ

(
T

2

)
= sin kT

2

k(1 − cos kT )
= 1

2k sin kT
2

for s, t ∈ [0, T ]. The same estimates can also be found in [11,19,25]. For a non-constant function ai(t),
there is a criterion discussed in [25,31] to guarantee the positiveness of the Green’s functions. There-
fore, we always assume the following assumption (A) is true for systems of repulsive type (1.1)
throughout the paper.

(A) The Green function Gi(t, s), associated with (2.4), is positive for all (t, s) ∈ [0, T ] × [0, T ], i =
1,2, . . . ,n.

Under hypothesis (A), we denote

0 < mi = min
0�s,t�T

Gi(t, s), Mi = max
0�s,t�T

Gi(t, s),

0 < σi = mi

Mi
, σ = min

i=1,...,n
{σi} > 0. (2.5)

We now examine the existence and multiplicity of positive periodic solutions of the following
form, for i = 1, . . . ,n

ẍi + ai(t)xi = λgi(t) f i(x) + λei(t) (2.6)

with λ > 0 is a positive parameter. By a positive T -periodic solution, we mean a positive T -periodic
function in C2(R,R

n) solving corresponding systems and each component is positive for all t .
Let R+ = [0,∞), R

n+ = ∏n
i=1 R+ , and denote by |x| = ∑n

i=1 |xi | the usual norm of R
n+ for x =

(x1, . . . , xn) ∈ R
n . We will make the following assumptions:

(H1) f i(x) is a scalar continuous function defined for |x| > 0, and f i(x) > 0 for |x| > 0, i = 1, . . . ,n.
(H2) ai(t), gi(t), ei(t) are T -periodic continuous scalar functions in t ∈ R, ai(t), gi(t) � 0, t ∈ [0, T ],∫ T

0 gi(t)dt > 0, i = 1, . . . ,n.

We state our first theorem as follows.

Theorem 2.1. Let (A), (H1), (H2) hold, and ei(t) � 0 for t ∈ [0, T ], i = 1, . . . ,n. Assume that limx→0 f i(x) =
∞, i = 1, . . . ,n.
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(a) If lim|x|→∞ f i(x)
|x| = 0, i = 1, . . . ,n, then, for all λ > 0, (2.6) has a positive periodic solution.

(b) If lim|x|→∞ f i(x)
|x| = ∞ for i = 1, . . . ,n, then, for all sufficiently small λ > 0, (2.6) has two positive periodic

solutions.
(c) There exists a λ0 > 0 such that (2.6) has a positive periodic solution for 0 < λ < λ0 .

When ei(t) takes negative values, we give the following theorem. We need a stronger condition
on gi .

(H3) gi(t) > 0 for t ∈ [0, T ], i = 1, . . . ,n.

Theorem 2.2. Let (A), (H1), (H2), (H3) hold. Assume that limx→0 f i(x) = ∞, i = 1, . . . ,n.

(a) If lim|x|→∞ f i(x) = ∞ and lim|x|→∞ f i(x)
|x| = 0, i = 1, . . . ,n, then there exists λ0 > 0 such that (2.6) has

a positive periodic solution for λ > λ0 .
(b) If lim|x|→∞ f i(x)

|x| = ∞ for i = 1, . . . ,n, then, for all sufficiently small λ > 0, (2.6) has two positive periodic
solutions.

(c) There exists a λ1 > 0 such that (2.6) has a positive periodic solution for 0 < λ < λ1 .

Now we apply Theorems 2.1, 2.2 to the following two-dimensional singular system, which has
been examined in [4,12,14].⎧⎨

⎩ ẍ + a1(t)x = λ
(√

x2 + y2
)−α + λ

(√
x2 + y2

)β + λe1(t),

ÿ + a2(t)y = λ
(√

x2 + y2
)−α + λ

(√
x2 + y2

)β + λe2(t),
(2.7)

with α,β > 0, a1 � 0, a2 � 0, e1, e2 are T -periodic continuous in t . We only need to note the follow-
ing inequality √

x2 + y2 � |x| + |y| � √
2
√

x2 + y2

since we use the summation norm in our theorems. For nonnegative e1, e2, Corollary 2.3 is an appli-
cation of Theorem 2.1.

Corollary 2.3. Assume that a1 , a2 , e1 , e2 are T -periodic continuous in t and that a1 , a2 satisfy the assump-
tion (A). Also assume that e1 � 0 and e2 � 0 for t ∈ [0, T ]. Let α > 0, β > 0, λ > 0.

(a) If 0 < β < 1, then, for all λ > 0, (2.7) has a positive periodic solution.
(b) If β > 1, then, for all sufficiently small λ > 0, (2.7) has two positive periodic solutions.
(c) There exists a λ0 > 0 such that (2.7) has a positive periodic solution for 0 < λ < λ0 .

When e1, e2 take negative values, we have the following corollary from Theorem 2.2.

Corollary 2.4. Assume that a1 , a2 , e1 , e2 are T -periodic continuous in t, and that a1 , a2 satisfy the assump-
tion (A). Let α > 0, β > 0 and λ > 0.

(a) If 0 < β < 1, then there exists λ0 > 0 such that (2.7) has a positive periodic solution for λ > λ0 .
(b) If β > 1, then, for all sufficiently small λ > 0, (2.7) has two positive periodic solutions.
(c) There exists a λ1 > 0 such that (2.7) has a positive periodic solution for 0 < λ < λ1 .

We remark that the conclusions (b) of Theorems 2.1, 2.2 are still valid if at least one component
of f satisfies lim|x|→∞ f i(x)

|x| = ∞. In addition, analogous results are true if one considers a system that
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not every component is singular at zero. For simplicity, every component of f (t, x) is assumed to be
singular at zero in this paper. Also we comment that Theorems 2.1 and 2.2 can be extended to the
following more general system

ẍi + ai(t)xi = λ f i(t, x) + λei(t) (2.8)

if f i(t, x) satisfies pi(t)hi(x) � f i(t, x) � qi(t)Hi(x), i = 1, . . . ,n with appropriate conditions on pi , hi ,
qi , Hi .

In comparison with some related results in [3,4,11,12,15,25–27], the existence and multiplicity re-
sults in this paper can be applied to any periodic continuous function ei . Of course, our results require
the parameter λ sufficiently small or large. From Corollaries 2.3 and 2.4, for α > 0, (2.7) always has
a positive periodic solution(s) if the parameter λ is appropriately chosen according to 1 > β > 0 or
β > 1. These results further suggest that both a strong force assumption and weak singularity con-
tribute to the existence of a positive solution(s) as long as certain conditions are met. Also it should
be pointed out that, for the non-singular case (α � 0), several possible combinations of superlinear
and sublinear assumptions at zero and infinity were considered in [19] to obtain one or two positive
periodic solutions of periodic boundary value problems. Finally, we provide a unified treatment of the
problem for several important cases, and the conditions of our theorems are quite easy to verify.

We have formulated our arguments in a series of lemmas and corollaries to avoid repeated argu-
ments in the proofs of the results. All the corollaries in Section 3 are the corresponding results for ei

which may take negative values. It seems, to some extend, that the lemmas and corollaries them-
selves are of importance, and reveal significant properties of the singular systems. We hope that they
can be used in future research.

3. Preliminary results

We recall some concepts and conclusions of an operator in a cone. Let E be a Banach space and K
be a closed, nonempty subset of E . K is said to be a cone if (i) αu + βv ∈ K for all u, v ∈ K and all
α,β � 0 and (ii) u,−u ∈ K imply u = 0. The following well-known result of the fixed point theorem
is crucial in our arguments.

Lemma 3.1. (See [16].) Let X be a Banach space and K (⊂ X) be a cone. Assume that Ω1 , Ω2 are bounded
open subsets of X with 0 ∈ Ω1 , Ω̄1 ⊂ Ω2 , and let

T : K ∩ (Ω̄2 \ Ω1) → K

be completely continuous operator such that either

(i) ‖T u‖ � ‖u‖, u ∈ K ∩ ∂Ω1 and ‖T u‖ � ‖u‖, u ∈ K ∩ ∂Ω2; or
(ii) ‖T u‖ � ‖u‖, u ∈ K ∩ ∂Ω1 and ‖T u‖ � ‖u‖, u ∈ K ∩ ∂Ω2 .

Then T has a fixed point in K ∩ (Ω̄2 \ Ω1).

Consider the Banach space X = C[0, T ] × · · · × C[0, T ]︸ ︷︷ ︸
n

, and for x = (x1, . . . , xn) ∈ X , let

‖x‖ =
n∑

i=1

sup
t∈[0,T ]

∣∣xi(t)
∣∣.

Denote by K the cone
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K =
{

x = (x1, . . . , xn) ∈ X: xi(t) � 0, t ∈ [0, T ], i = 1, . . . ,n, and min
0�t�T

n∑
i=1

xi(t) � σ‖x‖
}

where σ is defined in (2.5). Also, for r > 0, let

Ωr = {
x ∈ K : ‖x‖ < r

}
.

Note that ∂Ωr = {x ∈ K : ‖x‖ = r}.
Let us define Tλ = (T 1

λ , . . . , T n
λ ) : K \ {0} → X , where T i

λ , i = 1, . . . ,n, are

T i
λ x(t) = λ

T∫
0

Gi(t, s)
(

gi(s) f i
(
x(s)

) + ei(s)
)

ds, 0 � t � T . (3.9)

When ei is nonnegative, gi(s) f i(x(s)) + ei(s) is nonnegative. If ei takes negative values, we will
choose x(s) so that gi(s) f i(x(s)) + ei(s) is nonnegative. This is possible because limx→0 f i(x) = ∞
or lim|x|→∞ f i(x) = ∞.

Now if x is a fixed point of Tλ in K \ {0}, then x is a positive solution of (2.6). Also note that
each component xi(t) of any nonnegative periodic solution x is strictly positive for all t because of
the positiveness of the Green functions and assumptions (H1) and (H2). We now look at several
properties of the operator.

Lemma 3.2. Assume (A), (H1), (H2) hold and ei(t) � 0, t ∈ [0, T ], i = 1, . . . ,n. Then Tλ(K \ {0}) ⊂ K and
Tλ : K \ {0} → K is completely continuous.

Proof. If x ∈ K \ {0}, then mint∈[0,T ]
∑n

i=1 |xi(t)| � σ‖x‖ > 0, and then Tλ is defined. Now we have
that, for i = 1, . . . ,n

min
t∈[0,T ]

n∑
i=1

T i
λ x(t) �

n∑
i=1

min
0�t�T

T i
λ x(t)

�
n∑

i=1

miλ

T∫
0

(
gi(s) f i

(
x(s)

) + ei(s)
)

ds

=
n∑

i=1

σiλMi

T∫
0

(
gi(s) f i

(
u(s)

) + ei(s)
)

ds

�
n∑

i=1

σi sup
0�t�T

T i
λ x(t)

� σ

n∑
i=1

sup
0�t�T

T i
λ x(t) = σ‖Tλx‖.

Thus, Tλ(K \ {0}) ⊂ K . It is easy to verify that Tλ is completely continuous. �
If ei takes negative values, we need to choose appropriate domains so that gi(s) f i(x(s)) + ei(s)

becomes nonnegative. The proof of Tλ(K \ {0}) ⊂ K and Tλ(K \ ΩR) ⊂ K in Corollary 3.3 is the same
as in Lemma 3.2.



2992 H. Wang / J. Differential Equations 249 (2010) 2986–3002
Corollary 3.3. Assume (A), (H1), (H2), (H3) hold.

(a) If limx→0 f i(x) = ∞, i = 1, . . . ,n, there is a δ > 0 such that if 0 < r < δ, then Tλ is defined on Ω̄r \ {0},
Tλ(Ω̄r \ {0}) ⊂ K and Tλ : Ω̄r \ {0} → K is completely continuous.

(b) If limx→∞ f i(x) = ∞, i = 1, . . . ,n, there is a 
 > 0 such that if R > 
, then Tλ is defined on K \ ΩR ,
Tλ(K \ ΩR) ⊂ K and Tλ : K \ ΩR → K is completely continuous.

Proof. We split gi(s) f i(x(s)) + ei(t) into the two terms 1
2 gi(s) f i(x(s)) and 1

2 gi(s) f i(x(s)) + ei(t). The
first term is always nonnegative and used to carry out the estimates of the operator in the lemmas
and corollaries in this section. We will make the second term 1

2 gi(s) f i(x(s)) + ei(t) nonnegative by
choosing appropriate domains of f i . The choice of the even split of gi(s) f i(x(s)) here is not neces-
sarily optimal in terms of obtaining maximal λ-intervals for the existence of periodic solutions of the
systems.

Noting that gi(t) is positive on [0, T ], limx→0 f i(x) = ∞, i = 1, . . . ,n, implies that there is a δ > 0
such that

f i(x) � 2
maxt∈[0,T ]{|ei(t)| + 1}

mint∈[0,T ]{gi(t)} , i = 1, . . . ,n,

for x ∈ R
n+ , 0 < |x| � δ. Now for x ∈ Ω̄r \ {0} and 0 < r < δ, noting that

δ > r �
n∑

i=1

∣∣xi(t)
∣∣ � min

t∈[0,T ]

n∑
i=1

∣∣xi(t)
∣∣ � σ‖x‖ > 0, t ∈ [0, T ],

and therefore, we have, for t ∈ [0, T ],

gi(t) f i
(
x(t)

) + ei(t) � 1

2
gi(t) f i

(
x(t)

) + ei(t)

� 2

2
gi(t)

maxt∈[0,T ]{|ei(t)| + 1}
mint∈[0,T ]{gi(t)} + ei(t)

> 0.

Thus, it is clear that T i
λ x(t) in (3.9) is well defined and positive, and now it is easy to see that

Tλ(Ω̄r \ {0}) ⊂ K and Tλ : Ω̄r \ {0} → K is completely continuous.
On the other hand, if limx→∞ f i(x) = ∞, i = 1, . . . ,n, there is an R ′′ > 0 such that

f i(x) � 2
maxt∈[0,T ]{|ei(t)| + 1}

mint∈[0,T ]{gi(t)} , i = 1, . . . ,n,

for x ∈ R
n+ , |x| � R ′′ . Now let 
 = R ′′

σ . Then for x ∈ K \ΩR , R > 
, we have that min0�t�T
∑n

i=1 xi(t) �
σ‖x‖ � R ′′ , and therefore,

gi(t) f i
(
x(t)

) + ei(t) � 1

2
gi(t) f i

(
x(t)

) + ei(t) > 0, t ∈ [0, T ].

Now T i
λ x(t) in (3.9) is well defined and positive. It is clear that Tλ(K \ ΩR) ⊂ K and Tλ : K \ ΩR → K

is completely continuous. �
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Now let

Γ = min
i=1,...,n

{
1

2
miσ

T∫
0

gi(s)ds

}
> 0.

Lemma 3.4. Assume (A), (H1), (H2) hold and ei(t) � 0, t ∈ [0, T ], i = 1, . . . ,n. Let r > 0 and if there exist
η > 0 and integer j, 1 � j � n, such that

f j
(
x(t)

)
� η

n∑
i=1

xi(t) for t ∈ [0, T ],

for x(t) = (x1(t), . . . , xn(t)) ∈ ∂Ωr , then the following inequality holds,

‖Tλx‖ � λΓ η‖x‖.

Proof. From the definition of Tλx it follows that

‖Tλx‖ � max
0�t�T

T j
λ x(t)

� 1

2
λm j

T∫
0

g j(s) f j
(
x(s)

)
ds

� 1

2
λm j

T∫
0

g j(s)η
n∑

i=1

xi(s)ds

� λm j
1

2
σ

T∫
0

g j(s)ds η‖x‖

= λΓ η‖x‖. �
If ei takes negative values, we need to adjust δ and 
 in Corollary 3.3 to guarantee that

gi(s) f i(x(s)) + ei(s) is nonnegative.

Corollary 3.5. Assume (A), (H1), (H2), (H3) hold.

(a) If limx→0 f i(x) = ∞, i = 1, . . . ,n, then Lemma 3.4 is true if, in addition, 0 < r < δ, where δ is defined in
Corollary 3.3.

(b) If lim|x|→∞ f i(x) = ∞, i = 1, . . . ,n, then Lemma 3.4 is true if, in addition, r > 
, where 
 is defined in
Corollary 3.3.

Proof. We split gi(s) f i(x(s)) + ei(t) into the two terms 1
2 gi(s) f i(x(s)) and 1

2 gi(s) f i(x(s)) + ei(t). By
choosing δ and 
 in Corollary 3.3, gi(s) f i(x(s)) + ei(t) becomes nonnegative. The estimate in Corol-
lary 3.5 can be carried out by the first term as in Lemma 3.4. �

Let f̂ i(θ) : [1,∞) → R+ be the function given by

f̂ i(θ) = max
{

f i(u): u ∈ R
n+ and 1 � |u| � θ

}
, i = 1, . . . ,n.
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It is easy to see that f̂ i(θ) is a nondecreasing function on [1,∞). The following lemma is essentially
the same as Lemma 2.8 in [29]. The following proof is only for completeness.

Lemma 3.6. (See [29].) Assume (H1) holds. If lim|x|→∞ f i(x)
|x| exists (which can be infinity), then limθ→∞ f̂ i(θ)

θ

exists and limθ→∞ f̂ i(θ)
θ

= lim|x|→∞ f i(x)
|x| .

Proof. We consider the two cases, (a) f i(x) is bounded for |x| � 1 and (b) f i(x) is unbounded for

|x| � 1. For case (a), it follows that limθ→∞ f̂ i(θ)
θ

= lim|x|→∞ f i(x)
|x| = 0. For case (b), for any δ > 1, let

Mi = f̂ i(δ) and

Ni
δ = inf

{|x|: x ∈ R
n+, |x| � δ, f i(x) � Mi} � δ > 1,

then

max
{

f i(x): 1 � |x| � Ni
δ, x ∈ R

n+
} = Mi = max

{
f i(x): |x| = Ni

δ, x ∈ R
n+

}
.

Therefore, for any δ > 1, there exists an Ni
δ � δ such that

f̂ i(θ) = max
{

f i(x): Ni
δ � |x| � θ, x ∈ R

n+
}

for θ > Ni
δ.

Now, suppose that bi = lim|x|→∞ f i(x)
|x| < ∞. In other words, for any ε > 0, there is a δ > 1 such that

bi − ε <
f i(x)

|x| < bi + ε for x ∈ R
n+, |x| > δ. (3.10)

Thus, for θ > Ni
δ , there exist x1, x2 ∈ R

n+ such that |x1| = θ , θ � |x2| � Ni
δ and f i(x2) = f̂ i(θ). Therefore,

f i(x1)

|x1| � f̂ i(θ)

θ
= f i(x2)

θ
� f i(x2)

|x2| . (3.11)

(3.10) and (3.11) yield that

bi − ε <
f̂ i(θ)

θ
< bi + ε for θ > Ni

δ. (3.12)

Hence limθ→∞ f̂ i(θ)
θ

= limx→∞ f i(x)
|x| . Similarly, we can show limθ→∞ f̂ i(θ)

θ
= limx→∞ f i(x)

|x| if

lim|x|→∞ f i(x)
|x| = ∞. �

Lemma 3.7. Assume (A), (H1), (H2) hold and ei(t) � 0, t ∈ [0, T ], i = 1, . . . ,n.
Let r > max{ 1

σ ,2λ
∑n

i=1 Mi
∫ T

0 |ei(s)|ds} and if there exists an ε > 0 such that

f̂ i(r) � εr, i = 1, . . . ,n,

then

‖Tλx‖ � λĈε‖x‖ + 1

2
‖x‖ for x ∈ ∂Ωr,

where the constant Ĉ = ∑n
i=1 Mi

∫ T
0 gi(s)ds.
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Proof. From the definition of Tλ , we have for x ∈ ∂Ωr ,

‖Tλx‖ =
n∑

i=1

max
0�t�T

T i
λ x(t)

�
n∑

i=1

λMi

T∫
0

gi(s) f i
(
x(s)

)
ds + λ

n∑
i=1

Mi

T∫
0

∣∣ei(s)
∣∣ds

�
n∑

i=1

λMi

T∫
0

gi(s) f̂ i(r)ds + r

2

�
n∑

i=1

λMi

T∫
0

gi(s)dsrε + r

2

= λĈε‖x‖ + 1

2
‖x‖. �

If ei takes negative values, we need to restrict the domain of Tλ to guarantee that gi(s) f i(x(s)) +
ei(s) is nonnegative.

Corollary 3.8. Assume (A), (H1), (H2), (H3) hold. If limx→∞ f i(x) = ∞, i = 1, . . . ,n, Lemma 3.7 is true if, in
addition, r > 
, where 
 is defined in Corollary 3.3.

Proof. If we choose 
 defined in Corollary 3.3, then Tλ is well defined and gi(s) f i(x(s)) + ei(s) is
nonnegative, and Corollary 3.8 can be shown in the same way as Lemma 3.7. �

The conclusions of Lemmas 3.4 and 3.7 are based on the inequality assumptions between f (x)
and x. If these assumptions are not necessarily true, we will have the following results.

Lemma 3.9. Assume (A), (H1), (H2) hold and ei(t) � 0, t ∈ [0, T ], i = 1, . . . ,n. Let r > 0. Then

‖Tλx‖ � λ

n∑
i=1

mim̂r

2

T∫
0

gi(s)ds,

for all x ∈ ∂Ωr , where m̂r = min{ f i(x): x ∈ R
n+ and σ r � |x| � r, i = 1, . . . ,n} > 0.

Proof. If x(t) ∈ ∂Ωr , then σ r � |x(t)| = ∑n
i=1 |xi(t)| � r, for t ∈ [0, T ]. Therefore f i(x(t)) � m̂r for

t ∈ [0, T ], i = 1, . . . ,n. By the definition of Tλ , we have

‖Tλx‖ =
n∑

i=1

max
0�t�T

T i
λ x(t)

�
n∑

i=1

1

2
λmi

T∫
0

gi(s) f i
(
x(s)

)
ds

� λ

n∑
i=1

mim̂r

2

T∫
gi(s)ds. �
0
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Now we consider the case that ei may take negative values. We need to restrict the domain of Tλ

to guarantee that gi(s) f i(x(s)) + ei(s) is nonnegative. 1
2 gi(s) f i(x(s)) is used to carry out the estimates

in Lemma 3.9.

Corollary 3.10. Assume (A), (H1), (H2), (H3) hold.

(a) If limx→0 f i(x) = ∞, i = 1, . . . ,n, Lemma 3.9 is true if, in addition, 0 < r < δ, where δ > 0 is defined in
Corollary 3.3.

(b) If lim|x|→∞ f i(x) = ∞, i = 1, . . . ,n, Lemma 3.9 is true if, in addition, r > 
, where 
 > 0 is defined in
Corollary 3.3.

Proof. By selecting δ and 
 defined in Corollary 3.3, Tλ is well defined and gi(s) f i(x(s)) + ei(s) is
nonnegative, and then Corollary 3.10 can be shown as Lemma 3.9. �
Lemma 3.11. Assume (A), (H1), (H2) hold and ei(t) � 0, t ∈ [0, T ], i = 1, . . . ,n. Let r > 0. Then

‖Tλx‖ � λ

(
n∑

i=1

Mi

T∫
0

gi(s)M̂r ds +
n∑

i=1

Mi

T∫
0

∣∣ei(s)
∣∣ds

)
,

for all x ∈ ∂Ωr , where M̂r = max{ f i(u): u ∈ R
n+ and σ r � |u| � r, i = 1, . . . ,n} > 0.

Proof. If x ∈ ∂Ωr , then σ r � |x(t)| � r, t ∈ [0, T ]. Therefore f i(x(t)) � M̂r for t ∈ [0, T ], i = 1, . . . ,n.
Thus we have that

‖Tλx‖ =
n∑

i=1

max
0�t�T

T i
λ x(t)

�
n∑

i=1

λMi

T∫
0

gi(s) f i
(
x(s)

)
ds + λ

n∑
i=1

Mi

T∫
0

∣∣ei(s)
∣∣ds

�
n∑

i=1

λMi

T∫
0

gi(s) f i
(
x(s)

)
ds + λ

n∑
i=1

Mi

T∫
0

∣∣ei(s)
∣∣ds

�
n∑

i=1

λMi

T∫
0

gi(s)M̂r ds + λ

n∑
i=1

Mi

T∫
0

∣∣ei(s)
∣∣ds

� λ

(
n∑

i=1

Mi

T∫
0

gi(s)M̂r ds +
n∑

i=1

Mi

T∫
0

∣∣ei(s)
∣∣ds

)
. �

Again, if ei takes negative values, we need to restrict r and R to guarantee gi(s) f i(x(s)) + ei(s) is
nonnegative.

Corollary 3.12. Assume (A), (H1), (H2), (H3) hold.

(a) If limx→0 f i(x) = ∞, i = 1, . . . ,n, Lemma 3.11 is true if, in addition, 0 < r < δ, where δ > 0 is defined in
Corollary 3.3.
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(b) If limx→∞ f i(x) = ∞, i = 1, . . . ,n, Lemma 3.11 is true if, in addition, r > 
, where 
 > 0 is defined in
Corollary 3.3.

Proof. By selecting δ and 
 defined in Corollary 3.3, Tλ is well defined and gi(s) f i(x(s)) + ei(s) is
nonnegative, and then the corollary can be shown exactly as Lemma 3.11. �
4. Proof of Theorem 2.1

Proof of Theorem 2.1. Part (a). Since ei(t) � 0, Tλ is defined on K \ {0} and gi(s) f i(x(s)) + ei(s) is

nonnegative. Noting lim|x|→∞ f i(x)
|x| = 0, i = 1, . . . ,n, it follows from Lemma 3.6 that limθ→∞ f̂ i(θ)

θ
= 0,

i = 1, . . . ,n. Therefore, we can choose r1 > max{ 1
σ ,2λ

∑n
i=1 Mi

∫ T
0 |ei(s)|ds} so that f̂ i(r1) � εr1, i =

1, . . . ,n, where the constant ε > 0 satisfies

λĈε <
1

2
,

and Ĉ is the positive constant defined in Lemma 3.7. We have by Lemma 3.7 that

‖Tλx‖ �
(

λĈε + 1

2

)
‖x‖ < ‖x‖ for x ∈ ∂Ωr1 .

On the other hand, by the condition limx→0 f i(x) = ∞, there is a positive number r2 < r1 such that

f i(x) � η|x|, i = 1, . . . ,n,

for x = (x1, . . . , xn) ∈ R
n+ \ {0} and |x| � r2, where η > 0 is chosen so that

λΓ η > 1.

It is easy to see that, for x = (x1, . . . , xn) ∈ ∂Ωr2 , t ∈ [0, T ],

f i
(
x(t)

)
� η

n∑
i=1

xi(t).

Lemma 3.4 implies that

‖Tλx‖ � λΓ η‖x‖ > ‖x‖ for x ∈ ∂Ωr2 .

By Lemma 3.1, Tλ has a fixed point x ∈ Ω̄r1 \ Ωr2 . The fixed point x ∈ Ω̄r1 \ Ωr2 is the desired positive
periodic solution of (2.6).

Part (b). Again since ei(t) � 0, Tλ is defined on K \ {0} and gi(s) f i(x(s)) + ei(s) is nonnegative. Fix
two numbers 0 < r3 < r4, there exists a λ0 > 0 such that

λ0 <
r3∑n

i=1 Mi
∫ T

0 gi(s)M̂r3 ds + ∑n
i=1 Mi

∫ T
0 |ei(s)|ds

,

and

λ0 <
r4∑n M

∫ T g (s)M̂ ds + ∑n M
∫ T |e (s)|ds

,

i=1 i 0 i r4 i=1 i 0 i
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where M̂r3 and M̂r4 are defined in Lemma 3.11. Thus, Lemma 3.11 implies that, for 0 < λ < λ0,

‖Tλx‖ < ‖x‖ for x ∈ ∂Ωr j ( j = 3,4).

On the other hand, in view of the assumptions limx→∞ f i(x)
|x| = ∞ and limx→0 f i(x) = ∞, there are

positive numbers 0 < r2 < r3 < r4 < r′
1 such that

f i(x) � η|x|
for x = (x1, . . . , xn) ∈ R

n+ and 0 < |x| � r2 or |x| � r′
1 where η > 0 is chosen so that

λΓ η > 1.

Thus if x = (x1, . . . , xn) ∈ ∂Ωr2 , then

f i
(
x(t)

)
� η

n∑
i=1

xi(t), t ∈ [0, T ].

Let r1 = max{2r4,
1
σ r′

1}. If x = (x1, . . . , xn) ∈ ∂Ωr1 , then

min
0�t�T

n∑
i=1

xi(t) � σ‖x‖ = σ r1 � r′
1,

which implies that

f i
(
x(t)

)
� η

n∑
i=1

xi(t) for t ∈ [0, T ].

Thus Lemma 3.4 implies that

‖Tλx‖ � λΓ η‖x‖ > ‖x‖ for x ∈ ∂Ωr1 ,

and

‖Tλx‖ � λΓ η‖x‖ > ‖x‖ for x ∈ ∂Ωr2 .

It follows from Lemma 3.1, that Tλ has two fixed points x1(t) and x2(t) such that x1(t) ∈ Ω̄r3 \ Ωr2

and x2(t) ∈ Ω̄r1 \ Ωr4 , which are the desired distinct positive periodic solutions of (2.6) for λ < λ0
satisfying

r1 < ‖x1‖ < r3 < r4 < ‖x2‖ < r2.

Part (c). First we note that Tλ is defined on K \ {0} and gi(s) f i(x(s)) + ei(s) is nonnegative since
ei(t) � 0. Fix a number r3 > 0. Lemma 3.11 implies that there exists a λ0 > 0 such that we have, for
0 < λ < λ0,

‖Tλx‖ < ‖x‖ for x ∈ ∂Ωr3 .

On the other hand, in view of the assumption limx→0 f i(x) = ∞, there is a positive number 0 < r2 < r3
such that

f i(x) � η|x|
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for x = (x1, . . . , xn) ∈ R
n+ and 0 < |x| � r2 where η > 0 is chosen so that

λΓ η > 1.

Thus if x = (x1, . . . , xn) ∈ ∂Ωr2 , then

f i
(
x(t)

)
� η

n∑
i=1

xi(t), t ∈ [0, T ].

Thus Lemma 3.4 implies that

‖Tλx‖ � λΓ η‖x‖ > ‖x‖ for x ∈ ∂Ωr2 .

Lemma 3.1 implies that Tλ has a fixed point x ∈ Ω̄r3 \Ωr2 . The fixed point x ∈ Ω̄r3 \Ωr2 is the desired
positive periodic solution of (2.6). �
5. Proof of Theorem 2.2

Proof of Theorem 2.2. Part (a). Since lim|x|→∞ f i(x) = ∞, i = 1, . . . ,n, by Corollary 3.3, there is a

 > 0 such that if R > 
, then gi(s) f i(x(s)) + ei(s) is nonnegative and Tλ : K \ ΩR → K is defined.
Now for a fixed number r1 > 
, Corollary 3.10 implies that there exists a λ0 > 0 such that, for λ > λ0,

‖Tλx‖ > ‖x‖ for x ∈ ∂Ωr1 .

On the other hand, since lim|x|→∞ f i(x)
|x| = 0, i = 1, . . . ,n, it follows from Lemma 3.6 that

limθ→∞ f̂ i(θ)
θ

= 0, i = 1, . . . ,n. Therefore, we can choose

r2 > max

{
2r1,

1

σ
,2λ

n∑
i=1

Mi

T∫
0

∣∣ei(s)
∣∣ds

}
> 


so that f̂ i(r2) � εr2, i = 1, . . . ,n, where the constant ε > 0 satisfies

λĈε <
1

2
.

We have, by Corollary 3.8, that

‖Tλx‖ �
(

λĈε + 1

2

)
‖x‖ < ‖x‖ for x ∈ ∂Ωr2 .

By Lemma 3.1, Tλ has a fixed point x ∈ Ω̄r2 \ Ωr1 . The fixed point x ∈ Ω̄r2 \ Ωr1 is the desired positive
periodic solution of (2.6).

Part (b). First, since limx→0 f i(x) = ∞, i = 1, . . . ,n, by Corollary 3.3, there is δ > 0 such that if 0 <

r < δ, Tλ is defined on Ω̄r \ {0} and gi(s) f i(x(s))+ ei(s) is nonnegative. Furthermore, Tλ(Ω̄r \ {0}) ⊂ K .
Now for a fixed number r1 < δ, Corollary 3.12 implies that there exists a λ1 > 0 such that we have,
for λ < λ1,

‖Tλx‖ < ‖x‖ for x ∈ ∂Ωr1 .
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In view of the assumption limx→0 f i(x) = ∞, there is a positive number 0 < r3 < r1 such that

f i(x) � η|x|
for x = (x1, . . . , xn) ∈ R

n+ and 0 < |x| � r3 where η > 0 is chosen so that

λΓ η > 1.

Thus if x = (x1, . . . , xn) ∈ ∂Ωr3 , then

f i
(
x(t)

)
� η

n∑
i=1

xi(t), t ∈ [0, T ].

Thus Corollary 3.5 implies that

‖Tλx‖ � λΓ η‖x‖ > ‖x‖ for x ∈ ∂Ωr3 .

It follows from Lemma 3.1, Tλ has a fixed point x1(t) such that x1(t) ∈ Ω̄r1 \ Ωr3 which is a positive
periodic solutions of (2.6) for λ < λ1 satisfying

r3 < ‖x1‖ < r1.

On the other hand, since lim|x|→∞ f i(x)
|x| = ∞, i = 1, . . . ,n, by Corollary 3.3, there is 
 > 0 such that if

R > 
, Tλ is defined on K \ΩR and gi(s) f i(x(s))+ ei(s) is nonnegative. Furthermore, Tλ(K \ΩR) ⊂ K .
For a fixed number r2 > max{
, r1}, and Corollary 3.12 implies that there exists a 0 < λ0 < λ1 such
that we have, for λ < λ0,

‖Tλx‖ < ‖x‖ for x ∈ ∂Ωr2 .

Since lim|x|→∞ f i(x)
|x| = ∞, i = 1, . . . ,n, there is a positive number r′ such that

f i(x) � η|x|
for x = (x1, . . . , xn) ∈ R

n+ and |x| � r′ where η > 0 is chosen so that

λΓ η > 1.

Let r4 = max{2r2,
1
σ r′} > 
. If x = (x1, . . . , xn) ∈ ∂Ωr4 , then

min
0�t�T

n∑
i=1

xi(t) � σ‖x‖ = σ r4 � r′,

which implies that

f i
(
x(t)

)
� η

n∑
i=1

xi(t) for t ∈ [0, T ].

Again Corollary 3.5 implies that

‖Tλx‖ � λΓ η‖x‖ > ‖x‖ for x ∈ ∂Ωr4 .
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It follows from Lemma 3.1, Tλ has a fixed point x2(t) ∈ Ω̄r4 \Ωr2 , which is a positive periodic solutions
of (2.6) for λ < λ0 satisfying

r2 < ‖x2‖ < r4.

Noting that

r3 < ‖x1‖ < r1 < r2 < ‖x2‖ < r4,

we can conclude that x1 and x2 are the desired distinct positive periodic solutions of (2.6) for λ < λ0.
Part (c). Since limx→0 f i(x) = ∞, i = 1, . . . ,n, by Corollary 3.3, there is a δ > 0 such that if 0 <

r < δ, then Tλ is defined and gi(s) f i(x(s)) + ei(s) is nonnegative. Now for a fixed number r1 < δ,
Corollary 3.12 implies that there exists a λ1 > 0 such that we have, for λ < λ1,

‖Tλx‖ < ‖x‖ for x ∈ ∂Ωr1 .

On the other hand, in view of the assumption limx→0 f i(x) = ∞, there is a positive number 0 < r2 <

r1 < δ such that

f i(x) � η|x|
for x = (x1, . . . , xn) ∈ R

n+ and 0 < |x| � r2 where η > 0 is chosen so that

λΓ η > 1.

Thus if x = (x1, . . . , xn) ∈ ∂Ωr2 , then

f i
(
x(t)

)
� η

n∑
i=1

xi(t), t ∈ [0, T ].

Thus Corollary 3.5 implies that

‖Tλx‖ � λΓ η‖x‖ > ‖x‖ for x ∈ ∂Ωr2 .

Lemma 3.1 implies that Tλ has a fixed point x1 ∈ Ω̄r1 \ Ωr2 . The fixed point x1 ∈ Ω̄r1 \ Ωr2 is the
desired positive periodic solution of (2.6). �
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