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In this paper, we will consider the following strongly coupled co-
operative system in a spatially heterogeneous environment with
Neumann boundary condition

⎧⎪⎨
⎪⎩

�u + u
(
λ − u + b(x)v

) = 0, x ∈ Ω,

�
[(

1 + kρ(x)u
)

v
] + v

(
μ − v + d(x)u

) = 0, x ∈ Ω,

∂νu = ∂ν v = 0, x ∈ ∂Ω,

where Ω is a bounded domain in R
N (N � 1) with smooth bound-

ary ∂Ω; k is a positive constant, λ and μ are real constants which
may be non-positive; b(x) � �≡ 0 and d(x) � �≡ 0 are continuous
functions in Ω̄; ρ(x) is a smooth positive function in Ω̄ with
∂νρ(x)|∂Ω = 0; ν is the outward unit normal vector on ∂Ω and
∂ν = ∂/∂ν . For the case μ > 0, we show that if |μ| is small and k
is large, a spatial segregation of ρ(x) and b(x) can cause the pos-
itive solution curve to form an unbounded fish–hook (⊂) shaped
curve with parameter λ. For the case μ < 0, if |μ| is small and k
is large, and the cooperative effect is strong for species u and very
weak for species v , then the positive solution set also forms an
unbounded fish–hook shaped continuum. These results are quite
different from those of predator–prey systems and the cooperative
system under Dirichlet boundary condition, both of which can form
a bounded continuum. Our results deduce that the spatial hetero-
geneity of environments can produce multiple coexistence states.
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Our method of analysis is based on the bifurcation theory and the
Lyapunov–Schmidt procedure.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Besides the interactions between species, the spatial heterogeneity also influences the population
dynamics, which can be observed in many scientific experiments. For example, Huffaker [15] found
that a predator–prey system consisting of two species of mites could collapse to extinction quickly in
small homogeneous environments, but would persist longer in suitable heterogeneous environments.
Therefore, it is very important to study the heterogeneous effects of the environments on population
dynamics. On the other hand, different concentration levels of species can affect the diffusive direction
of another interacting species, which is called cross-diffusion. One can see [26,30] for further ecolog-
ical background. To study the combined heterogeneous effects of the interactions and cross-diffusion
on the set of positive stationary solutions, we study the following Lotka–Volterra cooperative system
with cross-diffusion in a spatially heterogeneous environment:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = d1�u + u
(
a1 − b1u + c1(x)v

)
, x ∈ Ω, t > 0,

vt = �
[(

d2 + ρ(x)u
)

v
] + v

(
a2 − b2 v + c2(x)u

)
, x ∈ Ω, t > 0,

∂νu = ∂ν v = 0, x ∈ ∂Ω, t > 0,

u(x,0) = u0(x) � 0, v(x,0) = v0(x) � 0, x ∈ Ω̄,

(1.1)

where Ω is a bounded domain in R
N (N � 1) with smooth boundary ∂Ω; u and v represent the

cooperative species; d1,d2,b1 and b2 are positive constants, d1 and d2 represent the natural dispersive
forces of movements of the species, respectively; b1 and b2 represent the intra-specific pressures of u
and v; a1 and a2 are real constants which may be non-positive, representing the birth or death rates
of the species; c1(x) ��≡ 0 and c2(x) ��≡ 0 are continuous functions in Ω̄ representing the inter-
specific interactions; ρ(x) is a smooth positive function in Ω̄ with ∂νρ(x)|∂Ω = 0; ν is the outward
unit normal vector on ∂Ω and ∂ν = ∂/∂ν . The system is known as the Lotka–Volterra cooperative
system, which was introduced by Shigesada et al. [36] to model the segregation phenomenon of two
species.

It should be emphasized that there is a nonlinear diffusion �(ρ(x)vu) in the diffusion term. One
can see

�
[(

d2 + ρ(x)u
)

v
] = ∇ · [(d2 + ρ(x)u

)∇v + v∇(
ρ(x)u

)]
,

ρ(x) is known as the cross-diffusion pressure, which means a tendency that v diffuses to the low
density region of ρ(x)u, and moreover the tendency not only depends on the population pressure of u
but also on the heterogeneity of the environments. In particular, when ρ(x) is spatially homogeneous,
v moves to low density region of u. Furthermore, we can see that the diffusive flux of v is J =
−[(d2 + ρ(x)u)∇v + v∇(ρ(x)u)], then the diffusive flux across the boundary ∂Ω is

J · ν = −(
d2 + ρ(x)u

)
∂ν v − ρv∂νu − uv∂νρ = 0,

that is, there is no flux across ∂Ω . ∂Ω acts as a perfect barrier for both species, the system is self-
contained [1].

Since the pioneering work [36], strongly coupled elliptic system has received increasing attention.
Many authors have studied population models with cross-diffusion terms from various mathemati-
cal viewpoints: the global existence of classical solutions [2,3,28]; the existence of positive solutions
[20,22–24,29,34,35]; and the existence of nonconstant positive steady-states [26,27,31,32,37,38]. The
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main methods to study the existence of positive stationary solutions are the bifurcation theory, sub-
supersolution and fixed point index theory. In 1998, Du and Lou [10] applied the bifurcation theory
and the Lyapunov–Schmidt reduction to a predator–prey system with Holling–Tanner response and
obtained an S-shaped global bifurcation branch. In the above papers, the coefficients are all spatially
homogeneous, while more and more interesting papers studying the spatially heterogeneous effects
have appeared. For example, Du et al. [8,9,11–13] have mainly studied degenerate effects of intra-
specific pressures in some predator–prey or competitive models; Hutson et al. [16–19] have mainly
studied the spatial effects of birth rates in some diffusive competitive models. Recently, Kuto [21]
studied a Lotka–Volterra predator–prey system with cross-diffusion in a spatially heterogeneous envi-
ronment. By the methods of the bifurcation theory and Lyapunov–Schmidt reduction, Kuto obtained
the global bifurcation branch of positive stationary solutions and found that the spatial segregation of
ρ(x) and d(x) could cause the bifurcation branch to form a bounded fish–hook curve. However, little
attention has been paid to the cooperative system. As far as we know, only Delgado et al. [7] and Ling
and Pedersen [24] studied some cooperative systems with cross-diffusion, where the coefficients are
spatially homogeneous. In this paper, we use the bifurcation theory and Lyapunov–Schmidt reduction
to investigate the structure of positive stationary solutions of (1.1) and especially study the spatial
heterogeneous effects on the set of the positive stationary solutions and obtain rather different re-
sults. To focus our attention on the heterogeneous effect, we study a simpler strongly coupled elliptic
system

⎧⎪⎨
⎪⎩

�u + u
(
λ − u + b(x)v

) = 0, x ∈ Ω,

�
[(

1 + kρ(x)u
)

v
] + v

(
μ − v + d(x)u

) = 0, x ∈ Ω,

∂νu = ∂ν v = 0, x ∈ ∂Ω,

(1.2)

which can be obtained by a rescaling. We remark that our all results are true for the following system

⎧⎪⎨
⎪⎩

�
[(

1 + kρ(x)v
)
u
] + u

(
λ − u + b(x)v

) = 0, x ∈ Ω,

�v + v
(
μ − v + d(x)u

) = 0, x ∈ Ω,

∂νu = ∂ν v = 0, x ∈ ∂Ω.

From the ecological viewpoint, we are only interested in positive solutions of (1.2). It is said that
(u, v) is a positive solution of (1.2) if u > 0 and v > 0 in Ω̄ . From system (1.2), we can see that
the presence of v is beneficial to u due to the cooperative character; while in the equation of v ,
there is a balance between the cooperation (term + d(x)uv) and the repulsive force in the diffusion
(term +kρ(x)uv). Thus it is quite interesting to investigate the necessary balance between both terms
to obtain the positive solution curve of (1.2).

Throughout the paper, we denote the average of f (x) over Ω by −
∫

f (x) = 1
|Ω|

∫
Ω

f dx and ‖u‖∞ =
maxΩ̄ |u(x)|. We denote λ1(q) by the least eigenvalue of the problem

−�u + q(x)u = λu in Ω, ∂νu = 0 on ∂Ω,

where q(x) is continuous in Ω̄ . We know that the mapping q → λ1(q) : C(Ω̄) → R is continuous and
monotone increasing.

We now show our main results.

Theorem 1.1. If μ > 0 is sufficiently small and k is sufficiently large, ‖b‖∞‖d‖∞ <
minΩ̄ ρ
‖ρ‖∞ , and

−
∫

b(x)ρ(x) < −
∫

b(x) −
∫

ρ(x),
Ω Ω Ω
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then the set of positive solutions of (1.2) forms an unbounded smooth curve

Γp = {(
u(x; s), v(x; s), λ(s)

)
: s > 0

}
with

(
u(x;0), v(x;0), λ(0)

) = (
0,μ,λ∗)

for a negative number λ∗ . Furthermore, there exists a small positive number μ∗ such that the following hold:

(i) if 0 < μ � μ∗/3, then λ′(0) > 0, Γp supercritically bifurcates from (0,μ,λ∗);
(ii) if 2μ∗/3 � μ � μ∗ , then λ′(0) < 0, Γp subcritically bifurcates from (0,μ,λ∗). In this case, for λ =

min0�s�C λ(s), if λ ∈ [−μ ‖b‖∞‖ρ‖∞
minΩ̄ ρ , λ ), (1.2) has no positive solutions; if λ ∈ [λ∗,∞) or λ = λ , (1.2) has

at least one positive solution; if λ ∈ (λ,λ∗), (1.2) has at least two positive solutions. Here C is a sufficiently
large number.

Theorem 1.2. If μ < 0 is sufficiently close to 0 and k is sufficiently large, ‖b‖∞‖d‖∞ <
minΩ̄ ρ
‖ρ‖∞ , then the set of

positive solutions of (1.2) forms an unbounded smooth curve

Γp = {(
u(x; s), v(x; s), λ(s)

)
: s > 0

}
,

with

(
u(x;0), v(x;0), λ(0)

) = (
λ∗,0, λ∗

)
for a positive number λ∗ . Furthermore, if b(x) is very large in Ω̄ and d(x) is very small in Ω̄ , there exists
μ∗ < 0 such that if μ∗ � μ < 0, for λ = min0�s�C λ(s), if λ ∈ [− μ

‖d‖∞ , λ ), (1.2) has no positive solutions;
if λ ∈ [λ∗,∞) or λ = λ , (1.2) has at least one positive solution; if λ ∈ (λ,λ∗), (1.2) has at least two positive
solutions. Here C is a sufficiently large number.

We should note that if ρ(x),b(x) and d(x) are all spatially homogeneous, then under the weakly
cooperative condition (bd < 1), we have λξ (ξ, ε) > 0. Thus in case μ > 0, (1.2) has a unique positive
solution if λ ∈ (λ∗,∞) and no positive solutions if λ � λ∗; in case μ < 0, (1.2) has a unique positive
solution if λ ∈ (λ∗,∞) and no positive solution if λ � λ∗ . More precisely, the positive solution set can
be explicitly expressed by

Γp =
{(

λ + bμ

1 − bd
,
μ + λd

1 − bd
, λ

)
: λ > −bμ for μ > 0

}

and

Γp =
{(

λ + bμ

1 − bd
,
μ + λd

1 − bd
, λ

)
: λ > −μ/d for μ < 0

}
.

From Theorems 1.1 and 1.2, we can see that the spatial heterogeneity can cause Γp to become an
unbounded fish–hook shaped branch with respect to λ, i.e. can produce multiple coexistence states.

Clearly, we know that if b(x) ≡ const or ρ(x) ≡ const, then −
∫
Ω

b(x) −
∫
Ω

ρ(x) = −
∫
Ω

b(x)ρ(x); if both
b(x) and ρ(x) are spatially heterogeneous, then either

−
∫

b(x) −
∫

ρ(x) < −
∫

b(x)ρ(x) or −
∫

b(x) −
∫

ρ(x) > −
∫

b(x)ρ(x)
Ω Ω Ω Ω Ω Ω
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may hold. In particular, if there is a segregation of ρ(x) and b(x), suup(ρ − ε)+ ∩ suup b = ∅ with an
arbitrary positive number ε satisfying ε < −

∫
Ω

ρ(x), then

−
∫
Ω

b(x) −
∫
Ω

ρ(x) > ε −
∫
Ω

b(x) � −
∫
Ω

b(x)ρ(x);

while if b(x) ≡ ρ(x), then

−
∫
Ω

b(x) −
∫
Ω

ρ(x) =
(

−
∫
Ω

b(x)

)2

� −
∫
Ω

b2(x) = −
∫
Ω

b(x)ρ(x).

It is known that when λ < 0, μ < 0, k = 0 and b(x) ≡ d(x) ≡ 0, (1.2) has a globally stable triv-
ial solution (0,0). Moreover, suup(ρ − ε)+ provides a domain in which the cross-diffusion effect is
comparatively strong and suup b gives a favorable domain for u in which u increases due to the coop-
eration. Our first result shows that, if u has a death rate, v has a small but not very small birth rate,
the inter-specific cooperation is quite small, then a spatial segregation of ρ(x) and b(x) can produce
even multiple coexistence steady-states when k is very large. We see that the cross-diffusion changes
the stationary patterns of (1.2). In our second result, the cross-diffusion can be spatially homogeneous
(ρ(x) ≡ const). Then our second result implies that although v has a small death rate, the cooperation
is rather weak for v , and v moves high away from u, a very strong cooperation for u can still produce
even multiple coexistence steady-states.

Compared with the results in [21], we find that the results are quite different. For the case μ > 0,
a spatial segregation can yield an unbounded fish–hook shaped bifurcation branch; for the case μ < 0,
strong cooperation for u and weak for v can also yield an unbounded fish–hook shaped bifurcation
branch; while in [21], a spatial segregation asserts a bounded fish–hook shaped bifurcation branch.
The shape of the curve is similar, but the curve of the predator–prey is bounded. This is because
upper and lower bounds can be obtained for the bifurcation parameter in the predator–prey system,
while we can only deduce a lower bound for the bifurcation parameter. In an ecological viewpoint,
this is due to the cooperation character and the predator character.

Furthermore, Delgado et al. [7] discussed (1.2) with spatially homogeneous coefficients under
Dirichlet boundary condition. As the principal eigenvalue λ1 of −� under Dirichlet boundary con-
dition is positive, then from the proof of item (3) in Theorem 1.1 we can see that if βλ1 > c (i.e.
kρλ1 > d in our system), for any fixed μ > λ1, the bifurcation branch bifurcating from (0, θμ) forms
a bounded continuum which joins (θλ,0) with bifurcation parameter λ. This result is very different
from the result under Neumann boundary condition. As λ1 = 0 in this case, the bifurcation branch is
always unbounded with bifurcation parameter λ. From an ecological viewpoint [1], we know that the
Dirichlet boundary condition corresponds to a lethal boundary, all species who encounter ∂Ω die, so
the positive solution branch is bounded if the cross-diffusion is large; however, the Neumann bound-
ary condition is a no-flux boundary condition, the species encountering ∂Ω are always “reflected”
back into Ω . Then even though the cross-diffusion is large in this case, the upper bound for λ cannot
be obtained. All the above results show the interesting and complicated spatio-temporal patterns of
the positive stationary solutions due to the spatial heterogeneity.

Remark 1.3. We point out that our present paper only concerns the weak cooperation (i.e.,

‖b‖∞‖d‖∞ <
minΩ̄ ρ
‖ρ‖∞ ). But for the strong cooperation case ‖b‖∞‖d‖∞ >

minΩ̄ ρ
‖ρ‖∞ , we leave it for the

further study as it is much complicated [6,25].

The organization of our paper is as follows: In Section 2, we mainly give some preliminary results,
including a priori estimates and non-existence regions of the positive stationary solutions and the lo-
cal and global bifurcation branch. In Section 3, we firstly introduce a perturbed problem by a suitable
rescaling and the Lyapunov–Schmidt reduction, then study the detailed positive solution structure of
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the limiting system. In Section 4, we show the detailed profile of Γp as a perturbation of Γ∞ . Finally,
we give the main results of the paper.

2. Coexistence regions

2.1. An equivalent semilinear elliptic system

In this subsection, we reduce (1.2) to an equivalent semilinear elliptic system. To do so, we let

V = (
1 + kρ(x)u

)
v, (2.1)

then by the one-to-one correspondence between (u, v) and (u, V ), one sees that the new unknown
function (u, V ) satisfies the following semilinear elliptic system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�u + u

(
λ − u + b(x)V

1 + kρ(x)u

)
= 0 in Ω,

�V + V

1 + kρ(x)u

(
μ − V

1 + kρ(x)u
+ d(x)u

)
= 0 in Ω,

∂νu = ∂ν V = 0 on ∂Ω.

(2.2)

Obviously, (1.2) and (2.2) have the same semitrivial solution sets

Γu = {
(λ,0, λ): λ > 0

}
and ΓV = {

(0,μ,λ): λ ∈ R, μ > 0
}
.

Furthermore, (u, v) is a positive solution of (1.2) if and only if (u, V ) is a positive solution of (2.2).
Once we have found a bifurcation point on Γu or ΓV to the positive solution of (2.2), we immediately
obtain the positive solution branch of (1.2) bifurcating from the same point. So in the following, we
mainly apply the bifurcation theory to (2.2).

In order to apply the bifurcation theory, we firstly introduce sets

Su =
{
(λ,μ) ∈ R

2: λ1

(
− μ + λd(x)

1 + λkρ(x)

)
= 0

}
, (2.3)

and

S V = {
(λ,μ) ∈ R

2: λ1
(−λ − μb(x)

) = 0 for μ � 0
}
. (2.4)

We have the following lemma with respect to Su and S V , which will be important to obtain the local
positive solution branch.

Lemma 2.1. For fixed μ < 0, there exists a monotone decreasing function λ = λ∗(μ) > 0 with λ∗(0) = 0 and
limμ→−∞ λ∗(μ) = +∞ such that

Su = {
(λ,μ) ∈ R

2: λ = λ∗(μ) for μ < 0
}
.

While if μ > 0, then

λ1

(
− μ + λd(x)

1 + λkρ(x)

)
< 0

for any λ.
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Furthermore, for fixed μ > 0, there exists a monotone decreasing function λ = λ∗(μ) = λ1(−μb(x)) � 0
satisfying λ∗(0) = 0 such that

S V = {
(λ,μ) ∈ R

2: λ = λ∗(μ) for μ > 0
}
.

A similar argument to that of Lemma A.1 in [23] can deduce the above lemma, so we omit the
proof of Lemma 2.1.

At the end of the subsection, we point out the linear stability of the semitrivial solutions.

Lemma 2.2.

(i) If λ < 0, μ < 0, the trivial solution (0,0) of (2.2) is linearly asymptotically stable; if λ > 0 or μ > 0,
(0,0) is unstable.

(ii) If μ < 0,0 < λ < λ∗ , the semitrivial positive solution (λ,0) of (2.2) is linearly asymptotically stable; if
μ < 0, λ > λ∗ or μ > 0, (λ,0) is unstable.

(iii) If λ < λ∗ , the semitrivial positive solution (0,μ) of (2.2) is linearly asymptotically stable; if λ > λ∗ , (0,μ)

is unstable.

Proof. The proof is very similar to that of Proposition 4.1 of [6], but we give the proof of (ii) for the
convenience of the readers.

We linearize the corresponding parabolic system of (2.2) at (λ,0) and obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�φ + λφ − λb(x)

1 + λkρ(x)
ψ = σφ in Ω,

−�ψ − μ + λd(x)

1 + λkρ(x)
ψ = σψ in Ω,

∂νφ = ∂νψ = 0 on ∂Ω.

(2.5)

If ψ ≡ 0, then

−�φ = (σ − λ)φ,

σ −λ is an eigenvalue of −� in Ω under Neumann boundary condition, thus σ −λ � 0, i.e. σ � λ > 0.
If ψ �≡ 0, then σ is an eigenvalue of −� − μ+λd(x)

1+λkρ(x) in Ω . From the property of the eigenvalue, we
know

Reσ � λ1

(
− μ + λd(x)

1 + λkρ(x)

)
.

If μ < 0, Lemma 2.1 asserts that there exists a unique λ∗ such that

λ1

(
− μ + λ∗ d(x)

1 + λ∗kρ(x)

)
= 0,

then if 0 < λ < λ∗ ,

λ1

(
− μ + λd(x)

1 + λkρ(x)

)
> λ1

(
− μ + λ∗ d(x)

1 + λ∗kρ(x)

)
= 0,

so if μ < 0, 0 < λ < λ∗ , the eigenvalue satisfies Reσ > 0, (λ,0) is linearly asymptotically stable.
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If μ < 0, λ > λ∗ or μ > 0, we know

λ1

(
− μ + λd(x)

1 + λkρ(x)

)
< 0,

then for σ1 = λ1(− μ+λd(x)
1+λkρ(x) ), there exists a positive eigenfunction ψ such that

−�ψ − μ + λd(x)

1 + λkρ(x)
ψ = σ1ψ,

and a unique

φ = (−� + λ − σ1)
−1

[
λb(x)

1 + λkρ(x)
ψ

]
> 0

exists, i.e. a positive eigenfunction (φ,ψ) exists with the corresponding negative eigenvalue σ1
for (2.5), thus (λ,0) is unstable. �
2.2. A priori estimates

In this subsection, we mainly obtain a priori estimates of positive solutions of (2.2), which can also
give the non-existence regions of positive solutions.

Lemma 2.3. Let c = ‖ρ‖∞
minΩ̄ ρ . Suppose ‖b‖∞‖d‖∞ < 1

c and (u, V ) is a positive solution of (2.2), then

max{0, λ} � u � λ + cμ‖b‖∞
1 − c‖b‖∞‖d‖∞

,

0 < V � (μ + λ‖d‖∞)[(1 − c‖b‖∞‖d‖∞) + k‖ρ‖∞(λ + cμ‖b‖∞)]
(1 − c‖b‖∞‖d‖∞)2

.

Proof. Since

−�u = u
(
λ − u + b(x)v

)
� u(λ − u),

the inequality u � λ follows easily by a simple comparison argument.
By the maximum principle, we can obtain

⎧⎪⎨
⎪⎩

‖u‖∞ � λ + ‖b‖∞
‖V ‖∞

1 + k minΩ̄ ρ‖u‖∞
,

‖V ‖∞ �
(
1 + k‖ρ‖∞‖u‖∞

)(
μ + ‖d‖∞‖u‖∞

)
.

Furthermore, we can see

‖u‖∞ � λ + ‖b‖∞
(
μ + ‖d‖∞‖u‖∞

) 1 + k‖ρ‖∞‖u‖∞
1 + k minΩ̄ ρ‖u‖∞

,

� λ + ‖b‖∞‖ρ‖∞
min ρ

(
μ + ‖d‖∞‖u‖∞

)
,

Ω̄
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thus (
1 − ‖b‖∞‖d‖∞‖ρ‖∞

minΩ̄ ρ

)
‖u‖∞ � λ + μ‖b‖∞‖ρ‖∞

minΩ̄ ρ
, (2.6)

the estimate of u is obtained.
Similarly, we can get

(
1 − ‖b‖∞‖d‖∞‖ρ‖∞

minΩ̄ ρ

)
‖V ‖∞ �

(
μ + λ‖d‖∞

)(
1 + k‖ρ‖∞‖u‖∞

)
, (2.7)

the estimate of V is also obtained. �
Remark 2.4. It should be noted that in [21] the spatial dimension N � 3 is required to derive a priori
estimates of positive solutions. However, we do not restrict the spatial dimension in our paper.

From (2.6) and (2.7) in the proof of Lemma 2.3, we immediately deduce the following non-
existence region of positive solutions of (2.2).

Lemma 2.5. Suppose ‖b‖∞‖d‖∞ < 1
c with c defined in Lemma 2.3. If λ satisfies the following conditions

⎧⎨
⎩

λ � −cμ‖b‖∞, if μ � 0,

λ � − μ

‖d‖∞
, if μ < 0,

(2.8)

then (2.2) does not have any positive solutions.

Note that if the cross-diffusion is spatially homogeneous (ρ(x) ≡ const), by the same method, we
know that if ‖b‖∞‖d‖∞ < 1, λ � −μ‖b‖∞ , then there does not exist any positive solution in case
μ > 0; the results are the same if μ < 0. The differences imply that we have to impose stronger
restrictions on b(x) and d(x), but we can obtain a smaller non-existence region of positive solutions,
that is the spatially heterogeneous cross-diffusion may cause a larger existence region of positive so-
lutions. In Section 4, we surely deduce that the spatial heterogeneity can produce a larger coexistence
region, in particular, can produce multiple coexistence states.

2.3. Bifurcation from semitrivial solutions

In the subsection, we will regard λ as the bifurcation parameter and apply the local bifurcation
theory [4] to obtain positive solutions of (2.2) bifurcating from the semitrivial solution sets.

With regard to Lemma 2.1, we can define the positive functions ψ∗ and φ∗ such that

−�ψ∗ − μ + λ∗ d(x)

1 + λ∗kρ(x)
ψ∗ = 0 in Ω, ∂νψ∗ = 0 on ∂Ω, ‖ψ∗‖2 = 1, (2.9)

and

−�φ∗ − (
λ∗ + μb(x)

)
φ∗ = 0 in Ω, ∂νφ∗ = 0 on ∂Ω,

∥∥φ∗∥∥
2 = 1. (2.10)

It should be noted that we assume μ < 0 in (2.9) and μ > 0 in (2.10).
Furthermore, we define the following Banach spaces:

X = W 2,p
ν (Ω) × W 2,p

ν (Ω), Y = Lp(Ω) × Lp(Ω), (2.11)
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where

W 2,p
ν (Ω) = {

u ∈ W 2,p(Ω): ∂νu = 0 on ∂Ω
}
, p > N.

Thus X ⊂ C1(Ω̄) × C1(Ω̄) by the Sobolev embedding theorem.
Then, we obtain the following lemma by the local bifurcation theory.

Lemma 2.6. For any fixed (μ,k,ρ(x),b(x),d(x)), the following local bifurcation properties hold true:

(i) If μ < 0, then a branch of positive solutions of (2.2) bifurcates from Γu if and only if λ = λ∗ > 0. To be
precise, all positive solutions of (2.2) near (λ∗,0, λ∗) ∈ X × R can be parameterized as:

{(
λ∗ + s

(
φ∗ + sũ(s)

)
, s

(
ψ∗ + sṼ (s)

)
, λ(s)

) ∈ X × R: 0 < s � δ∗
}

(2.12)

for some (φ∗,ψ∗) ∈ X and δ∗ > 0. Here (ũ(s), Ṽ (s), λ(s)) is a smooth function with λ(0) = λ∗ and∫
Ω

Ṽ ψ∗ = 0.
If μ > 0, there is no positive solutions bifurcating from Γu .

(ii) For μ > 0, a branch of positive solutions of (2.2) bifurcates from ΓV if and only if λ = λ∗ < 0. More
precisely, all positive solutions of (2.2) near (0,μ,λ∗) can be parameterized as

{(
s
(
φ∗ + sū(s)

)
,μ + s

(
ψ∗ + sV̄ (s)

)
, λ(s)

)
: 0 < s � δ∗} (2.13)

for some (φ∗,ψ∗) ∈ X and δ∗ > 0. Here (ū(s), V̄ (s), λ(s)) is a smooth function satisfying λ(0) = λ∗ and∫
Ω

ūφ∗ = 0.
If μ < 0, there is no such semitrivial solutions (0,μ).

Proof. (i) Let U = u − λ and define the operator Φ : X × R → Y by

Φ(U , V , λ) =
(

�U + (U + λ)
(−U + b(x)V

1+kρ(x)(U+λ)

)
�V + V

1+kρ(x)(U+λ)

(
μ − V

1+kρ(x)(U+λ)
+ d(x)(U + λ)

)
)

,

then clearly Φ(0,0, λ) = 0.

After some simple computations, we can see

Φ(U ,V )(0,0, λ)[φ,ψ] =
(

�φ − λφ + λb(x)
1+λkρ(x)ψ

�ψ + μ+λd(x)
1+λkρ(x)ψ

)
.

Note (2.9) yields that in case μ < 0,

N
(
Φ(U ,V )(0,0, λ∗)

) = span
{(

φ∗,ψ∗
)}

,

where φ∗ = (−� + λ∗)−1[ λ∗b(x)
1+λ∗kρ(x)ψ∗] > 0 in Ω . If ( f , g) ∈ R(Φ(U ,V )(0,0, λ∗)), then there exists

(φ,ψ) ∈ X such that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�φ − λ∗φ + λ∗b(x)

1 + λ∗kρ(x)
ψ = f in Ω,

�ψ + μ + λ∗ d(x)

1 + λ∗kρ(x)
ψ = g in Ω,

(2.14)
∂νφ = ∂νψ = 0 on ∂Ω.
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Since λ1(− μ+λ∗ d(x)
1+λ∗kρ(x) ) = 0, together with the elliptic regularity theory and the compactness of this

kind of operator (−� + I)−1, we can apply the Fredholm alternative theorem to obtain that the
second equation of (2.14) is solvable if and only if

∫
Ω

gψ∗ = 0. Then for the obtained solution ψ , we
know

φ = (−� + λ∗)−1
(

λ∗b(x)

1 + λ∗kρ(x)
ψ − f

)
.

So,

R
(
Φ(U ,V )(0,0, λ∗)

) =
{
( f , g) ∈ Y :

∫
Ω

gψ∗ = 0

}
.

Thus dim N (Φ(U ,V )(0,0, λ∗)) = codim R(Φ(U ,V )(0,0, λ∗)) = 1. Furthermore, it can be calculated that

Φ(U ,V )λ(0,0, λ∗)[φ∗,ψ∗] =
(−φ∗ + b(x)

(1+λ∗kρ(x))2 ψ∗
d(x)−μkρ(x)
(1+λ∗kρ(x))2 ψ∗

)
,

as
∫
Ω

d(x)−μkρ(x)
(1+λ∗kρ(x))2 ψ2∗ > 0,

Φ(U ,V )λ(0,0, λ∗)[φ∗,ψ∗] /∈ R
(
Φ(U ,V )(0,0, λ∗)

)
.

Consequently we can apply the local bifurcation theory to Φ at (0,0, λ∗). It should be noted that the
possibility of other bifurcation points except λ = λ∗ is excluded by the virtue of the Krein–Rutman
theorem. Using u = U + λ, we immediately obtain the local bifurcation branch (2.12). (ii) The proof is
similar to that of (i). We sketch the main procedure. Let V̄ = V − μ and define Ψ : X × R → Y by

Ψ (u, V̄ , λ) =
(

�u + u
(
λ − u + b(x)(V̄ +μ)

1+kρ(x)u

)
�V̄ + V̄ +μ

1+kρ(x)u

(
μ − V̄ +μ

1+kρ(x)u + d(x)u
)
)

,

Ψ(u,V̄ )(0,0, λ)[φ,ψ] =
(

�φ + (λ + μb(x))φ

�ψ + μ(d(x) + μkρ(x))φ − μψ

)
,

Ψ(u,V̄ )λ(0,0, λ)[φ,ψ] =
(

φ

0

)
.

Then (2.10) yields that

N
(
Ψ(u,V̄ )

(
0,0, λ∗)) = span

{(
φ∗,ψ∗)},

where ψ∗ = (−� + μ)−1[μ(d(x) + μkρ(x))φ∗] and

R
(
Ψ(u,V̄ )

(
0,0, λ∗)) =

{
( f , g) ∈ Y :

∫
Ω

f φ∗ = 0

}
,

then

dim N
(
Ψ(u,V̄ )

(
0,0, λ∗)) = codim R

(
Ψ(u,V̄ )

(
0,0, λ∗)) = 1.
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Moreover,

Ψ(u,V̄ )λ

(
0,0, λ∗)[φ∗,ψ∗] =

(
φ∗
0

)
,

Ψ(u,V̄ )λ(0,0, λ∗)[φ∗,ψ∗] /∈ R(Ψ(u,V̄ )(0,0, λ∗)), we obtain the local bifurcation branch (2.13). �
Remark 2.7. If there is no cross-diffusion, system (1.2) becomes

⎧⎨
⎩

�u + u
(
λ − u + b(x)v

) = 0, x ∈ Ω,

�v + v
(
μ − v + d(x)u

) = 0, x ∈ Ω,

∂νu = ∂ν v = 0, x ∈ ∂Ω.

By the local bifurcation theory, we can see that the cross-diffusion does not affect the set S V , but
causes Su to become {(λ,μ) ∈ R

2: λ1(−μ − λd(x)) = 0}. The result shows that the spatial hetero-
geneity of the cross-diffusion can only affect the bifurcation point on Γu , the bifurcation point on ΓV

is unaffected.

2.4. Global bifurcation branch

In this subsection, we obtain the global bifurcation branch together with the local branch obtained
in Lemma 2.6.

Theorem 2.8. For any fixed (μ,k,ρ(x),b(x),d(x)) with ‖b‖∞‖d‖∞ < 1
c (c is defined in Lemma 2.3), if μ > 0,

the positive solution set of (2.2) (with parameter λ) forms an unbounded continuum Γp ⊂ X ×R bifurcating
from (u, V , λ) = (0,μ,λ∗) ∈ ΓV ; if μ < 0, then the positive solution set of (2.2) also forms an unbounded
continuum Γp bifurcating from (u, V , λ) = (λ∗,0, λ∗) ∈ Γu .

Proof. For any fixed μ > 0, the local bifurcation branch (2.13) exists. We let Γ̂ be any maximum
extension in X × R as a connected set of solutions of (2.2). According to the global bifurcation theo-
rem [33], Γ̂ must satisfy one of the following:

(i) Γ̂ is unbounded in X × R;
(ii) Γ̂ meets the trivial or a semilinear solution curve at some point except for (0,μ,λ∗).
Recall that positive solutions of (2.2) bifurcate from {(0,μ,λ): λ ∈ R, μ > 0} if and only if λ = λ∗

and no positive solutions bifurcate from {(λ,0, λ): λ > 0} if μ > 0. In addition, the non-degeneracy
of the trivial solution can be easily verified.

Thus when μ > 0, (ii) is excluded. Due to the a priori estimates of positive solutions, the local
bifurcation branch (2.13) can be extended to λ → ∞, Γ̂ is unbounded in X × R.

If μ < 0, for the local bifurcation branch (2.12), the proof is essentially the same as that of the
case μ > 0. We only need to note that there do not exist such semitrivial solutions (0,μ) in this
case. Thus the positive solution set of (2.2) also forms an unbounded continuum bifurcating from
(u, V , λ) = (λ∗,0, λ∗). The theorem is proved. �

From Theorem 2.8 and the non-existence region of positive solutions in Lemma 2.5, we know
under weak cooperation, if μ > 0, (2.2) has at least one positive solution if λ > λ∗; if μ < 0, (2.2) has
at least one positive solution if λ > λ∗ . Either μ > 0 or μ < 0 asserts the unbounded continuum. In
summary, the sufficient condition for the existence of positive solutions can be given by

λ1

(
− μ + λd(x)

1 + λkρ(x)

)
< 0 and λ1

(−λ − μb(x)
)
< 0.
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3. Limiting system

3.1. Lyapunov–Schmidt reduction

To study the heterogeneous effects on the shape of the positive solution curve, we introduce the
following change of variables in (2.2):

u = εw, V = εz, λ = εα, μ = εβ, k = 1

ε
, (3.1)

where ε is a small positive number and α and β are real numbers. By (3.1), the function (w, z)
satisfies the following perturbed problem of semilinear elliptic equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�w + εw

(
α − w + b(x)z

1 + ρ(x)w

)
= 0, x ∈ Ω,

�z + εz

1 + ρ(x)w

(
β − z

1 + ρ(x)w
+ d(x)w

)
= 0, x ∈ Ω,

∂ν w = ∂ν z = 0, x ∈ ∂Ω.

(3.2)

Thus, (3.2) has two semitrivial solutions

(w, z) = (α,0) and (w, z) = (0, β)

in addition to the trivial solution (w, z) = (0,0). In the following, we regard α as the bifurcation pa-
rameter. We will give the exact structure of the positive solution set of (3.2) when ε > 0 is sufficiently
small.

To apply the Lyapunov–Schmidt reduction, we firstly introduce a linear operator H : X → Y and a
nonlinear operator B : X × R → Y by

H(w, z) = (�w,�z), (3.3)

B(w, z,α) =
(

w

(
α − w + b(x)z

1 + ρ(x)w

)
,

z

1 + ρ(x)w

(
β − z

1 + ρ(x)w
+ d(x)w

))
, (3.4)

where X and Y are defined in (2.11). Consequently, (3.2) is equivalent to

H(w, z) + εB(w, z,α) = 0. (3.5)

Denote by X1 and Y1 the L2-orthogonal space of R
2 in X and Y , respectively. Moreover, let P :

X → X1 and Q : Y → Y1 be the orthogonal projections. So for any (w, z) ∈ X , there exists a unique
(r, s) ∈ R

2 such that

(w, z) = (r, s) + u, u = P (w, z). (3.6)

By virtue of H((r, s)) = 0 and (I − Q )H(X1) = 0, (3.5) is then reduced to

Q H(u) + εQ B
(
(r, s) + u,α

) = 0 (3.7)

and

(I − Q )B
(
(r, s) + u,α

) = 0.
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By a similar argument to that of [23, Lemma 3.1], the implicit function theorem and a compactness
argument give the following lemma.

Lemma 3.1. For any C > 0, there exist a small positive number ε0 and a neighborhood N of {(w, z,α, ε) =
(r, s,α,0) ∈ X ×R

2: |r|, |s|, |α| � C} such that all positive solutions of (3.7) contained in N can be expressed
by

K = {(
(r, s) + εU(r, s,α, ε),α, ε

)
: |r|, |s|, |α| � C + ε0, |ε| � ε0

}
,

where U(r, s,α, ε) is an X1-valued smooth function. Therefore,

(w, z,α, ε) = (
(r, s) + εU(r, s,α, ε),α, ε

) ∈ K

is a solution of (3.5) if and only if

Φε(r, s,α) = (I − Q )B
(
(r, s) + εU(r, s,α, ε),α

) = 0.

3.2. Some properties of the limiting positive solution set

In the subsection, we derive the exact expression of the limiting solution set as ε → 0 and give
some useful properties of the limiting solution set. This will be very important to obtain the positive
solution set of (3.2) when ε > 0 is small.

Note that (I − Q )(w, z) = (−
∫
Ω

w, −
∫
Ω

z), then

Φ0(r, s,α) =
(

r
(
α − r + s −

∫
Ω

b(x)
1+rρ(x)

)
s
(
−
∫
Ω

1
1+rρ(x)

(
β − s

1+rρ(x) + r d(x)
))

)
. (3.8)

Thus, N (Φ0) = L0 ∪ L w ∪ Lz ∪ L p, where

L0 = {
(0,0,α): α ∈ R

}
,

L w = {
(α,0,α): α ∈ R

}
,

Lz = {
(0, β,α): α ∈ R

}
,

and

L p = {(
r, f (r), g(r)

)
: r ∈ R

}
,

with

f (r) = −
∫
Ω

β + r d(x)

1 + rρ(x)

/
−
∫
Ω

1

(1 + rρ(x))2
, g(r) = r − f (r) −

∫
Ω

b(x)

1 + rρ(x)
. (3.9)

Note that L p contains the limiting set of positive solutions of (3.2) as ε → 0.
By virtue of (3.9), if β > 0, then

f (r) > 0 for r ∈ [0,∞).

While if β < 0, we can find a unique positive constant r0 such that{
f (r) < 0, for r ∈ [0, r0),

f (r) > 0, for r ∈ (r ,∞).
(3.10)
0
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In the following, we aim to study the profiles of g(r). Since we need the a priori estimates to obtain
our final results, we assume the assumptions in Lemma 2.3 hold true in the following.

Lemma 3.2. Suppose ‖b‖∞‖d‖∞ < 1
c with c defined in Lemma 2.3. Then we have

g(0) = −β −
∫
Ω

b(x), lim
r→+∞ g(r) = +∞

and

g′(0) = 1 − −
∫
Ω

d(x) −
∫
Ω

b(x) − β

(
−
∫
Ω

b(x) −
∫
Ω

ρ(x) − −
∫
Ω

b(x)ρ(x)

)
. (3.11)

Furthermore, the following hold:

(i) If −
∫
Ω

b(x)ρ(x) � −
∫
Ω

b(x) −
∫
Ω

ρ(x), then g′(0) > 0 for β > 0.
(ii) If −

∫
Ω

b(x)ρ(x) < −
∫
Ω

b(x) −
∫
Ω

ρ(x), then

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g′(0) > 0, if β <
1 − −

∫
Ω d(x) −

∫
Ω b(x)

−
∫
Ω b(x) −

∫
Ω ρ(x) − −

∫
Ω b(x)ρ(x)

,

g′(0) < 0, if β >
1 − −

∫
Ω d(x) −

∫
Ω b(x)

−
∫

Ωb(x) −
∫
Ω ρ(x) − −

∫
Ω b(x)ρ(x)

.

(3.12)

(iii) If β < 0, for the zero point r0 of f , we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g′(r0) > 0, if −
∫
Ω

1

(1 + r0ρ(x))2
> −

∫
Ω

d(x) − βρ(x)

(1 + r0ρ(x))2
−
∫
Ω

b(x)

1 + r0ρ(x)
,

g′(r0) < 0, if −
∫
Ω

1

(1 + r0ρ(x))2
< −

∫
Ω

d(x) − βρ(x)

(1 + r0ρ(x))2
−
∫
Ω

b(x)

1 + r0ρ(x)
.

(3.13)

Proof. From the expression, g(0) = −β −
∫
Ω

b(x) follows easily. As

g(r)

r
= 1 − f (r) −

∫
Ω

b(x)

r(1 + rρ(x))
= 1 −

−
∫
Ω

β+r d(x)
1+rρ(x)

−
∫
Ω

b(x)
r(1+rρ(x))

−
∫
Ω

1
(1+rρ(x))2

,

we can deduce that

lim
r→+∞

g(r)

r
= 1 −

−
∫
Ω

d(x)
ρ(x)

−
∫
Ω

b(x)
ρ(x)

−
∫
Ω

1
ρ2(x)

.

While

−
∫

d(x)

ρ(x)
−
∫

b(x)

ρ(x)
� ‖b‖∞‖d‖∞

(
−
∫

1

ρ(x)

)2

� ‖b‖∞‖d‖∞ −
∫

1

ρ2(x)
,

Ω Ω Ω Ω
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thus

0 <
−
∫
Ω

d(x)
ρ(x)

−
∫
Ω

b(x)
ρ(x)

−
∫
Ω

1
ρ2(x)

� ‖b‖∞‖d‖∞ <
1

c
� 1,

which yields that limr→+∞ g(r) = +∞.
As

g′(r) = 1 − f ′(r) −
∫
Ω

b(x)

1 + rρ(x)
+ f (r) −

∫
Ω

b(x)ρ(x)

(1 + rρ(x))2
,

f ′(r) =
−
∫
Ω

d(x)−βρ(x)
(1+rρ(x))2 −

∫
Ω

1
(1+rρ(x))2 + 2 −

∫
Ω

β+rd(x)
1+rρ(x)

−
∫
Ω

ρ(x)
(1+rρ(x))3

(−
∫
Ω

1
(1+rρ(x))2 )2

,

then

g′(0) = 1 − −
∫
Ω

d(x) −
∫
Ω

b(x) − β

(
−
∫
Ω

b(x) −
∫
Ω

ρ(x) − −
∫
Ω

b(x)ρ(x)

)
.

Thus (i) and (ii) follow clearly.
It is easy to see that

g′(r0) = 1 −
−
∫
Ω

d(x)−βρ(x)
(1+r0ρ(x))2 −

∫
Ω

b(x)
1+r0ρ(x)

−
∫
Ω

1
(1+r0ρ(x))2

,

thus (iii) follows. �
Remark 3.3. As

f (r) = −
∫
Ω

β + r d(x)

1 + rρ(x)

/
−
∫
Ω

1

(1 + rρ(x))2
,

f (r0) = 0 in the case β < 0, we know that r0 does not depend on b(x). So if ‖b‖∞ is very small, then

−
∫
Ω

1

(1 + r0ρ(x))2
− −

∫
Ω

d(x) − βρ(x)

(1 + r0ρ(x))2
−
∫
Ω

b(x)

1 + r0ρ(x)

is positive; however, if minΩ̄ b(x) is very large, then

−
∫
Ω

1

(1 + r0ρ(x))2
− −

∫
Ω

d(x) − βρ(x)

(1 + r0ρ(x))2
−
∫
Ω

b(x)

1 + r0ρ(x)

is negative.
Thus, either g′(r0) > 0 or g′(r0) < 0 can hold.
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Note that if the coefficients of (3.2) are all spatially homogeneous, that is ρ(x),b(x) and d(x) are
all constants, then

f (r) = (β + rd)(1 + rρ), g(r) = r − b(β + rd),

we can see

g′(r) = 1 − bd > 0 for all r > 0.

4. Construction of the perturbed set of positive solutions

4.1. Case β > 0

Let β > 0. Then by Lemma 3.2, we can find sufficiently large numbers A and C such that

A = g(C) = max
r∈[0,C] g(r). (4.1)

Furthermore, Lemma 2.5 asserts that (3.2) has no positive solutions if α � −cβ‖b‖∞ . So in this sub-
section, we let α ∈ [−cβ‖b‖∞, A].

In the following, the positive solution set of (3.2) will be constructed when ε > 0 is small. To be
more precise, we have the following theorem:

Theorem 4.1. Assume β > 0, ‖b‖∞‖d‖∞ < 1
c with c defined in Lemma 2.3. Then there exist a small constant

ε0 > 0 and a family of bounded smooth curves

{
S(ξ, ε) = (

r(ξ, ε), s(ξ, ε),α(ξ, ε)
) ∈ R

3: (ξ, ε) ∈ [0, Cε] × [0, ε0]
}

such that for any ε ∈ (0, ε0], all positive solutions of (3.2) with α ∈ [−cβ‖b‖∞, A] can be expressed by

Γ ε = {(
w(ξ, ε), z(ξ, ε),α(ξ, ε)

) = (
(r, s) + εU(r, s,α, ε),α

)
:

(r, s,α) = (
r(ξ, ε), s(ξ, ε),α(ξ, ε)

)
, ξ ∈ (0, Cε)

}
(4.2)

where U(r, s,α, ε) is the X1-valued smooth function defined in Lemma 3.1 and S(ξ, ε) is a certain smooth
function satisfying

S(ξ,0) = (
ξ, f (ξ), g(ξ)

)
and S(0, ε) = (

0, β,α∗(ε)
)
.

Here α∗(ε) is defined by

α∗(ε) = λ∗(εβ)

ε
, (4.3)

and Cε is a certain smooth positive function in ε ∈ [0, ε0] with C0 = C and α(Cε, ε) = A. Furthermore, Γ ε

can be extended to the range of α ∈ [A,∞) as a positive solution curve of (3.2).

In order to prove Theorem 4.1, we take several steps. As the first step, we construct local branches
of positive solutions of (3.5) near (0, β,−β −

∫
Ω

b(x)).
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Lemma 4.2. Assume β > 0, then there exist a neighborhood U ∗ of (0, β,−β −
∫
Ω

b(x)) and a positive number δ̄∗
such that for each ε ∈ [0, δ̄∗],

N
(
Φε

) ∩ U∗ ∩ (
R̄

2+ × R
) = {(

r(ξ, ε), s(ξ, ε),α(ξ, ε)
)
: ξ ∈ [

0, δ̄∗]} ∪ {
(0, β,α) ∈ U∗}, (4.4)

for a smooth function (r(ξ, ε), s(ξ, ε),α(ξ, ε)) with

(
r(ξ,0), s(ξ,0),α(ξ,0)

) = (
ξ, f (ξ), g(ξ)

)
,

(
r(0, ε), s(0, ε),α(0, ε)

) = (
0, β,α∗(ε)

)
.

Proof. By Lemma 2.6 and the change of variable (3.1), we know that there exist a neighborhood Vε

of (w, z,α) = (0, β,α∗(ε)) and a positive number δ = δ(ε) such that all positive solutions of (3.2)
contained in Vε can be given by

(
w(ξ, ε), z(ξ, ε),α(ξ, ε)

) = (
ξ
(
φ∗ + W (ξ, ε)

)
, β + ξ

(
ψ∗ + Z(ξ, ε)

)
,α(ξ, ε)

)
for ξ ∈ [0, δ], where (φ∗,ψ∗) ∈ X is defined in Lemma 2.6, (W (ξ, ε), Z(ξ, ε),α(ξ, ε)) is a certain
smooth function with α(0, ε) = α∗(ε) and

∫
Ω

W (ξ, ε)φ∗ = 0.
We define the subset Uε ⊂ R

3 by

Uε =
{
(r, s,α) ∈ R

3: r = −
∫
Ω

w, s = −
∫
Ω

z for (w, z,α) ∈ Vε

}
,

and put

r(ξ, ε) = −
∫
Ω

w(ξ, ε), s(ξ, ε) = −
∫
Ω

z(ξ, ε).

As (3.2) is equivalent to Φε(r, s,α) = 0 for small ε, we obtain

N
(
Φε

) ∩ Uε ∩ (
R̄

2+ × R
) = {(

r(ξ, ε), s(ξ, ε),α(ξ, ε)
)
: ξ ∈ [0, δ]} ∪ {

(0, β,α) ∈ Uε

}
.

Since limε→0 α∗(ε) = −β −
∫
Ω

b(x) (the proof is similar to [21, Lemma 4.6], we omit the proof),
(0, β,α(0, ε)) = (0, β,α∗(ε)) is the bifurcation point, so if ε > 0 is small, Uε contains a neighborhood
U∗(⊂ R

3) of (0, β,−β −
∫
Ω

b(x)). The proof is complete. �
Lemma 4.3. Assume β > 0. Then there exist a positive number δ̄ and a neighborhood U of {(r, f (r), g(r)): 0 �
r � C} such that for any ε ∈ [0, δ̄], all positive solutions of (3.2) contained in U ∩ (X × [−cβ‖b‖∞, A]) can
be parameterized as (4.2).

Proof. To prove the lemma, we mainly use the perturbation theory of Du and Lou [10, Appendix]. For
the number δ̄∗ > 0 obtained in Lemma 4.2, we define

L p
([

δ̄∗/2, C
]) = {(

r, f (r), g(r)
)
: r ∈ [

δ̄∗/2, C
]}

.

As some computations can yield that

det Φ0
(r,s)

(
r, f (r), g(r)

) = r f (r)g′(r) −
∫

1

(1 + rρ(x))2
,

Ω
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and f (r̄) > 0 for any (r̄, f (r̄), g(r̄)) ∈ L p([δ̄∗/2, C]), we can see that if g′(r̄) �= 0, Φ0
(r,s)(r̄, f (r̄), g(r̄)) is

invertible. The implicit function theorem then asserts that there exist a positive number δ = δ(r̄) and
a neighborhood Wr̄ of (r̄, f (r̄)) such that for each ε ∈ [0, δ],

N
(
Φε

) ∩ Ur̄ = {(
r(α, ε), s(α, ε),α

)
: α ∈ (

g(r̄) − δ, g(r̄) + δ
)}

, (4.5)

where Ur̄ = Wr̄ × (g(r̄) − δ, g(r̄) + δ) and (r(α, ε), s(α, ε)) is a smooth function satisfying

(
r(g(r̄),0), s(g(r̄),0)

) = (
r̄, f (r̄)

)
.

While if g′(r̄) = 0, then rank Φ0
(r,s)(r̄, f (r̄), g(r̄)) = 1, which means

dim N
(
Φ0

(r,s)

(
r̄, f (r̄), g(r̄)

)) = codim R
(
Φ0

(r,s)

(
r̄, f (r̄), g(r̄)

)) = 1.

Furthermore, we can show that

Φ0
α

(
r̄, f (r̄), g(r̄)

) =
(

r̄
0

)
,

Φ0
α(r̄, f (r̄), g(r̄)) /∈ R(Φ0

(r,s)(r̄, f (r̄), g(r̄))) can be verified. Then the bifurcation theory of Crandall and
Rabinowitz [5, Theorem 3.2 and Remark 3.3] yields that there exist a positive number δ = δ(r̄) and a
neighborhood Ur̄ of (r̄, f (r̄), g(r̄)) such that for any ε ∈ [0, δ],

N
(
Φε

) ∩ Ur̄ = {(
r(ξ, ε), s(ξ, ε),α(ξ, ε)

)
: ξ ∈ (−δ, δ)

}
, (4.6)

with a smooth function (r(ξ, ε), s(ξ, ε),α(ξ, ε)) satisfying

(
r(0,0), s(0,0),α(0,0)

) = (
r̄, f (r̄), g(r̄)

)
.

So either (4.5) or (4.6) holds, we know

L p
([

δ̄∗/2, C
]) ⊂

⋃{
Ur̄: r̄ ∈ [

δ̄∗/2, C
]}

.

As L p([δ̄∗/2, C]) is compact, we can find finitely many points {r j}n
j=1 such that

⎧⎪⎪⎨
⎪⎪⎩

(
r j, f (r j), g(r j)

) ∈ L p
([

δ̄∗/2, C
])

, for 1 � j � n,

L p
([

δ̄∗/2, C
]) ⊂

n⋃
j=1

U j, where U j = Ur j .

In addition, we put U0 = U∗ . Without loss of generality, we can assume

U j ∩ U j+1 �= ∅ for all 0 � j � n − 1.

Let δ j = δ(r j). Then (4.5) and (4.6) yield that for each ε ∈ [0, δ j] (1 � j � n), there exists a smooth
function (r j(ξ, ε), s j(ξ, ε),α j(ξ, ε)) such that

N
(
Φε

) ∩ U j = {(
r j(ξ, ε), s j(ξ, ε),α j(ξ, ε)

)
: ξ ∈ (−δ j, δ j)

} = Jεj , (4.7)

with (r j(0,0), s j(0,0, ),α j(0,0, )) = (r j, f (r j), g(r j)).



Y.-X. Wang, W.-T. Li / J. Differential Equations 251 (2011) 1670–1695 1689
Furthermore, we set

Jε0 = {
(r(ξ, ε), s(ξ, ε),α(ξ, ε)): ξ ∈ [

0, δ̄∗]},
U =

n⋃
j=0

U j .

Thus, Lemma 4.2 and (4.7) imply that

N
(
Φε

) ∩ U ∩ (
R

2+ × R
) =

n⋃
j=0

Jεj for ε ∈
[

0, min
0� j�n

δ j

]
, (4.8)

with δ0 = δ̄∗ . So we know that N (Φε)∩ U ∩ (R2+ ×R) is a one-dimensional submanifold. Indeed, with
the aid of the perturbation theory, we can construct a smooth curve S(ξ, ε) = (r(ξ, ε), s(ξ, ε),α(ξ, ε))

which satisfies ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n⋃
j=0

Jεj = S
(
(0, Cε), ε

)
,

(
r(ξ,0), s(ξ,0),α(ξ,0)

) = (
ξ, f (ξ), g(ξ)

)
,(

r(0, ε), s(0, ε),α(0, ε)
) = (

0, β,α∗(ε)
)
,

for small ε > 0 and ξ ∈ [0, Cε]. The lemma is proved. �
If we can show that (3.2) has no positive solution outside U for α ∈ [−cβ‖b‖∞, A] in the next

step, Lemmas 4.2 and 4.3 can yield Theorem 4.1. More precisely, we have the following lemma.

Lemma 4.4. Assume β > 0 and ‖b‖∞‖d‖∞ < 1
c with c defined in Lemma 2.3. For any fixed neighborhood

V (⊂ R
3) of {(r, f (r), g(r)): 0 � r � C}, there exists a small number ε1 > 0 such that if ε ∈ [0, ε1], any

positive solution (w, z) of (3.2) with α ∈ [−cβ‖b‖∞, A] can be expressed by

(w, z) = (r, s) + εU(r, s,α, ε).

Here (r, s,α) ∈ V and U(r, s,α, ε) is the X1-valued function in Lemma 3.1.

Proof. We will prove the lemma by a contradiction argument. Suppose that there exists a sequence
{(αn, εn)} with αn ∈ [−cβ‖b‖∞, A] and limn→∞ εn = 0 such that (3.2) has a positive solution (wn, zn)

and (wn, zn,αn) /∈ V for all n ∈ N.
If we can find a sequence {(r j, s j)} and a subsequence {(wn( j), zn( j),αn( j))} such that⎧⎨

⎩
(wn( j), zn( j)) = (r j, s j) + εn( j)U(r j, s j,αn( j), εn( j)), for all j ∈ N,

lim
j→∞

(r j, s j,αn( j)) = (
r, f (r), g(r)

)
, for some r ∈ [−cβ‖b‖∞, A

]
,

(4.9)

then the desired contradiction is obtained. As Lemma 2.3 and (3.1) yield the following:

(
1 − ‖b‖∞‖d‖∞‖ρ‖∞

minΩ̄ ρ

)
wn � αn + β‖b‖∞‖ρ‖∞

minΩ̄ ρ
� M,

(
1 − ‖b‖∞‖d‖∞‖ρ‖∞

min ρ

)
zn �

(
β + αn‖d‖∞

)(
1 + ‖ρ‖∞‖wn‖∞

)
� M
Ω̄
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for a sufficiently large number M independent of n, {(wn, zn)} is uniformly bounded in C(Ω̄). Let
w̄n = wn/‖wn‖∞ , z̄n = zn/‖zn‖∞ , then⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�w̄n + εn w̄n

(
αn − wn + b(x)zn

1 + ρ(x)wn

)
= 0, x ∈ Ω,

�z̄n + εn z̄n

1 + ρ(x)wn

(
β − zn

1 + ρ(x)wn
+ d(x)wn

)
= 0, x ∈ Ω,

∂ν w̄n = ∂ν z̄n = 0, x ∈ ∂Ω.

(4.10)

Since {(wn, zn,αn)} is uniformly bounded in C(Ω̄) × C(Ω̄) × R,{
w̄n

(
αn − wn + b(x)zn

1 + ρ(x)wn

)}
and

{
z̄n

1 + ρ(x)wn

(
β − zn

1 + ρ(x)wn
+ d(x)wn

)}

are also uniformly bounded. Then the elliptic regularity (see [14]) deduces that there exists a subse-
quence {(wn( j), zn( j),αn( j))} such that

lim
j→∞

(w̄n( j), z̄n( j),αn( j)) = (w̄, z̄,α∞) in C1(Ω̄) × C1(Ω̄) × R, (4.11)

for some (w̄, z̄,α∞).
Let n → ∞ in (4.10), we know

�w̄ = �z̄ = 0 in Ω, ∂ν w̄ = ∂ν z̄ = 0 on ∂Ω. (4.12)

Since ‖w̄‖∞ = ‖z̄‖∞ = 1, we know that w̄ = z̄ = 1 in Ω̄ . Thus we can find nonnegative constants
r and s such that

lim
j→∞

(wn( j), zn( j)) = (r, s) in C1(Ω̄) × C1(Ω̄), (4.13)

as {(wn, zn)} is bounded and positive. Together with Lemma 3.1, (wn( j), zn( j)) can be parameterized
as

(wn( j), zn( j)) = (r j, s j) + εn( j)U(r j, s j,αn( j), εn( j))

for sufficiently large j ∈ N. Moreover, lim j→∞(r j, s j) = (r, s).
Integrating the two equations in (4.10), we obtain⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
∫
Ω

w̄n( j)

(
αn( j) − wn( j) + b(x)zn( j)

1 + ρ(x)wn( j)

)
= 0,

−
∫
Ω

z̄n( j)

1 + ρ(x)wn( j)

(
β − zn( j)

1 + ρ(x)wn( j)
+ d(x)wn( j)

)
= 0.

(4.14)

We let j → ∞ in (4.14), then⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α∞ − r + s −
∫
Ω

b(x)

1 + rρ(x)
= 0,

−
∫

1

1 + rρ(x)

(
β − s

1 + rρ(x)
+ r d(x)

)
= 0.
Ω
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Obviously,

s = f (r), α∞ = g(r).

So (4.9) is proved, which shows the lemma. �
Now we give the proof of Theorem 4.1.

Proof of Theorem 4.1. By Lemmas 4.3 and 4.4, we need only to show that Γ ε can be extended to
α ∈ [A,∞) as a positive solution curve of (3.2). Let Γ̂ ε be any maximum extension in the direction
α � A. By virtue of the global bifurcation theorem, Γ̂ ε must satisfy one of the following:

(i) Γ̂ ε is unbounded in X × R;
(ii) Γ̂ ε meets a certain bifurcation point except for (0, β,α∗(ε)).

As no positive solutions bifurcate from other semitrivial solution curve {(α,0,α): α > 0}, and the
trivial solution is non-degenerate, (ii) is excluded. As (w, z) is bounded due to the a priori estimates,
Γ ε can be extended to α ∈ [A,∞). The theorem is proved. �
4.2. Unbounded fish–hook shaped branch

Due to Theorem 4.1, we obtain the following unbounded fish–hook shaped bifurcation branch.

Theorem 4.5. Assume β > 0, ‖b‖∞‖d‖∞ < 1
c with c defined in Lemma 2.3,

−
∫
Ω

b(x)ρ(x) < −
∫
Ω

b(x) −
∫
Ω

ρ(x).

Then for any small constant η > 0, there exists a small positive number ε2 such that if

(β, ε) ∈
[

1 − −
∫
Ω d(x) −

∫
Ω b(x)

−
∫
Ω b(x) −

∫
Ω ρ(x) − −

∫
Ω b(x)ρ(x)

+ η,η−1
]

× [0, ε2],

the positive solution set of (3.2) contains an unbounded fish–hook shaped curve Γ ε bifurcating from the
semitrivial solution curve (0, β,α∗(ε)). Furthermore, there exists a number

α(ε) = min
ξ∈[0,Cε]

α(ξ, ε) < α∗(ε)

such that

(i) if α ∈ [−cβ‖b‖∞,α(ε)), (3.2) has no positive solutions;
(ii) if α ∈ [α∗(ε),∞) or α = α(ε), (3.2) has at least one positive solution;

(iii) if α ∈ (α(ε),α∗(ε)), (3.2) has at least two positive solutions.

Proof. For the smooth curve S(ξ, ε) = (r(ξ, ε), s(ξ, ε),α(ξ, ε)) defined in Theorem 4.1, S(ξ,0) =
(ξ, f (ξ), g(ξ)), we can show that

lim
ε→0

(
s(ξ, ε),α(ξ, ε)

) = (
f (ξ), g(ξ)

)
in C1([0, C]) × C1([0, C]),

with C defined in (4.1).



1692 Y.-X. Wang, W.-T. Li / J. Differential Equations 251 (2011) 1670–1695
Since when β >
1−−∫

Ω
d(x) −∫

Ω
b(x)

−∫
Ω

b(x) −∫
Ω

ρ(x)−−∫
Ω

b(x)ρ(x)
, g′(0) < 0. Then for any fixed small positive number η, we

can find a small ε2 > 0 such that if (β, ε) ∈ [ 1−−∫
Ω

d(x) −∫
Ω

b(x)

−∫
Ω

b(x) −∫
Ω

ρ(x)−−∫
Ω

b(x)ρ(x)
+ η,η−1] × [0, ε2], αξ (0, ε) < 0.

With regard to α(ξ, ε) � α(Cε, ε) for ξ ∈ [0, Cε], we know that there exists

α(ε) = α
(
ξ(ε), ε

) = min
ξ∈[0,Cε]

α(ξ, ε)

for some ξ(ε) ∈ (0, Cε).
Define

Kε(α) = {
ξ ∈ (0, Cε): α(ξ, ε) = α

}
.

Obviously, Kε(α) has no element if α ∈ [−cβ‖b‖∞,α(ε)), at least one element if α ∈ [α∗(ε), A) or
α = α(ε), and at least two elements if α ∈ (α(ε),α∗(ε)). While (4.2) implies that the number of
elements of Kε(α) is equal to the number of positive solutions of (3.2) for sufficiently small ε and
α ∈ [−cβ‖b‖∞, A]. As Γ ε can be extended in the direction α ∈ [A,∞), we know that (3.2) has at
least one positive solution for α ∈ [A,∞). The proof is complete. �
Remark 4.6. If −

∫
Ω

b(x)ρ(x) � −
∫
Ω

b(x) −
∫
Ω

ρ(x), then for any small η > 0, there exists ε2 such
that if (β, ε) ∈ [η,η−1] × [0, ε2], the bifurcation at (0, β,α∗(ε)) is supercritical; or −

∫
Ω

b(x)ρ(x) <

−
∫
Ω

b(x) −
∫
Ω

ρ(x), then for any small η > 0, there exists ε2 such that if

(β, ε) ∈
[
η,

1 − −
∫
Ω d(x) −

∫
Ω b(x)

−
∫
Ω b(x) −

∫
Ω ρ(x) − −

∫
Ω b(x)ρ(x)

− η

]
× [0, ε2],

the bifurcation at (0, β,α∗(ε)) is supercritical. In the two cases (including the case that the cross-
diffusion is spatially homogeneous), we can only deduce that if α ∈ (α∗(ε),∞), (3.2) has at least one
positive solution by this method.

While if a spatial segregation of b(x) and ρ(x) enables −
∫
Ω

b(x)ρ(x) < −
∫
Ω

b(x) −
∫
Ω

ρ(x) to hold, then
we can deduce that if α ∈ (α(ε),α∗(ε)), (3.2) has at least two positive solutions for suitable fixed β

besides the existence of positive solutions when α ∈ (α∗(ε),∞). We see that the spatial heterogeneity
can generate complicated and interesting spatio-temporal patterns of stationary solutions.

On the other hand, as we know if the coefficients of (3.2) are all spatially homogeneous, g′(r) > 0
for all r, then if ε > 0 is sufficiently small, αξ (ξ, ε) > 0 can be obtained for any ξ ∈ (0, Cξ ). The
positive solution curve is a monotone curve with respect to α in either case β > 0 or β < 0. Thus,
(3.2) has a unique positive solution if α > α∗(ε) in case β > 0 and α > α∗(ε) in case β < 0, the latter
case will be seen in the next subsection.

4.3. Case β < 0

Since

g(r0) = 0, g(r) → +∞ as r → +∞,

there exist two sufficiently large numbers A1 and C1 such that

A1 = max
r∈[r0,C1] g(r).

Lemma 2.5 tells us that if α � − β
‖d‖∞ , (3.2) has no positive solutions, then we let α ∈ [− β

‖d‖∞ , A1] in
the subsection.
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Completely similar to the case β > 0, we only need to replace r ∈ [0, C] by r ∈ [r0, C1] and can
obtain the following conclusions:

Theorem 4.7. Assume β < 0, ‖b‖∞‖d‖∞ < 1
c with c defined in Lemma 2.3. Then there exist a small ε0 > 0

and a family of bounded curves

{
S(ξ, ε) = (

r(ξ, ε), s(ξ, ε),α(ξ, ε)
)
: (ξ, ε) ∈ [0, Cε] × [0, ε0]

}
such that for any fixed ε ∈ (0, ε0], all positive solutions of (3.2) with α ∈ [− β

‖d‖∞ , A1] can be expressed by

Γε = {
(w, z,α) = (

(r, s) + εU(r, s,α, ε),α
)
: (r, s,α) = (

r(ξ, ε), s(ξ, ε),α(ξ, ε)
)
, ξ ∈ (0, Cε)

}
(4.15)

where S(ξ, ε) is a certain smooth function with

S(ξ,0) = (
r0 + ξ, f (r0 + ξ), g(r0 + ξ)

)
, S(0, ε) = (

α∗(ε),0,α∗(ε)
)
.

Here α∗(ε) = λ∗(εβ)
ε > 0 and Cε is a certain smooth function in [0, ε0] such that C0 = C1 and α(Cε, ε) = A1 .

Furthermore, Γε can be extended in the direction α ∈ [A1,∞) as a positive solution curve of (3.2).

Lemma 4.8. Assume β < 0. There exist a neighborhood U∗(⊂ R
3) of (r0,0, r0) and a positive number δ̄∗ such

that for any ε ∈ [0, δ̄∗],

N
(
Φε

) ∩ U∗ ∩ (
R̄

2+ × R
) = {(

r̂(ξ, ε), ŝ(ξ, ε), α̂(ξ, ε)
) ∈ R

3: ξ ∈ [0, δ̄∗]
} ∪ {

(α,0,α) ∈ U∗
}
,

with a certain smooth function Ŝ(ξ, ε) = (r̂(ξ, ε), ŝ(ξ, ε), α̂(ξ, ε)) satisfying

Ŝ(ξ,0) = (
r0 + ξ, f (r0 + ξ), g(r0 + ξ)

)
, Ŝ(0, ε) = (

α∗(ε),0,α∗(ε)
)
.

It should be noted that we can deduce limε→0 α∗(ε) = r0 by a similar proof to that of
[21, Lemma 4.4].

Lemma 4.9. Assume β < 0, then there exist a small δ̄ > 0 and a neighborhood U (⊂ X × R) of

{(
r, f (r), g(r)

)
: r0 � r � C1

}
such that if ε ∈ [0, δ̄], all positive solutions of (3.5) contained in U ∩ (X ×[− β

‖d‖∞ , A1]) can be parameterized
as (4.15).

Lemma 4.10. Assume β < 0, ‖b‖∞‖d‖∞ < 1
c with c defined in Lemma 2.3. For any neighborhood V of

{(r, f (r), g(r)): r ∈ [r0, C1]}, all positive solutions of (3.2) with α ∈ [− β
‖d‖∞ , A1] can be expressed by

(w, z,α) = (r, s) + εU(r, s,α, ε) with (r, s,α) ∈ V ,

when ε > 0 is sufficiently small.

Then Lemmas 4.9 and 4.10 imply Theorem 4.7. Consequently we deduce the following unbounded
fish–hook shaped bifurcation curve.
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Theorem 4.11. Assume β < 0, ‖b‖∞‖d‖∞ < 1
c with c defined in Lemma 2.3. If minΩ̄ b(x) is very large and

‖d‖∞ is very small such that g′(r0) < 0, then for any small number η > 0, there exists ε1 > 0 such that if
(β, ε) ∈ [−η−1,−η]×[0, ε1], the positive solution set of (3.2) forms an unbounded fish–hook shaped smooth
curve bifurcating from (α∗(ε),0,α∗(ε)). Furthermore, the bifurcation at (α∗(ε),0,α∗(ε)) is subcritical. For
α(ε) = minξ∈[0,Cε ] α(ξ, ε),

(i) if α ∈ [− β
‖d‖∞ ,α(ε)), (3.2) has no positive solutions;

(ii) if α ∈ [α∗(ε),∞) or α = α(ε), (3.2) has at least one positive solution;
(iii) if α ∈ (α(ε),α∗(ε)), (3.2) has at least two positive solutions.

5. Main results

In this section, we give the main results. Assume ‖b‖∞‖d‖∞ < 1
c with c defined in Lemma 2.3. Let

μ = εβ , k = 1
ε , then (1.2) becomes

⎧⎪⎨
⎪⎩

�u + u
(
λ − u + b(x)v

) = 0, x ∈ Ω,

�
[(

1 + ε−1ρ(x)u
)

v
] + v

(
εβ − v + d(x)u

) = 0, x ∈ Ω,

∂νu = ∂ν v = 0, x ∈ ∂Ω.

(5.1)

Clearly, (w, z) is a positive solution of (3.2) if and only if

(u, v, λ) = ε

(
w,

z

1 + ρ(x)w
,α

)
(5.2)

is a positive solution of (5.1).
Then by Theorems 4.1 and 4.7, we know that for any fixed (β,ρ(x),b(x),d(x)), for small ε > 0, all

positive solutions of (5.1) can be expressed by

Γp = {(
u(ξ, ε), v(ξ, ε), λ(ξ, ε)

)
: ξ ∈ [0, Cε]

}
,

where (u(ξ, ε), v(ξ, ε), λ(ξ, ε)) = ε(w(ξ, ε),
z(ξ,ε)

1+ρ(x)w(ξ,ε)
,α(ξ, ε)), (w(ξ, ε), z(ξ, ε),α(ξ, ε)) is defined

in (4.2) or (4.15). In both cases of β > 0 and β < 0, by the one-to-one correspondence of (5.2), Theo-
rems 4.5 and 4.11 imply the main results stated in the Introduction.
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