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∫
RN

ϕ(x)dx � 0,

and study the behavior of the blow-up time and the blow-up
set of the solution of (P) as D → ∞. The behavior in the case∫

RN ϕ(x)dx � 0 is completely different from the one in the case∫
RN ϕ(x)dx > 0.
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1. Introduction

In this paper we are concerned with the Cauchy problem for a semilinear heat equation,

∂t u = D�u + |u|p−1u, x ∈ RN , t > 0, (1.1)

u(x,0) = λ + ϕ(x), x ∈ RN , (1.2)

where ∂t = ∂/∂t , D > 0, p > 1, N � 3, λ > 0, and

ϕ ∈ L∞(
RN) ∩ L1(RN ,

(
1 + |x|)2

dx
)
. (1.3)

Let T D be the maximal existence time of the unique classical solution u of (1.1) and (1.2). If T D < ∞,
then

lim sup
t→T D

sup
x∈RN

∣∣u(x, t)
∣∣ = ∞,

and we call T D the blow-up time of the solution u. Furthermore we denote by B D the blow-up set of
the solution u, that is,

B D =
{

x ∈ RN : there exists a sequence
{
(xn, tn)

} ⊂ RN × (0, T D)

such that lim
n→∞(xn, tn) = (x, T D), lim

n→∞
∣∣u(xn, tn)

∣∣ = +∞
}
.

The blow-up set is an interesting subject for the study of the blow-up problem for the semilinear
heat equation (1.1), and has been studied intensively by many mathematicians (see for example [2–
12,14–16,18–20,22–27], and a survey [21], which includes a considerable list of references for this
topic). Generally speaking, the location of the blow-up set is decided by given data such as the initial
function and the boundary conditions and by the balance between the diffusion and the nonlinear
term. In particular, if D is sufficiently large, then the behavior of the solution heavily depends on
the diffusion driven from Laplacian �, and we can expect that the location of the blow-up set is
decided by the diffusion term �. Indeed, as pointed out in [12,15], and [16], for the Cauchy–Neumann
problem for the semilinear heat equation (1.1) in a bounded domain, the limit of the blow-up set B D

as D → ∞ coincides with the limit of the hot spots of the solution of the heat equation as t → ∞
and it is characterized as the set of the maximum points of the projection of the initial function onto
the second Neumann eigenspace. In this paper we consider problem (1.1) and (1.2), and study the
relationship between the behavior of blow-up time and the blow-up set as D → ∞ and the large
time behavior of the solution of the heat equation.

Let ϕ be a function satisfying (1.3). Then the function

(
et�ϕ

)
(x) := (4πt)−

N
2

∫
RN

e− |x−y|2
4t ϕ(y)dy (1.4)

is a unique bounded classical solution of the heat equation with the initial function ϕ . We denote by
M(ϕ) the mass of the function ϕ , that is,

M(ϕ) :=
∫
N

ϕ(x)dx,
R
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and by C(ϕ) the center of the mass of the function ϕ , that is,

C(ϕ) :=
∫

RN

xϕ(x)dx

/∫
RN

ϕ(x)dx if M(ϕ) > 0.

Here we remark that M(et�ϕ) = M(ϕ) for all t > 0 and that C(et�ϕ) = C(ϕ) for all t > 0 if M(ϕ) > 0.
We denote by H(t) the hot spots of the function et�ϕ , that is,

H
(
et�ϕ

) :=
{

x ∈ RN :
(
et�ϕ

)
(x) = sup

y∈RN

(
et�ϕ

)
(y)

}
.

It is known that, if M(ϕ) > 0, then

lim
t→∞ sup

{∣∣x − C(ϕ)
∣∣: x ∈ H

(
et�ϕ

)} = 0 (1.5)

(see [1] and [8, Section 2.1]).
In [8], under the assumption M(ϕ) > 0, the authors of this paper considered blow-up problem

(1.1) and (1.2), and studied the behavior of the blow-up time and the blow-up set of the solution as
D → ∞. In particular, they propounded the following problem:

“ if D is sufficiently large, is the location of the blow-up set for problem (1.1) and (1.2)

determined mainly by the large time behavior of the hot spots for the heat equation?”,
(Q)

and proved the following theorem, which gave an affirmative answer to (Q) for the case M(ϕ) > 0
(see also (1.5)). Let ζλ = ζλ(t) be a solution of the ordinary differential equation ζ ′ = ζ p with ζ(0) = λ,
that is,

ζλ(t) := κ(Sλ − t)−
1

p−1 , κ :=
(

1

p − 1

) 1
p−1

, Sλ := λ−(p−1)

p − 1
. (1.6)

Theorem 1.1. Let N � 3 and u be the solution of (1.1) and (1.2) under condition (1.3). Assume M(ϕ) > 0. Then
T D � Sλ for any D > 0 and

Sλ − T D = (4π Sλ)
− N

2 λ−p D− N
2
[
M(ϕ) + O

(
D−1)] as D → ∞.

Furthermore

lim
D→∞ sup

{∣∣x − C(ϕ)
∣∣: x ∈ B D

} = 0.

In this paper, as a continuation of [8], we consider the following two cases:

(A) M(ϕ) = 0; (B) M(ϕ) < 0,

and study the behavior of the blow-up time and the blow-up set of the solution u of (1.1) and (1.2) as
D → ∞, and give an affirmative answer to problem (Q). For cases (A) and (B), the large time behavior
of hot spots for the heat equation is different from the one in the case M(ϕ) > 0, while we can prove
that the behavior of the blow-up time and the blow-up set as D → ∞ is different from the one in
the case M(ϕ) > 0.
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We introduce some notation. Put B(x, r) := {y ∈ RN : |x − y| < r} for x ∈ RN and r > 0. For any
f ∈ C(RN ) ∩ L∞(RN ) and η > 0, we set

H( f ) :=
{

x ∈ RN : f (x) = sup
y∈RN

f (y)
}
,

H( f , η) :=
{

x ∈ RN : f (x) � sup
y∈RN

f (y) − η
}
.

Now we are ready to state the main results of this paper, which give the behavior of the blow-up
time and the blow-up set as D → ∞ for problem (1.1) and (1.2) with M(ϕ) � 0. We first give a result
for the case M(ϕ) = 0. Put

Ξ(ϕ) :=
∫

RN

xϕ(x)dx.

Theorem 1.2. Let N � 3 and u be the solution of (1.1) and (1.2) under condition (1.3). Assume M(ϕ) = 0. Then
T D � Sλ for any D > 0 and

Sλ − T D = (4π Sλ)
− N

2

λp
√

2eSλ

D− N
2 − 1

2
[∣∣Ξ(ϕ)

∣∣ + O
(

D− 1
2
)]

(1.7)

as D → ∞. Furthermore, if Ξ(ϕ) 
= 0, then

lim
D→∞ sup

x∈B D

∣∣∣∣ x√
2SλD

− Ξ(ϕ)

|Ξ(ϕ)|
∣∣∣∣ = 0. (1.8)

Remark 1.1. Assume the same conditions as in Theorem 1.2. Then, by Theorem 1.2 we see that the
blow-up time T D converges to Sλ as D → ∞ and the blow-up set B D moves to the space infinity at
the rate

√
2SλD in the direction Ξ(ϕ) as D → ∞. On the other hand, the hot spots of et�ϕ move

to the space infinity at the rate
√

2t in the direction Ξ(ϕ) as t → ∞ (see Section 2.1). Therefore the
behavior of the blow-up set B D as D → ∞ is similar to that of the hot spots H(eDT D�ϕ) as D → ∞.

Next we give a result for the case M(ϕ) < 0.

Theorem 1.3. Let N � 3 and u be the solution of (1.1) and (1.2) under condition (1.3). Assume M(ϕ) < 0. Then
T D � Sλ for any D > 0 and

Sλ − T D = O
(

D− N
2 −1) (1.9)

as D → ∞. Furthermore there exist positive constants C and D∗ such that

B D ∩ B
(
0, C(D log D)1/2) = ∅ (1.10)

for all D > D∗ .



Y. Fujishima, K. Ishige / J. Differential Equations 252 (2012) 1835–1861 1839
Remark 1.2. We give two remarks on Theorem 1.3.

(i) Under the same conditions as in Theorem 1.3, there exists a positive constant C such that

H
(
et�ϕ

) ∩ B
(
0, C(t log t)1/2) = ∅

for all sufficiently large t (see Section 2.1). Then, by Theorem 1.3 we can see a close relationship
between the hot spots H(eD�ϕ) and the blow-up set B D .

(ii) Let ϕ ∈ C0(RN ) be such that ϕ(x) � (
≡) 0 in RN . Then we have H(et�ϕ) = ∅ for all t > 0. On the
other hand, for any D > 0, it is known that the solution of (1.1) and (1.2) blows up in a finite
time, however its blow-up set B D is empty and the solution blows up at the space infinity (see
for example [11]).

In this paper, following the strategy in [8], we study the profile of the solution u of (1.1) and (1.2)
just before the blow-up time T D , and prove Theorems 1.2 and 1.3. We remark that the arguments
in [8] heavily depend on the behavior of the solution of the heat equation and its hot spots. Since
the behavior in our cases M(ϕ) � 0 is different from the one in the case M(ϕ) > 0, we cannot apply
directly the arguments in [8] to our case M(ϕ) � 0, and the proof of our theorems requires another
analysis, in particular, for the behavior of the blow-up set as D → ∞.

The rest of this paper is organized as follows. In Section 2 we give preliminary results on the
behavior of et�ϕ and the solution u of (1.1) and (1.2). Furthermore we recall three propositions on
the blow-up problem for semilinear heat equations. In Section 3 we study the behavior of the blow-up
time T D and the blow-up set B D of (1.1) and (1.2) as D → ∞, and prove Theorems 1.2 and 1.3.

2. Preliminary results

In this section we introduce some notation and recall some properties of the solutions of the heat
equation and the solutions of the semilinear heat equation (1.1). Almost all claims in this section have
been already proved in [8], and we state them without the details of the proof, except for the large
time behavior of the solution of the heat equation for the case M(ϕ) � 0.

We first introduce some notation. For any q ∈ [1,∞], we denote by ‖ ·‖q the usual norm of Lq(RN ).
Let N = {1,2, . . .}. For any multi-index α = (α1, . . . ,αN ) ∈ (N ∪ {0})N , let

|α| :=
N∑

n=1

αn, α! := α1! · · ·αN !, ∂α
x := ∂ |α|

∂xα1
1 · · · ∂xαN

N

.

Put

G(x, t) := (4πt)−
N
2 e− |x|2

4t .

Let δi j = 1 if i = j and δi j = 0 if i 
= j for i, j ∈ {1, . . . , N}. For any sets Λ and Σ , let f = f (λ,σ ) and
h = h(λ,σ ) be maps from Λ × Σ to (0,∞). Then we say

f (λ,σ ) � h(λ,σ )

for all λ ∈ Λ if, for any σ ∈ Σ , there exists a positive constant C such that f (λ,σ ) � Ch(λ,σ ) for all
λ ∈ Λ.
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2.1. Behavior of the solutions of the heat equation

In this subsection we recall some properties of et�ϕ , and give a lemma on the hot spots for the
heat equation. We first recall the following properties of et�ϕ:

(P1) For any 1 � r � q � ∞, m ∈ N ∪ {0}, and φ ∈ Lr(RN ),

∥∥∇met�φ
∥∥

q � t− N
2 ( 1

r − 1
q )− m

2 ‖φ‖r

for t > 0. In particular, if r = q, then ‖et�φ‖q � ‖φ‖q for t > 0;
(P2) If M(ϕ) = 0, then, for any m ∈ N ∪ {0} and φ ∈ L1(RN , (1 + |x|)dx),

∥∥∇met�φ
∥∥∞ � t− N

2 − m+1
2 ‖φ‖L1(RN ,(1+|x|)dx) for t > 0;

(P3) Let φ ∈ L1(RN , (1 + |x|)2 dx). Then

lim
t→∞ t

N
2 +1

∥∥∥∥et�φ −
∑

|α|�2

(−1)|α| cα

α! ∂
α
x G(t)

∥∥∥∥∞
= 0, where cα =

∫
RN

yαφ(y)dy.

Property (P1) easily follows from (1.4). For properties (P2) and (P3), see Lemma 2.5 in [13] (see also
Lemma 2.1 in [8]).

By using properties (P1)–(P3) we study the large time behavior of the hot spots for the heat equa-
tion for the case M(ϕ) � 0. The behavior is completely different from the one in the case M(ϕ) > 0
(see also [8, Lemma 2.2]).

Lemma 2.1. Assume condition (1.3). Then there holds the following:

(i) If M(ϕ) = 0 and Ξ(ϕ) 
= 0, then, for any δ > 0, there exist positive constants C1 and T1 such that

(
et�ϕ

)
(x) �

(
et�ϕ

)(
x(t)

) − C1t−N/2−1/2 if
∣∣x − x(t)

∣∣ � δt1/2, (2.1)

∥∥et�ϕ
∥∥∞ = (

et�ϕ
)(

x(t)
) + O

(
t− N

2 −1) = (4π)−
N
2 t− N

2 − 1
2
|Ξ(ϕ)|√

2e
+ O

(
t− N

2 −1), (2.2)

for all t > T1 , where x(t) = √
2tΞ(ϕ)/|Ξ(ϕ)|. In particular, H(et�ϕ) 
= ∅ for all t > T1 and

lim
t→∞ t−1/2 sup

{∣∣x − x(t)
∣∣: x ∈ H

(
et�ϕ

)} = 0;

(ii) If M(ϕ) < 0, then, for any c ∈ (0,1/2), there exist positive constants C2 and T2 such that

sup
|x|�(4ct log t)1/2

(
et�ϕ

)
(x) � −C2t− N

2 −c, (2.3)

sup
|x|�(4ct log t)1/2−1

∣∣(et�ϕ
)
(x)

∣∣ = O
(
t− N

2 −c), sup
|x|�t

∣∣(et�ϕ
)
(x)

∣∣ = o
(
t− N

2 −1), (2.4)

0 � sup
N

(
et�ϕ

)
(x) = o

(
t− N

2 −1), (2.5)

x∈R
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for all t > T2 . In particular, for any t > T2 ,

H
(
et�ϕ

) ∩ B
(
0, (4ct log t)1/2) = ∅

even if H(et�ϕ) 
= ∅.

Proof. We first prove assertion (i). We can assume, without loss of generality, that Ξ(ϕ)/|Ξ(ϕ)| = e1,
where e1 = (1,0, . . . ,0) ∈ RN . Then, since M(ϕ) = 0 and ‖∂t∂

α
x G‖∞ = O (t−(N+|α|+2)/2) as t → ∞ for

any α ∈ (N ∪ {0})N , by (P1) and (P3) we have

(
et�ϕ

)
(x) =

∑
|α|�2

(−1)|α|

α!
(∫

RN

yαϕ(y)dy

)(
∂α

x G
)
(x, t) + o

(
t− N

2 −1)

=
∑

1�|α|�2

(−1)|α|

α!
(∫

RN

yαϕ(y)dy

)(
∂α

x G
)
(x, t) + o

(
t− N

2 −1)

= (4πt)−
N
2 e− |x|2

4t

[
x1

2t

∣∣Ξ(ϕ)
∣∣ − 1

4t

∫
RN

|y|2ϕ(y)dy + O

( |x|2
t2

)]
+ o

(
t− N

2 −1)

= (4π)−
N
2 t− N

2 − 1
2 h

(
x

2t1/2

)
+ O

(
t− N

2 −1) (2.6)

for all x ∈ RN and all sufficiently large t , where h(ξ) := |Ξ(ϕ)|e−|ξ |2ξ1 for ξ ∈ RN . Let δ > 0. Since

(∂ξi h)(ξ) = ∣∣Ξ(ϕ)
∣∣e−|ξ |2(δ1i − 2ξ1ξi), i = 1, . . . , N,

there exists a positive constant dδ such that

h(ξ) � h

(
e1√

2

)
− dδ for all ξ ∈ RN with

∣∣∣∣ξ − e1√
2

∣∣∣∣ � δ.

Then, since x(t)/2t1/2 = e1/
√

2, by (2.6) we can find a positive constant Cδ satisfying

(
et�ϕ

)
(x) �

(
et�ϕ

)(
x(t)

) − Cδt− N
2 − 1

2

for all x ∈ RN with |x − x(t)| � δt1/2 and all sufficiently large t . Thus we obtain (2.1), and see that
H(et�ϕ) 
= ∅ for all sufficiently large t . Furthermore, by (2.6) we apply the Taylor theorem to obtain

(4π)
N
2 t

N+1
2

[(
et�ϕ

)
(x) − (

et�ϕ
)(

x(t)
)]

= h

(
x

2t1/2

)
− h

(
x(t)

2t1/2

)
+ O

(
t− 1

2
)

=
(

1

2

(∇2
ξ h

)( e1√
2

)
x − x(t)

2t1/2

)
· x − x(t)

2t1/2
+ o

(∣∣∣∣ x − x(t)

t1/2

∣∣∣∣
2)

+ O
(
t− 1

2
)

(2.7)

for all x ∈ RN with |x − x(t)| � δt1/2 and all sufficiently large t . Since
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(∂ξi ∂ξ j h)

(
e1√

2

)
= ∣∣Ξ(ϕ)

∣∣e−|ξ |2 [−2δ1 jξi − 2ξ1δi j − 2δ1iξ j + 4ξ1ξiξ j]|ξ=e1/
√

2

=

⎧⎪⎨
⎪⎩

−2
√

2|Ξ(ϕ)|/√e for i = j = 1,

−√
2|Ξ(ϕ)|/√e for i = j 
= 1,

0 otherwise,

by (2.7) we have

sup

{∣∣∣∣ x − x(t)

t1/2

∣∣∣∣: x ∈ H
(
et�ϕ

)} = O
(
t−1/4),

and obtain

0 � (4π)
N
2 t

N+1
2

[∥∥et�ϕ
∥∥∞ − (

et�ϕ
)(

x(t)
)]

� 1

2

∣∣∣∣(∇2h
)( e1√

2

)∣∣∣∣ sup

{∣∣∣∣ x − x(t)

t1/2

∣∣∣∣
2

: x ∈ H
(
et�ϕ

)} + O
(
t− 1

2
) = O

(
t− 1

2
)

for all sufficiently large t . This together with (2.6) implies (2.2), and assertion (i) follows.
Next we prove assertion (ii). Similarly to (2.6), by (P3) we have

(
et�ϕ

)
(x) = (4πt)−

N
2 e− |x|2

4t

[
M(ϕ) + O

(
1

t
+ |x|

t
+ |x|2

t2

)]
+ o

(
t− N

2 −1)

= (4πt)−
N
2 e− |x|2

4t M(ϕ) + O
(
t− N+1

2 e− |x|2
8t

) + o
(
t− N

2 −1) (2.8)

for all x ∈ RN and all sufficiently large t . Let ε ∈ (0,1). Then, by (2.8) we have

sup
|x|�εt

∣∣(et�ϕ
)
(x)

∣∣ = o
(
t− N

2 −1) (2.9)

for all sufficiently large t . Furthermore, since M(ϕ) < 0, by (2.8) we have

(
et�ϕ

)
(x) = −(4πt)−

N
2 e− |x|2

4t
[∣∣M(ϕ)

∣∣ + O (ε) + O
(
t−1)] + o

(
t− N

2 −1) (2.10)

for all x ∈ RN with |x| � εt and all sufficiently large t . By (2.10) and c ∈ (0,1/2), taking a sufficiently
small ε if necessary, we have

sup
|x|�εt

(
et�ϕ

)
(x) � o

(
t− N

2 −1), (2.11)

sup
|x|�(4ct log t)1/2

(
et�ϕ

)
(x) � −1

2
(4πt)−

N
2 t−c

∣∣M(ϕ)
∣∣ < 0, (2.12)

sup
(4ct log t)1/2−1�|x|�εt

∣∣(et�ϕ
)
(x)

∣∣ � 2(4πt)−
N
2 t−c

∣∣M(ϕ)
∣∣, (2.13)

for all sufficiently large t . Then, by (2.12) we have (2.3), and by (2.9) and (2.13) we obtain (2.4). On
the other hand, by (1.4) we have
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sup
x∈RN

(
et�ϕ

)
(x) � lim|x|→∞

(
et�ϕ

)
(x) = 0.

This together with (2.9) and (2.11) implies

0 � sup
x∈RN

(
et�ϕ

)
(x) = o

(
t− N

2 −1)

for all sufficiently large t , and we obtain (2.5). Thus assertion (ii) follows, and the proof of Lemma 2.1
is complete. �
2.2. Preliminaries for blow-up problem (1.1) and (1.2)

In this subsection we give preliminary results for blow-up problem (1.1) and (1.2). In particular, we
study the short time behavior of the solution u of (1.1) and (1.2) and give one lemma on the blow-up
estimates of the solution u and its gradient.

Let u be a solution of (1.1) and (1.2) and T := Sλ+‖ϕ‖∞/2. Following the argument in Section 3
of [8], we put

v(x, t) := ζλ(t)
−p(

u(x, t) − ζλ(t)
)
,

F (s) := |1 + s|p−1(1 + s), f (x, t) := [
F (s) − F (0) − F ′(0)s

]∣∣
s=ζλ(t)p−1 v(x,t).

Then v satisfies

{
∂t v = D�v + f (x, t), x ∈ RN , t > 0,

v(x,0) = λ−pϕ(x), x ∈ RN ,
(2.14)

and

v(t) = eD(t−t′)�v
(
t′) +

t∫
t′

eD(t−s)� f (s)ds, t > t′ � 0. (2.15)

Furthermore, putting

z(t) := eD(t−T )�v(T ), g(x) :=
T∫

0

(
eD(T −s)� f (s)

)
(x)ds,

by (2.14) and (2.15) we obtain

z(t) = eDt�v(0) + eD(t−T )�g = λ−peDt�ϕ + eD(t−T )�g, t � T . (2.16)

Then, by [8, Lemma 3.1] we have:

Lemma 2.2. Assume condition (1.3). Then, for any l ∈ {0,1,2} and m ∈ [0,2], there exist positive constants C
and D1 such that
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sup
t�T

∥∥∇l z(t)
∥∥∞ �

∥∥∇l v(T )
∥∥∞ � C D− N

2 − l
2 , (2.17)

∥∥z(t) − z(s)
∥∥∞ � C |t − s|D− N

2 , t, s ∈ [T ,∞), (2.18)

‖g‖∞ � C D− N
2 −1, (2.19)∫

RN

|x|m∣∣g(x)
∣∣dx � C D

m
2 −1, (2.20)

for all D > D1 .

Furthermore, for the case M(ϕ) = 0, by (P2) we can refine on the decay estimates of ‖z(t)‖∞ and
‖∇z(t)‖∞ in Lemma 2.2.

Lemma 2.3. Assume the same conditions as in Lemma 2.2 and M(ϕ) = 0. Let T ′ > T . Then there exist positive
constants C and D1 such that

∥∥z(t)
∥∥∞ � C D− N

2 − 1
2 , (2.21)∥∥∇z(t)

∥∥∞ � C D− N
2 −1, (2.22)

for all t � T ′ and all D > D1 .

Proof. By (P1), (P2), (2.16), and (2.19) we have

sup
t�T ′

∥∥∇l z(t)
∥∥∞ � λ−p sup

t�T ′

∥∥∇leDt�ϕ
∥∥∞ + sup

t�T ′

∥∥∇leD(t−T )�g
∥∥∞

� D− N
2 − l+1

2 ‖ϕ‖L1(RN ,(1+|x|)dx) + D− l
2 ‖g‖∞ � D− N

2 − l+1
2

for all sufficiently large D , where l = 0,1. This implies (2.21) and (2.22), and Lemma 2.3 follows. �
Combining Lemma 2.1 with Lemma 2.2, we obtain the large time behavior of the hot spots of z(t)

for all sufficiently large D .

Lemma 2.4. Assume condition (1.3). Then there hold the following:

(i) If M(ϕ) = 0 and Ξ(ϕ) 
= 0, then, for any δ > 0, there exist positive constants C1 , C2 , and D1 such that

z(x, t) � z
(
x(Dt), t

) − C1 D− N
2 − 1

2 if
∣∣x − x(Dt)

∣∣ � δ(Dt)1/2, (2.23)∣∣∥∥z(t)
∥∥∞ − z

(
x(Dt), t

)∣∣ � C2 D− N
2 −1, (2.24)

for all t � T and all D > D1 . In particular, for any t � T ,

lim
D→∞ D−1/2 sup

{∣∣x − x(Dt)
∣∣: x ∈ H

(
z(t)

)} = 0;
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(ii) If M(ϕ) < 0, then, for any c ∈ (0,1/2), there exist positive constants C3 and D2 such that

sup
|x|�(4cDt log(Dt))1/2

z(x, t) � −C3 D− N
2 −c, (2.25)

sup
|x|�(4cDt log(Dt))1/2−1

∣∣z(x, t)
∣∣ � C3 D− N

2 −c, sup
|x|�Dt

∣∣z(x, t)
∣∣ � C3 D− N

2 −1, (2.26)

∣∣∣ sup
x∈RN

z(x, t)
∣∣∣ � C3 D− N

2 −1, (2.27)

for all t � T and all D > D2 . In particular, for any t � T ,

H
(
z(t)

) ∩ B
(
0,

(
4cDt log(Dt)

)1/2) = ∅, D > D2.

Proof. By (P1), (2.16), and (2.19) we have

z(x, t) − λ−p(
eDt�ϕ

)
(x) = O

(
D− N

2 −1)
for all (x, t) ∈ RN × [T ,∞) and all sufficiently large D . Then Lemma 2.4 follows from Lemma 2.1. �

On the other hand, applying the same argument as in the proof of [8, Proposition 3.1] with
Lemma 2.2, we have the following lemma on the blow-up estimates of the solution.

Lemma 2.5. Assume the same conditions as in Theorem 1.2. Then there exist positive constants C1 , C2 , C3
and D1 such that

∥∥u(t)
∥∥∞ � C1(T D − t)−

1
p−1 , (2.28)

∥∥∇u(t)
∥∥∞ � C1

∥∥∇u(T )
∥∥∞(T D − t)−

p
p−1 −C2 D− N

2

� C3
∥∥∇z(T )

∥∥∞(T D − t)−
p

p−1 −C2 D− N
2

(2.29)

for all T � t < T D and all D > D1 , where T = Sλ+‖ϕ‖∞/2.

2.3. Some propositions for semilinear heat equations

In this subsection we give two propositions on the profiles of the solutions of semilinear heat
equations and one proposition on the location of the blow-up set.

We first give one proposition on the profile of the solution of (1.1) and (1.2).

Proposition 2.1. Assume condition (1.3). Let u be the solution of (1.1) and (1.2). Then there exists a positive
constant D∗ such that Sλ − D−1 < T D and

u(x, t) = ζλ(t)
[
1 − (p − 1)ζλ(t)

p−1z(x, t) + O
(

D−N+ 4
3
)]− 1

p−1 (2.30)

for all (x, t) ∈ RN × [Sλ − D−2/3, Sλ − D−1] and all D > D∗ .
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This proposition is obtained by the same argument as in the proof of Proposition 4.1 in [8]. Propo-
sition 4.1 in [8] is proved under the assumption M(ϕ) > 0, while we used the assumption M(ϕ) > 0
in order to obtain

sup
t�T

∥∥z(t)
∥∥∞ = O

(
D− N

2
)
, sup

t�T

∥∥∇z(t)
∥∥∞ = O

(
D− N

2 − 1
2
)
,

for all sufficiently large D . These estimates actually follow from (2.17) for our case, and the proof of
Proposition 4.1 in [8] is applicable to the case M(ϕ) � 0; thus Proposition 2.1 holds true.

Next we give one proposition, which is useful to study the profile of the solution of the semilinear
heat equation just before the blow-up time. See [8, Proposition 2.2].

Proposition 2.2. Let N � 1, p > 1, ε0 > 0, and {Mε}0<ε<ε0 ⊂ (0,∞) such that

0 < inf
0<ε<ε0

Mε � sup
0<ε<ε0

Mε < ∞.

Let {ϕε}0<ε<ε0 ⊂ C1(RN ) and C be a constant such that

0 � Mε − Cε � ϕε(x) � Mε,
∣∣∇ϕε(x)

∣∣ � Cε,

for all x ∈ RN and all ε ∈ (0, ε0). Assume that there exist constants t∗ ∈ [0, lim infε→+0 SMε ), C∗ > 0, and
ε∗ > 0 such that

sup
x∈RN

(
et∗�ϕε

)
(x) � Mε − C∗ε, 0 < ε < ε∗.

Let uε be the solution of the problem

∂t u = �u + up, x ∈ RN , t > 0, u(x,0) = ϕε(x), x ∈ RN ,

and Tε the blow-up time of uε . Then SMε < Tε for ε ∈ (0, ε∗) and

lim
ε→0

∥∥ε 1
p−1 uε(SMε ) − κM

p
p−1
ε

[
ε−1(Mε − eS Mε �ϕε

)]− 1
p−1

∥∥∞ = 0,

where κ is the constant given in (1.6).

At the end of this section we recall one proposition, which implies that the location of the blow-
up set B D is determined by the maximum points of the solution just before the blow-up time. See [7,
Proposition 4.1].

Proposition 2.3. Let N � 1, p > 1, ε0 > 0, and {ϕε}0<ε<ε0 ⊂ C1(RN ) be nonnegative functions. Assume that

inf
0<ε<ε0

‖ϕε‖∞ > 0, sup
0<ε<ε0

‖ϕε‖∞ < ∞,

sup
0<ε<ε

ε1/2−α‖∇ϕε‖∞ < ∞ for some α > 0.

0
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Let uε be the solution of

∂t u = ε�u + up, x ∈ RN , t > 0, u(x,0) = ϕε(x) � 0, x ∈ RN ,

and Tε and Bε be the blow-up time and the blow-up set, respectively. Assume that

sup
0<ε<ε0

sup
0<t<Tε

(Tε − t)
1

p−1
∥∥uε(t)

∥∥∞ < ∞.

Then, for any η > 0, there exists a positive constant ε∗ such that

Bε ⊂ {
x ∈ RN : ϕε(x) � ‖ϕε‖∞ − η

}
, ε ∈ (0, ε∗).

3. Proof of Theorem 1.2 and Theorem 1.3

In this section we first obtain the behavior of the blow-up time of the solution u of (1.1) and (1.2)
as D → ∞. Next, by modifying the arguments in our previous paper [8] we study the profile of the
solution u just before the blow-up time, and prove Theorems 1.2 and 1.3.

We first apply the same argument as in the proof of Proposition 3.1 in [8], and obtain

Sλ � T D for all D > 0.

Next we study the behavior of the blow-up time T D as D → ∞, and prove (1.7) and (1.9).

Proof of (1.7) and (1.9). By the same argument as in the proof of (1.9) in [8] we see that there exists
a positive constant D1 such that

Sλ − T D = λ−p sup
x∈RN

(
eD Sλ�ϕ

)
(x) + O

(
D− N

2 −1)

for all D > D1. Then (1.7) and (1.9) follow from (2.2) and (2.5), respectively. �
Next we study the location of the blow-up set of the solution of (1.1) and (1.2). Let sD := Sλ − D−1,

and put

w(x, τ ) := D− 1
p−1 u

(
x, sD + D−1τ

)
. (3.1)

Then w satisfies

∂τ w = �w + w p in RN × (−1, τD), w(x,0) = D− 1
p−1 u(x, sD) in RN . (3.2)

Here τD is the blow-up time of w and

T D = sD + D−1τD . (3.3)

Let εD be a sufficiently small positive constant to be chosen later, and put

κD := ∥∥w(0)
∥∥ + εD , τ∗ := SκD ∈ (0, τD). (3.4)
∞
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The choice of εD depends on whether M(ϕ) = 0 or M(ϕ) < 0 and is crucial in our analysis. Put

ψD(x) := ε−1
D

(∥∥w(0)
∥∥∞ − w(x,0)

) + 1 = ε−1
D D− 1

p−1
(∥∥u(sD)

∥∥∞ − u(x, sD)
) + 1 � 1. (3.5)

Then we have

w(x,0) = κD − εDψD(x). (3.6)

Furthermore, since

ζλ

(
sD + D−1τ

) = κ
(

D−1(1 − τ )
)− 1

p−1 = D
1

p−1 ζκ (τ ), κ p−1 = 1/(p − 1), (3.7)

by (3.1) we apply Proposition 2.1 to obtain

w(x, τ ) = ζκ (τ )

[
1 − D

1 − τ
z
(
x, sD + D−1τ

) + O
(

D−N+ 4
3
)]− 1

p−1

(3.8)

for all (x, τ ) ∈ RN × (−1,0] and all sufficiently large D . In what follows, by using the results on the
behavior of the function z given in Section 2.2 we study the location of the maximum points of
w(·, τ∗), and complete the proof of Theorems 1.2 and 1.3.

3.1. Blow-up set for the case M(ϕ) = 0

In this subsection we prove (1.8) under the assumption M(ϕ) = 0, and complete the proof of
Theorem 1.2. Put

εD := D− N
2 + 1

2 , xD := √
2DsD

∫
RN

xϕ(x)dx

/∣∣∣∣
∫

RN

xϕ(x)dx

∣∣∣∣ = x(DsD). (3.9)

By (2.21) and (3.8) we have

w(x,0) = κ
[
1 − Dz(x, sD )

]− 1
p−1 + O

(
D−N+ 4

3
)
, x ∈ RN , (3.10)

∥∥w(0)
∥∥∞ = κ

[
1 − D

∥∥z(sD)
∥∥∞

]− 1
p−1 + O

(
D−N+ 4

3
) = κ + O

(
D− N

2 + 1
2
)
, (3.11)

for all sufficiently large D . In particular, by (3.4) and (3.11) we have

κD = κ + O (εD), τ∗ = SκD = Sκ + O (εD) = 1 + O (εD), (3.12)

as D → ∞. By (2.21), (3.5), (3.10), and (3.11) we apply the mean value theorem to obtain

ψD(x) = κε−1
D (1 − θD(x))−

p
p−1

p − 1

[
D

∥∥z(sD)
∥∥∞ − Dz(x, sD)

] + O
(
ε−1

D D−N+ 4
3
) + 1

= κ D
N
2 + 1

2 (1 − θD(x))−
p

p−1 [∥∥z(sD)
∥∥∞ − z(x, sD )

] + O
(

D− N
2 + 5

6
) + 1
p − 1
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for all x ∈ RN and all sufficiently large D , where θD is a function in RN satisfying ‖θD‖∞ = O (D− N
2 + 1

2 )

as D → ∞. This together with (2.24) and (3.9) implies that

ψD(x) = κ D
N
2 + 1

2 (1 + o(1))

p − 1

[
z(xD , sD) − z(x, sD)

] + O
(

D− 1
2
) + O

(
D− N

2 + 5
6
) + 1 (3.13)

for all x ∈ RN and all sufficiently large D , and we obtain

lim
D→∞ψD(xD) = 1. (3.14)

Let δ > 0 and fix it. Then, by (2.23) and (3.13) we can find a constant cδ > 0 so that

inf
|x−xD |�δD1/2

ψD(x) � 1 + cδ (3.15)

for all sufficiently large D .
Put

ψ∗
D(x) := min

{
ψD(x),1 + cδ

}
� 1 (3.16)

(see (3.5)), and let w∗ be the solution of

{
∂τ w = �w + w p, x ∈ RN , τ > 0,

w(x,0) = κD − εDψ∗
D(x), x ∈ RN .

(3.17)

Then, by (3.2), (3.6), and (3.16) we apply the comparison principle to obtain

w(x, τ ) � w∗(x, τ ) in RN × [0, τ∗]. (3.18)

We apply Proposition 2.2 to study the location of the maximum points of w(·, τ∗). For this pur-
pose, we prepare the following two lemmas, and verify the assumptions of Proposition 2.2.

Lemma 3.1. Assume the same conditions as in Theorem 1.2. Then there exists a positive constant C such that

∥∥∇w∗(0)
∥∥∞ � CεD

for all sufficiently large D.

Proof. By (2.18), (2.22), and (2.24) we have

z
(
x, sD + D−1τ

) − ∥∥z(sD)
∥∥∞

= [
z
(
x, sD + D−1τ

) − z(x, sD)
] + [

z(x, sD ) − z(xD , sD)
] + [

z(xD , sD) − ∥∥z(sD)
∥∥∞

]
= O

(
D− N

2
) · D−1 + O

(
D− N

2 −1) · 2δD1/2 + O
(

D− N
2 −1) = O

(
D− N

2 − 1
2
)

(3.19)

for all (x, τ ) ∈ B(xD ,2δD1/2) × [−1,0] and all sufficiently large D . By (2.21) we have

aD := D
∥∥z(sD)

∥∥ → 0 as D → ∞. (3.20)
∞
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Then, since

ζκ (τ )

[
1 − D

1 − τ

∥∥z(sD)
∥∥∞

]− 1
p−1

= ζκ (τ + aD),

by (3.8), (3.19), and (3.20) we have

w(x, τ ) = ζκ (τ )

[
1 − D

1 − τ

∥∥z(sD)
∥∥∞ + O

(
D− N

2 + 1
2
)]− 1

p−1

= ζκ (τ )

[
1 − D

1 − τ

∥∥z(sD)
∥∥∞

]− 1
p−1 (

1 + O
(

D− N
2 + 1

2
))− 1

p−1

= ζκ (τ + aD)
(
1 + O

(
D− N

2 + 1
2
)) = ζκ (τ + aD) + O

(
D− N

2 + 1
2
)

(3.21)

for all (x, τ ) ∈ B(xD ,2δD1/2) × [−1,0] and all sufficiently large D . Let

W (x, τ ) := D
N
2 − 1

2
[

w(x, τ ) − ζκ (τ + aD)
]
,

K (x, τ ) := D
N
2 − 1

2
[

w(x, τ )p − ζκ (τ + aD)p]
. (3.22)

Then, by (3.20), (3.21), and (3.22) we can find a constant C1 > 0 satisfying

sup
−1<τ�0

∥∥W (τ )
∥∥

L∞(B(xD ,2δD1/2))
� C1, (3.23)

sup
−1<τ�0

∥∥K (τ )
∥∥

L∞(B(xD ,2δD1/2))

= D
N
2 − 1

2 sup
−1<τ�0

∣∣ζκ (τ + aD)p(
1 + O

(
D− N

2 + 1
2
)) − ζκ (τ + aD)p

∣∣ � C1, (3.24)

for all sufficiently large D . On the other hand, by (3.2) and (3.22) we have

∂τ W − �W = D
N
2 − 1

2
[

w p − ζκ(τ + aD)p] = K (x, τ ) (3.25)

for all (x, τ ) ∈ B(xD ,2δD1/2)×[−1,0] and all sufficiently large D . Then, by (3.23) and (3.24) we apply
the parabolic regularity theorems (see for example [17, Chapter 3, Theorem 11.1]) to (3.25), and see
that there exists a positive constant C2 such that

∣∣∇W (x, τ )
∣∣ � C2 in B

(
xD , δD1/2) × (−1/2,0] (3.26)

for all sufficiently large D . Therefore, since ψ∗
D(x) = 1 + cδ in RN \ B(xD , δD1/2) by (3.15) and (3.16),

it follows from (3.6), (3.16), (3.17), (3.22), and (3.26) that

∥∥∇w∗(0)
∥∥∞ � εD‖∇ψD‖L∞(B(xD ,δD1/2))

= ∥∥∇w(0)
∥∥

L∞(B(xD ,δD1/2))
= D− N

2 + 1
2
∥∥∇W (0)

∥∥
L∞(B(xD ,δD1/2))

� C2 D− N
2 + 1

2 = C2εD

for all sufficiently large D . Thus Lemma 3.1 follows. �
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Lemma 3.2. Assume the same conditions as in Theorem 1.2. Then there hold

sup
0�τ�τ∗

(
eτ�ψD

)
(xD) = 1 + o(1), (3.27)

inf
τ∗/2�τ�τ∗

inf
|x−xD |�δD1/2

(
eτ�ψ∗

D

)
(x) � 1 + cδ/2, (3.28)

for all sufficiently large D.

Proof. We first prove (3.27). Put

Z(x, τ ) := κ
[
1 − Dz

(
x, sD + D−1τ

)]− 1
p−1 . (3.29)

Then we have

∂τ Z − �Z = −pD2 Z(x, τ )2p−1
∣∣∇z

(
x, sD + D−1τ

)∣∣2
(3.30)

in RN × [0, τ∗]. On the other hand, by (2.18), (2.21), and (3.12) we have

sup
0�τ�τ∗

∥∥Z(τ ) − Z(0)
∥∥∞

� κ

p − 1
[1 − θ̂D ]− p

p−1 sup
0�τ�τ∗

∥∥Dz
(
sD + D−1τ

) − Dz(sD)
∥∥∞

� D · D− N
2 · D−1τ∗ � 2D− N

2 (3.31)

for all sufficiently large D , where θ̂D ∈ (0,1) is a function in RN satisfying ‖θ̂D‖∞ = O (D− N
2 + 1

2 ) as
D → ∞. Furthermore, since

lim
D→∞ sup

0�τ�τ∗

∥∥Z(τ ) − κ
∥∥∞ = 0,

by (P1), (2.22), (3.12), (3.29), and (3.30) we obtain

sup
0�τ�τ∗

∥∥Z(τ ) − eτ� Z(0)
∥∥∞

= sup
0�τ�τ∗

∥∥∥∥∥−pD2

τ∫
0

e(τ−s)� Z(s)2p−1
∣∣∇z

(
sD + D−1s

)∣∣2
ds

∥∥∥∥∥∞

� D2

τ∗∫
0

∥∥Z(s)
∥∥2p−1

∞
∥∥∇z

(
sD + D−1s

)∥∥2
∞ ds = O

(
D−N)

(3.32)

for all sufficiently large D . Therefore, by (P1), (3.5), (3.10), (3.31), and (3.32) we obtain
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sup
0�τ�τ∗

∥∥eτ�ψD − ψD
∥∥∞

= sup
0�τ�τ∗

D
N
2 − 1

2
∥∥eτ�w(0) − w(0)

∥∥∞

= sup
0�τ�τ∗

D
N
2 − 1

2
∥∥eτ� Z(0) − Z(0)

∥∥∞ + O
(

D− N
2 + 5

6
)

� sup
0�τ�τ∗

D
N
2 − 1

2
[∥∥eτ� Z(0) − Z(τ )

∥∥∞ + ∥∥Z(τ ) − Z(0)
∥∥∞

] + O
(

D− N
2 + 5

6
)

= O
(

D− N
2 − 1

2
) + O

(
D− 1

2
) + O

(
D− N

2 + 5
6
)

for all sufficiently large D . This together with (3.14) implies

lim
D→∞ sup

0�τ�τ∗

(
eτ�ψD

)
(xD) = lim

D→∞ψD(xD) = 1,

and we obtain (3.27).
Next we prove inequality (3.28). By (3.15) and (3.16) we have

ψ∗
D(x) � 1 in RN , ψ∗

D(x) = 1 + cδ in RN \ B
(
xD , δD1/2).

These imply that

(
eτ�ψ∗

D

)
(x) − 1 =

∫
RN

G(x − y, τ )
(
ψ∗

D(y) − 1
)

dy � cδ

∫
|y−xD |�δD1/2

G(x − y, τ )dy (3.33)

for all x ∈ RN and τ > 0. Let

Πx := {
x + y: y · (x − xD) � 0, y ∈ RN}

.

Then, since Πx ⊂ {y: |y − xD | � δD1/2} for x ∈ RN \ B(xD , δD1/2), by (3.33) we obtain

inf
τ∗/2�τ�τ∗

inf
|x−xD |�δD1/2

(
eτ�ψ∗

D

)
(x) − 1 � cδ inf

τ∗/2�τ�τ∗
inf

|x−xD |�δD1/2

∫
Πx

G(x − y, τ )dy = cδ

2
.

Therefore we obtain inequality (3.28), and the proof of Lemma 3.2 is complete. �
Now we are ready to study the location of the maximum points of w(·, τ∗). By (3.16) and (3.17)

we have

κD − (1 + cδ)εD � w∗(x,0) � κD − εD , x ∈ RN . (3.34)

Then, by (3.4), (3.11), (3.34), and Lemma 3.1 we can apply Proposition 2.2 to problem (3.17) with
Mε = κD , C∗ = 1, and t∗ = 0, and obtain

lim
∥∥ε 1

p−1
D w∗(·, τ∗) − κκ

p
p−1

D

[(
eτ∗�ψ∗

D

)
(·)]− 1

p−1
∥∥∞ = 0. (3.35)
D→∞
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In particular, by (3.12), (3.16), (3.18), and (3.35) we have

ε
1

p−1
D

∥∥w(τ∗)
∥∥∞ � ε

1
p−1

D

∥∥w∗(τ∗)
∥∥∞ � 1 (3.36)

for all sufficiently large D .
Let η be a positive constant such that

κ
1+ p

p−1

(
1 + cδ

2

)− 1
p−1

+ 2η < κ
1+ p

p−1 (1 + η)
− 1

p−1 − 2η. (3.37)

By (3.12), (3.28), and (3.35) we have

ε
1

p−1
D w∗(x, τ∗) � κκ

p
p−1

D

(
eτ∗�ψ∗

D

)
(x)−

1
p−1 + η � κ

1+ p
p−1

(
1 + cδ

2

)− 1
p−1

+ 2η (3.38)

for all x ∈ RN with |x − xD | � δD1/2 and all sufficiently large D . On the other hand, since the function

w(x, τ ) := ((
eτ�w(0)

)
(x)−(p−1) − (p − 1)τ

)− 1
p−1

is a subsolution of (3.2), we apply the comparison principle to obtain

w(x, τ ) � w(x, τ ) in RN × [0, τ∗]. (3.39)

Since it follows from (3.6), (3.12), and (3.27) that

(
eτ∗�w(0)

)
(xD)−(p−1) = κ

−(p−1)
D

[
1 − κ−1

D εD
(
eτ∗�ψD

)
(xD)

]−(p−1)

= κ
−(p−1)
D

[
1 + (p − 1)κ−1

D εD
(
eτ∗�ψD

)
(xD) + O

(
ε2

D

)]
for all sufficiently large D , by (1.6) and (3.12) we have

w(xD , τ∗) = [(
eτ∗�w(0)

)
(xD)−(p−1) − (p − 1)SκD

]− 1
p−1

= ε
− 1

p−1
D κκ

p
p−1

D

[(
eτ∗�ψD

)
(xD) + O (εD)

]− 1
p−1 (3.40)

for all sufficiently large D . Then, by (3.12), (3.27), (3.37), (3.39), and (3.40) we have

ε
1

p−1
D w(xD , τ∗) � ε

1
p−1

D w(xD , τ∗) = κκ
p

p−1
D

[(
eτ∗�ψD

)
(xD) + O (εD)

]− 1
p−1

� κ
1+ p

p−1 (1 + η)
− 1

p−1 − η > κ
1+ p

p−1

(
1 + cδ

2

)− 1
p−1

+ 3η (3.41)

for all sufficiently large D . Therefore, by (3.18), (3.38), and (3.41) we obtain

ε
1

p−1
D sup

|x−xD |�δD1/2
w(x, τ∗) � ε

1
p−1

D sup
|x−xD |�δD1/2

w∗(x, τ∗)

� κ
1+ p

p−1

(
1 + cδ

2

)− 1
p−1

+ 2η < ε
1

p−1
D w(xD , τ∗) − η
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for all sufficiently large D . This implies that

H
(
ε

1
p−1

D w(·, τ∗),η
) ⊂ B

(
xD , δD1/2) (3.42)

for all sufficiently large D .
We complete the proof of (1.8) by using Proposition 2.3. Put

w̃(x, τ ) := ε
1

p−1
D w(x, τ∗ + εDτ ). (3.43)

Then, by (3.2) we have

{
∂τ w̃ = εD�w̃ + w̃ p in RN × (0, τ̃D),

w̃(x,0) = ε
1

p−1
D w(x, τ∗) in RN ,

(3.44)

where τ̃D = ε−1
D (τD − τ∗) is the blow-up time of w̃ . By (2.28), (3.1), (3.3), and (3.43) we have

∣∣w̃(x, τ )
∣∣ = ε

1
p−1

D D− 1
p−1

∣∣u(
x, sD + D−1(τ∗ + εDτ )

)∣∣
� ε

1
p−1

D D− 1
p−1

(
T D − sD − D−1τ∗ − D−1εDτ

)− 1
p−1

= ε
1

p−1
D (τD − τ∗ − εDτ )

− 1
p−1 = (τ̃D − τ )

− 1
p−1 (3.45)

for all (x, τ ) ∈ RN × [0, τ̃D) and all sufficiently large D . Furthermore, by (3.36) and (3.41) we have

∥∥w̃(0)
∥∥∞ = ε

1
p−1

D

∥∥w(τ∗)
∥∥∞ � 1,

∥∥w̃(0)
∥∥∞ � ε

1
p−1

D w(xD , τ∗) � 1, (3.46)

for all sufficiently large D . In particular, we apply the comparison principle to obtain

τ̃D � S‖w̃(0)‖∞ � 1 (3.47)

for all sufficiently large D . In addition, since

T D = sD + D−1τ∗ + D−1εD τ̃D , εD = D− N
2 + 1

2 , lim
D→∞

(
D−1εD

)D− N
2 = 1,

by (2.22), (2.29), (3.1), (3.43), and (3.47) we have

∥∥∇ w̃(0)
∥∥∞ = ε

1
p−1

D D− 1
p−1

∥∥∇u
(
sD + D−1τ∗

)∥∥∞

� ε
1

p−1
D D− 1

p−1
(
T D − sD − D−1τ∗

)− p
p−1 −C ′ D− N

2
D− N

2 −1

� Dε−1
D τ̃

− p
p−1 −C ′ D− N

2

D D− N
2 −1 � D− 1

2 � 1 (3.48)

for all sufficiently large D , where C ′ is a positive constant. Therefore, by (3.45), (3.46), and (3.48) we
can apply Proposition 2.3 with ϕε = w̃(0) to the solution w̃ of (3.44), and by (3.42) we see that
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B D ⊂ H
(

w̃(·,0),η
) = H

(
ε

1
p−1

D w(·, τ∗),η
) ⊂ B

(
xD , δD1/2)

for all sufficiently large D . This implies

lim sup
D→∞

D− 1
2 sup

{|x − xD |: x ∈ B D
}

� δ. (3.49)

On the other hand, recalling that xD = √
2DsDΞ(ϕ)/|Ξ(ϕ)| and sD = Sλ − D−1, we have

∣∣∣∣xD − √
2D Sλ

Ξ(ϕ)

|Ξ(ϕ)|
∣∣∣∣ = ∣∣√2(D Sλ − 1) − √

2D Sλ

∣∣ = O
(

D− 1
2
)

(3.50)

as D → ∞. Therefore, since δ > 0 is arbitrary, by (3.49) and (3.50) we obtain

lim
D→∞ D− 1

2 sup
x∈B D

∣∣∣∣x − √
2D Sλ

Ξ(ϕ)

|Ξ(ϕ)|
∣∣∣∣ = 0.

This implies (1.8), and the proof of Theorem 1.2 is complete. �
3.2. Blow-up set for the case M(ϕ) < 0

In this subsection we prove (1.10) under the assumption M(ϕ) < 0, and complete the proof of
Theorem 1.3. Let c ∈ (0,1/2) and fix it. In this case we put

εD := D− N
2 −c+1,

and study the location of the blow-up set B D . Since N � 3, by (2.17), (2.27), and (3.8) we have

w(x,0) = κ
[
1 − Dz(x, sD) + O

(
D−N+ 4

3
)]− 1

p−1

= κ
[
1 − Dz(x, sD)

]− 1
p−1 + O

(
D−N+ 4

3
)
, x ∈ RN , (3.51)

∥∥w(0)
∥∥∞ = κ

[
1 − D sup

x∈RN
z(x, sD ) + O

(
D−N+ 4

3
)]− 1

p−1 = κ + O
(

D− N
2
)
, (3.52)

for all sufficiently large D . In particular, by (3.4) and (3.52) we have

κD = κ + o(1), τ∗ = SκD = Sκ + o(1) = 1 + o(1), (3.53)

as D → ∞. Furthermore, since N � 3 and c ∈ (0,1/2), by (2.17), (3.5), (3.51), and (3.52) we have

ψD(x) = κε−1
D

[
1 − (

1 − Dz(x, sD)
)− 1

p−1 + O
(

D−N+ 4
3
)] + 1 + o(1)

= − κε−1
D

p − 1
Dz(x, sD) + O

(
ε−1

D D−N+2) + O
(
ε−1

D D−N+ 4
3
) + 1 + o(1)

= − κε−1
D Dz(x, sD) + 1 + o(1) (3.54)
p − 1
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for all x ∈ RN and all sufficiently large D . Then, by (2.26) and (3.54) we have

lim
D→∞ sup

|x|�DsD

ψD(x) = 1. (3.55)

In addition, by (2.25) and (3.54) we can find a positive constant c∗ satisfying

inf
|x|�(4cDsD log(DsD ))1/2

ψD(x) � 1 + c∗ (3.56)

for all sufficiently large D .
Put

ψ∗
D(x) := min

{
ψD(x),1 + c∗

}
� 1 (3.57)

(see (3.5)), and let w∗ be the solution of

{
∂τ w = �w + w p, x ∈ RN , τ > 0,

w(x,0) = κD − εDψ∗
D(x), x ∈ RN .

(3.58)

Then, by (3.6), (3.57), and (3.58) we apply the comparison principle to obtain

w(x, τ ) � w∗(x, τ ) in RN × [0, τ∗] (3.59)

for all sufficiently large D .
Next, similarly as in the previous subsection, we give the estimates of ‖∇w∗(0)‖∞ , eτ�ψD , and

eτ�ψ∗
D in the following two lemmas.

Lemma 3.3. Assume the same conditions as in Theorem 1.3. Then there exists a positive constant C such that

∥∥∇w∗(0)
∥∥∞ � CεD

for all sufficiently large D.

Proof. By (2.26) and (3.8) we have

w(x, τ ) = ζκ (τ )
(
1 + O

(
D− N

2 −c+1)) = ζκ (τ ) + O
(

D− N
2 −c+1) (3.60)

for all (x, τ ) ∈ [RN \ B(0, (4csD log(DsD))1/2 − 1)] × [−1,0] and all sufficiently large D . Put

W (x, τ ) := D
N
2 +c−1[w(x, τ ) − ζκ (τ )

]
, K (x, τ ) := D

N
2 +c−1[w(x, τ )p − ζκ(τ )p]

. (3.61)

Then, by (3.60) and (3.61) we can find a positive constant C1 so that

sup
−1<τ�0

∥∥W (τ )
∥∥

L∞(RN\B(0,(4csD log(DsD ))1/2−1))
� C1, (3.62)

sup
−1<τ�0

∥∥K (τ )
∥∥

L∞(RN \B(0,(4csD log(DsD ))1/2−1))
� C1, (3.63)

for all sufficiently large D . Furthermore, by (3.2) and (3.61) we have
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∂τ W − �W = D
N
2 +c−1[w p − ζ

p
κ

] = K (x, τ ) (3.64)

for all (x, τ ) ∈ [RN \ B(0, (4csD log(DsD))1/2 − 1)] × [−1,0]. Then, by (3.62) and (3.63) we apply the
parabolic regularity theorems (see for example [17, Chapter 3, Theorem 11.1]) to (3.64), and see that
there exists a positive constant C2 such that

∣∣∇W (x, τ )
∣∣ � C2 in

[
RN \ B

(
0,

(
4csD log(DsD)

)1/2)] × (−1/2,0] (3.65)

for all sufficiently large D . Therefore, since ψ∗
D(x) = 1 + c∗ in B(0, (4csD log(DsD))1/2) by (3.56)

and (3.57), it follows from (3.6), (3.57), (3.58), (3.61), and (3.65) that

∥∥∇w∗(0)
∥∥∞ � εD‖∇ψD‖L∞(RN \B(0,(4cDsD log(DsD ))1/2))

= ∥∥∇w(0)
∥∥

L∞(RN\B(0,(4cDsD log(DsD ))1/2))

= D− N
2 −c+1

∥∥∇W (0)
∥∥

L∞(RN\B(0,(4cDsD log(DsD ))1/2))
� C2εD

for all sufficiently large D . Thus we obtain the desired inequality, and the proof of Lemma 3.3 is
complete. �
Lemma 3.4. Assume the same conditions as in Theorem 1.3. Then there hold

sup
0�τ�τ∗

sup
|x|�DsD

(
eτ�ψD

)
(x) = 1 + o(1), (3.66)

inf
τ∗/2�τ�τ∗

inf
|x|�(cDsD log(DsD ))1/2

(
eτ�ψ∗

D

)
(x) � 1 + c∗/2, (3.67)

for all sufficiently large D.

Proof. Put

Z(x, τ ) := κ
[
1 − Dz

(
x, sD + D−1τ

)]− 1
p−1 .

Then, by the same argument as in [8, Lemma 5.2] with A = 1 we see that

sup
0�τ�τ∗

∥∥Z(τ ) − Z(0)
∥∥∞ = O

(
D− N

2
)
,

sup
0�τ�τ∗

∥∥Z(τ ) − eτ� Z(0)
∥∥∞ = O

(
D−N+1),

for all sufficiently large D . These inequalities together with (3.5) and (3.51) yield

sup
0�τ�τ∗

∥∥eτ�ψD − ψD
∥∥∞

= sup
0�τ�τ∗

D
N
2 +c−1

∥∥eτ�w(0) − w(0)
∥∥∞

= sup
0�τ�τ

D
N
2 +c−1

∥∥eτ� Z(0) − Z(0)
∥∥∞ + O

(
D− N

2 +c+ 1
3
)

∗
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� sup
0�τ�τ∗

D
N
2 +c−1[∥∥eτ� Z(0) − Z(τ )

∥∥∞ + ∥∥Z(τ ) − Z(0)
∥∥∞

] + O
(

D− N
2 +c+ 1

3
)

= O
(

D− N
2 +c) + O

(
Dc−1) + O

(
D− N

2 +c+ 1
3
)

(3.68)

for all sufficiently large D . Then, since N � 3 and c ∈ (0,1/2), by (3.55) and (3.68) we have

lim
D→∞ sup

0�τ�τ∗
sup

|x|�DsD

(
eτ�ψD

)
(x) = lim

D→∞ sup
|x|�DsD

ψD(x) = 1.

This gives (3.66). Furthermore, since

B
(
x,

(
cDsD log(DsD)

)1/2) ⊂ B
(
0,

(
4cDsD log(DsD)

)1/2)
if |x| � (

cDsD log(DsD)
)1/2

,

by (1.4), (3.56), and (3.57) we have

(
eτ�ψ∗

D

)
(x) − 1 � c∗

∫
|y|�(4cDsD log(DsD ))1/2

G(x − y, τ )dy

� c∗
∫

|z|�(cDsD log(DsD ))1/2

G(z, τ )dz = c∗
(
1 + o(1)

)
� c∗/2

for all (x, τ ) ∈ B(0, (cDsD log(DsD))1/2) × [τ∗/2, τ∗] and all sufficiently large D . Therefore we ob-
tain (3.67), and the proof of Lemma 3.4 is complete. �

Next we study the location of the maximum points of w(·, τ∗). Since it follows from (3.57) and
(3.58) that

κD − (1 + c∗)εD � w∗(x,0) � κD − εD , x ∈ RN ,

by (3.53) and Lemma 3.3 we can apply Proposition 2.2 to problem (3.58) with Mε = κD , C∗ = 1, and
t∗ = 0, and obtain

lim
D→∞

∥∥ε 1
p−1

D w∗(·, τ∗) − κκ
p

p−1
D

[(
eτ∗�ψ∗

D

)
(·)]− 1

p−1
∥∥∞ = 0. (3.69)

Then, by (3.53), (3.57), (3.59), and (3.69) we have

ε
1

p−1
D

∥∥w(τ∗)
∥∥∞ � ε

1
p−1

D

∥∥w∗(τ∗)
∥∥∞ � 1 (3.70)

for all sufficiently large D .
Let η be a positive constant such that

κ
1+ p

p−1

(
1 + c∗

2

)− 1
p−1

+ 2η < κ
1+ p

p−1 (1 + η)
− 1

p−1 − 2η. (3.71)

By (3.53), (3.67), and (3.69) we have

ε
1

p−1
D w∗(x, τ∗) � κκ

p
p−1

D

(
eτ∗�ψ∗

D

)
(x)−

1
p−1 + η � κ

1+ p
p−1

(
1 + c∗

2

)− 1
p−1

+ 2η (3.72)
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for all x ∈ B(0, (cDsD log(DsD))1/2) and all sufficiently large D . On the other hand, since the function

w(x, τ ) := ((
eτ�w(0)

)
(x)−(p−1) − (p − 1)τ

)− 1
p−1

is a subsolution of (3.2), by the comparison principle we obtain

w(x, τ ) � w(x, τ ) in RN × [0, τ∗]. (3.73)

Then, applying the similar argument as in (3.40) with the aid of (3.66), we obtain

w(x, τ ) = ε
− 1

p−1
D κκ

p
p−1

D

[(
eτ∗�ψD

)
(x) + O (εD)

]− 1
p−1

for all |x| � DsD and all sufficiently large D . This together with (3.66), (3.71), and (3.73) we have

ε
1

p−1
D w(x, τ∗) � ε

1
p−1

D w(x, τ∗) = κκ
p

p−1
D

[(
eτ∗�ψD

)
(x) + O (εD)

]− 1
p−1

� κ
1+ p

p−1 (1 + η)
− 1

p−1 − η > κ
1+ p

p−1

(
1 + c∗

2

)− 1
p−1

+ 3η (3.74)

for all |x| � DsD and all sufficiently large D . Therefore, by (3.59), (3.72), and (3.74) we have

ε
1

p−1
D sup

B(0,(cDsD log(DsD ))1/2)

w(x, τ∗) � ε
1

p−1
D sup

B(0,(cDsD log(DsD ))1/2)

w∗(x, τ∗)

� κ
1+ p

p−1

(
1 + c∗

2

)− 1
p−1

+ 2η < ε
1

p−1
D

∥∥w(τ∗)
∥∥∞ − η

for all sufficiently large D . Thus we obtain

H
(
ε

1
p−1

D w(·, τ∗),η
) ⊂ RN \ B

(
0,

(
cDsD log(DsD)

)1/2)
(3.75)

for all sufficiently large D .
Next we study the location of the blow-up set of w , and complete the proof of Theorem 1.3. Put

w̃(x, τ ) = ε
1

p−1
D w(x, τ∗ + εDτ ). (3.76)

Then we see that

{
∂τ w̃ = εD�w̃ + w̃ p in RN × (0, τ̃D),

w̃(x,0) = ε
1

p−1
D w(x, τ∗) in RN ,

(3.77)

where τ̃D = ε−1
D (τD − τ∗) is the blow-up time of w̃ . Similarly to (3.45), we have

∥∥w̃(τ )
∥∥ � (τ̃D − τ )

− 1
p−1 (3.78)
∞
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for all τ ∈ [0, τ̃D) and all sufficiently large D . Moreover, by (3.70) and (3.74) we have

∥∥w̃(0)
∥∥∞ = ε

1
p−1

D

∥∥w(τ∗)
∥∥∞ � 1,

∥∥w̃(0)
∥∥∞ � ε

1
p−1

D sup
|x|�DsD

w(x, τ∗) � 1, (3.79)

for all sufficiently large D . This together with the comparison principle implies that

τ̃D � S‖w̃(0)‖∞ � 1 (3.80)

for all sufficiently large D . Furthermore, since c ∈ (0,1/2) and

T D = sD + D−1τ∗ + D−1εD τ̃D , εD = D− N
2 −c+1, lim

D→∞
(

D−1εD
)D− N

2 = 1,

by (2.17), (2.29), (3.1), (3.76), and (3.80) we have

∥∥∇ w̃(0)
∥∥∞ = ε

1
p−1

D D− 1
p−1

∥∥∇u
(
sD + D−1τ∗

)∥∥∞

� ε
1

p−1
D D− 1

p−1
(
T D − sD − D−1τ∗

)− p
p−1 −C ′ D− N

2
D− N

2 − 1
2

� Dε−1
D τ̃

− p
p−1 −C ′ D− N

2

D D− N
2 − 1

2 � Dc− 1
2 � 1 (3.81)

for all sufficiently large D , where C ′ is a positive constant. Therefore, by (3.78), (3.79), and (3.81) we
can apply Proposition 2.3 with ϕε = w̃(0) to the solution w̃ of (3.77), and by (3.75) we obtain

B D ⊂ H
(

w̃(·,0),η
) = H

(
ε

1
p−1

D w(·, τ∗),η
) ⊂ RN \ B

(
0,

(
cDsD log(DsD)

)1/2)
for all sufficiently large D . Then, since sD = Sλ − D−1, there exists a positive constant C such that

B D ∩ B
(
0, C(D log D)1/2) = ∅

for all sufficiently large D , and we obtain (1.10). Thus the proof of Theorem 1.3 is complete. �
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