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1. Introduction

In this paper, we are concerned with the following system of variational wave equations

uktt − ck(u)
[
ck(u)ukx

]
x =

n∑
i=1

(ckckui ukx − ciciuk uix)uix (k = 1,2, . . . ,n), (1.1)

where u(t, x) = (u1(t, x), . . . , un(t, x)) is the unknown vector function, ci (i = 1,2, . . . ,n) : Rn → R are
smooth and positive functions, that is, there are positive numbers ċ < c̈ such that

0 < ċ � ci(z) � c̈ < ∞ and sup
z

∣∣∇ci(z)
∣∣ < ∞, z ∈ Rn (i = 1,2, . . . ,n). (1.2)
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System (1.1) is derived from a variational principle of the form

δ

∫
Aij

αβ(u)
∂uα

∂xi

∂uβ

∂x j
dx = 0, (1.3)

where we use the summation convention, see [1,12] for details. Here, x ∈ Rd+1 are the space–time
independent variables and u : Rd+1 → Rn are the dependent variables. The coefficients Aij

αβ : Rn → R

are smooth functions and Aij
αβ = Aij

βα = A j i
αβ . Consider the special case d = 1 and

Aαβ = (
Aij

αβ

)
2×2 =

{
diag(−c2

α(u),1), α = β,

0, α �= β,
(1.4)

then the Lagrangian density of (1.3) is

L(u,∇u) =
n∑

i=1

[
u2

it − c2
i (u)u2

ix

]
, (1.5)

for which the Euler–Lagrange equations are (1.1).
For the case n = 1, system (1.1) reduces to the variational wave equation

utt − c(u)
[
c(u)ux

]
x = 0. (1.6)

This equation arises in a number of various physical contexts, for example, it describes, to the first
order, the motion of long waves on a neutral dipole chain in the continuum limit [10,29]. For another
important example, Eq. (1.6) is a simplified model for the director field of a nematic liquid crystal
[12,17]. Even for smooth initial data, there is the well-known fact that the solution of this equation
can develop cusp-type singularities in finite time, which is attributed to the term c(u)c′(u)u2

x , see
Glassey et al. [8,9]. It is therefore necessary to study the global existence of weak solutions. There
are at least two natural distinct classes of admissible weak solutions, which are called dissipative and
conservative solutions. The dissipative solution loses all the energy at the blowup time, while the
conservative solution will preserve its energy in time. The existence of a dissipative weak solution to
its initial value problem, as well as for related asymptotic models, has been extensively studied by
Zhang and Zheng [19–26] and Hunter and Zheng [13]. The more relevant results of the first-order
asymptotic equation (which is also called Hunter–Saxton equation) and its geometric interpretation
are presented in [3,4,7,14–16,18] and the references therein. In [6], Bressan and Zheng established an
energy-conservative weak solution to the Cauchy problem of Eq. (1.6). Recently, Holden and Raynaud
[11] have shown that it possesses a global semigroup for conservative weak solutions. Moreover, the
global conservative weak solutions to its asymptotic equations have been obtained in [5,21].

Another simplified model arising from the theory of nematic liquid crystals is a system of equa-
tions

{
utt − c1[c1ux]x = aa′(v2

t − c2
2 v2

x

) − a2c2c′
2 v2

x ,(
a2 vt

)
t − (

c2
2a2 vx

)
x = 0,

(1.7)

where c1 = c1(u), c2 = c2(u) and a = a(u) are functions of u alone. We refer the reader to Ref. [2]
of Ali and Hunter for the detailed derivation and more background information of the system. Re-
cently, Zhang and Zheng [27,28] have established the global existence of an energy-conservative weak
solution to its initial value problem for initial data of finite energy. We notice that system (1.7) is a
particular case of (1.1) for n = 2.
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In the present paper, we only consider the special case ci = c j (i, j = 1, . . . ,n) of (1.1). In this case,
system (1.1) reduces to

uktt − c(u)
[
c(u)ukx

]
x = c(u)

n∑
i=1

(cui ukx − cuk uix)uix (k = 1,2, . . . ,n), (1.8)

where c : Rn → R is a smooth and positive function satisfying

0 < c1 � c(z) � c2 < ∞ and sup
z

∣∣∇c(z)
∣∣ < ∞, z ∈ Rn, (1.9)

for positive numbers c1 < c2. The general case of (1.1) will be considered in a forthcoming paper.
The purpose of this paper is to establish the global well-posedness of the initial value problem

for the system of variational wave equations (1.8) for conservative weak solutions. We shall use the
method of energy-dependent coordinates used in papers [5,6,27] to construct an energy-conservative
solution of (1.8). This method allows us to resolve all singularities by introducing a new set of vari-
ables related to the energy. The global smooth solution of the system in the new variables can be
obtained by a priori estimates. Going back to the original variables, we thus recover a global weak
solution to system (1.8).

We consider (1.8) and (1.9) with the following initial data

uk(0, x) = uk0(x) ∈ H1, ukt(0, x) = uk1(x) ∈ L2 (k = 1,2, . . . ,n). (1.10)

To deal with the potential breakdown of regularity of solutions, we need to consider weak solutions
instead of classical solutions. It can easily be derived that every smooth solution satisfies the conser-
vation of energy

[
1

2

n∑
i=1

(
u2

it + c2(u)u2
ix

)]
t

−
[

c2(u)

n∑
i=1

uit uix

]
x

= 0, (1.11)

which implies the existence of finite-energy weak solutions is possible for all time, even after sin-
gularities have formed. Before we state our results, let us first recall the definition of weak solutions
introduced by Bressan and Zheng [6] (also see Zhang and Zheng [27,28]).

Definition 1 (Weak solution). A vector function u(t, x), defined for all (t, x) ∈ R × R, is a weak solution
to the Cauchy problem (1.8), (1.10) if the following hold:

(i) In the t–x plane, the functions uk (k = 1,2, . . . ,n) are locally Hölder continuous with expo-
nent 1/2. The vector function t �→ u(t, ·) is continuously differentiable as a map with values
in Lθ

loc, for all 1 � θ < 2. Moreover, it is Lipschitz continuous with respect to the L2 distance, that
is

n∑
i=1

∥∥ui(t, ·) − ui(s, ·)∥∥L2 � L|t − s| (1.12)

for all t, s ∈ R.
(ii) The functions uk(t, x) (k = 1,2, . . . ,n) take on the initial conditions in (1.10) pointwise, while

their temporal derivatives hold in Lθ
loc for θ ∈ [1,2).
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(iii) Eqs. (1.8) are satisfied in the distributional sense, that is

∫ ∫ [
φt ukt − (

c(u)φ
)

xc(u)ukx + φc
n∑

i=1

(cui ukx − cuk uix)uix

]
dx dt = 0 (k = 1,2, . . . ,n)

(1.13)

for all test functions φ ∈ C1
c (R × R).

Our conclusions can be stated as follows.

Theorem 1.1 (Existence). Let condition (1.9) hold. Then problem (1.8), (1.10) has a global weak solution defined
for all (t, x) ∈ R × R.

The continuous dependence of the solution upon the initial data follows directly from the con-
structive procedure (see Section 3). Moreover, the total energy

E (t) := 1

2

∫ n∑
i=1

[
u2

it(t, x) + c2(u(t, x)
)
u2

ix(t, x)
]

dx (1.14)

remains uniformly bounded by its initial level E0 := E (0). More precisely, we have

Theorem 1.2 (Continuous dependence). A family of weak solutions to the Cauchy problem (1.8), (1.10) can be
constructed with the additional properties: For every t ∈ R one has

E (t) � E0. (1.15)

Moreover, let a sequence of initial conditions satisfy

n∑
i=1

∥∥(
uν

i0

)
x − (ui0)x

∥∥
L2 → 0,

n∑
i=1

∥∥uν
i1 − ui1

∥∥
L2 → 0

and uν
k0 → uk0 (k = 1,2, . . . ,n) uniformly on compact sets, as ν → ∞. Then one has the convergence of the

corresponding solutions uν → u, uniformly on bounded subsets of the t–x plane.

It seems from (1.15) that the total energy of our solutions may decrease in time. We emphasize,
however, that our solutions are conservative, in the following sense.

Theorem 1.3 (Conservation of energy). There exists a continuous family {μt; t ∈ R} of positive Radon mea-
sures on the real line with the following properties.

(i) At every time t, one has μt(R) = E0 .
(ii) For each t, the absolutely continuous part of μt has density 1

2

∑n
i=1(u2

it + c2(u)u2
ix) with respect to the

Lebesgue measure.
(iii) For almost every t ∈ R, the singular part of μt is concentrated on the set where |∇c(u)| = 0.

In other words, the solutions that we obtain are conservative, in the sense that the total energy
represented by the measure μ equals a constant, for almost every time. This energy may only be
concentrated on a set of times of zero measure or at points where all cuk (u) (k = 1,2, . . . ,n) vanish.
If |∇c(u)| �= 0 for any vector u, then assertion (iii) states that the set {t; E (t) < E0} has measure zero.
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The rest of the paper is organized as follows. In Section 2, we introduce a new set of dependent
and independent variables for smooth solutions, and then derive an equivalent semilinear system
of (1.8). Section 3 is devoted to establishing the existence and continuous dependence of solutions
for the equivalent semilinear system. In Section 4, we show the Hölder continuity of these solutions
u in the original independent variables t, x, and verify that the equations in (1.8) are satisfied in
the distributional sense. Moreover, the energy inequality (1.15) is demonstrated in Section 5 and the
Lipschitz continuity of the map t �→ u(t, ·), the continuity of the maps t �→ ut(t, ·), t �→ ux(t, ·) are
established in Section 6. These results complete the proofs of Theorems 1.1 and 1.2. Finally, Section 7
is devoted to the proof of Theorem 1.3.

2. An equivalent system

This section is devoted to deriving an equivalent system of (1.8) for smooth solutions by introduc-
ing a new set of dependent and independent variables to replace the original variables.

Let

{
Rk = ukt + c(u)ukx,

Sk = ukt − c(u)ukx
(k = 1,2, . . . ,n), (2.1)

and denote R := (R1, . . . , Rn), S := (S1, . . . , Sn). Then (1.8) can be rewritten as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rkt − cRkx = ∇c

2c
· R(Rk − Sk) − cuk

4c
|R − S|2,

Skt + cSkx = ∇c

2c
· S(Sk − Rk) − cuk

4c
|S − R|2,

ukt − c(u)ukx = Sk

(k = 1,2, . . . ,n). (2.2)

This system is equivalent to (1.8) for smooth solutions if we supplement (2.2) with initial restriction

at t = 0: ukx = Rk − Sk

2c(u)
(k = 1,2, . . . ,n). (2.3)

In fact, for

Fk := Rk − Sk − 2c(u)ukx (k = 1,2, . . . ,n), (2.4)

we directly compute

∂t Fk − c(u)∂x Fk = ∂t(Rk − Sk − 2cukx) − c(u)∂x(Rk − Sk − 2cukx)

=
n∑

i=1

cui

2c

[
(Ri + Si)(Rk − Sk) − 4cuit ukx

]

=
n∑

i=1

cui

2c

[
(Ri + Si + 2cuix)Fk + 2cukx(Ri − Si) − 2cuix(Rk − Sk)

]

=
n∑

i=1

cui

2c

[
(Ri + Si)Fk + 2cukx Fi

]
(k = 1,2, . . . ,n) (2.5)

which imply, if all Fk (k = 1,2, . . . ,n) vanish at time zero, that Fk ≡ 0 (k = 1,2, . . . ,n) for all t > 0.
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Proposition 1. Any smooth solution of (1.8) is a solution to (2.2), (2.3). The converse also holds.

We notice that the equations for uk (k = 1,2, . . . ,n) in (2.2) may be replaced by ukt + c(u)ukx = Rk
(k = 1,2, . . . ,n) together with initial compatibility conditions 2ukt = Rk + Sk (k = 1,2, . . . ,n) (at
t = 0). This follows since we have

Gkt + c(u)Gkx =
n∑

i=1

cui

2c

[
(Ri + Si)Gk − 2cukxGi

]
(k = 1,2, . . . ,n) (2.6)

for Gk := Rk + Sk − 2ukt (k = 1,2, . . . ,n).
For convenience to deal with possibly unbounded values of Rk and Sk (k = 1,2, . . . ,n), we intro-

duce a new set of dependent variables:

	k := Rk

1 + |R|2 , h1 := 1

1 + |R|2 ,

mk := Sk

1 + |S|2 , h2 := 1

1 + |S|2
(k = 1,2, . . . ,n). (2.7)

We denote 	 := (	1, . . . , 	n) and m := (m1, . . . ,mn) for notational convenience. It is easy to see that
there hold

h2
1 + |	|2 = h1, (2.8)

h2
2 + |m|2 = h2. (2.9)

For k = 1,2, . . . ,n, we now compute

	kt − c(u)	kx = h2
1

[(
1 + |R|2)(Rkt − cRkx) − Rk

n∑
j=1

2R j(R jt − cR jx)

]

= h2
1

{
−cuk

4c

(
1 + |R|2)|R − S|2 + ∇c

2c
· R

[
Rk

(
1 + |S|2) − Sk

(
1 + |R|2)]}, (2.10)

which, combined with (2.7)–(2.9), leads to

	kt − c(u)	kx = 1

h2

[
cuk

4c
(2h1h2 − h1 − h2) + cuk

2c
	 · m + ∇c

2c
· 	(	k − mk)

]
. (2.11)

Similarly, we have

mkt + c(u)mkx = h2
2

[(
1 + |S|2)(Skt + cSkx) − Sk

n∑
j=1

2S j(S jt + cS jx)

]

= h2
2

{
−cuk

4c

(
1 + |S|2)|S − R|2 + ∇c

2c
· S

[
Sk

(
1 + |R|2) − Rk

(
1 + |S|2)]}, (2.12)

and combining this with (2.7)–(2.9) yields

mkt + c(u)mkx = 1

h

[
cuk

4c
(2h1h2 − h1 − h2) + cuk

2c
	 · m + ∇c

2c
· m(mk − 	k)

]
. (2.13)
1
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Furthermore, by a simple calculation we get

⎧⎪⎪⎨
⎪⎪⎩

h1t − c(u)h1x = ∇c

2ch2
· 	(h1 − h2),

h2t + c(u)h2x = ∇c

2ch1
· m(h2 − h1).

(2.14)

We define the forward and backward characteristics as follows:

⎧⎨
⎩

d

ds
x±(s; t, x) = ±c

(
u
(
s; x±(s; t, x)

))
,

x±|s=t = x.
(2.15)

Then, for a point (t, x), we define the energy-dependent coordinates (X, Y ):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

X :=
x−(0;t,x)∫

0

[
1 + ∣∣R(0, ξ)

∣∣2]
dξ,

Y :=
0∫

x+(0;t,x)

[
1 + ∣∣S(0, ξ)

∣∣2]
dξ,

(2.16)

which imply that

Xt − c(u)Xx = 0, Yt + c(u)Yx = 0. (2.17)

Moreover, for any smooth function f , we obtain by making use of (2.17) that

ft + c(u) fx = f X Xt + fY Yt + cf X Xx + cfY Yx = (Xt + c Xx) f X = 2c Xx f X ,

ft − c(u) fx = f X Xt + fY Yt − cf X Xx − cfY Yx = (Yt − cYx) f X = −2cYx fY . (2.18)

We now introduce

p := 1 + |R|2
Xx

, q := 1 + |S|2
−Yx

. (2.19)

From (2.7), we see that

1

Xx
= p

1 + |R|2 = ph1,
1

−Yx
= q

1 + |S|2 = qh2. (2.20)

Noting

cx =
n∑

i=1

cui uix = ∇c

2c
· (R − S), (2.21)

and combining (2.7), (2.17) and (2.20), we compute
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pt − c(u)px = 1

Xx

n∑
j=1

2R j(R jt − cR jx) − 1

X2
x

(
1 + |R|2)[(Xx)t − c(Xx)x

]

= 1

Xx

[
n∑

j=1

2R j(R jt − cR jx) − (
1 + |R|2)cx

]

= ph1

{∇c

2c
· R

[
2R · (R − S) − |R − S|2] − ∇c

2c
· (R − S)

(
1 + |R|2)}

= ph1

[∇c

2c
· S

(
1 + |R|2) − ∇c

2c
· R

(
1 + |S|2)]

= ∇c

2ch2
· (m − 	)p. (2.22)

Similarly, we also have

qt + c(u)qx = 1

−Yx

n∑
j=1

2S j(S jt + cS jx) − 1

−Y 2
x

(
1 + |S|2)[(−Yx)t + c(−Yx)x

]

= 1

−Yx

[
n∑

j=1

2S j(S jt + cS jx) + (
1 + |S|2)cx

]

= qh2

{∇c

2c
· S

[
2S · (S − R) − |S − R|2] + ∇c

2c
· (R − S)

(
1 + |S|2)}

= qh2

[∇c

2c
· R

(
1 + |S|2) − ∇c

2c
· S

(
1 + |R|2)]

= ∇c

2ch1
· (	 − m)q. (2.23)

Summing up (2.11), (2.13)–(2.14), (2.18) and (2.22)–(2.23), we obtain a semilinear hyperbolic system
with smooth coefficients for the variables h1, h2, p, q, 	k , mk , uk (k = 1,2, . . . ,n) in (X, Y ) coordinates
as follows: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

	kY = q

[
cuk

8c2
(2h1h2 − h1 − h2) + cuk

4c2
	 · m + ∇c

4c2
· 	(	k − mk)

]
,

mkX = p

[
cuk

8c2
(2h1h2 − h1 − h2) + cuk

4c2
	 · m + ∇c

4c2
· m(mk − 	k)

]
,

ukX = p

2c
	k

(
or ukY = q

2c
mk

)
(k = 1,2, . . . ,n),

(2.24)

⎧⎪⎨
⎪⎩

h1Y = ∇c

4c2
· 	(h1 − h2)q,

h2X = ∇c

4c2
· m(h2 − h1)p,

(2.25)

⎧⎪⎨
⎪⎩

pY = ∇c

4c2
· (m − 	)pq,

qX = ∇c
2

· (	 − m)pq.

(2.26)
4c
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We comment that we have ukX Y = ukY X (k = 1,2, . . . ,n), so we may use either ukX or ukY (k =
1,2, . . . ,n) in (2.24). In addition one also has

pY + qX = 0,

(
q

c

)
X

−
(

p

c

)
Y

= 0. (2.27)

Indeed, thanks to (2.18), we deduce

⎧⎪⎪⎨
⎪⎪⎩

c X = ct + ccx

2c Xx
= ∇c

2c
· Rph1 = ∇c

2c
· 	p,

cY = ct − ccx

−2cYx
= ∇c

2c
· Sqh2 = ∇c

2c
· mq.

(2.28)

Then we compute

(
q

c

)
X

−
(

p

c

)
Y

= 1

c2
(2cqX + pcY − qc X )

= 1

c2

[
2c

∇c

4c2
· (	 − m)pq + p

∇c

2c
· mq − q

∇c

2c
· 	p

]
= 0.

We notice that the two functions for ∂Y h1 and ∂X h2 in (2.25) may seem to be replaceable by the
conserved quantities (2.8) and (2.9), but (2.8) and (2.9) do not yield single-valued functions h1 and h2
of |	|2 and |m|2, respectively. For these reasons, we keep more equations supplemented by conserved
quantities rather than fewer equations involving complicated functions.

We next consider the boundary conditions of system (2.24)–(2.26), corresponding to (1.10). The ini-
tial line t = 0 in the (t, x) plane is transformed to a curve Γ : Y = ϕ(X) defined through a parametric
x ∈ R

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

X =
x∫

0

[
1 + ∣∣R(0, ξ)

∣∣2]
dξ,

Y =
0∫

x

[
1 + ∣∣S(0, ξ)

∣∣2]
dξ

(2.29)

which is non-characteristic. The assumptions uk0 ∈ H1, uk1 ∈ L2 (k = 1,2, . . . ,n) imply that
Rk(0, x), Sk(0, x) ∈ L2 (k = 1,2, . . . ,n). We introduce

E0 := 1

4

∫ [∣∣R(0, ξ)
∣∣2 + ∣∣S(0, ξ)

∣∣2]
dξ < ∞, (2.30)

which equals to the number E (0) in (1.14). Then the two functions X = X(x), Y = Y (x) are well
defined and absolutely continuous. Moreover, X is strictly increasing while Y is strictly decreasing.
Therefore, the map X �→ ϕ(X) is continuous and strictly decreasing. In addition, we also have |X +
ϕ(X)| � 4E0 from (2.30). The coordinate transformation maps the domain [0,∞) × R in the (t, x)
plane into the set

Ω+ := {
(X, Y ); Y � ϕ(X)

}
(2.31)
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in the (X, Y ) plane. Since the curve Γ is parametrized by the parameter x, then we can assign the
boundary data (	̄,m̄, h̄1, h̄2, p̄, q̄, ū) ∈ L∞ defined by

{
	̄ = R(0, x)h̄1,

m̄ = S(0, x)h̄2,

⎧⎪⎪⎨
⎪⎪⎩

h̄1 = 1

1 + |R(0, x)|2 ,

h̄2 = 1

1 + |S(0, x)|2 ,

{
p̄ = 1,

q̄ = 1,
ū = u0(x), (2.32)

where

{
R(0, x) = u1(x) + c

(
u0(x)

)
u′

0(x),

S(0, x) = u1(x) − c
(
u0(x)

)
u′

0(x),
(2.33)

along Γ . Furthermore, (2.8) and (2.9) are identically satisfied along Γ . In fact, thanks to (2.24)–(2.26),
we deduce

∂Y
(|	|2 + h2

1 − h1
) =

n∑
j=1

2	 j	 jY + (2h1 − 1)h1Y

= 2q
n∑

j=1

	 j

[
cu j

8c2
(2h1h2 − h1 − h2) + cu j

4c2
	 · m + ∇c

4c2
· 	(	 j − m j)

]

+ ∇c

4c2
· 	(2h1 − 1)(h1 − h2)q

= ∇c

2c2
· 	q

[(
h2

1 − h1
) + 	 · m + 	 · (	 − m)

] = ∇c

2c2
· 	q

(|	|2 + h2
1 − h1

)
and

∂X
(|m|2 + h2

2 − h2
) =

n∑
j=1

2m jm j X + (2h2 − 1)h2X

= 2p
n∑

j=1

m j

[
cu j

8c2
(2h1h2 − h1 − h2) + cu j

4c2
	 · m + ∇c

4c2
· m(m j − 	 j)

]

+ ∇c

4c2
· m(2h2 − 1)(h2 − h1)p

= ∇c

2c2
· mp

[(
h2

2 − h2
) + 	 · m + m · (m − 	)

] = ∇c

2c2
· mp

[|m|2 + h2
2 − h2

]
,

which imply, by the initial data (2.32), that the identities (2.8) and (2.9) hold for the solutions.

3. Solutions of the equivalent system

In this section, we establish the existence of a unique global solution for system (2.24)–(2.26) with
boundary data (2.32) in the energy coordinates (X, Y ).

Theorem 3.1. Let conditions (1.9), (1.10) hold. Then problem (2.24)–(2.26) with boundary data (2.32) has a
unique global solution defined for all (X, Y ) ∈ R

2 .
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We construct below the solution on the domain Ω+ where Y � ϕ(X). On the complementary set
R2 \ Ω+ , the solution can be constructed in a completely similar way.

We first note that all right-hand side functions in system (2.24)–(2.26) are locally Lipschitz contin-
uous, thus the construction of a local solution is straightforward by the fixed point method. In order
to extend this local solution to the entire domain Ω+ , it suffices to establish a priori estimates.

We observe that the conserved quantities (2.8) and (2.9) hold for the solutions, namely,

n∑
i=1

	2
i = h1(1 − h1),

n∑
i=1

m2
i = h2(1 − h2). (3.1)

Thus h1,h2 are bounded between zero and one and the functions 	k , mk (k = 1,2, . . . ,n) are uniformly
bounded. Integrating the first equation of (2.27) over the characteristic triangle with vertex (X, Y ),

X∫
ϕ−1(Y )

p
(

X ′, Y
)

dX ′ +
Y∫

ϕ(X)

q
(

X, Y ′) dY ′ = X − ϕ−1(Y ) + Y − ϕ(X)

� 2
(|X | + |Y | + 4E0

)
, (3.2)

where ϕ−1 denotes the inverse of ϕ . The second inequality holds by the energy assumption (2.30).
Integrating the first equation of (2.26) vertically and making use of (3.2), since p,q > 0 from (2.19)
and (2.26), we obtain

p(X, Y ) = exp

{ Y∫
ϕ(X)

∇c

4c2
· (m − 	)q dY ′

}

� exp

{
C0

Y∫
ϕ(X)

q
(

X, Y ′)dY ′
}

� exp
{

2C0
(|X | + |Y | + 4E0

)}
, (3.3)

where C0 is a finite number depending only on c1, c2 and sup |∇c|. Similarly, integrating the second
equation of (2.26) horizontally, we get

q(X, Y ) = exp

{ X∫
ϕ−1(Y )

∇c

4c2
· (	 − m)p dX ′

}

� exp

{
C0

X∫
ϕ−1(Y )

p
(

X ′, Y
)

dX ′
}

� exp
{

2C0
(|X | + |Y | + 4E0

)}
. (3.4)

The proof of the global existence of system (2.24)–(2.26) with boundary data (2.32) follows from the
local bounds (3.3) and (3.4). We omit the details since they are very similar to those in Bressan and
Zheng [6].

For future reference, we here state a useful consequence of the above construction.
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Corollary 1. Let (1.9) hold. If the initial data (uk0, uk1) (k = 1,2, . . . ,n) are smooth, then the solution of
(2.24)–(2.26), (2.32) is a smooth function of the variables (X, Y ). Moreover, assume that a sequence of smooth
functions (uν

k0, uν
k1)ν�1 (k = 1,2, . . . ,n) satisfies

uν
k0 → uk0,

(
uν

k0

)
x → (uk0)x, uν

k1 → uk1 (k = 1,2, . . . ,n)

uniformly on compact subsets of R. Then one has the convergence of the corresponding solutions:

(
uν, 	ν,mν,hν

1 ,hν
2 , pν,qν

) → (u, 	,m,h1,h2, p,q),

uniformly on bounded subsets of the X–Y plane.

4. Solutions in the original variables

In the present section, we prove that the solution in the X–Y plane can be expressed by the
original variables (t, x). Moreover, we also prove that the solution in the original variables is Hölder
continuous and satisfies (1.8) in the distributional sense.

Since the initial data (uk0)x and uk1 (k = 1,2, . . . ,n) are assumed only to be in L2, we first examine
from system (2.24)–(2.26) that the regularity of the solution is as follows:

– The functions 	k (k = 1,2, . . . ,n), h1, p are Lipschitz continuous w.r.t. Y , measurable w.r.t. X .
– The functions mk (k = 1,2, . . . ,n),h2, q are Lipschitz continuous w.r.t. X , measurable w.r.t. Y .
– The functions uk (k = 1,2, . . . ,n) are Lipschitz continuous w.r.t. both X and Y , on bounded sub-

sets of the X–Y plane.

In order to define uk (k = 1,2, . . . ,n) as functions of the original variables t , x, we need the inverse
functions X = X(t, x), Y = Y (t, x). The map (X, Y ) �→ (t, x) can be constructed as follows. Due to (2.18)
and (2.20), we obtain

⎧⎪⎪⎨
⎪⎪⎩

xX = 1

2Xx
= 1

2
ph1,

xY = 1

2Yx
= −1

2
qh2

(4.1)

and

⎧⎪⎪⎨
⎪⎪⎩

t X = 1

2c Xx
= 1

2c
ph1,

tY = 1

−2cYx
= 1

2c
qh2.

(4.2)

For future reference, we write here the partial derivatives of the inverse mapping, valid at points
where h1,h2 �= 0,

Xx = 1

ph1
, Yx = − 1

qh2
, Xt = c

ph1
, Yt = c

qh2
. (4.3)

We use (2.25)–(2.26) and (2.28) to compute
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Fig. 1. Paths of integration γ1, γ2. The left figure (a) corresponds to the case X1 � X2, Y1 � Y2, and the right figure (b) to the
case X1 � X2, Y1 � Y2. The dashed curves in figures (a) and (b) are, respectively, the boundaries ∂Dx∗ and ∂Dt∗ .

xXY = 1

2
(h1 pY + ph1Y )

= ∇c

8c2
· 	(h1 − h2)pq + ∇c

8c2
· (m − 	)h1 pq = ∇c

8c2
· (h1m − h2	)pq

= ∇c

8c2
· (m − 	)h2 pq − ∇c

8c2
· m(h2 − h1)pq = 1

2
(−h2qX − qh2 X) = xY X

and

t XY − tY X =
(

xX

c

)
Y

+
(

xY

c

)
X

= 2

c
xXY − 1

c2
(xX cY + xY c X )

= ∇c

4c3
· (h1m − h2	)pq − 1

c2

[ ∇c

4c2
· mh1 pq − ∇c

4c2
· 	h2qp

]
= 0.

Therefore, the functions x = x(X, Y ) and t = t(X, Y ) can be obtained by integrating one of the equa-
tions in (4.1) and (4.2), respectively. We note that the map constructed above may not be one-to-one
mapping. This fact, however, does not cause any real difficulty. Indeed, we need only prove the
claim that the values of u do not depend on the choice of (X, Y ). That is because if it holds then,
for each given point (t∗, x∗), we can choose an arbitrary point (X∗, Y ∗) such that t(X∗, Y ∗) = t∗ ,
x(X∗, Y ∗) = x∗ , and define u(t∗, x∗) := u(X∗, Y ∗). To prove this claim, assume (X1, Y1) and (X2, Y2)

are two distinct points such that t(X1, Y1) = t(X2, Y2) = t∗ and x(X1, Y1) = x(X2, Y2) = x∗ , we need
to show u(X1, Y1) = u(X2, Y2). Consider two cases:

Case 1. X1 � X2, Y1 � Y2. Consider the set

Dx∗ := {
(X, Y ); x(X, Y ) � x∗}

and denote by ∂ Dx∗ its boundary. Since x is increasing with X and decreasing with Y , this boundary
can be represented as the graph of a Lipschitz continuous function: X − Y = φ(X + Y ). We now
construct a Lipschitz continuous curve γ1 (Fig. 1(a)) consisting of the following:
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– a horizontal segment joining (X1, Y1) with a point A = (X A, Y A) on ∂ Dx∗ with Y A = Y1,
– a portion of the boundary ∂ Dx∗ ,
– a vertical segment joining (X2, Y2) with a point B = (XB , Y B) on ∂ Dx∗ with XB = X2.

From (4.1)–(4.2) and the assumptions t(X1, Y1) = t(X2, Y2) = t∗ , x(X1, Y1) = x(X2, Y2) = x∗ , we
obtain that t ≡ t∗ and x ≡ x∗ on the curve γ1. Then, along γ , we have

0 = dx = xX dX + xY dY = 1

2
ph1 dX − 1

2
qh2 dY ,

0 = dt = t X dX + tY dY = 1

2c
ph1 dX + 1

2c
qh2 dY

hold almost everywhere. Hence, h1 dX = h2 dY = 0, which means that 	k dX = mk dY = 0 (k =
1,2, . . . ,n). For k = 1,2, . . . ,n, we now compute

uk(X2, Y2) − uk(X1, Y1) =
∫
γ

(ukX dX + ukY dY )

=
∫
γ

p

2c
	k dX + q

2c
mk dY = 0,

which concludes our claim.

Case 2. X1 � X2, Y1 � Y2. In this case, we consider the set

Dt∗ := {
(X, Y ); t(X, Y ) � t∗},

and construct a curve γ2 connecting (X1, Y1) with (X2, Y2) as in Fig. 1(b). Details are entirely similar
to Case 1.

We next prove that the vector function u(t, x) = u(X(t, x), Y (t, x)) thus obtained is Hölder contin-
uous on bounded sets. For k = 1,2, . . . ,n, integrating along any forward characteristic t �→ x+(t) and
noticing Y = const. on this kind of characteristics, we get

τ∫
0

[
ukt + c(u)ukx

]2
dt =

Xτ∫
X0

(2c XxukX )2(2c Xx)
−1 dX =

Xτ∫
X0

p

2ch1
	2

k dX

�
Xτ∫

X0

p

2ch1
|	|2 dX =

Xτ∫
X0

1

2c
p(1 − h1)dX

�
Xτ∫

X0

1

2c
p dX � Cτ , (4.4)

for some constant Cτ depending only on τ . Similarly, integrating along any backward characteristic
t �→ x−(t) and noticing X = const. on this kind of characteristics, we obtain
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τ∫
0

[
ukt − c(u)ukx

]2
dt � Cτ (k = 1,2, . . . ,n). (4.5)

Thanks to (1.9), the bounds (4.4) and (4.5) imply that the vector function u = u(t, x) is Hölder con-
tinuous with exponent 1/2. Due to (2.15) we obtain all characteristic curves are C1 with Hölder
continuous derivative. Moreover, the functions Rk , Sk (k = 1,2, . . . ,n) at (2.1) are square integrable
on bounded subsets of the t–x plane. In addition, notice that

ukt + c(u)ukx = 2c XxukX = 2c
1

ph1
· p

2c
	k = 	k

h1
= Rk

and

ukt − c(u)ukx = −2cYxukY = −2c

(
− 1

qh2

)
· q

2c
mk = mk

h2
= Sk

for k = 1,2, . . . ,n, which indicate that the functions Rk , Sk (k = 1,2, . . . ,n) at (2.1) are indeed the
same as recovered from (2.7).

Finally, we prove that the vector function u = u(t, x) satisfies (1.8) in the distributional sense.
According to (1.13), we need to show that for k = 1,2, . . . ,n,

0 =
∫ ∫ {

φt
[
(ukt + cukx) + (ukt − cukx)

] − (cφ)x
[
(ukt + cukx) − (ukt − cukx)

]

+ 2φc
n∑

i=1

(cui ukx − cuk uix)uix

}
dx dt

=
∫ ∫ {

Rk
[
φt − (cφ)x

] + Sk
[
φt + (cφ)x

] + 2φc
n∑

i=1

(cui ukx − cuk uix)uix

}
dx dt

=
∫ ∫ {

−2cRkYxφY + 2cSk XxφX + φ

[
(Sk − Rk)cx + 2c

n∑
i=1

(cui ukx − cuk uix)uix

]}
dx dt

=
∫ ∫ [

−2cRkYxφY + 2cSk XxφX − φ
cuk

2c
|R − S|2

]
dx dt. (4.6)

The third identity holds by (2.18). We notice that, from (4.1) and (4.2),

dx dt = pq

2c
h1h2 dX dY .

Therefore, one can rewrite the double integral in (4.6) as

∫ ∫ [
2c

	k

qh1h2
φY + 2c

mk

ph1h2
φX − φ

cuk

2c

n∑
i=1

(
	i

h1
− mi

h2

)2
]

· pq

2c
h1h2 dX dY

=
∫ ∫ {

p	kφY + qmkφX + φpq

[
cuk

4c2
(2h1h2 − h1 − h2) + cuk

2c2
	 · m

]}
dX dY . (4.7)

By direct calculation, we find that
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(p	k)Y + (qmk)X = p	kY + 	k pY + qmkX + mkqX

= pq

[
cuk

4c2
(2h1h2 − h1 − h2) + cuk

2c2
	 · m

]

+ pq
n∑

i=1

cui

4c2

[
	i(	k − mk) + 	k(mi − 	i) + mi(mk − 	k) + mk(	i − mi)

]

= pq

[
cuk

4c2
(2h1h2 − h1 − h2) + cuk

2c2
	 · m

]
, (4.8)

from which and (4.7) we obtain (4.6) holds. Thus, the integral equations (1.13) hold for every test
function φ ∈ C1

c .

5. Upper bound on energy

This section is devoted to completing the proof of Theorem 1.2. We establish the energy inequal-
ity (1.15) by converting the energy conservation (1.11) formally to the (X, Y ) plane.

Using the variables Rk and Sk (k = 1,2, . . . ,n), one can rewrite (1.11) as

[
1

4

(|R|2 + |S|2)]
t
+

[
1

4
c(u)

(|S|2 − |R|2)]
x
= 0, (5.1)

which, combined with (2.7)–(2.9), gives

(
1

4h1
+ 1

4h2
− 1

2

)
t
+

[
c

4

(
1

h2
− 1

h1

)]
x
= 0,

which means that the 1-form

(
1

4h1
+ 1

4h2
− 1

2

)
dx −

[
c

4

(
1

h2
− 1

h1

)]
dt (5.2)

is closed. Making use of the formula

⎧⎪⎨
⎪⎩

dt = t X dX + tY dY = 1

2c
ph1 dX + 1

2c
qh2 dY ,

dx = xX dX + xY dY = 1

2
ph1 dX − 1

2
qh2 dY ,

(5.3)

the expression (5.2) can be reduced to

1 − h1

4
p dX − 1 − h2

4
q dY , (5.4)

which is also closed, in the X–Y plane. It follows from a direct calculation

(
1 − h1

4
p

)
Y

= ∇c

16c2
· [(1 − h1)m − (1 − h2)	

]
pq

= −
(

1 − h2

4
q

)
. (5.5)
X
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Fig. 2. The region D and its four vertices A1, A2, A3 and A4.

The solution u = u(X, Y ) constructed in Section 3 is conservative, in the sense that the integral of the
form (5.4) along every Lipschitz continuous, closed curve in the X–Y plane is zero.

We now use the above fact to establish the energy inequality (1.15). Fix any τ > 0, the case τ < 0
is analogous. For a given r � 1, define the set

D := {
(X, Y ); 0 � t(X, Y ) � τ , X � r, Y � r

}
. (5.6)

See Fig. 2. By construction, the map (X, Y ) �→ (t, x) will act as follows:

A1 �→ (τ ,a1), A2 �→ (τ ,a2), A3 �→ (0,a3), A4 �→ (0,a4),

for some a1 < a2 and a4 < a3. Integrating the 1-form (5.4) along the boundary of D , we find that

∫
A1 A2

1 − h1

4
p dX − 1 − h2

4
q dY

=
∫

A4 A3

1 − h1

4
p dX − 1 − h2

4
q dY −

∫
A4 A1

1 − h1

4
p dX −

∫
A3 A2

1 − h2

4
q dY

�
∫

A4 A3

1 − h1

4
p dX − 1 − h2

4
q dY

=
a3∫

a4

1

2

n∑
i=1

[
u2

it(0, x) + c2(u(0, x)
)
u2

ix(0, x)
]

dx, (5.7)

where the last relation holds by using the fact that the variables h1, h2 never assume the value zero
at the initial time. On the other hand, we compute by using (5.3) to obtain

a2∫
a

1

2

n∑
i=1

[
u2

it(τ , x) + c2(u(τ , x)
)
u2

ix(τ , x)
]

dx
1
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=
∫

A1 A2∩{h1 �=0}

1 − h1

4
p dX −

∫
A1 A2∩{h2 �=0}

1 − h2

4
q dY

� E0. (5.8)

Letting r → +∞ in (5.6), one has a1 → −∞, a2 → +∞. Therefore, combining (5.7) and (5.8), we get
E (t) � E0, this proves (1.15).

6. Regularity of trajectories

In this section, we shall show that the vector function t �→ u(t, ·) is Lipschitz continuous in the
L2 distance and is continuously differentiable as a map with values in Lθ

loc, for all 1 � θ < 2. These
results will complete the proof of Theorem 1.1.

We now establish the Lipschitz continuity of the vector function t �→ u(t, ·) in the L2 distance, that
is, (1.12) holds. For any t, s ∈ R, we have

uk(t, x) − uk(s, x) = (t − s)

1∫
0

ukt
(
s + ξ(t − s), x

)
dξ

for k = 1,2, . . . ,n. Thus

n∑
i=1

∥∥ui(t, x) − ui(s, x)
∥∥

L2 � |t − s|
1∫

0

n∑
i=1

∥∥uit
(
s + τ (t − s), ·)∥∥L2 dτ

�
√

2E0|t − s|. (6.1)

Next we prove that the functions t �→ ukt(t, ·) and t �→ ukx(t, ·) (k = 1,2, . . . ,n) are continuous
with values in Lθ , which imply the vector function t �→ u(t, ·) is continuously differentiable as a map
with values in Lθ

loc, for all 1 � θ < 2.
Let us first establish the argument for smooth initial data. In this case, the solution u = u(X, Y ) is

a smooth vector function on the entire X–Y plane. Fix a time τ . We claim that

d

dt
uk(t, ·)|t=τ = ukt(τ , ·), (6.2)

where

ukt(τ , ·) := ukX Xt + ukY Yt = p

2c
	k · c

ph1
+ q

2c
mk · c

qh2
= 	k

2h1
+ mk

2h2
(6.3)

for k = 1,2, . . . ,n. Notice that (6.3) defines the value of ukt(τ , ·) at almost every point x ∈ R. By the
energy inequality (1.15), we have

∫
R

∣∣ukt(τ , x)
∣∣2

dx � 2E (t) � 2E0. (6.4)

In order to establish the relations (6.2), we consider the set

Dτ := {
(X, Y )

∣∣ t(X, Y ) � τ
}
, (6.5)
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and denote its boundary by Γτ . Given ε > 0, due to the energy inequality (1.15), there then exist
finitely many disjoint intervals [ai,bi] ⊂ R, i = 1,2, . . . , N , such that

min
{

h1(P ),h2(P )
}

< 2ε (6.6)

for every point P = (X(xP , τ ), Y (xP , τ )) (xP ∈ J := ⋃N
i=1[ai,bi]) and

h1(Q ) > ε, h2(Q ) > ε (6.7)

for every point Q = (X(xQ , τ ), Y (xQ , τ )) (xQ ∈ J ′ := R \ J ). Noticing the function uk = uk(t, x) is
smooth in a neighborhood of the set {τ } × J ′ and using Minkowski’s inequality, we get

lim
h→0

1

h

[ ∫
R

∣∣uk(τ + h, x) − uk(τ , x) − hukt(τ , x)
∣∣θ dx

] 1
θ

� lim
h→0

1

h

[ ∫
J

∣∣uk(τ + h, x) − uk(τ , x)
∣∣θ dx

] 1
θ

+
[ ∫

J

∣∣ukt(τ , x)
∣∣θ dx

] 1
θ

. (6.8)

Making use of (4.1) and (6.6), we estimate the measure of the “bad” set J

meas( J ) =
∫
J

dx =
N∑

i=1

(Xbi
,Ybi

)∫
(Xai ,Yai )

1

2
ph1 dX − 1

2
qh2 dY

� 2ε

1 − 2ε

N∑
i=1

(Xbi
,Ybi

)∫
(Xai ,Yai )

1 − h1

2
p dX − 1 − h2

2
q dY

� 4ε

1 − 2ε

∫
Γτ

1 − h1

4
p dX − 1 − h2

4
q dY � 4ε

1 − 2ε
E0, (6.9)

where (Xai , Yai ) = (X(ai, τ ), Y (ai, τ )) and (Xbi , Ybi ) = (X(bi, τ ), Y (bi, τ )). Using Hölder’s inequality
with conjugate exponents 2/θ and κ := 2/(2 − θ), and recalling (6.1), we obtain

∫
J

∣∣uk(τ + h, x) − uk(τ , x)
∣∣θ dx � meas( J )

1
κ

( ∫
J

∣∣uk(τ + h, x) − uk(τ , x)
∣∣2

dx

) θ
2

�
(

4ε

1 − 2ε
E0

) 1
κ ∥∥uk(τ + h, ·) − uk(τ , ·)∥∥θ

L2

�
(

4ε

1 − 2ε
E0

) 1
κ

(h
√

2E0)
θ = 2

(
2ε

1 − 2ε

) 1
κ

hθ E0.

Thus,
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lim sup
h→0

1

h

( ∫
J

∣∣uk(τ + h, x) − uk(τ , x)
∣∣θ dx

) 1
θ

�
(

2ε

1 − 2ε

) 1
κθ

(2E0)
1
θ . (6.10)

Similar argument leads to

( ∫
J

∣∣ukt(τ , x)
∣∣θ dx

) 1
θ

� meas( J )
1
κθ

( ∫
J

∣∣ukt(τ , x)
∣∣2

dx

) 1
2

�
(

4ε

1 − 2ε
E0

) 1
κθ

(2E0)
1
2 =

(
2ε

1 − 2ε

) 1
κθ

(2E0)
1
θ . (6.11)

Combining (6.8), (6.10) and (6.11), and noticing ε > 0 is arbitrary, we conclude

lim
h→0

1

h

( ∫
R

∣∣uk(τ + h, x) − uk(τ , x) − hukt(τ , x)
∣∣θ dx

) 1
κ

= 0 (6.12)

for k = 1,2, . . . ,n. The proofs of continuity of the functions t �→ ukt(t, ·) (k = 1,2, . . . ,n) are similar.
Fix ε > 0. Consider the intervals [ai,bi] as before. For k = 1,2, . . . ,n, noticing that the function uk =
uk(t, x) is smooth on a neighborhood of {τ } × J ′ , we have

lim sup
h→0

∫ ∣∣ukt(τ + h, x) − ukt(τ , x)
∣∣θ dx

� lim sup
h→0

∫
J

∣∣ukt(τ + h, x) − ukt(τ , x)
∣∣θ dx

� lim sup
h→0

meas( J )
1
κ

( ∫
J

∣∣ukt(τ + h, x) − ukt(τ , x)
∣∣2

) θ
2

dx

� lim sup
h→0

(
4ε

1 − 2ε
E0

) 1
κ (∥∥ukt(τ + h, x)

∥∥
L2 + ∥∥ukt(τ , x)

∥∥
L2

)θ

�
(

4ε

1 − 2ε
E0

) 1
κ

(4E0)
θ ,

which completes the proof by the arbitrariness of ε.
For general initial data (uk0), uk1 ∈ L2 (k = 1,2, . . . ,n), we let {(uν

k0)x}, {uν
k1} ∈ C∞

c (k = 1,2, . . . ,n)

be a sequence of smooth initial data such that uν
k0 → uk0 (k = 1,2, . . . ,n) uniformly, (uν

k0)x → (uk0)x

(k = 1,2, . . . ,n) almost everywhere and in L2, uν
k1 → uk1 (k = 1,2, . . . ,n) almost everywhere and

in L2, and finish the proof by Corollary 1.
The continuity of the functions t → ukx(t, ·) (k = 1,2, . . . ,n) as maps with values in Lθ , 1 � θ < 2,

can be established by the same method.

7. Energy conservation

This section is devoted to the proof of Theorem 1.3, that is, we show that the total energy of the
solution remains constant in time in some sense.
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We complete our analysis by using the tool of the wave interaction potential. For any fixed time τ ,
we let μτ = μ−

τ + μ+
τ be the positive measure on the real line defined as follows. Given any open

interval (a,b), let A = (X A, Y A) and B = (XB , Y B) be the points on Γτ (the boundary of Dτ ) such that

x(A) = a, X P − Y P � X A − Y A for every point P ∈ Γτ with x(P ) � a,

x(B) = b, X P − Y P � XB − Y B for every point P ∈ Γτ with x(P ) � b.

Then we have

μτ

(
(a,b)

) = μ−
τ

(
(a,b)

) + μ+
τ

(
(a,b)

)
, (7.1)

where

μ−
τ

(
(a,b)

) :=
∫

AB

1 − h1

4
p dX, μ+

τ

(
(a,b)

) := −
∫

AB

1 − h2

4
q dY . (7.2)

For all τ , it is easily seen that μ−
τ , μ+

τ are bounded, positive measures, and μτ (R) = E0. We define
the wave interaction potential Λ(t) by

Λ(t) := (
μ−

t ⊗ μ+
t

){
(x, y); x > y

}
. (7.3)

Notice that in the smooth case, (7.2) and (7.3) are, respectively, equivalent to

μ−
τ

(
(a,b)

) := 1

4

b∫
a

∣∣R(τ , x)
∣∣2

dx, μ+
τ

(
(a,b)

) := 1

4

b∫
a

∣∣S(τ , x)
∣∣2

dx,

and

Λ(t) := 1

16

∫ ∫
x>y

∣∣R(t, x)
∣∣2∣∣S(t, y)

∣∣2
dx dy.

Lemma 1 (Bounded variation). The map t → Λ(t) has locally bounded variation; that is, there exists a one-
sided Lipschitz constant L0 such that

Λ(t) − Λ(s) � L0 · (t − s), t > s > 0.

We first consider the case that the solution is smooth. From (2.2) we obtain

⎧⎪⎨
⎪⎩

(|R|2)t − (
c|R|2)x = ∇c

2c
· (|R|2 S − |S|2 R

)
,

(|S|2)t + (
c|S|2)x = ∇c

2c
· (|S|2 R − |R|2 S

)
.

Differentiating Λ(t) with respect to time we get
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d

dt

[
16Λ(t)

]
� −

∫
2c|R|2|S|2 dx +

∫ (|R|2 + |S|2)dx

∫ ∣∣∣∣∇c

2c
· (|R|2 S − |S|2 R

)∣∣∣∣dx

� −2c1

∫
|R|2|S|2 dx + 4E0 max

k=1,...,n

∥∥∥∥cuk

2c

∥∥∥∥
L∞

∫ n∑
i=1

∣∣|R|2 Si − |S|2 Ri
∣∣dx. (7.4)

For each ε > 0 we have |Rk| � ε− 1
2 + ε

1
2 |R|2, |Sk| � ε− 1

2 + ε
1
2 |S|2 (k = 1,2, . . . ,n). Choosing ε > 0

such that

4E0 max
k=1,...,n

∥∥∥∥cuk

2c

∥∥∥∥
L∞

· 2n
√

ε < c1,

we thus have

d

dt

[
16Λ(t)

]
� −c1

∫
|R|2|S|2 dx + 16nE 2

0√
ε

max
k=1,...,n

∥∥∥∥cuk

2c

∥∥∥∥
L∞

�
16nE 2

0√
ε

max
k=1,...,n

∥∥∥∥cuk

2c

∥∥∥∥
L∞

.

Hence, the map t → Λ(t) has bounded variation on any bounded interval in the smooth case.
In order to prove Lemma 1 in general case, we consider the above argument in terms of the

variables X , Y . For this purpose, we fix 0 � s < t and denote Dst := Dt \ Ds , and then get by using (5.5)
and (7.2)

Λ(t) − Λ(s) � −
∫ ∫
Dst

1 − h1

4
p · 1 − h2

4
q dX dY

+ 4E0 ·
∫ ∫
Dst

pq
n∑

i=1

|cui |
16c2

∣∣(1 − h1)mi − (1 − h2)	i
∣∣dX dY . (7.5)

According to (2.8) and (2.9) we find that

	2
k � h1(1 − h1), m2

k � h2(1 − h2).

Using the interpolation inequality, we observe that for every ε > 0 there exists a constant Kε such
that

	k � ε(1 − h1) + Kεh1, mk � ε(1 − h2) + Kεh2.

Thus we have

∣∣(1 − h1)mk − (1 − h2)	k
∣∣ � ε(1 − h1)(1 − h2) + Kε

[
(1 − h1)h2 + (1 − h2)h1

]
(7.6)

for k = 1,2, . . . ,n. Combining (7.5) and (7.6), we obtain
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Λ(t) − Λ(s) �
[

nεE0 max
k=1,...,n

∥∥∥∥ cuk

4c2

∥∥∥∥
L∞

− 1

16

]∫ ∫
Dst

pq(1 − h1)(1 − h2)dX dY

+ nE0 Kε max
k=1,...,n

∥∥∥∥ cuk

4c2

∥∥∥∥
L∞

∫ ∫
Dst

pq
[
(1 − h1)h2 + (1 − h2)h1

]
dX dY

� K (t − s), (7.7)

for a suitable large constant K , which reaches the desired conclusion Lemma 1. Here the second
inequality holds by the fact that

∫ ∫
Dst

1

4

(
1 − h1

h1
+ 1 − h2

h2

)
pq

2c
h1h2 dX dY = (t − s)E0, (7.8)

which is always valid.
The proof of Theorem 1.3 is similar to that of Theorem 3 in [6] and Theorem 1.3 in [27], but we

reproduce it here for completeness.
Consider the three sets

Ω1 := {
(X, Y ); h1(X, Y ) = 0, h2(X, Y ) �= 0,

∣∣∇c
(
u(X, Y )

)∣∣ �= 0
}
,

Ω2 := {
(X, Y ); h2(X, Y ) = 0, h1(X, Y ) �= 0,

∣∣∇c
(
u(X, Y )

)∣∣ �= 0
}
,

Ω3 := {
(X, Y ); h1(X, Y ) = 0, h2(X, Y ) = 0,

∣∣∇c
(
u(X, Y )

)∣∣ �= 0
}
.

From (2.24), we find there at least exist two integers k̂, k̃ ∈ {1,2, . . . ,n} such that 	k̂Y �= 0 on Ω1 and
mk̃X �= 0 on Ω2, thus

meas(Ω1) = meas(Ω2) = 0. (7.9)

Let Ω∗
3 be the set of Lebesgue points of Ω3. We assert that

meas
({

t(X, Y ); (X, Y ) ∈ Ω∗
3

}) = 0. (7.10)

To prove (7.10), fix any P∗ = (X∗, Y ∗) ∈ Ω∗
3 and let τ = t(P∗); we first prove the following claim:

lim sup
h,k→0+

Λ(τ − h) − Λ(τ + k)

h + k
= +∞. (7.11)

By assumption, for any ε > 0 arbitrarily small we can find δ > 0 with the following property.
For any square Q centered at P∗ with side of length l < δ, there exist a vertical segment σ and a
horizontal segment σ ′ , as in Fig. 3, such that

meas(Ω3 ∩ σ) � (1 − ε)l, meas
(
Ω3 ∩ σ ′) � (1 − ε)l. (7.12)

Since h1 = h2 = 0 at nearly all points close to p∗ , we can assume that the endpoints of the two
segments σ , σ ′ are all in Ω3. Moreover, we assume without loss of generality that there exists an
integer k̄ ∈ {1,2, . . . ,n} such that cuk̄

> c̄ > 0 (c̄ is a constant) at the point P∗ . By integrating the
equation for 	k̄ from (2.24) along σ and doing a simple rearrangement, we obtain
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Fig. 3. Lebesgue point of Ω3. Q is a square centered at the Lebesgue point P∗ ∈ Ω3, σ and σ ′ are two segments such that
(7.12) holds. ∫

σ

cuk̄

4c
· q

2c
h2 =

∫
σ

q

{
cuk̄

8c2
(2h2 − 1)h1 + cuk̄

4c2
	 · m + ∇c

4c2
· 	(	k̄ − mk̄)

}
dY . (7.13)

Notice that h1, 	k (k = 1,2, . . . ,n) are Lipschitz in Y and h1 = 0 means 	k = 0 (k = 1,2, . . . ,n), and
they are zero on σ on a set with measure greater than (1 − ε)l, then (7.13) leads to

∫
σ

q

2c
h2 dY = O (1)(εl)2. (7.14)

Similarly we have

∫
σ ′

p

2c
h1 dX = O (1)(εl)2. (7.15)

Denote

t+ := max
{

t(X, Y ); (X, Y ) ∈ σ ∪ σ ′}, t− := min
{

t(X, Y ); (X, Y ) ∈ σ ∪ σ ′}.
Combining (7.14) and (7.15) and noticing (4.2), we get

t+ − t− �
∫
σ ′

t X dX +
∫
σ

tY dY =
∫
σ ′

p

2c
h1 dX +

∫
σ

q

2c
h2 dY = O (1)(εl)2. (7.16)

On the other hand, by (7.7) we have

Λ
(
t−) − Λ

(
t+)

� ĉ(1 − ε)2	2 − c̃
(
t+ − t−)

for some constants ĉ > 0, c̃ > 0. Since ε > 0 is arbitrary, this implies (7.11).
The assertion (7.10) follows directly from (7.11) and the fact that the map t �→ Λ(t) has bounded

variation.
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We now observe that the singular part of the Radon measure μτ is nontrivial only if the set{
P ∈ Γτ ; h1(P ) = 0 or h2(P ) = 0

}
has positive 1-dimensional measure. The previous analysis shows that, provided |∇c| �= 0, this can
occur only on a set of times of measure zero.
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