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Abstract

We consider parameterized families of flows in locally compact metrizable spaces and give a charac-
terization of those parameterized families of flows for which uniform persistence continues. On the other
hand, we study the generalized Poincaré–Andronov–Hopf bifurcations of parameterized families of flows
at boundary points of Rn+ or, more generally, of an n-dimensional manifold, and show that this kind of
bifurcations produce a whole family of attractors evolving from the bifurcation point and having interest-
ing topological properties. In particular, in some cases the bifurcation transforms a system with extreme
non-permanence properties into a uniformly persistent one. We study in the paper when this phenomenon
happens and provide an example constructed by combining a Holling-type interaction with a pitchfork
bifurcation.
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1. Preliminaries

This paper is devoted to the study of some questions related to persistence of flows. This is a
topic classically connected to population dynamics, the central issue being to determine whether
some components of the population are over the long term driven to extinction or, on the con-
trary, they will survive and evolve towards some stable states where coexistence between all the
components is achieved. The term persistence is given to systems in which strictly positive solu-
tions do not approach the boundary of the nonnegative orthant Rn+ as t → ∞. The question that
arises is that of determining conditions which prevent solutions from approaching the bound-
ary. As G. Butler, H.I. Freedman and P. Waltman remark in [3], this is of great importance in
the modeling of biological populations where such conditions rule out the possibility of one of
the populations becoming arbitrarily close to zero in a deterministic model and therefore risking
extinction in a more realistic interpretation of the model.

Several forms of persistence have been studied. The so called uniform persistence or perma-
nence is perhaps the most robust concept, that is, more likely to be maintained under suitable
small variations of the system of equations. This is always a desirable consideration from the
point of view of applications. However, strictly speaking, uniform persistence is not fully ro-
bust, although in [43] it has been proved that some forms of weak robustness always hold. These
conditions are expressed using the notion of continuation, which is one of the forms that robust-
ness adopts in the context of the Conley index theory [5,6]. Also, in the papers [11,19,23,47],
some sufficient conditions for robustness are given. One of the aims of the present paper is to
give a characterization of those parameterized families of flows for which uniform persistence
continues. Another aim is to study the generalized Poincaré–Andronov–Hopf bifurcations of pa-
rameterized families of flows at boundary points of Rn+ or, more generally, of an n-dimensional
manifold. We see that this kind of bifurcations produce a whole family of attractors evolving
from the bifurcation point and having interesting topological properties. A possible consequence
of the bifurcation is a qualitative change in the persistence properties of the system. In some
cases the bifurcation transforms a system with extreme non-permanence properties into a uni-
formly persistent one. We study in the paper when this phenomenon happens and provide an
example constructed by combining a Holling-type interaction with a pitchfork bifurcation.

In the sequel we fix some terminology and state a few results that will be used along the paper.
An attractor of a flow ϕ : E ×R → E, where E is a locally compact metrizable space, is in this
paper an asymptotically stable invariant compactum. A repeller is a negatively asymptotically
stable invariant compactum, i.e. an attractor for the reverse flow. The following characterization
of repellers is useful (see [36]): An invariant compactum K is a repeller if and only if there is a
neighborhood U of K in E such that for every x ∈ U − K there is t > 0 such that ϕ(x, t) /∈ U .
This characterization can be dualized for attractors.

The flow ϕ is said to be dissipative if ω(x) �= ∅ for every x ∈ E and
⋃

x∈E ω(x) has compact
closure. If E is not compact we shall often consider the Alexandrov compactification Ê = E ∪
{∞} and the extended flow

ϕ̂ : Ê ×R→ Ê

leaving fixed ∞. Then dissipativeness is equivalent to {∞} being a repeller (see [10] and [16]).
Notice that the dual attractor of {∞} is a global attractor for the flow ϕ.

A stronger form of dissipativeness can be given for families of flows. If ϕλ : E × R → E,
λ ∈ I , is a (continuous) parameterized family of flows then ϕλ is said to be uniformly dissipative
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if ωλ(x) �= ∅ for every x ∈ E and every λ ∈ I and the set Ω = ⋃
x∈E,λ∈I ωλ(x) has compact

closure.
In this paper E will often be a closed subset of X, where X is a locally compact metric space,

and we shall denote by ∂E the boundary of E in X. We shall say that a flow ϕ : E ×R → E is
uniformly persistent if there exists β > 0 such that for every x ∈ E̊

lim inf
t→∞ d

(
ϕ(x, t), ∂E

)
� β.

In all the paper, we will suppose that ∂E is invariant for the flow ϕ. If E is compact then ϕ is
uniformly persistent if and only if ∂E is a repeller of ϕ. If ϕ is dissipative and E is not compact
then ϕ is uniformly persistent if and only if ∂E ∪ {∞} is a repeller for the flow extended to
Ê = E ∪ {∞} (see [10] for proofs of these results). In this case, there exists a dual attractor
K whose region of attraction is the interior E̊. We shall call K the internal global attractor.
K should not be confused with the global attractor of ϕ, which is a larger set.

The Butler–Waltman theorem [4] is one of the most relevant results in the theory of persistent
flows. It provides a criterion for uniform persistence which in the more elementary applications
may be reduced to readily testable hypotheses. This result shows that some questions of per-
sistence may be addressed by appealing to suitable conditions on the boundary flow. Butler and
Waltman stated their result in terms of isolated acyclic coverings but later Garay presented in [10]
a reformulation in terms of Morse decompositions. Garay’s results are written in the spirit of the
Conley index theory and, in particular, he makes use of notions related to chain recurrence. We
state the theorem in the form given by Garay [10]. We denote by W+(M) the stable manifold
of M , i.e. the set W+(M) = {x ∈ E | ω(x) ⊂ M}.

Theorem 1 (Butler–Waltman & Garay). Let X be a locally compact metric space and let E be a
closed subset of X. Suppose we are given a dissipative dynamical system ϕ on E for which ∂E

is invariant.
Let M = {M1,M2, . . . ,Mn} be a Morse decomposition for ϕ|M , where M is the maximal

compact invariant set in ∂E. Further assume that for each i ∈ {1,2, . . . , n}

a) there exists a γ > 0 such that the set {x ∈ E̊ | d(x,Mi) < γ } contains no entire trajectories,
and

b) E̊ ∩ W+(Mi) = ∅.

Then ϕ is uniformly persistent.

In the paper [43, Theorem 6], a sufficient condition was given for (uniform) continuation
of uniform persistence of flows to hold. This was a regularity condition required for all points
x ∈ E̊. We present in this paper an example showing that this result does not hold when we re-
quire such condition just for points close to the Morse sets of a decomposition of the maximal
invariant compactum of ∂E, as in the Butler–Waltman & Garay Theorem (see Remark 9). One
of the motivations of the present paper is to provide a version of this result in the spirit of the
Butler–Waltman & Garay Theorem. In Theorem 7 and Corollary 8 in this paper we find neces-
sary and sufficient conditions under which this formulation is possible. We also identify weaker
conditions which ensure continuation of uniform persistence for bounded trajectories. Another
motivation of the paper is to study uniform persistence in the context of bifurcations, in par-
ticular those bifurcations arising from a loss of stability at rest points of the flows, such as the
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generalized Poincaré–Andronov–Hopf bifurcations. We present an example and prove some re-
sults where the transition of a system with extreme non-permanence properties into a uniformly
persistent one is studied.

We use in the paper some classical notions from algebraic topology, in particular homology,
cohomology and duality theory together with some rudiments of shape theory. The notion of
homotopy type is too rigid for the study of the topological objects which appear in dynamics.
For this reason many authors have used instead Borsuk’s shape theory as an essential tool which
provides a geometric insight on the global structure of compacta, mainly on those with compli-
cated topological structure as many attractors and invariant sets. For the benefit of the reader we
present here a very short introduction, essentially based on the presentation of this subject given
by Kapitanski and Rodnianski in [24].

A metrizable space M is said to be an absolute neighborhood retract (notation M ∈ ANR) if
for every homeomorphism h mapping M onto a closed subset h(M) of a metrizable space X

there is a neighborhood U of h(M) in X such that h(M) is a retract of U .

Theorem 2. A metrizable space M is an ANR if and only if for every map f : Y → M of a
closed subset Y of any metrizable space Y ′ there is a neighborhood U of Y in Y ′ and a map
f ′ : U → M being an extension of f .

Theorem 3. A metrizable space M is an ANR if and only if it is homeomorphic to a retract of an
open subset of a convex set lying in a Banach space.

In particular, open subsets of Euclidean spaces are ANRs.
All metric spaces can be viewed as subsets of ANRs. In fact by the Kuratowski–Wojdyslawski

theorem [22] every metric space can be embedded into an ANR as a closed subspace.
Let X be a closed subset of an ANR M and Y a closed subset of an ANR N . Denote by

U(X;M) (resp. U(Y ;N)) the set of all open neighborhoods of X in M (resp. Y in N ).
Let f = {f :U → V } be a collection of continuous maps from the neighborhoods U ∈

U(X;M) to V ∈ U(Y ;N). We call f a mutation if the following conditions are fulfilled:

1) For every V ∈ U(Y ;N) there exists (at least) a map f : U → V in f.
2) If f : U → V is in f then the restriction f |U1 : U1 → V1 is also in f for every neighborhood

U1 ⊂ U and every neighborhood V1 ⊃ V .
3) If the two maps f,f ′ : U → V are in f then there exists a neighborhood U1 ⊂ U such that

the restrictions f |U1 and f ′|U1 are homotopic.

An example of mutation is the identity mutation idU(X;M) consisting of the identity maps
i : U → U .

The notions of composition of mutations and homotopy of mutations can be defined in a
straightforward way that the reader can easily guess (see [24] for details).

Two metric spaces X and Y have the same shape if they can be embedded as closed sets in
ANRs M and N in such a way that there exist mutations f = {f :U → V } and g = {g :V → U}
such that the compositions gf and fg are homotopic to the identity mutations idU(X;M) and
idU(Y ;N) respectively.

The notion of shape of sets depends neither on the ANRs they are embedded in nor on the
embeddings.

Spaces belonging to the same homotopy type have the same shape.
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ANRs have the same shape if and only if they have the same homotopy type. A consequence
of the two former statements is that the notion of shape may be seen as a generalization of the
notion of homotopy type.

For a complete treatment of shape theory we refer the reader to [2,7,9,28,29]. The use of shape
in dynamics is illustrated by the papers [12–15,17,24,32–34,36–43]. For information about basic
aspects of dynamical systems we recommend [1,35,50]. See also [20,21,48,51] for information
about some aspects of permanence. In particular, in [51] Wójcik established interesting relations
between permanence and Conley index theory. Concerning Morse decompositions see [6,24–26,
41]. Finally, the main references used for algebraic topology have been the books by Hatcher [18]
and Spanier [49].

2. Uniform continuations of uniform persistence

We start this section by introducing some notions which play an important role in the study
on the properties related to robustness of uniform persistence.

Definition 4. We say that a compactum M ⊂ ∂E is externally repelling for a flow ϕ : E ×R→ E

if there is a neighborhood U of M in E such that for every x ∈ U − ∂E there is a t > 0 with
ϕ(x, t) /∈ U .

If ϕλ : E ×R→ E with λ ∈ I = [0,1] is a parameterized family of flows we say that M ⊂ ∂E

is uniformly externally repelling if there is a neighborhood U of M in E and a λ0 > 0 such that
for every x ∈ U − ∂E and every λ ∈ [0, λ0] there is a t > 0 with ϕλ(x, t) /∈ U .

Definition 5. Let ϕλ : E ×R → E with λ ∈ I = [0,1] be a parameterized family of flows. Sup-
pose M ⊂ ∂E is an isolated invariant set for ϕ0. We say that M is strongly isolated if there exist a
neighborhood U of M in E, a λ0 > 0 and a compact set K ⊂ E̊, such that for every x ∈ U − ∂E

and every λ ∈ [0, λ0] the trajectory ϕλ(x, ·) visits K for some t ∈R (not necessarily positive).

We shall discuss in this section some matters related to robustness using the point of view of
continuation, a central notion in the Conley index theory. Roughly speaking, we say that a certain
property continues if whenever we have a (continuous) parameterized family of flows ϕλ,λ ∈ I =
[0,1], and ϕ0 has this property then ϕλ also has this property for small values of λ. The notion of
continuation is applied, in particular, to uniform persistence. We can, also, introduce the stronger
notion of uniform continuation.

Definition 6. Let ϕλ : E × R → E with λ ∈ I = [0,1] be a parameterized family of flows. We
say that uniform persistence at λ = 0 continues uniformly if there exist λ0 > 0 and β > 0 such
that for every x ∈ E̊ and every λ ∈ [0, λ0]

lim inf
t→∞ d

(
ϕλ(x, t), ∂E

)
� β.

It is easy to see that, in a general context, uniform persistence is not a robust property. Fig. 1
was already used in [43] to show that small perturbations of a uniformly persistent flow may
destruct this property.

The figure on the left shows the flow for λ = 0. The figure on the right shows the flow for
λ > 0. For λ = 0 all orbits are attracted by the point in the center, with the exception of the lower
fixed point and the two outer orbits, attracted by it. For λ > 0 there are two sets of “parallel”
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Fig. 1. A uniformly persistent flow ϕ0 and a small perturbation of it.

orbits attracted by the lower fixed point. These sets of orbits shrink as λ approaches 0. This
family of flows satisfies:

i) It is uniformly dissipative.
ii) ϕ0 is uniformly persistent but uniform persistence at λ = 0 does not continue uniformly. In

fact, for λ > 0, ϕλ is not uniformly persistent.
iii) The maximal compact invariant set M of ϕλ in ∂E is just the lower fixed point; M is exter-

nally repelling for ϕ0, but is neither uniformly externally repelling nor strongly isolated.

The following result provides necessary and sufficient conditions for the uniform continuation
of uniform persistence.

Theorem 7. Let ϕλ : E ×R → E, λ ∈ I = [0,1], be a (continuous) uniformly dissipative param-
eterized family of flows. Suppose that ϕ0 is uniformly persistent, and let M = {M1,M2, . . . ,Mn}
be a Morse decomposition for ϕ0|M where M is the maximal compact invariant set of ϕ0 in ∂E.
Then the following conditions are equivalent:

a) Uniform persistence at λ = 0 continues uniformly.
b) M1,M2, . . . ,Mn are strongly isolated.

Proof. We first see that a) ⇒ b). Since Ω = ⋃
x∈E,λ∈I ωλ(x) has compact closure there exists

a compact neighborhood C of Ω in E. Moreover, since ωλ(x) ⊂ C̊ then for every x ∈ E and
every λ ∈ I there exists T � 0 such that ϕλ(x, t) ∈ C̊ for every t � T . Now, by the uniform
continuation of uniform persistence there exists β > 0 such that lim inft→∞ d(ϕλ(x, t), ∂E) > β

for every x ∈ E̊ and every λ � λ0. We define

K = C ∩ {
x ∈ E

∣∣ d(x, ∂E) � β
}
,

then K is a compact set contained in E̊ and it is easy to see that every trajectory ϕλ(x, ·) visits
K for every λ � λ0 and x ∈ E̊. In particular, M1,M2, . . . ,Mn are strongly isolated.

We see now that b) ⇒ a). Suppose that M1,M2, . . . ,Mn are strongly isolated. Since ∂E∪{∞}
is a repeller for ϕ̂0, it continues to a repeller Rλ for ϕ̂λ with λ sufficiently small. This repeller is
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the maximal invariant set for ϕ̂λ in W , where W is an isolating neighborhood of ∂E∪{∞} for ϕ̂0.
However, Rλ could be, at least in principle, different from ∂E ∪ {∞}. Thus we must prove that
under the hypotheses of the theorem Rλ = ∂E ∪ {∞}.

Since ∂E ∪ {∞} is invariant for every ϕ̂λ, and Rλ is the maximal invariant set in W then
∂E ∪ {∞} must necessarily be contained in Rλ for every λ sufficiently small. Moreover, the
attractor–repeller decomposition (M, {∞}) for ϕ̂0|∂E∪{∞} continues to an attractor–repeller de-
composition for ϕ̂λ|Rλ

. From the condition of uniform dissipativeness we have that {∞} is the
maximal compact invariant set in Ê − Ω̄ for every flow ϕ̂λ. It follows from this that the repeller
{∞} continues to itself which, in turn, implies that Mλ, the continuation of M for ϕ̂λ|Rλ

, is the
dual attractor of {∞}. Moreover, the Morse decomposition M continues to a Morse decomposi-
tion Mλ = {Mλ

1 ,Mλ
2 , . . . ,Mλ

n } of Mλ. Thus Mλ
i ⊂ Ui for every i ∈ {1, . . . , n} and λ sufficiently

small, where Ui is the neighborhood given by the property of Mi being strongly isolated. Since
Mλ

i is invariant for ϕλ and there are no complete orbits contained in Ui − ∂E it follows that
Mλ

i ⊂ ∂E. Let C = C1 ∪ · · · ∪ Cn, where Ci is the compactum in the definition of strong isola-
tion of Mi . Then C ⊂ E̊ and the trajectory ϕλ(x, ·) visits C for every x ∈ ⋃

Ui . Suppose now
that λ0 is chosen in such a way that Rλ ⊂ Ê − C for λ � λ0. Then, if ∂E ∪ {∞} �= Rλ, the
flow ϕλ has a trajectory γ (x) ⊂ Rλ − (∂E ∪ {∞}). This implies that there is an i ∈ {1, . . . , n}
such that ωλ(x) ⊂ Mλ

i and thus γ (x) ∩ Ui �= ∅. We must then have that γ (x) ∩ C �= ∅, which

is in contradiction with the fact that Rλ ⊂ Ê − C. This proves that Rλ = ∂E ∪ {∞} and thus,
ϕλ is uniformly persistent. Moreover, the internal global attractor for ϕ̂λ is a continuation of the
internal global attractor for ϕ̂0 which establishes the uniformity of the continuation. �

As a consequence of Theorem 7 we obtain the following necessary and sufficient condition
for the continuation of uniform persistence. This is a local condition and, hence, easier to verify
than strong isolation, which is a global concept.

Corollary 8. Let ϕλ : E ×R → E, λ ∈ I = [0,1], be a (continuous) uniformly dissipative param-
eterized family of flows. Suppose that ϕ0 is uniformly persistent, and let M = {M1,M2, . . . ,Mn}
be a Morse decomposition for ϕ0|M where M is the maximal compact invariant set of ϕ0 in ∂E.
Then the following conditions are equivalent:

a) Uniform persistence at λ = 0 continues uniformly.
b) M1, . . . ,Mn are uniformly externally repelling.

Proof. We shall prove that b) ⇒ a), the proof of the converse implication being similar to that
in Theorem 7. We use the same notation as before. Suppose that uniform persistence at λ = 0
does not continue uniformly. Then there is a compact neighborhood W of ∂E ∪ {∞} in Ê which
is isolating for ϕ̂0 and there are arbitrarily small λ ∈ I and points xλ ∈ W ∩ E̊ such that the
trajectory γλ(xλ) for ϕ̂λ is entirely contained in W and hence ωλ(xλ) ⊂ W . As in the proof
of Theorem 7, W is an isolating neighborhood for the repellers Rλ of ϕ̂λ, and the sets {∞},
Mλ

1 , . . . ,Mλ
n define a Morse decomposition of Rλ for λ small. Hence ωλ(xλ) ⊂ Rλ. Moreover,

by the general properties of the Morse decompositions (see [36, Lemma 3.8]), this implies that
ωλ(xλ) ⊂ Mλ

i for some i. Suppose Ui ⊂ W is the neighborhood of Mi given by the fact that Mi

is uniformly externally repelling. Since Mλ
i is a continuation of Mi , Mλ

i ⊂ Ui for λ sufficiently
small. Hence there are points in Ui − ∂E which stay in Ui for all positive times contrarily to the
choice of Ui . This contradiction proves the corollary. �
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Fig. 2. A uniformly persistent flow ϕ0 and a small perturbation of it.

Remark 9. Theorem 7 improves our Theorem 6 in [43] since we only use information about
Morse decompositions of the maximal set in the boundary, while in [43] information about all
points of E̊ was needed (they were required to visit the compact set K ⊂ E̊). In Theorem 6 in [43]
only dissipativeness was required for the ϕλ. However, Fig. 2 shows that the condition of uniform
dissipativeness is essential for a version of this theorem in terms of Morse decompositions.

The figure on the left shows the flow for λ = 0. The figure on the right shows the flow
for λ > 0. The latter has a line of fixed points which approaches the point at infinity as λ ap-
proaches 0. This family of flows satisfies:

i) Although all the flows are dissipative, the family is not uniformly dissipative.
ii) ϕ0 is uniformly persistent but uniform persistence at λ = 0 does not continue uniformly. In

fact, for λ > 0, ϕλ is not uniformly persistent.
iii) The maximal compact invariant set M of ϕ0 in ∂E is just the lower fixed point, and M is

uniformly externally repelling and strongly isolated.

We could ask ourselves to what extent the requirements in Definition 4 of an externally re-
pelling compactum (resp. a uniformly externally repelling family of flows) could be relaxed. We
could, in Definition 4, demand only that ϕ(x, t) /∈ U (resp. ϕλ(x, t) /∈ U ) for some t ∈ R (not
necessarily positive), i.e. that U − ∂E does not contain entire trajectories of the flows ϕλ. This
would result in a kind of isolation property which is weaker than the strong isolation of Defini-
tion 5, which demands, in addition, that the trajectory ϕλ(x, ·) visits the compactum K . However,
if we require only this weaker condition, then Theorem 7 and Corollary 8 cease to be true. This
is illustrated by Fig. 1 again. In spite of this, we still have a form of continuation as the following
result shows. We denote by γλ(x) the trajectory of x by the flow ϕλ.

Theorem 10. Let ϕλ : E × R → E, λ ∈ I = [0,1], be a uniformly dissipative parameterized
family of flows, where ϕ0 is uniformly persistent. Let M be the maximal compact invariant set
of ϕ0|∂E . Suppose that there is a neighborhood U of M in E and a λ0 ∈ I such that for every
x ∈ U − ∂E and every λ � λ0 there is a t ∈ R (not necessarily positive) such that ϕλ(x, t) /∈ U .
Then uniform persistence continues uniformly for bounded orbits in the following sense: there
exist λ1 ∈ I and β > 0 such that lim inft→∞(d(ϕλ(x, t), ∂E)) > β for every λ � λ1 and every
x ∈ E̊ such that γλ(x) is bounded.
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Fig. 3. A uniformly persistent flow ϕ0 and a small perturbation of it.

Proof. The proof is very similar to that of Theorem 7 and, for this reason, we only give a sketch.
It is sufficient to remark that the hypothesis guarantees that the continuations Mλ are contained
in the boundary (we still use the same notation as in Theorem 7). Moreover, the Morse decom-
position of Ê, {∞,M,A}, where A is the internal global attractor for ϕ0, continues to a Morse
decomposition {∞,Mλ,Aλ} for ϕ̂λ. The bounded orbits of ϕλ in E̊ are just those linking Mλ

and Aλ, together with the orbits in Aλ. The uniform persistence property readily follows from
the fact that the continuations Aλ are in a small neighborhood of A. �

It is interesting to remark that the version of Theorem 10 for Morse decompositions of M

does not hold, as Fig. 3 illustrates.
The figure on the left shows the flow for λ = 0. The figure on the right shows the flow for

λ > 0. For λ = 0 all orbits are attracted by the point in the center, with the exception of three
fixed points at the boundary and the four outer orbits, attracted, each, by one of these three points.
For λ > 0 the behavior at ∂E is the same as for λ = 0 but there are orbits of points in E̊ which
are attracted, or repelled, by the three fixed points at the boundary. The set of these orbits shrink
as λ approaches 0. This family of flows satisfies:

i) The family of flows is uniformly dissipative.
ii) If M is the maximal compact invariant set of ϕ0 in ∂E, there is a Morse decomposition

M = {M1,M2,M3} for ϕ0|M , there is a neighborhood U of M1 ∪ M2 ∪ M3 in E and a
λ0 ∈ I , such that for every x ∈ U − ∂E and every λ � λ0 there is a t ∈ R (not necessarily
positive) such that ϕλ(x, t) /∈ U .

iii) ϕ0 is uniformly persistent but uniform persistence at λ = 0 does not continue uniformly for
bounded orbits in the sense of Theorem 10.

As a consequence of Theorem 10 we obtain the following corollary. We denote by W−
λ (U)

the set of all points x ∈ E whose α-limit for the flow ϕλ is nonempty and contained in U . In the
particular case when U is the neighborhood of M in the statement of Theorem 10 then, for λ

small, W−
λ (U) = W−

λ (Mλ) where Mλ is the continuation of M for the flow ϕλ.

Corollary 11. With the same hypothesis as in Theorem 10, suppose in addition that the following
condition is fulfilled: if x ∈ E̊ and x ∈ W−

0 (U) then x ∈ W−
λ (U) for λ � λ0. Then uniform

persistence continues uniformly for bounded orbits of ϕ0, i.e. there exist β > 0 and λ1 ∈ I
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such that lim inft→∞ d(ϕλ(x, t), ∂E) > β for every λ � λ1 and every x ∈ E̊ such that γ0(x)

is bounded.

Proof. Suppose x ∈ E̊ and γ0(x) is bounded. If x ∈ W−
0 (U) then x ∈ W−

λ (U) and γλ(x) is
bounded, hence the statement is a consequence of Theorem 10. If x /∈ W−

0 (U) then x ∈ A (the
internal global attractor of ϕ0) and the result is a consequence of the property of weak continua-
tion of uniform persistence, proved in [43, Theorem 5], according to which, uniform persistence
continues uniformly for all compacta contained in E̊. �
3. Generalized Poincaré–Andronov–Hopf bifurcations at boundary points of an
n-manifold

Seibert and Seibert & Florio, following previous work by Marchetti, Negrini, Salvadori and
Scalia, studied in a series of papers the bifurcations of dynamical systems resulting from a change
in the stability behavior of a fixed equilibrium (see [27,44–46]). In particular they studied those
bifurcations which are a consequence of transition from asymptotic stability to complete in-
stability (without requiring that the bifurcating orbits are periodic). Suppose ϕλ : E × R → E,
λ ∈ [0,1], is a parameterized family of flows and p ∈ E is a rest point of ϕλ for every λ ∈ I . If
p is an attractor for λ = 0 and a repeller for λ > 0 then, according to Seibert and Florio [45],
a generalized Poincaré–Andronov–Hopf bifurcation takes place at p.

We shall see that these bifurcations play a relevant role in the theory of uniformly persis-
tent flows. The following result describes the topological properties of generalized Poincaré–
Andronov–Hopf bifurcations occurring at points of the boundary of Rn+ (or, more generally, of
manifolds with boundary). See [42] for more properties of this kind of bifurcations and [31] for
a general reference on the Hopf bifurcation.

Theorem 12. Let E be a connected n-manifold with boundary. Consider a continuous family of
flows ϕλ : E ×R→ E, λ ∈ I = [0,1], and let p ∈ ∂E be a rest point of ϕλ for every λ ∈ I . Sup-
pose p is an attractor for λ = 0 and a repeller for λ > 0. Then for every compact neighborhood
V of p contained in the basin of attraction of p there is a λ0 > 0 such that:

1) For every λ with 0 < λ � λ0 there is an attractor Kλ for ϕλ contained in V̊ − {p}. Moreover
Kλ attracts all points in V − {p}.

2) Kλ has trivial shape.
3) The compactum Sλ = Kλ ∩ ∂E has the shape of Sn−2 and Kλ/Sλ has the shape of Sn−1.
4) Kλ decomposes E into two connected components, Cλ and Dλ with p ∈ Cλ and such that

Cλ − {p} is contained in the basin of attraction of Kλ.
5) The multivalued function Φ : [0, λ0] → V defined by Φ(0) = {p}, Φ(λ) = Kλ (when λ �= 0)

is upper-semicontinuous.

Proof. In [42] we have proved a similar proposition for interior points of the manifold. How-
ever, when p is in the boundary, some substantial differences appear which must be carefully
discussed.

Since E is a manifold with boundary and all our claims (except 4)) are relative to a neighbor-
hood of the point p ∈ ∂E, we may assume that we are working in R

n+. On the other hand, the
proof of 4) is an easy consequence of the local arguments and the connectedness of E.
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It is a basic fact in the Conley index theory that attractors continue. Let (Cλ) be the contin-
uation of {p} for λ small. A property of the continuation is that if L is a compact set contained
in the region of attraction of {p} for ϕ0 then L is contained in the region of attraction of Cλ for
ϕλ with λ sufficiently small. This has been proved in [42, Theorem 1]. Thus, if V is a compact
neighborhood of p contained in the basin of attraction of p there is a λ0 such that Cλ attracts V

for 0 < λ � λ0. Since (Cλ) is a continuation, we may also assume that Cλ is contained in the inte-
rior of a closed ball B[p, ε] ⊂ V̊ for such parameter values. Since {p} is now a repeller, its basin
of repulsion Rλ (which is an open set in E) must be contained in Cλ. We define Kλ = Cλ −Rλ.
The pair (Kλ, {p}) is an attractor–repeller decomposition of Cλ (where Kλ is an attractor for
ϕλ|Cλ and, hence, also for ϕλ). Now, by [24], the inclusion of Kλ in its region of attraction is a
shape equivalence, so Kλ is shape dominated by B[p, ε] − {p} (by means of a shape morphism
which is an inverse of the inclusion i : Kλ → B[p, ε] − {p}) since B[p, ε] − {p} is contained
in such a basin of attraction. Notice that B[p, ε] − {p} has trivial shape. Hence Kλ, being shape
dominated by a point, has, in fact, the shape of a point. Moreover, the inclusion

i : Kλ ∩ ∂E → (
B[p, ε] − {p}) ∩ ∂E � S

n−2

is also a shape equivalence whose inverse is defined by the flow. The argument is exactly the same
as in Theorem 1 in [42], where generalized Poincaré–Andronov–Hopf bifurcations in interior
points of manifolds are studied. Since Kλ and Bn−1 have trivial shape then by Mardešić’s results
about the shape of pairs (see [30]) we have that Sh(Kλ,Kλ ∩ ∂E) = Sh(Bn−1,Sn−2). Hence,
also by Mardešić’s results about the shape of quotients,

Sh(Kλ/Kλ ∩ ∂E) = Sh
(
Bn−1/Sn−2) = Sh

(
S

n−1).
Now, by using a general form of Lefschetz duality (see [8]), we have that

Ȟ n−j (Kλ,Kλ ∩ ∂E) → Hj

(
B[p, ε],B[p, ε] − Kλ

)

(where Ȟ ∗ stands for Čech cohomology) is an isomorphism for every j . In particular
H1(B[p, ε],B[p, ε] − Kλ) � Z and, using the long homology sequence,

· · · → H1
(
B[p, ε]) → H1

(
B[p, ε],B[p, ε] − Kλ

) → H̃0
(
B[p, ε] − Kλ

) → H̃0
(
B[p, ε]) → ·· ·

we deduce that H̃0(B[p, ε] − Kλ) � Z and, thus, B[p, ε] − Kλ is composed of two connected
components. Since E is connected, it follows from this that Kλ decomposes E into two connected
components. The bounded component Cλ is contained in B[p, ε], thus Cλ − {p} is contained in
the basin of attraction of Kλ.

The upper-semicontinuity of Φ : [0, λ0] → Bε(p) at 0 follows from the fact that Cλ (and
hence also Kλ) is contained in the open ball Bδ(p) for δ arbitrarily small provided we take λ

sufficiently close to 0. More generally, the upper semicontinuity at λ �= 0 is a consequence of
the upper-semicontinuity properties of the continuation of attractors Cλ and the continuation
of attractor–repeller decompositions (Kλ, {p}). However, a detailed argument can be given by
following exactly the same lines as in the similar proposition for interior points proved in [42,
Theorem 1]. �
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Fig. 4. The flow ϕK for K = 5.

An important remark, which follows from the proof, is that Sλ = Kλ ∩ ∂E is, in fact, an
attractor for the restriction flow ϕλ|∂E . We call it the corona of the Poincaré–Andronov–Hopf
bifurcation at the parameter value λ. It turns out that the permanence properties of the flow after
the bifurcation depend heavily on this corona. We shall refer to the attractor Kλ produced by the
bifurcation as the Hopf attractor.

We see here an example of this kind of bifurcations. It is constructed by combining a Holling-
type interaction with a pitchfork bifurcation. It consists of a parameterized family of flows
ϕλ :R3+ ×R→ R

3+ where ϕ0 presents an extreme case of non-permanence: the whole interior is
attracted by a point in the boundary. Examples of this kind are common in population dynamics.

Consider the system modeled by the equations:

ẋ = rx

(
1 − x

K

)
− y

cx

a + x
,

ẏ = y

(
−d + bx

a + x

)
,

ż = 25(K − 5)z − z3

s

in R
3+, where all parameters are positive. In particular, we fix the values of a = 3, b = 4, c = 4,

d = 1, r = 2, s = 4 × 103, and study the behavior of the system as we vary the value of K .
According to [21], since b > d , whenever K > ad

b−d
= 1, restricted to the xy-plane, the system

admits a unique interior fixed point (x0, y0) with x0 = ad
b−d

= 1. Moreover, (x0, y0) is a global
attractor for the flow restricted to the open xy-quadrant if and only if K � a + 2x0 = 5. On
the other hand, the flow restricted to the z-axis has z = 0 as a global attractor whenever K � 5.
Therefore, if K � 5, the point (x, y,0) is a global attractor for the flow restricted to {(x, y, z) ∈
R

3+ | x, y > 0}. In particular, for K = 5, we have the situation depicted in Fig. 4.
At K = 5, the flow restricted to the xy-plane experiments a Hopf bifurcation, (x0, y0) be-

comes a source and a limit cycle around it appears. On the other hand, the flow restricted to the
z-axis suffers a pitchfork bifurcation, z = 0 becomes a source and a stable fixed point appears
whose attraction basin is all the set z > 0. Therefore, the whole 3-dimensional flow experiments
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Fig. 5. The flow ϕK for K = 5.02 and K = 5.2.

Fig. 6. The Hopf attractor and the corona for K = 5.2.

a generalized Poincaré–Andronov–Hopf bifurcation: the point (x0, y0,0) becomes a repeller,
while an attractor, for the whole flow in R

3+ appears.
In Fig. 5 we show the behavior of the flow for some values of K > 5.
The attractor appearing for K > 5 is the surface of a cylinder without the (open) lower basis

(see Fig. 6). It is the Hopf attractor defined after the proof of Theorem 10. Its region of attraction
is {(x, y, z) ∈R

3+ | x, y > 0} except the fixed unstable point in the xy-plane.
On the other hand, the boundary of the lower basis is the corona, which is an attractor for the

flow restricted to the boundary of R3+. Its region of attraction is the set {(x, y,0) ∈ R
3+ | x, y > 0}.

We observe in this example that after the Hopf bifurcation takes place, the flow is transformed
into a uniformly persistent flow: the top of the cylinder attracts all points in the interior and is
an internal global attractor. This illustrates a general fact: uniform persistence can be achieved
through Hopf bifurcations.

Notice that the family of flows in the example is not uniformly dissipative. However, if we
exclude the coordinate planes xz and yz, i.e. if we consider the flows defined only in the manifold
{(x, y, z) ∈ R

3+ | x, y > 0} (which is invariant for all flows) then the family becomes uniformly
dissipative. Moreover the fact that ϕλ is uniformly persistent for λ > 0 depends only on the
behavior of ϕλ in this invariant manifold. In this form, the example falls as a simple particular
case of Theorem 13.
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We consider now the general case. We give conditions under which a flow with extreme
non-permanence properties becomes uniformly persistent after a Poincaré–Andronov–Hopf bi-
furcation takes place.

Theorem 13. Let ϕλ : E × R → E be a uniformly dissipative family of flows defined in
the n-dimensional manifold with boundary, E, and let M be the maximal compact invari-
ant set for ϕ0. Suppose that M ⊂ ∂E (i.e. the global attractor is in the boundary) and let
M = {M1,M2, . . . ,Mn} be a Morse decomposition of M , where M1 = {p}. Assume that a gen-
eralized Poincaré–Andronov–Hopf bifurcation takes place at p and that the following conditions
hold: 1) M2, . . . ,Mn are uniformly externally repelling and 2) the corona Sλ is externally re-
pelling for every ϕλ with 0 < λ � λ0. Then ϕλ is uniformly persistent for 0 < λ � λ0 and the
Hopf attractor Kλ has itself an attractor repeller decomposition (Aλ,Sλ) where Aλ ⊂ E̊ is the
internal global attractor and Sλ is the corona of the bifurcation. Reciprocally, conditions 1)
and 2) are necessary for the uniform persistence of ϕλ for 0 < λ � λ0.

Proof. The maximal compact invariant set, M , is an attractor for ϕ0. Consider a continuation
Mλ of M and also a continuation Mλ = {Mλ

1 ,Mλ
2 , . . . ,Mλ

n } of the Morse decomposition M =
{M1,M2, . . . ,Mn}. By an argument previously used, the fact that the family ϕλ is uniformly
dissipative implies that Mλ is a global attractor for ϕλ. Now, if x ∈ E̊ then ωλ(x) ⊂ Mλ and,
thus, ωλ(x) must be contained in some Morse set Mλ

i . However, since M2, . . . ,Mn are uniformly
externally repelling and Mλ

2 , . . . ,Mλ
n are respectively contained in repelling neighborhoods of

those sets, necessarily ωλ(x) ⊂ Mλ
1 , i.e. Mλ

1 attracts E̊. For the same reason Mλ
2 , . . . ,Mλ

n are
contained in the boundary ∂E. Hence {Mλ

1 ∩ ∂E,Mλ
2 , . . . ,Mλ

n } is a Morse decomposition of the
compact maximal set in the boundary for ϕλ|∂E . Now it is easy to see that the external repulsion
condition satisfied by the corona Sλ, together with the fact that Kλ attracts Cλ − {p}, imply that
Mλ

1 ∩ ∂E is externally repelling. Hence we can apply the Butler–Waltman theorem to the flow
ϕλ and the Morse decomposition {Mλ

1 ∩ ∂E,Mλ
2 , . . . ,Mλ

n } of the compact maximal set in the
boundary. According to this ϕλ is uniformly persistent and its internal global attractor must be
in Mλ

1 ∩ E̊. Since p is a repeller for ϕλ and Kλ is its dual attractor for ϕλ|Mλ
1
, then Aλ must

necessarily be contained in Kλ and, since Sλ is invariant and Kλ − Sλ is attracted by Aλ, then
Sλ is the dual repeller of Aλ for ϕλ|Kλ . On the other hand, conditions 1) and 2) are obviously
necessary for the uniform persistence of ϕλ for 0 < λ � λ0. �
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