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Abstract

We aim to classify the long-time behavior of the solution to a free boundary problem with monostable
reaction term in space—time periodic media. Such a model may be used to describe the spreading of a
new or invasive species, with the free boundary representing the expanding front. In time-periodic and
space homogeneous environment, as well as in space-periodic and time autonomous environment, such a
problem has been studied recently in [11,12]. In both cases, a spreading—vanishing dichotomy has been
established, and when spreading happens, the asymptotic spreading speed is proved to exist by making use
of the corresponding semi-wave solutions. The approaches in [11,12] seem difficult to apply to the current
situation where the environment is periodic in both space and time. Here we take a different approach,
based on the methods developed by Weinberger [31,32] and others [16,22-24,26], which yield the existence
of the spreading speed without using traveling wave solutions. In Part 1 of this work, we establish the
existence and uniqueness of classical solutions for the free boundary problem with continuous initial data,
extending the existing theory which was established only for C 2 initial data. This will enable us to develop
Weinberger’s method in Part 2 to determine the spreading speed without knowing a priori the existence of
the corresponding semi-wave solutions. In Part 1 here, we also establish a spreading—vanishing dichotomy.
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1. Introduction and main results

This work consists of two parts, and the current paper is Part 1. The aim of this work is to
classify the long-time dynamical behavior to a class of space—time periodic reaction—diffusion
equations with free boundaries of the form

Uy =duyy + f(t,x,u), gty <x <h(), t>0,

u(t,g(t)) =u(t,h()) =0, t>0,

g (1) = —puy(t, g(t)), 1>0, (1.1)
W (1) = —pux(t, h(1)), t>0,

80)=go, hO)=ho, u(0,x)=uog(x), go=x=ho,

where x = g(¢) and x = h(¢) are the moving boundaries to be determined together with u(¢, x),
and p is a given positive constant. Throughout the paper, the diffusion coefficient d is a positive
constant; the reaction term f : R x R x RT i R is continuous, of class CY22R xR)in (t,x) €
R x R locally uniformly in u € R* (with 0 < & < 1), and of class C! in u € R* uniformly in
(t,x) € R x R. The basic assumptions on f are:

f(,x,00=0 forallr eR, x eR, 1.2)
there exists K > 0 such that
f(t,x,u) < Ku forallu>0andall (¢, x) € R2. (1.3)
Later in the paper, we will assume additionally that there is some constant M > 0 such that
ft,x,uy<0forallteR, xeR, u>M, (1.4)

and f is w-periodic in ¢ and L-periodic in x for some positive constants w and L, that is,

{ St o x,u)=[fxu forall (r,x) € R?, u > 0. (L.5)

f,x+L,u)y=f(,x,u)

Let us note that since f is C' in u, (1.3) is satisfied whenever (1.2) and (1.4) hold.
The initial function uq belongs to H(go, ho) for some gog < ho, where

H(g0. o) := {¢ € CLgo. hoD) : $(80) = $(ho) = 0. $(x) > O'in (go. o) }.

Free boundary problems of the type (1.1) arise naturally in many applied areas, such as melt-
ing of ice in contact with water and spreading of invasive species; see, for example, [4,7,13,29].
In this work, we regard (1.1) as describing the spreading of a new or invasive species over a
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one-dimensional habitat, where u(¢, x) represents the population density of the species at loca-
tion x and time ¢, the reaction term f measures the growth rate, the free boundaries x = g(¢)
and x = h(t) stand for the edges of the expanding population range, namely the spreading fronts.
The Stefan conditions g’(t) = —uu, (¢, g(¢)) and 7'(r) = —pu,(z, h(¢)) may be interpreted as
saying that the spreading front expands at a speed proportional to the population gradient at the
front; a deduction of these conditions from ecological considerations can be found in [2]. When
f(t,x,u) is periodic with respect to x and ¢ as described in (1.5), problem (1.1) represents
spreading of the species in a heterogeneous environment that is periodic in both space and time.

1.1. Related existing results and motivation

Before going further, let us discuss the motivation of this work by firstly recalling some related
known results. In the case where the function f does not depend on x and ¢, and is of logistic
type, that is,

f(u) =u(a — bu) for some positive constants a and b,

such a problem was first studied in [ 13] for the spreading of a new or invasive species. It is proved
that, when

uo € C([g0, ho), u0(g0) = uo(ho) =0, ug(x) > 0in (go, ho),

there exists a unique solution (u, g, k) with u(¢, x) > 0, g’(r) <0 and A’(¢) > 0 for all # > 0 and
g(t) < x < h(t), and a spreading—vanishing dichotomy holds, namely, there is a barrier R* on
the size of the population range, such that either

(i) Spreading: the population range breaks the barrier at some finite time (i.e., h(fo) —
g(tp) > R* for some #y > 0), and then the free boundaries go to infinity as t — oo (i.e.,

lim;_, 5 £ () = 00 and lim;_, o g(#) = —00), and the population spreads to the entire space
and stabilizes at its positive steady state (i.e. lim;— oo u(#, x) = a/b locally uniformly in
x eR)or

(i1) Vanishing: the population range never breaks the barrier (i.e. 4(t) — g(t) < R* for all r > 0),
and the population vanishes (i.e. lim;_, oo u(f, x) = 0).

Moreover, when spreading occurs, the asymptotic spreading speed can be determined, i.e.,
lim —g(t)/t = lim h(t)/t =c,
—00 —>0o0
where c is the unique positive constant such that the problem

dqxx —cqx +q(a—bq) =0, g(x) >0 forx € (0, 00),
q(0)=0, ug:(0)=c, g(c0)=a/b
has a (unique) solution g. Such a solution g (x) is called a semi-wave with speed c.

These results have subsequently been extended to more general situations in several direc-
tions. Below, we only mention a few that are closely related to this work.
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In the case where f is w-periodic in ¢, radially symmetric in x, of logistic type and converges
to some time periodic function f (¢, u) as |x| — oo with

f(t,u)=u(a(t) — b1 (t)u) for some positive w-periodic functions a;(¢) and b, (¢),

the existence of spreading speed is proved in [11] by showing the existence and uniqueness of a
positive time periodic semi-wave (see [11, Theorem 2.5]). When f is radially symmetric in x,
independent of ¢, of logistic type and converges to some function f(|x|, u) as |x| — oo with

f(r, u) = u(ax(r) — ba(r)u) for some positive L-periodic functions a;(r) and b, (r),

the spreading speed is determined by the speed of the corresponding pulsating semi-wave (see
[12]). In both cases, the existence of semi-waves is proved by a fixed point approach. Moreover,
in the space-periodic case, a different method was used in [33] to prove the existence of pulsating
semi-wave (and hence the existence of spreading speed) for problem (1.1), which is based on the
approach developed in [15].

In the recent work [20,21], the existence of time almost periodic semi-wave and spreading
speed for problem (1.1) with time almost periodic monostable nonlinearity f(z,u) are estab-
lished.

When the function f (¢, x, u) varies with both the variables ¢ and x, it seems difficult to adapt
the approaches mentioned above to determine the spreading speed, mainly due to the difficulty
to prove the existence of the corresponding semi-wave solutions. The main goal of this work is
to establish a different approach to treat the space—time periodic case of problem (1.1). We will
focus on the monostable case and prove a spreading—vanishing dichotomy, and then show the
existence of spreading speed when spreading happens.

Our approach is based on Weinberger’s ideas firstly appeared in [31,32], and then developed
in [16,22-24,26], where the existence of spreading speed for the corresponding Cauchy problem
is proved without knowing the existence of the corresponding traveling wave solutions. However,
to adapt these ideas to treat our free boundary problem here, it is necessary to firstly extend the
existence and uniqueness theory for (1.1) with C 2 initial functions (see [13]) to the case that the
initial functions are merely continuous, which has not been considered before and requires new
techniques.

Due to the different techniques used, and its length, this work is divided into two separate
papers. The current paper constitutes Part 1, where we establish the existence and uniqueness the-
ory for (1.1) with continuous initial functions, and also prove a spreading—vanishing dichotomy
for (1.1). We will prove the existence of asymptotic spreading speed in Part 2 (see [8]), based on
the results obtained here, and on Weinberger’s ideas already mentioned above.

In the next two subsections, we describe the main results of this paper.

1.2. Existence and uniqueness with continuous initial functions

For any T > 0, by a classical solution of problem (1.1) for 0 <t < T with initial function
uo € H(go. ho), we mean a triple (u(f,x), g(t), h(t)) such that u € C'*(Gr) N C(Gr), g, h €
C! ((0, TDH N C([0, T]), and that all the identities in (1.1) are satisfied pointwisely in G, where
Gr:={(t,x)eR?*: 1€ (0, T], x €[g(t), h(D]}.

We note that the result below is for a rather general class of functions f, covering monostable,
bistable and combustion types of nonlinearities, with no periodicity condition assumed.
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Theorem 1.1. Suppose that (1.2) and (1.3) are satisfied. For any given ug € H(go, ho), problem
(1.1) admits a unique classical solution (u (t,x), g(1), h(t)) defined for all t > 0. Moreover, for
any T > 1 >0,

””“c1+a/2v2+a(G;) + ”g”clw/z([r,n) + ”thl+a/2([t,T]) =€, (1.6)
ho <h(t) <ho+Ht'?,  go— Hit'? <g(t)<go for 0<1<T, (1.7)

where GT. = {(t, X) € RZ:re[r,T], x € [g(?), h(t)]}, C and H are positive constants depend-
ingont, T, ho— go, [ and |luollc(go.hon> With H independent of T € (0, T).

By slight modifications of the proof and statements of Theorem 1.1, this result can be extended
to the case where the initial function is bounded and piecewise continuous. Similar problems have
been addressed for one-dimensional free boundary problems for the heat equation with bounded
piecewise continuous initial and boundary data in [3,5,17].

1.3. Spreading—vanishing dichotomy

We now focus on monostable f (¢, x, u) that is periodic in both ¢ and x. More precisely, we
assume that the function f satisfies (1.2), (1.4), (1.5) and

V(t,x) e R?, the function u [, x,u)/u is decreasing for u > 0. (1.8)

We will show that whether spreading or vanishing happens partly depends on the sign of the
generalized principal eigenvalue of the linear operator £ defined by

L i= 8 — ddsc ¥ — 3y f(t,x,00¢ for ¥ € CLA(R),
where
CL2(R?) := (¢ € C12(R?), (1 + w, x) = p(t, x) for all (r,x) € R?}.
The generalized principal eigenvalue of £ is given by

M(L)=sup{reR: thereexists ¥ € C,?(R?)

such that ¢ > 0 and (£ — A)¥ > 0in R?}. (19)
In what follows, we assume that
2(L) <O0. (1.10)
An example of f satisfying all these assumptions is the logistic nonlinearity
f(t,x,u)=u(a(t,x)—b(t,x)u) (1.11)

where a, b are of class C%/>® which are w-periodic in # and L-periodic in x, and there are
positive constants k1, k2 such that k1 < a(f,x) < kp and k1 < b(t,x) <k, for all (¢,x) € R2.
These conditions may also be satisfied with a(z, x) sign-changing (see [30]).
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It is well known (see [27,28]) that, under the above assumptions on f, the following problem

:pf:dpxx-kf(hx,l?) in (t’x)GRz, (1.12)

p(t, x) is w-periodic in ¢ and L-periodic in x,

admits a unique positive solution p(t, x) € C12(R?), and p(z, x) is globally asymptotically sta-
ble in the sense that for any nonnegative bounded non-null initial function vg € C(R), there
holds

v(t+s,x;v9) — p(t+5,x) > 0 as s — oo locally uniformly in (¢, x) € R?, (1.13)
where v (%, x; vo) is the unique solution of the corresponding Cauchy problem

vy =dvyy + f(t,x,v), x€R,t>0,

(1.14)
v(0, x) = vo(x), x eR.

Before stating the spreading—vanishing dichotomy for problem (1.1), let us introduce one
more notation. Let (u (t,x), g(1), h(t)) be the global classical solution of (1.1) with initial func-
tion ug € H(go, ho). By the parabolic maximum principle and the Hopf lemma, we easily deduce
from the Stefan condition that A'(r) > 0 and g'(z) < O for all # > 0. Therefore, the limits
lim; . o h(¢) and lim;_, o, g(¢) exist and we denote them by /o, and g, respectively.

Theorem 1.2. Suppose that (1.2), (1.4), (1.5), (1.8) and (1.10) are all satisfied. Then the following
alternative hold: Either

(i) spreading happens, that is, (g0, hoo) = R, and
llim |u(t, x) — p(t, x)| =0 locally uniformly in x € R,
— 00

where p(t, x) is the unique positive solution of problem (1.12); or
(ii) vanishing happens, that is, there exists some constant R > 0 such that (oo, hoo) is a finite
interval with length no larger than 2R, and there holds

lim max u(t,x)=0.
1—>00 g (1) <x<h(t)

(The positive constant R here can be determined; see (3.7).)
For any given initial function ug € H(go, ho), we have the following criteria for spreading or
vanishing.

Theorem 1.3. Suppose that (1.2), (1.4), (1.5), (1.8) and (1.10) are all satisfied. Then there exists
a positive constant R* such that

(1) if (ho — go)/2 > R*, then spreading always occurs;
(i) if (ho — go)/2 < R*, then there exists a unique u* > 0 depending on uq such that vanishing
occurs if 0 < p < u* and spreading occurs if © > w*.
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In spatially periodic media, the critical size R* depends continuously and periodically on the
value of (go + hp)/2 (see (3.4) and Lemma 3.1), while in the spatially homogeneous case, R* is
independent of (go + ho)/2 (see [13,14]).

1.4. Outline of the paper

The remaining part of this paper is organized as follows. Section 2 is divided into 3 sub-
sections. In subsection 2.1, we give the proof of Theorem 1.1. In subsection 2.2, we prove the
continuous dependence of the classical solutions on the initial data and some comparison results.
In subsection 2.3, we list without proof the corresponding results for a closely related problem
of (1.1) (see (2.24)), which will be used in Part 2 to determine the spreading speed. Section 3 is
devoted to the proof of Theorems 1.2 and 1.3.

2. Existence, uniqueness and continuous dependence

This section is devoted to the proof of the existence and uniqueness of classical solutions for
problem (1.1) as well as some basic properties of these solutions. Throughout this section, we
assume that f satisfies (1.2) and (1.3).

2.1. Existence and uniqueness of classical solutions

For a given ug € H(go, ho), we first prove the local existence of a classical solution and the
estimates (1.6), (1.7). Once we know the existence of a classical solution (u, g, h) defined for
t € (0, T] with some small T > 0, then since u(T', x) is a C* function one can apply the existing
theory (see [13]) to extend the solution to all # > T'.

We prove the local existence result through an approximation argument. Let eg = (ho — go) /4.
For any given ug € H(go, ho), we choose a nondecreasing sequence {uo,}neny C C2([g0, hol)
such that for each n € N,

1o, (x) =0 for x € [go, gon] Y [hon, hol, 0 <upu(x) <uo(x) for x € (gon, hon),

where go, = go + €o/n and hg, = hg — &9/ n, and that

Uon — UQ in C([g(), ho]) as n — oQ.

It follows from [13, Theorem 5.1]! that for each n € N, problem (1.1) admits a unique classical
solution (u, gn, h,) defined for all # > 0 with

(un (0, x), 8n(0), 1 (0)) = (u0n (x), gon» hon) for x € [gon, hon].

Moreover, by the comparison principle for problem (1.1) with smooth initial values (see, e.g.,
[13, Lemma 5.7]), one obtains that for each n € N,

1 We remark that, although [13, Theorem 5.1] only deals with problem (1.1) with a special homogeneous logistic
nonlinearity f (¢, x,u) = u(a — bu), its proof extends straightforwardly to (1.1) with a general nonlinearity f(z, x, u)
satisfying (1.2) and (1.3).
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8n+1() < gn(t), hpy1(t) = hy(r) forall £ >0,
and
0<u,(t,x) <upy1(t,x) for g,(t) <x <h,(), t>0.
On the other hand, it follows from the comparison principle again that
Un <W, gn>Zand h, <,
where (i, g, 1) is the classical solution to problem (1.1) with initial function 7o € C2([go — 1,

ho + 1]) such that uy > 0 in (go — 1, o + 1), uo(go — 1) = tg(ho + 1) =0 and uy > up in
[go, hol. As a consequence, there is a triple (u, g, k) such that

g(®)= lim g,(¢), h(¢t)= lim h,(t) pointwisely for ¢ > 0, 2.1)
n—oo n—0oo
and that
u(t,x) = lirrolO u, (t, x) pointwisely for g(t) <x < h(z), t > 0. 2.2)
n—

In what follows, we will show, via a sequence of lemmas, that (u, g, i) is a classical solution
for problem (1.1) with initial function ug.

Lemma 2.1. Let (un, ns hn) be as above. Then for any given 0 < 19 < Ty, there are positive
constants C1, Cy independent of n such that

0 <uy(t,x) <Cy for gyn(t) <x <hy(t), 0<t =Ty,
and
—Cy<g,() <0, 0<h,(t) <Cy for 1o <t <Tp.

Proof. Applying the parabolic maximum principle and the Hopf lemma to the equation of u,,
one immediately obtains that, for every ¢ > 0,

U (t,x) > 0for g,(t) <x < h, (1), axun(t, hn(t)) <0 and Bxun(t, gn(t)) > 0.

It follows that g/, (t) < 0 and h),(¢) > O for all # > 0.
To find the bound C for u,,, we make use of (1.3), and the comparison principle to obtain

Uy (t,x) <u,() for g,(t) <x < h, (), 0<t <Ty,
where 1u,,(t) solves

dl/_tn/dl =Ku, fort >0; u,(0)= ||u()n||c([g0,h0]).
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Since 0 < ug,(x) < ug(x) in [go, ko] for all n € N, one can choose Ci = ||luollc(igy.noneX ™,
which clearly is independent of .
We next show that
—Cry<g () and h,(t) <Cyfortg<r<Tp
with some positive constant C which is independent of n € N. We only prove the estimate

for k) (1), since the estimate for g/, (¢) can be proved analogously.
We first claim that, for any given 1, there exists ng € N such that

h,(t9) > hg for all n > ng. 2.3)

With C; determined above, since f(¢,x,0) =0 and f is C Lin u € RT, there exists Ko>0
such that

f(t,x,u) > —Kou foru € [0, C11, (t,x) € R%.
It follows that
(un)i — d(un)xx = —Koup for g (1) <x <hp(t), 0=t <Tp.
Hence v, (¢, x) := X'y, (z, x) satisfies
()t — d(Un)xx = 0 for g,(t) <x <hy(2), 0 <1 =T,
and

g, (1) = —p(un)x (t, gn (1)) < —pe K70 (v,) (2, g, (1)) for 0 < 1 < Tp,
(1) = —u(tn)x (£, by (1)) > —pe™ K070 (v,) (2, By (1)) for 0 < £ < Tp.

Since u, (¢, x) > u1(t,x) > 0 for t > 0 and x € (go1, ho1), there exists 6 > 0 small such that
un(t,x) > uy(t,x) >4 for x € [xo — 8, xo + 81 C (go1, ho1), 1 € [0, Tol,

where xo := (ho1 + go01)/2.
We now consider the auxiliary problem

w; —dwyy =0 for x € (xg, s(t)), t € (0, Ty,

w(t, xg) =6, w(t,s(t)) =0fort e (0, Tp],

s'(t) = —pe KoToy (1, 5(r)) for t € (0, Tpl,

w(0, x) = 8 X[xy,xo+8](x) for x € [x0, hol, s(0) = ho.

2.4)

By [5], (2.4) has a classical solution (w(z, x), s(¢)) and s'(¢) > 0 for z € (0, Tp]. In particular,
S('Co) > ho.
We next choose ng a large integer such that

hon > ho — min{$, s(tg) — ho} for n > ny,



W. Ding et al. / J. Differential Equations 262 (2017) 4988-5021 4997
and then define

sp(t) =s(t) — hg + ho, for t € [0, Tp],
wy(t, x) =w(t, x — ho, + hg) for x € [xg — ho + hon, s, (D], t €0, Tp].

By our choice of ng we have xq, := xo — ho + hon € [x0 — &, xo] for n > ng, and thus
vl’l(ta -x) Z un(ta-x) Z 8 fort [S [07 To]v X € [XOn,xOn +8]7 n 2 l’l().
Clearly (wy(t, x), s, (¢)) satisfies

(wn)r — d(wy)xx =0 for x € (xon, s (2)), t € (0, Tol,

wy (t, xon) =8, wy,(t,s,(t)) =0fort € (0, Tp],

55, (1) = —pe= Koo (wy) (2, 5, (1)) for 1 € (0, To],

Wy (0, X) = 8 X[y, x0,+81(*) TOr X € [X0n, houl, $4(0) = hop.

Since (vy, h,) is a super solution of the above problem, by the comparison principle, we obtain
hy(t) > s,(t) =s(t) — hg + hgy for t € (0, Ty], n > ng.
In particular,
hy(T0) > s(to) — ho + hon > ho for n > ny,

as we claimed. This proves (2.3).
Next, set 8o = h,,(T0) — ho and consider the auxiliary problem

AWy + f(W)=0 for —8y<x <0, W(=8)=C and W(0)=0, (2.5)

where C =1+ max{Cy, M} with M being the positive constant in the assumption (1.4), and
£ (s) is a function of class C!(RT) such that

f(0)=f(C)=0 and f(s)>o(s)f(t,x,s) forall t eR, x eR, s € [0, C],
where o (s) is a C! nonnegative function satisfying
o()=1fors <Cy, o(C)=0.

It is easy to see by a sub- and super-solution argument that problem (2.5) admits a solution
W e Cz([—éo, 0]) such that 0 < W(x) < C for all —§p < x < 0. We now show that, for each
given t € [19, To] and n > no,

u,(t,x) < W(x —hy (t)) for all h,(t) — 8§y < x < hy,(t). (2.6)
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For n > ng and fixed ¢ € [1g, Tp], since

hp(t) > hy(t) — 80 = hy(t0) — S0 = hpo(T0) — S0 = ho > hy(0),

due to the monotonicity of A,(7r) in 7, there exists a unique f, € (0, ) such that h,(t,) =
h,(t) — 8o. We now apply the parabolic maximum principle to compare u, and W over the
region

Q, = l(r,x): th<tT<t, h,(t) =8y <x Shn(z’)].

More precisely, set ¢ (7, x) = u,(r,x) — W(x —hy, (t)) for (z,x) € Q,. It is straightforward to
check that uy (tn, b (1) — 80) = n (tn, hn(t2)) =0, that

¢ (7, hn(t) — 80) = un (T, hn(t) — 80) — W(=8p) <C; —C <0 forall 1, <7 <1,

and that
¢ (7, hn (7)) = un (7, hn(v)) = W(hy(t) — hy (1)) <0 forall t, <7 <1.

On the other hand, by the assumptions on f_ , it follows that there exists some bounded function b
such that

Or —doyx =0 (uy) f(T,x,un) — f(W)
S G(Mn)f(r, X, un) - U(W)f(f, X, W)
=b(t,x)¢ for (z,x) € 2.
One thus concludes from the parabolic maximum principle that u, (t, x) < W(x —hy, (t)) for any
(1, x) € Q. This in particular implies the inequality (2.6) by choosing t =¢.
To complete the proof, notice that un(t, hy, (t)) = W(0) = 0. It then follows from (2.6) that

dxttn (¢, hn (1)) = W'(0) for all n > ng, whence —p~'h),(t) > W’(0). This implies that /), (1) <
—uW’(0) for all 79 <t < Ty and n > ng. By setting

Cr=max { — uW'(0), max ()},

0=<n=ng, ©0=t<Tp

one thus gets that &), (t) < C, for all 19 <7 < Tp, n € N, and that C, only depends on Ty, 19, f
and |[uollc((go,ho1)- The proof of Lemma 2.1 is thereby complete. O

Lemma 2.2. Let g, and h, be as in Lemma 2.1. Then for any given Ty > 0, there exists some
positive constant H independent of n such that

hon < ha(t) <hoy + HtY? and  gon — Ht'/? < g,(t) < gon forall 0<t<Tp. (2.7)
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Proof. For any given 7y > 0 and each n € N, consider the following free boundary problem

0tV =d0xxVy, hopn<x < E,,(t), 0<t<Ty,
U (t, how) = C, v (t, hn (1)) =0, 0 <1 <Tp,
h () = —peK 00,0, (1, (), 0 <1 < T,
1n (0) = hon,

(2.8)

where K is the positive constant given in (1.3), and C is some positive constant to be cho-
sen independent of n later It follows from [3, Theorem 1] that problem (2.8) admits a unique
classical solution (vy, h n) With h eC! ((0, Tp]) and h being Holder continuous at ¢ = 0 with
exponent 1/2. Namely, there exists some positive constant H such that

hon < hin (1) < hon + Ht'/? forall 0 <t < Tp. (2.9)

Furthermore, for any n; € N and n, € N, it is straightforward to check that (Un] (t, x — hon, +
hon, ), }Nznl @) +hon, — honl) is the solution of problem (2.8) with n = n,. Thus, by the uniqueness
of such solutions, one concludes that H is independent of n.

Next, for any fixed n € N, due to the assumption (1.3), it is easy to see from the comparison
principle for problem (1.1) with smooth initial values (see, e.g., [13, Lemma 5.7]) that

gn(t) < gn(t), hy(t) > hy (1) forall 0 <t < Tp, (2.10)
and
0 <up(t,x) <eXli,(t,x) forall g,(t) <x <h,(t), 0<t <Tp,

where (i, gn, h,) is the classical solution of the following free boundary problem

Qi = ddxxily, () <x <h,(t), 0<t<Ty,
in(t, 8n (1)) = itn(t, hy(1)) =0, 0<t<Ty,
g, (1) = —pefT00,a, (1, g,(1)), 0<t=<Tp,
bl (t) = — ek 108, i, (1, hy (1)), 0<t<Tp,

&n(0) = gon, En(O)ZhOnv u(0,x) =ug,(x), gon <x =< hoy.

Since u, (¢, x) is uniformly bounded for g,(f) < x < ﬁn (1), 0 <t < Tp, one finds some C>0
such that

iin(t, hon) < C forall 0 <t < Ty, neN.

It then follows directly from the comparison principle for problem (2.8) established in [3, Theo-
rem 2] that

(1) <hy(t) forall 0 <t < Ty, neN.

This together with (2.9) and (2.10) implies that o, < hy, (1) < ho, + Ht'/% forall 0 < ¢ < Ty and
n € N. In a similar way, one can prove the corresponding estimate for g, in (2.7). O
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Next, we prove that the limit (u, g, #) given in (2.1) and (2.2) is a classical solution for prob-
lem (1.1) over Gt for some T > 0. We prove this in the next two lemmas.

Lemma 2.3. Let (u(t, x), g(), h(t)) be the limit given in (2.1) and (2.2). Then there is T > 0
such that for t € (0, T, the first four equations in (1.1) are satisfied by (u(t, x), g(), h(t)).

Proof. We adopt the notations uy, g,, h,, To, C1 and C used in Lemma 2.1. We first straighten
the free boundaries of problem (1.1) as in [6,13]. Without loss of generality, we assume that

g0 < 0 < hg. Then there is some ng € N such that for n > ng, there holds gop, < 0 < hg,, and
there exist functions £, &_ € C3(R) satisfying

E+(y)=11if |y — honl < , Er) =0if [y —hoal > —, 1ELOD) < — for yER,
and
E-O)=1if [y = gonl < =51 6-0)=01if [y —g0u > =3 16£0)I < —% for y €R.
For any fixed n > ng, consider the transformation (¢, y) — (¢, x) given by

x=¢u(t,y) 1=y +E4 () (hn () — hon) +E-(¥)(gn (1) — gon) for 0 <1 <Tp, y eR.

Due to the inequalities in (2.7), there is a positive constant 7 < Ty (independent of n) small
enough such that

h
[ (8) — hou| < go and [g,(t) — gonl < —% forall t €[0,T], n > no,

whence the above transformation is a diffeomorphism from [0, T] x R to [0, T] x R. Moreover,
under this transformation, the free boundaries x = h, (t), x = g,(¢) correspond to the straight
lines y = hg, and y = gon, respectively.

Set
wy (T, y) I=Mn(l,¢n(f,Y))
and
1

Ap(t,y) = - : ,

1+ &L () (ha(t) — hon) +E-(Y)(gn (1) — gon)
Bt y) = E () (ha(t) — hon) +E” () (gn () — gon)
T 4 £ (30) (i (1) — hon) + £ () (8n (1) — o)1
ot y) = h, )&+ (y) + g,)é_(y)

14 EL () (hn (1) = hon) +EL(¥) (gn (1) — gon)

Then a simple calculation gives
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(Wn)r = (Wn)r — Co(Wn)y, (Un)x = An(Wn)y,

and

(Un)xx = A;%(wn)yy — Bu(wy)y,

whence w,, satisfies

(wp)r — dA;%(wn)yy + (dBn - Cn)(wn)y

wy (t, hop) = wy (2, gon) =0, 0<t<T, .
wn (0, y) =10, (), gon <y < hon,

and g,, h, satisfy, due to A, (¢, y) =1 for y € {gon, hon},

hy, (1) = —p(wy)y (¢, hon), 0 <t <T,
g;l(t)z_ﬂ(wn)y(t’ gon), 0<t<T, (2.12)
hp(0) =hon, gn(0) = gon-

Next, we show some further estimates for (wy, gn, ;). It follows from Lemma 2.1 that
wy (¢, y) is positive and uniformly bounded with respect to n € N in (¢, y) € [0, T'] X [gon, hon]-
Moreover, the coefficients A, (¢, y), B, (¢, y) and C, (¢, y) are all uniformly bounded and contin-
uous in (¢, y) € [t, T] x (gon, hon) for any given 0 < 7 < 27 < T. Then by applying parabolic
L? theory (see, e.g., [25, Theorem 7.15]) and then Sobolev embedding theorem, one obtains
wy € CUTO214e ([2 T 5 [goa, hon]), and

[wnll cavarnvsa e, rixtgon o < €3 forall n = no.

where C3 is a positive constant depending on 7, T, ho — g0, |10 llc((g0,n07)> C1 and C (which are

given in Lemma 2.1). This together with (2.12) implies that g,, h, € C'**/2([t, T1), and there
exists C4 > 0 independent of n such that

| &n ”cl+a/2([r‘r]) <Cs, |hn ||C1+“/2([I,T]) =< C4 forall n=no.

This implies that ¢, (¢, y), A, (¢, y), Bn(¢, y) and C,(t, y) are functions in C“/z""([t, T] x R)
and their norms in this space have a bound independent of n. We may now apply the parabolic
Schauder estimates to problem (2.11), to obtain that w,, € C I4a/ 2’2“'0‘([2r, T1x[gon, honl), and

|| Wy, Cs forall n > ng,

| crearnzea e, rixigom o =

for some constant C5 independent of n. Thus, one has

e ”cl+°f/2v2+of(G§f) + | gn ”Cl‘*'“/z([%,T]) + [ Hcl+w/2([2r,T]) =Ce forany n=no, (2.13)
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for some positive constant Cg independent of n, where
G, ={@t.x) eR*: t€[2t,T], x € [gn(t), ha(1)]}.

Finally, by using a diagonal argument and the convergences (2.1), (2.2), one sees that
(u,g,h) € CH2(Gr) x C'((0, T]) x C'((0, T]), and that

U, — u in Cllo’f(GT) as n — 0o,

gn— g and h, — h in Clloc((O, T])as n — oo.
In particular, this implies that
ur =duyx + f(t,x,u) forall g(t) <x <h(),0<t<T.

Furthermore, for any ¢ € [27,T] and x € (g(¢), f(¢)), there exists n; € N such that x €
(g,,(t), hn(t)) for all n > ny, whence

iun(tvx)| = C6|x —8n(?) (Wn)x (F, %) — (un)x (2, gn(t))| = C6|x - gn(t)| forall n > ny,

where Cg is the positive constant given in (2.13) (independent of n). Passing to the limit n — oo
in the first inequality gives that }u(t, x)| < C6|x — g(t)|, which clearly implies u(¢t, g(¢)) = 0.
Similarly, due to (un)x(t, g,(t)) = —;flg;l (), passing to the limit n — oo followed by letting
x — g(t) in the second inequality yields that u,(z, g(t)) = —1/ug’(¢). Since T can be chosen

arbitrarily in (0, 7'/2], one thus obtains that

u(t,g(t)) =0 and g'(t) = —pu,(t,gt)) forall 0 <t <T.
In a similar way, one concludes that

u(t,h(®)) =0 and h'(t) = —pu,(t, h(t)) forall 0 <t <T.
The proof is complete. O

Lemma 2.4. The triple (u, g, h) in Lemma 2.3 also satisfies the initial conditions in (1.1). That is,

lim g(¢) = go, lim A(t) = ho, (2.14)
t—0 t—0
and for any xo € [go, hol,
lim u(t,x) =up(xp). (2.15)
(t,x)eGr,t—0,x—>Xxq

Proof. Letting n — oo in (2.7) we immediately obtain
ho < h(t) < ho+ Ht'/?, go — Ht'/> < g(1) < go for 1 € (0, Tp]. (2.16)

This clearly implies (2.14).
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Next, we prove (2.15). Let ug € C([g(T), h(T)]) be a nonnegative function such that izp(x) =
uo(x) for x € [go, hol and ug(x) = 0forx € [g(T), go]U[ho, h(T)]. It follows from the parabolic
comparison principle that

0<u,(t,x)<u(t,x) forall g,(t) <x <h,(), 0<t<T,neN,

where u(z, x) is the unique solution of the following initial-boundary value problem

Uy =duyy + Ku, g(T)y<x<h(T), O0<t<T,
u(t,g(T))=u(t,h(T))=0, O0<t<T,
u(0, x) =g (x), g(T) <x <nh(T),

with K being the constant given in (1.3). This together with the convergence property (2.2)
implies that

O<u(t,x)<u(t,x) forall g(t) <x <h(t), O0<t<T.

Furthermore, since ug € C([g(T), h(T)]), by the parabolic regularity theory on the boundary
(see, e.g., [18, Theorem 9 in Chapter 3]), one has u € C([0, T] x [g(T), h(T)]).

For any xo € (go,ho) and any sequence (f,Xm)meN C R2 with limy—oeofm = 0 and
limy,—, o0 X = X0, there exists ny € N such that g,(#,) < gon < Xm < hon < h,(t,,) for all
n>ny, m > ny, whence uy (ty, Xm) < u(ty, Xm) < u(tym, xn). This together with the facts that
limy,— o0 Up (i, Xm) = ton (x0) for all n > ny and that limy,_, o u(t,, x,,) = up(xg) implies that

uon (xo) < liminfu(ty, x,,) <lim sup u(ty, xXm) < ug(xop).
m—00 s 00

Since ugy (xg) converges to ug(xg) uniformly in xo € [go, ko] as n — oo and ug(xg) = uo(xp), it
follows that lim,— oo U (t, Xm) = uo(xp). Due to the arbitrariness of the sequence (¢, X )meN,
one obtains the property (2.15) for all x¢ € (go, h0)-

In the case where xg = go or xo = ho, we have lim¢ yyeGy,1—0,x—x U(t, X) = ug(xp) = 0.
Thus it follows from 0 < u(¢, x) < u(t, x) in G that

lim u(t,x) =0=ug(xp).
(t,x)eGr,t—0,x—>xg

Hence (2.15) holds for all xg € [go, ho]. The proof of Lemma 2.4 is thereby complete. O

Lemma 2.5. For any ug € H(go, ho), (1.1) has a classical solution defined for all t > 0, and it
satisfies (1.6) and (1.7).

Proof. We already obtained in the previous lemmas a classical solution (u, g, ) of (1.1) which is
defined for r € (0, T'] with T' > 0 sufficiently small. Moreover, by (2.13), it is easy to see that this
solution satisfies (1.6) for such 7 and t € (0, T). Thus u(T /2, x) is a C? function meeting the
requirement for the initial function in [13]. It follows that this solution can be extended uniquely
toall # > T /2 by the existence theory in [13], and it satisfies (1.6) for T > t > 0 with an arbitrary
T > 0. Finally (1.7) follows from (2.16) and (2.13). O
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Remark 2.6. Analogously, for any given ug € H(go, ho), we choose a decreasing sequence of
intervals [goy, hon] such that 2o, 7 go, hon \ o as n — 00, and a sequence of functions i, €
C*([8on. hon) such that

’ﬁOn(g;On) = ﬁOn(ZOn) =0, g, >01in (§0na ﬁOn)» neN,

and that after extending o, (x) and uo(x) to R by the value zero outside their supporting sets,
Hom—1) > oy in R, lim |[@o, — uollLo®) = 0.
n—o0

Denoting by (i, gy, h,) the unique solution of (1.1) with (ug, go, ho) = (Won, Son> Tion), then we
can sig}ilarly show that (&, g,, 71,,) satisfies (2.7), (2.13), and converges to a classical solution
(U, g, h) of (1.1) with initial data (ug, go, ho) for t € (0, T] with T > 0 small, which can be
extended to a classical solution of (1.1) for all # > 0, and it satisfies (1.6) and (1.7).

Now we proceed to prove the uniqueness of classical solutions to (1.1). We will adapt the
weak solution approach in [10] for higher space dimensions to the one space dimension setting
here.

Lemma 2.7. Assume that (u,g,h) is a classical solution for (1.1) defined over Gr for

some T > 0 with initial function ug € H(go, ho). For any given open interval I such that
[g(T), h(T)] C I, denote IT = (0, T] x I, and

e x) = { u(t,x) forxelgt),h(®)], 0<t<T, o1
0 forxel\[g),h(®)], 0<t<T.

Then 1 € C(I7) and
T T
f f [diiper + ()b Jdxdt + / K (0) (0, X)dx + / / F(tx, Dpdxdt =0 (2.18)
07 1 07

for every function ¢ € C(It) N WY2(I7) such that ¢=0o0n ({T} x I)U((O0,T] x al), where
k(-) is a function defined by k (w) = w if w > 0 and k(w) =w — pu~'d if w <0.

Proof. By the definition of 7, clearly & € C(I7). We now prove that i satisfies (2.18) for every
¢ € C(I7) N Wh2(I7) such that ¢ =0 on ({T} x I) U ([0, T] x 81). To do so, we multiply both
sides of the first equation in (1.1) by ¢ and integrate over G7, for any given 0 < 7 < T. Since
u(t,g(t)) =u(t,h(t)) =0forall 0 < < T, integration by parts yields

T h(t) h(t) T T h(t)
—/ / [ud:,—i—dud:xx]dxdt — / u(r,x)¢(r,x)dx=d/](t)dt+/ / ft, x,u)pdxdt,
T g(n) g(7) T T g(n)

where
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J(@) =ux(t, L)), h(1)) —ux(t, g(t))p(t, g(1)).

By elementary calculus,

T
Prdxdt = / [¢ (2. R (1) — p (1, g(1))g' (1) ]dr — / ¢(t,x)dx
T I\[g(®),h(1)] T I\[g(7),h(7)]
T

= —,u/](t)dt— / ¢ (T, x)dx.
T N[g(D).h(D)]

Combining the above, since f(, x, 0) =0, we obtain

T T
/f [dﬁcbxx+/c(ﬁ)¢>,]dxdt+/K(ﬁ(z,x))¢(r,x)dx+// f(t,x,w)pdxdt =0.
T ] 1

1 T

Since ¢ € C(I7) N W2(I7) and i € C(I7) (and hence, « (i) is bounded in I7), passing to the
limit as T — O in the above equality gives (2.18). The proof for Lemma 2.7 is thereby com-
plete. O

Lemma 2.8. For any ug € H(go, ho) and T > 0, there exists at most one classical solution to
problem (1.1) defined over G with initial data (ug, go, ho).

Proof. The proof of this lemma is analogous to that for [10, Theorem 3.5]. For the sake of com-
pleteness, we include the details here. Assume that problem (1.1) admits two classical solutions
(u1, g1, h1) and (u2, g2, ho) defined for 0 < ¢ < T with the same initial data (uq, go, ko). Let I be
an open interval such that I D [g{(T), h(T)]U[g2(T), h»(T)] and &; be defined by (2.17) with
(u, g, h) replaced by (u;, g;, h;) fori =1, 2. Then Uy, u; are continuous over Ir, and by (2.18)
we obtain

T
/ [k (@2) — Kk (11)](3;¢p + dedsc ¢ + elp)dxdt =0 (2.19)
07

for every function ¢ € C?(Ir) such that ¢=0on (T xI)U(0,T] x dI), where

f(t$xv"/72(ta-x))_f(tv-xvﬁl(tvx)) o~ ~
I(t, x) = %) — () ity @, %) # 2t x),

0 if w1 (t, x) =uar(t, x),

and

ﬁ2(t5-x)_ﬁl(t’x) o~ ~
et 1) = | K@tx) —c@i@x) D FR0.
0 if 4y (t,x) =ur(t, x).
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By the definition of «, one sees that there is some 0 < C1 <1 such that 0 <e(t,x) < C; a.e.
(t, x) € Ir. Since the function f (¢, x, s) is of class Clins>0 uniformly in (¢, x) € R x R and
since u; (¢, x) is bounded in (¢, x) € I for i = 1, 2, the function /(¢, x) is bounded in (¢, x) € I7.
We then approximate e and / by smooth functions e,, € C*°(I7) and I,, € C*°(I7) such that

”em e”lz(IT) > 0’ ”lm l||12([T) >0 as m — o0, (220)
and
i = : = ” ” = ”l ” = ( 1)
infe s C s e 00 C s 00 C 2.2
Ir m = 2(17) 2 mllL>®(IT) 2 mllL>®(I) 2

for some positive constants C, independent of m (the existence of such an approximation e,
follows from [4, Lemma 5]). We now fixed a function ¢ € C2°(I7). It is well known that the
following problem

01y +dendxxdpm +eplndm =q, (t,x)€lr,
¢ (T, x) =0, xel,
¢nl(t7-x)=0’ OSIST,.XEBI,

admits a unique smooth solution ¢,,. Moreover, it follows from the proof in [10, Lem-
mas 3.6-3.7] that there exists some positive constant C3 independent of m such that

|6l oz, <C3 and e *duxtm]| 12, < Cs- (2.22)

Taking each ¢, as a test function in (2.19) gives

T
// [k (@2) — ke (@1)] (B P + dedrxbm + elpm)dxdt = 0.
01

This implies that
T
/ [/c('i[z) - /c('i[l)]qudt
07
T

= // [K(ﬁ2) - K(ﬁl)]<at¢m +dey Oxxm +emlm¢m)d)‘7dt
(]

T

= // [K("ZZ) - K("Zl)]{d(em — €)0xxPm + (emlm — el }dXdL
0

I

Hence, by the boundedness of « (i;) for i = 1, 2 and the first estimate in (2.22), one has
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T

T T
/ [K(ﬁz)—x(ﬁl)]qudzgaff|em—e\yaxx¢m\dxdr+cs //]emlm—el dxdt
017 01

017

for some positive constants C4 and Cs independent of m. Then, on the one hand, by the conver-
gences in (2.20) and boundedness of e,,, [, in (2.21), one has

T
/ |emlm—el|dxdt—>0 as m — oQ.
01

On the other hand, it follows from the Holder inequality that

T
/ lem — || |dxdr
07

T 1 T

< ([ 2= Pavar)* ([ [ enttpcstmParar)’
lem|

017 017

_ 1 1
< Jen—el}z, f/ len —el ar)’( //|em||axx¢m 2dxdr)z.

Therefore, due to the second inequality in (2.21) and the second inequality in (2.22), it follows
that

T

// }em—e|}8xx¢m|dxdt—>0 as m — oo.
01

We thus obtain fOT /i [/c (n) — K(ﬁﬂ]qudt < 0. Due to the arbitrariness of ¢ € C2°(Ir), this
implies that « (1) = k() a.e. in I7. By the definition of «, one gets that u| = u» a.e. in Ir.
Since u; € C(It) for i = 1,2, it follows that @ (z, x) = (¢, x) for all (¢, x) € I, and hence
g1(t) = go(t) and h(t) = ho(¢) for every O <t < T. The proof of Lemma 2.8 is thereby com-
plete. O

Theorem 1.1 clearly follows directly from Lemmas 2.5 and 2.8.
2.2. Continuous dependence and comparison principle
In this section, we first show that the classical solutions obtained in Theorem 1.1 depend

continuously on the initial data, and then we prove a comparison principle. These results will
play important roles in Part 2.
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To prove the continuous dependence, we introduce a few notations. For any (uq, go, ho) €
H(go, ho) x R x R, and any sequence (ion, gons "on)neN C H(gon, hon) X R x R, we say
(¢0n, on» hon) converges to (1o, go, ho) as n — oo, if

gon —> 80, hon — ho and ug, (x) — up(x) uniformly in x € R,

where ug, and ug are always extended to R by taking the value O outside their supporting sets.
For any fixed 7 > 0, the convergence of (i, (,x), gx (1), hn (1)) to (u(t,x), g(1), h(1)) is defined
in a similar way, where (uy, gn, h,,) is the solution of (1.1) with initial data (uo,, gon, on), and
(u, g, h) is the solution of (1.1) with initial data (g, go, h0)-

Proposition 2.9.

(i) Suppose that (uon, gon, hon) converges to (ug, go, ho) as n — oo. Then for any given T > 0,
(un(t, x), gn(1), hn(t)) converges to (u(t, x), g(), h(t)) as n — oo uniformly int € [0, T].

(1) Suppose that lim,_, 5 gon = —00 and limy,_, o ho, = 00 and that ugp, (x) converges to uo(x)
locally uniformly in x € R. Then for any given T > 0, u, (t, x) converges to v(t, x; ug) lo-
cally uniformly in x € R and uniformly in t € [0, T], where v(t, x; ug) is the unique solution
of the Cauchy problem (1.14) with initial datum v(0, -) = uo(-) in R.

Proof. We only present the proof for the first statement, since the proof for the second one is
similar and even simpler. _
Since (#0n, gon> hon) = (10, o, ho) as n — oo, we can find (uy,, g, - hp,) and (@on, o, - hon)
such that, for every n € N,
g, € C*(1g,, - hoy D) 1, (8,,) = ttg, (hg,) =0, ug, (x) > 0 for x € (g, . hp,),
o € C*([Zon- hon]). Ton(Zon) = on (hon) =0, Ton (x) > 0 for x € (g, hon).
Uy, SUon = up, in R, gOn > 8on = ?on, ﬁOn <ho, < EOH)

8on N 80: Zon /" 80: g, /" ho, hon \ ho as n — oo,
and
Ug, /U0, Uoy \ 4o uniformly in R as n — oo.
Here, as before, the initial functions are extended to R by the value O outside their supporting

sets.
Let (u,,, g, h,) be the unique classical solution of (1.1) with initial data (u,, 8on® hy,,), and

(in, 8p» hy) be the unique solution of (1.1) with initial data (o, 8¢, #0s)- It follows from the
proof of [13, Lemma 3.5] that

En() < gn(®) <g (1), hu(1) = hy(1) = b, (1) in (0, T],
and

Un(t,x)>u,(t,x) >u,(t,x) for0<t <T, x eR,
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where u,(t, ), u, (¢, ) and u,(z, -) are extended to all of R by taking the value 0 outside their
supporting sets.
By Theorem 1.1 and Remark 2.6, we know that

lim g (r)= lim g,(t) =g(t), lim h,(¢) = lim h,(t) = h(z)
n—oo—"n n—o00 n—o00 n—o00
uniformly in # € [0, T']. It follows that
lim g,(t) =g(t), lim h,(t) = h(t) uniformly in 7 € [0, T'].
n—oo n—oo
Moreover, from
lim u,(t,x)= lim u,(t,x) =u(t, x) in C;oc(G1),
n—0o0 n—>0o0
and (1.6) and (1.7), we see that
lim u, (t,x) = lim u,(t,x) =u(t, x)
n— o0 n— oo

uniformly in [z, 7] x R for any t € (0, T).
Furthermore, by the proof of Lemma 2.4, we easily see that

lim u,(t,x)= lim Ogn(t,x)zuo(x) in L (R).

n—00,t—0 n—00,t—

Combining the above conclusions, we see that
Iim wu,(t,x) =u(t,x)
n—oo
uniformly inx e R, € [0,7]. O
Having in hand the above continuous dependence, we now establish the following compar-
ison principle for problem (1.1) with initial function belonging to #(go, ko), which is an easy

extension of that for (1.1) with C 2 initial functions.

Proposition 2.10. Suppose that T € (0, 00), that g, he C([O, T]) ncl ((O, T]) and that U €
C(Dr) N CY2(Dr) with Dy = {(1,x) e R>: 0 <1 < T, 3(1) <x < h(1)}.

@ If

iy > diley + f(8,x, 70, 0<t<T, ) <x <h(),
u(t,g(1)=0, g'(t) <—pii(t,gt), 0<t<T, x=3(1), (2.23)
At h() =0, B (1) > —piiy (1, h(1)), 0<t<T, x=h(),
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and

(g0, hol C[E(0), R(0)],  wuo(x) <T(O,x) in [go, hol,
then the solution (u, g, h) of problem (1.1) with initial data (ug, go, ho) satisfies
g() 2E(®, h@®) <h() in (0,T],
and
u(t,x) <u(t,x) for0<t<T, gt)<x <h(t).
(i) If the inequalities in (2.23) are reversed, and
[80. ho] D [8(0), R(0)] and  uo(x) 2 (0, x) in [§(0), h(0)],
then the solution (u, g, h) of problem (1.1) with initial data (ug, go, ho) satisfies
g() <E®. h@®) = k() in 0,1,
and

u(t,x) >, x) for 0<t <T, 3(t) <x <h(r).

Proof. We only give the proof for part (i), as part (ii) can be proved analogously. Choose se-
quences (gon)neN C R, (hon)nen C R such that go, decreases to go, ho, increases to kg as
n — 00 and (uon)nen C C2([gon, hon]) such that

0 < uon(x) <uop(x) in [gon, hon] and uo, (gon) = uon(hon) =0 for each n e N,

and that u(, converges to ug as n — oo uniformly in [gg, ho]. For each n € N, let (u,,, g, hy,) be
the classical solution of problem (1.1) with initial data (uo,, gon, fon)- It then follows from the
proof of [13, Lemma 3.5] that

gn(t) = 8(1), ha(t) <h(t) in (0, T],
and
un(t,x) <u(t,x) for 0 <t <T, gu(t) <x < hy(t).

Due to Proposition 2.9, one can pass to the limit # — oo in the above inequalities, and obtain all
the required conclusions. 0O
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2.3. Farallel results for an auxiliary problem

In order to prove the existence of spreading speeds for problem (1.1) in Part 2, we need to
study the following auxiliary problem

ur =duyx + f(t,x,u), —oco<x<h(t), t>0,
u(t,h(®)) =0, h'(t) = —pu (t,h()), t=>0, (2.24)
h(0) =ho, u(0,x)=up(x), —00 < x < ho,

with initial data ug € H (ho), where

i (ho) = {¢ € C((=00, hol) N L ((—00, hol) : $(ho) =0, p(x) > 0in (—oc, ho)}.

All the results in the previous two subsections carry over to this problem without difficulties.
Here we list these corresponding results while leaving their proofs to the interested reader.

Theorem 2.11. Suppose that (1.2) and (1.3) are satisfied. For any ug € H+(ho), problem (2.24)
admits a unique classical solution (u(t, x), h(t)) defined for all t > 0, and h € c! ((O, +oo)) N
C([0,00)), u € C*(G)NC(G4) with G4 = {(t,x) € R*: 1t € (0, 00), x € (—00, h(t)]}. Fur-
thermore, for any T > © > 0 and any A < hy, there holds

””||c(1+a>/2,1+a<cj”) + ||h||c1+a/2([r,r]) =C,

where GZ’T = {(t, Xx) € RZ:te[1,T], x €[A, h(t)]}, and C is a positive constant depending
ont, T, f and |luol| L% ((—o0,ho))-

Remark 2.12. We should remark that, for any given ug € H4(ho), let (u(z,x), h(t)) be the
unique solution of (2.24) with initial datum u (0, x) = ug(x) in (—00, ho), then for T > 0, u (7T, x)
is Lipschitz continuous in (—oo, h(T)]. It follows from the estimate in Theorem 2.11 that the
Lipschitz constant only depends on 7', f and |[ugl| 1% ((—c0,/kq)]-

Proposition 2.13. Under the assumptions (1.2) and (1.3), the following conclusions hold.

(i) For any given hy > 0 and any given sequence (hop)nen C RY, let ug € Hy(ho) and
uon € Hy(hon). Suppose that (uoy, hon) converges to (ug, hg) in C;oc((—oo,ho]) x R
as n — oo. Then for any given T > 0, (u,,(t,x),hn(t)) converges to (u(t,x),h(t)) in
Cl(,c((—oo, h(t)]) x R as n — oo uniformly in t € [0, T], where (un, hy) is the solution
for (2.24) with u,(0, ) = ug,(-) in (—o0, ho,], and (u, h) is the solution for (2.24) with
u(0,-) = up(") in (—00, hol.

(1) In addition to the assumptions in (i), if hg = +o00, then for any given T > 0, u,(t, x) con-
verges to v(t, x; ug) locally uniformly in x € R and uniformly in t € [0, T, where v(t, x; ug)
is the solution of the Cauchy problem (1.14) with initial datum v(0, -) = ugp(-) in R.

Proposition 2.14. Suppose that T € (0, 00), that e C([O, T]) N Cl((O, T]) and that U €
C(D+,7)NCY2(Dy r) with Dy g ={(t,x) eR*: 0 <1 < T, —00 <x <h(1)}.
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@ If

Uy >dily, + f(t,x,10), 0<t<T, —oo<x<ﬁ(t),
At h(1) =0, B(r)>—pily(t,h(r)), 0<r<T,

and
ho < E(O) and ug(x) <u(0,x) in (—o0, hol,
then the solution (u, h) of problem (2.24) satisfies
h(t) < ﬁ(t) in (0,T] and u(t,x) <u(t,x) for 0 <t <T, —oo <x <h(t).

(i) If in the assumptions of part (1) all the inequalities are reversed, then the solution (u, h) of
problem (2.24) satisfies

h(t) > h(t) in (0, T) and u(t,x) >4t x) for 0<t <T, —o00 <x <h(?).

The pair of functions (i, h) in part (i) of Proposition 2.14 is often called an upper solution for
problem (2.24), and in part (ii) it is called a lower solution.

Lastly we note that each of the above listed results for problem (2.24) has a parallel version
for the following problem

ur =duyx + f(t,x,u), gty <x<oo, t>0,
u(t,g(t)) =0, g'(t) =—puy(t,g), t>0, (2.25)
g0)=go, u(0,x)=uop(x), 80 <x <09,

with initial data ug € H—_(go), where

H(30) = {# € C(180.0)) N L(1g0,50)) : $(0) =0, $(x) > Oin (g0.0) .
3. Spreading—vanishing dichotomy

This section is devoted to the proof of Theorems 1.2 and 1.3, on the spreading—vanishing
dichotomy and sharp criteria for spreading or vanishing.

Throughout this section, the function f (¢, x, u) is supposed to satisfy the assumptions (1.2),
(1.4), (1.5), (1.8) and (1.10). The arguments in this section mainly follow those used in [9,11],
where similar free boundary problems in homogeneous, or time-periodic media were considered
in a radially symmetric setting. In order not to repeat the arguments in [9,11], in what follows,
we only provide the details when considerable changes are needed.

For any fixed y € R and any fixed R > 0, let )»f g be the real number A such that there exists

a C2(R x [—R, R]) function ¢ satisfying
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Y —doxx¥ — 0 f(t,x+y, 00 =A¢ inR x (=R, R),
Y >0 in R x (—R, R),
Y(t,—R)=1v(t,R)=0 forall r €R,

Y (t, x) is w-periodic in ¢.

3.

It is well known (see [19]) that this real number )»T g 1is the principal eigenvalue of (3.1), which
exists uniquely, and v is the (unique up to scalar multiplication) corresponding eigenfunction.
Furthermore, we have the following properties of k{ R

Lemma 3.1. Let A{’R be the principal eigenvalue of (3.1). Then A{,R is continuous in (y, R) €

R x (0, 00), and Af’R is L-periodic in y and strictly decreasing in R > 0. Moreover, for any fixed
y € R, there holds

lim A} p =A1(L d lim A , = oo,
koo LR 1(L) - an R0 1R
where A1 (L) is the generalized principal eigenvalue given in (1.9).

Proof. We first prove that )»T’ g is continuous in (y, R) € R x (0, 00). For any given (y, R) €
R x (0, 00), let gﬁ}g (t, x) > 0 be the principal eigenfunction corresponding to kf g» normalized

by 1V llLo®xi—r.RY) = 1. Set @i (t, x) = Yx(R*t, Rx). Then (A, ) = (R*A] p, ¢y (1, %)) is
an eigenpair to the following eigenvalue problem

Y —doxxy —pu(t,x,y, )Y =4y in Rx (=1,1),
Y >0 in Rx (—1,1),

Y(t,—1) =y, 1)=0 forall reR,

Y (t, x) is w/R%-periodic in f,

(3.2)

with
w(t,x, v, R) :=R*d, f(R*t, Rx + y,0).
Let us observe that, if we denote by e (w) the principal eigenvalue of (3.2), then
Xi(w) =21 (R*0, f (R, Rx +y,0)) = R*A{ p,
and if u is replaced by a constant g, then

*1(10) = A% — po,

where A} > 0 is the principal eigenvalue of the problem

—d¢" =1¢ in (—=1,1); ¢(=1)=¢(1) =0.
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By the monotonicity of e () on p, we obtain
A= RPm* =X (R*m*) <X (w) = R*A) p <Xi(R°m,) =27 — R°m, (3.3)
where

my:= min 9, f(t,x,0), m*:= max 9, f(t,x,0).
(t,x)eR? (t,x)eR2

Therefore, for any finite closed interval I C (0, 00), A1(n) = Rz)\.i  is bounded in (y, R) €
R x I. Furthermore, since the principal eigenvalue () is unique, it then follows from standard
parabolic estimates and a compactness argument that b () is uniformly continuous in (y, R) €
R x I. Thus, Ay 1.R is continuous in (y, R) € R x (0, 00).

Since the function 9, ft,x + y 0) is L-periodic in y, by the uniqueness of the principal
eigenvalue )‘1 g it is obvious that A 1R is L-periodic in y.

Next, it follows from [27, Proposition 3.2] and [28, Theorem 2.6] that A 1R is nonincreasing
in R > 0 and converges to 1 (£) uniformly in y € R as R — co. Moreover, by similar arguments
to those used in [ 1, Lemma 3.5], one concludes that )L{ g 18 strictly decreasing in R > 0.

Finally, we consider the convergence of )»f g 3 R— 0. By (3.3) we obtain
: 2,y
IglgloR M g =A] >0,

which clearly implies limg_, ¢ Af g = 00. The proof of Lemma 3.1 is thereby complete. O

In view of Lemma 3.1 and the assumption that 1{(£) < 0 in (1.10), it follows that for any
y € R, there exists a unique R* = R*(y) such that

)‘{,R* =0 and )"1V,R <0 for R > R¥, )ﬁ’R > 0 for R < R*. 3.4)

Furthermore, the function y > R*(y) is continuous and L-periodic in y € R. Moreover, one has
the following property.

Lemma 3.2. For any given y € R and any given R > R*(y), the following problem

:atp—daxxp=f(z,x+y,p) inR x (=R, R), 55)

pt,—R)=p(t,R)=0 forall t eR,

admits a unique positive time w-periodic solution pg y € CL2(R x [—R, R]). Moreover, DR,y IS
globally asymptotically stable in the sense that for any nonnegative non-null function iy €
C([—R, R)]) with uy(—R) = up(R) =0, there holds

ug,y(t+s,x; o) — PRyt +5,x) =0 as s — 00 in CIIO’CZ(R X [—R, R]),

where ug y(t, x; Wp) is the unique solution of the following problem
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oru —doyyu= f(t,x+y,u) fort >0, —R <x <R,
u(t,—R)=u(t,R)=0 forall t >0,
u(0,x) =up(x) for —R<x<R.

Proof. Let )L{’ r be the principal eigenvalue of problem (3.1). Since R > R*(y), it is easy to see

that )"1V,R < 0. This together with the assumptions (1.4) and (1.8) imply all the conclusions of this
lemma. The proof is almost identical to that of [19, Theorem 28.1], so we omit the details. O

The above existence, uniqueness and stability results for problem (3.5) in a bounded domain
can be extended to the following problem with an unbounded domain.

Lemma 3.3. The problem

dipy —ddeepy = f(t,x, py) inR x (—00,0),

3.6
p+(1,0)=0 forall 1t €R, (3.6)

admits a unique positive time w-periodic solution p, € Cl’z(R X (—oo,()]). Moreover, p4
is globally asymptotic stable in the sense that for any nonnegative non-null function ug €

C ((—00,0]) with iio(0) = 0, there holds

up(t+s,x;ig) = py(t+s,x) as s — 0o in Cllg’cz(R x (=00, 0]),
where u (t, x; ug) is the unique solution of the following problem

o —doyyu= f(t,x,u) fort >0, —oo <x <0,

u(,0)=0 forall t >0,

u(0,x) =uop(x) for —oo<x <0.
Proof. We only prove the existence of positive time periodic solution p. for problem (3.6),
since the uniqueness and global asymptotic stability for p; follows from similar lines to those

used in [28] for pg)blem (1.12), due to the assumptions (1.4), (1.5), (1.8) and (1.10).
For any R > 2R where

R = max R*(y), 3.7)
yeR

it follows from Lemma 3.2 that the following problem

9 pr —ddxpr= f(t,x, pr) inR x (=R, 0),
pr(t, x) is w-periodic in 1 € R, (3.8)
pr(t,—R) = pr(t,0) =0 forall r e R,

has a unique positive solution pg(t,x) € C*(R x [~ R, 0]). Now we show that, for any R, >
R} > 2R, there holds

DR,(t,x) > pg,(t,x) forall (t,x) e R x[—Ry,0]. (3.9



5016 W. Ding et al. / J. Differential Equations 262 (2017) 4988-5021

To do so, we choose a non-null nonnegative function ug € C ([—Rl,O]) with ug(0) =
uo(—R1) = 0 such that ug(x) < pg,(0,x) for all x € [-Rj,0]. Then one sees that pg, (¢, x)
is a supersolution to the problem

Oiup, —doxyug, = f(t,x,ug,) int>0, —R; <x <0,
ug,(t,—R1) =ug,(t,0)=0 forall >0, (3.10)
up, (0,x) =uop(x) in —R; <x=<0.

It follows from the parabolic maximum principle that
ug,(t +nw,x) < pg,(t,x) forallt >0, —R; <x <0,neN.

Since pg, is a globally asymptotically stable solution of problem (3.8) with R = Rj, we have
lim ug, (t +nw,x) = pg,(,x) fort >0, —R; <x <0.
n—o0

Hence (3.9) holds.

Choose a sequence {R;};eny C [Ro, 00) with R; /" oo asi — oo, and let pg, (t, x) € Cl’z(R X
[—R,-,O]) be the positive solution to (3.8) with R = R;. Since f(t,x, M) <0, the positive
constant M is a super solution to the equation satisfied by pg, (¢, x). Therefore by the above
arguments we obtain

PR (t,x) < pri,, (&, x) <M fort eR, x €[-R;,0], i eN.

Hence we can define

p+(t,x):= lim pg,(t,x) fort € R, x € (—o0, 0].
1—> 00

For any R > 2R, by parabolic estimates to problem (3.8) with R > R over the domain
[0, w] x [—Ro, 0], and a standard diagonal process, we see that

lim pr,(1.x) = pa(t.2) in Cjpl (R x (—00,0]).

and hence p4 (¢, x) is a positive solution to problem (3.6). The proof of Lemma 3.3 is thereby
complete. O

Now we give the proof for Theorem 1.2. In the sequel, (u (t,x), g, h(t)) always denotes the
unique solution of problem (1.1) with given initial datum ug € H(go, ho), and Ao, goo are the
limits of the functions /(¢) and g(¢) as t — oo, respectively.

Lemma 3.4.[f hoo < 00 0F goo > —00, then both heo and goo are finite, and hoo — goo <
2R*(Yoo) Where yoo = (hoo + gc0)/2. Moreover,

lim max u(t,x)=0.
100 g(1)<x<h(t)
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Proof. Without loss of generality, we assume that 1o, < 00, and we proceed to Show /o — goo <
2R*(ys0). The proof for the case goo > —00 is parallel.

We first show that g, > —00. Assume by contraction that go, = —00. Let Ty be the real
number such that h(r) — g(t) > 2R for all t > Ty, where R is given in (3.7). It follows from
Lemma 3.2 that, for any fixed T > Tj, the following problem

or(wr) —doxywr = f(t,x,wr) int >0, g(T) <x <h(T),
wr(t, g(T)) =wr(t,h(T)) =0 forall >0,
wr (0, x) =u(T,x) in g(T) <x <h(T),

has a unique solution wr (7, x) € C"?(R x [g(T), h(T)]), and

wr (t +5,%) — Wyt +5,%) = 0 as s — 0o in C;2 (R x [g(T), h(T)]),

where w7 is the unique positive time w-periodic solution to the problem

wr —doyywr = f(t,x,wr) int >0, g(T) <x < h(T),
wr(t, g(T)) =wr (@, h(T)) =0 forall r eR.

By the parabolic maximum principle, one has u(t + T, x) > wr(¢,x) forallt > 0, g(T) <x <
h(T), whence

liminfu(t + nw, x) > wr(t,x) forallt > 0, g(T) <x < h(T).
n—>oo

One the other hand, let @y be the function in C((—00, hoo]) given by ug(x) = u(T, x) for x €
[g(T), h(T)] and up(x) =0 for x € (—00, hool) \ [g(T), A(T)]. It follows from Lemma 3.3 that
the following problem

ow —doyyw= f(t,x,w) int >0, —00<x < hyo,
w(t, hoo) =0 forall t >0,

w(0,x) =up(x) in —o00 <x < hyo,
has a unique solution w(t, x) € Cl*z(R x (=00, hool), and

w(t+s,x)—w(+s5,x)— 0 ass — oo in CZIO’CZ(R X (=00, hool),

where w is the unique positive time w-periodic solution for problem

0w —doyyw = f(t,x,w) int >0, —00 < x < heo,
w(t, hoo) =0 forall ¢t €R.

By the parabolic maximum principle, one has u(t + 7, x) < w(¢, x) forallt > 0, —00 < x < ho,
whence
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limsupu(t +nw,x) <w(t,x) forallt >0, —00 <x < h.
n— o0

Furthermore, by simple modifications of the proof of Lemma 3.3, one sees that wr (¢, x) (ex-
tended by O outside its supporting set) converges to w(f,x) as T — oo locally uniformly in
R x (—00, hoo]. Therefore,

u(t +nw,x) — w(t,x) as n - oo locally uniformly in R x (—00, As], (3.1
which in particular implies that u(nw, x) converges to w(0, x) as n — oo locally uniformly in
(=00, hoo]. Since g(nw) — —oo and h(nw) — heo as n — 00, and since o, < 00, it follows
from the continuous dependence stated in Proposition 2.9 that

u(t +nw, x) — w(t,x) as n — oo locally uniformly in ¢ > 0, —00 <x < E(t), (3.12)

where (@, h) is the solution for the following free boundary problem

Wy =dWyy + f(t, x, W), —c0 <x <h(t), t>0,
W, h(1) =0, (1) = —pi(t, h(t), t>0,
RO) =hso, @O0, x)=w(0,x), —00 < X < hoo.

One then obtains from (3.11) and (3.12) that i[(t) = he and w = w. This implies that
h'(t) =0 for all + > 0, and hence 9, w(t, hoo) = 0, which is a contradiction with the fact that
dyw(t, hoo) < 0 by Hopf lemma. Therefore, one gets that g, > —00.

Once goo > —oo is obtained, similar strategies used above would further imply that
hoo — 80 < 2R*(yoo) and the details will not be repeated here. Finally, we prove that
lim; , oo Maxg (1) <x<n(r) 4 (¢, x) = 0. As a matter of fact, let u be the unique solution to the fol-
lowing problem

L_lt=d’zxx+f(t,x,lz), t>0’ g00<-x<h00’
u(t, g8oo) =0, u(t,hoo) =0, >0,
u(0,x) =1io(x), 8oo =X = hoo,

where 11g(x) = ug(x) for x € [go, ho] and up(x) = 0 for x € [goo, hoo] \ [g0, o). It follows
from the parabolic maximum principle that 0 < u(t, x) < u(t,x) fort > 0, x € [g(?), h(¢)]. Fur-
thermore, since /s — goo < 2R™(yx), the principal eigenvalue )Lfffhmf 200)/2 > (0, and hence,
lim;_, oo (¢, x) = 0 uniformly in x € [goo, hoo] (see e.g., [19, Theorem 28.1]). Therefore,

lim; _, oo Maxg 1y <x<n(r) u(t, x) = 0. The proof of Lemma 3.4 is now complete. O
Lemma 3.5. If (gc0, hoo) = R, then

lim |u(t,x) — p(t,x)| =0 locally uniformly in x € R,

1—>00
where p(t, x) is the unique positive solution of problem (1.12).

Proof. The proof follows from similar arguments as those used in the proof of [11, Theorem 3.4],
so we omit the details. O
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Theorem 1.2 clearly follows directly from Lemmas 3.4 and 3.5.

Lemma 3.6. If hg — go > 2R*(yg) with yo = (ho + £0)/2, then (g00, hoo) = R and spreading
always occurs.

Proof. We first consider the case hg — go > 2R*(yg). Assume by contradiction that
(8005 Moo) ; R. It then follows from Lemma 3.4 that both hy and g are finite, and that
lim;_, oo maxg(y<x<n@) u(t, x) = 0. On the other hand, let u(t, x) be the unique solution of the
following problem

Ol —doyyu= f(t,x,u) int>0, gg<x < hy,
u(t,go) =u(t,hg) =0 forall >0,
(0, x) =ug(x) in go <x < hy.

Since ho—go > 2R*(yp), it follows from Lemma 3.2 that lim;_, o, z(¢, x) > 0 for all x € (go, ho).
By the parabolic maximum principle, one has u(z, x) > u(¢, x) for all t > 0, go < x < hg. One
then obtains liminf;_, .o u(z,x) > 0 for all gop < x < hg, which is a contradiction. Therefore,
(8005 hoo) = R and spreading always occurs.

Next we consider the remaining case hg — go = 2R*(yp). Let (u, g, h) be the unique solution
of (1.1) with initial data (uo, g0, h0). Then h(1) > ho > go > g(1). Therefore there exist g0 €
(g(1), go) and hg € (ho, h(1)) such that yy is the center of the interval [20, hp]. We now choose
1o (x) such that it is continuous in [gg, ho],

i10(Z0) = Ho(ho) =0, 0 < fip(x) < u(1, x) for x € (30, ho).

Let (if, g, h) be the unique solution of (1.1) with initial data (i, g0, ho). Then by the comparison
principle we have

h(1+1)>h@), g(1+1) <Z@), u(l+1,x) >t x)fort >0, x € [2(), h(D)].

Since Z(L)) — 2(0) > 2R*(yo), by what has been proved above, we have —lim;_ o g(t) =
lim;_, o h(2) = oo. It follows that s, = 00, goo = —00, and hence spreading occurs. O

Lemma 3.6 gives the first statement of Theorem 1.3. Next, we turn to describe the strategy
for the proof of the second one. As a matter of fact, by minor modifications of the proof for [9,
Lemma 2.8] and [11, Lemma 3.10], one concludes the following two properties.

Lemma 3.7. Suppose that hy — gy < 2R*(yo) with yo = (ho + go)/2. Then there exists ,uo >0
depending on uq such that spreading occurs if i > 0.

Lemma 3.8. Suppose that hy — gy < 2R*(yo) with yo = (ho + go)/2. Then there exists g > 0
depending on uq such that vanishing occurs if i < [o.

Based on the above two lemmas, the proof for part (ii) of Theorem 1.3 follows exactly the
same arguments as those used in the proof of [9, Theorem 2.10].
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