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Abstract

We aim to classify the long-time behavior of the solution to a free boundary problem with monostable 
reaction term in space–time periodic media. Such a model may be used to describe the spreading of a 
new or invasive species, with the free boundary representing the expanding front. In time-periodic and 
space homogeneous environment, as well as in space-periodic and time autonomous environment, such a 
problem has been studied recently in [11,12]. In both cases, a spreading–vanishing dichotomy has been 
established, and when spreading happens, the asymptotic spreading speed is proved to exist by making use 
of the corresponding semi-wave solutions. The approaches in [11,12] seem difficult to apply to the current 
situation where the environment is periodic in both space and time. Here we take a different approach, 
based on the methods developed by Weinberger [31,32] and others [16,22–24,26], which yield the existence 
of the spreading speed without using traveling wave solutions. In Part 1 of this work, we establish the 
existence and uniqueness of classical solutions for the free boundary problem with continuous initial data, 
extending the existing theory which was established only for C2 initial data. This will enable us to develop 
Weinberger’s method in Part 2 to determine the spreading speed without knowing a priori the existence of 
the corresponding semi-wave solutions. In Part 1 here, we also establish a spreading–vanishing dichotomy.
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1. Introduction and main results

This work consists of two parts, and the current paper is Part 1. The aim of this work is to 
classify the long-time dynamical behavior to a class of space–time periodic reaction–diffusion 
equations with free boundaries of the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut = duxx + f (t, x,u), g(t) < x < h(t), t > 0,

u(t, g(t)) = u(t, h(t)) = 0, t > 0,

g′(t) = −μux(t, g(t)), t > 0,

h′(t) = −μux(t, h(t)), t > 0,

g(0) = g0, h(0) = h0, u(0, x) = u0(x), g0 ≤ x ≤ h0,

(1.1)

where x = g(t) and x = h(t) are the moving boundaries to be determined together with u(t, x), 
and μ is a given positive constant. Throughout the paper, the diffusion coefficient d is a positive 
constant; the reaction term f :R ×R ×R+ �→ R is continuous, of class Cα/2,α(R ×R) in (t, x) ∈
R × R locally uniformly in u ∈ R+ (with 0 < α < 1), and of class C1 in u ∈ R+ uniformly in 
(t, x) ∈ R ×R. The basic assumptions on f are:

f (t, x,0) = 0 for all t ∈ R, x ∈R, (1.2)

there exists K > 0 such that

f (t, x,u) ≤ Ku for all u ≥ 0 and all (t, x) ∈R2. (1.3)

Later in the paper, we will assume additionally that there is some constant M > 0 such that

f (t, x,u) ≤ 0 for all t ∈ R, x ∈R, u ≥ M, (1.4)

and f is ω-periodic in t and L-periodic in x for some positive constants ω and L, that is,{
f (t + ω,x,u) = f (t, x,u)

f (t, x + L,u) = f (t, x,u)
for all (t, x) ∈R2, u ≥ 0. (1.5)

Let us note that since f is C1 in u, (1.3) is satisfied whenever (1.2) and (1.4) hold.
The initial function u0 belongs to H(g0, h0) for some g0 < h0, where

H(g0, h0) :=
{
φ ∈ C([g0, h0]) : φ(g0) = φ(h0) = 0, φ(x) > 0 in (g0, h0)

}
.

Free boundary problems of the type (1.1) arise naturally in many applied areas, such as melt-
ing of ice in contact with water and spreading of invasive species; see, for example, [4,7,13,29]. 
In this work, we regard (1.1) as describing the spreading of a new or invasive species over a 
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one-dimensional habitat, where u(t, x) represents the population density of the species at loca-
tion x and time t , the reaction term f measures the growth rate, the free boundaries x = g(t)

and x = h(t) stand for the edges of the expanding population range, namely the spreading fronts. 
The Stefan conditions g′(t) = −μux(t, g(t)) and h′(t) = −μux(t, h(t)) may be interpreted as 
saying that the spreading front expands at a speed proportional to the population gradient at the 
front; a deduction of these conditions from ecological considerations can be found in [2]. When 
f (t, x, u) is periodic with respect to x and t as described in (1.5), problem (1.1) represents 
spreading of the species in a heterogeneous environment that is periodic in both space and time.

1.1. Related existing results and motivation

Before going further, let us discuss the motivation of this work by firstly recalling some related 
known results. In the case where the function f does not depend on x and t , and is of logistic 
type, that is,

f (u) = u(a − bu) for some positive constants a and b,

such a problem was first studied in [13] for the spreading of a new or invasive species. It is proved 
that, when

u0 ∈ C2([g0, h0]), u0(g0) = u0(h0) = 0, u0(x) > 0 in (g0, h0),

there exists a unique solution (u, g, h) with u(t, x) > 0, g′(t) < 0 and h′(t) > 0 for all t > 0 and 
g(t) < x < h(t), and a spreading–vanishing dichotomy holds, namely, there is a barrier R∗ on 
the size of the population range, such that either

(i) Spreading: the population range breaks the barrier at some finite time (i.e., h(t0) −
g(t0) ≥ R∗ for some t0 > 0), and then the free boundaries go to infinity as t → ∞ (i.e., 
limt→∞ h(t) = ∞ and limt→∞ g(t) = −∞), and the population spreads to the entire space 
and stabilizes at its positive steady state (i.e. limt→∞ u(t, x) = a/b locally uniformly in 
x ∈R) or

(ii) Vanishing: the population range never breaks the barrier (i.e. h(t) −g(t) < R∗ for all t > 0), 
and the population vanishes (i.e. limt→∞ u(t, x) = 0).

Moreover, when spreading occurs, the asymptotic spreading speed can be determined, i.e.,

lim
t→∞−g(t)/t = lim

t→∞h(t)/t = c,

where c is the unique positive constant such that the problem{
dqxx − cqx + q(a − bq) = 0, q(x) > 0 for x ∈ (0,∞),

q(0) = 0, μqx(0) = c, q(∞) = a/b

has a (unique) solution q . Such a solution q(x) is called a semi-wave with speed c.
These results have subsequently been extended to more general situations in several direc-

tions. Below, we only mention a few that are closely related to this work.
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In the case where f is ω-periodic in t , radially symmetric in x, of logistic type and converges 
to some time periodic function f̄ (t, u) as |x| → ∞ with

f̄ (t, u) = u(a1(t) − b1(t)u) for some positive ω-periodic functions a1(t) and b2(t),

the existence of spreading speed is proved in [11] by showing the existence and uniqueness of a 
positive time periodic semi-wave (see [11, Theorem 2.5]). When f is radially symmetric in x, 
independent of t , of logistic type and converges to some function f̂ (|x|, u) as |x| → ∞ with

f̂ (r, u) = u(a2(r) − b2(r)u) for some positive L-periodic functions a2(r) and b2(r),

the spreading speed is determined by the speed of the corresponding pulsating semi-wave (see 
[12]). In both cases, the existence of semi-waves is proved by a fixed point approach. Moreover, 
in the space-periodic case, a different method was used in [33] to prove the existence of pulsating 
semi-wave (and hence the existence of spreading speed) for problem (1.1), which is based on the 
approach developed in [15].

In the recent work [20,21], the existence of time almost periodic semi-wave and spreading 
speed for problem (1.1) with time almost periodic monostable nonlinearity f (t, u) are estab-
lished.

When the function f (t, x, u) varies with both the variables t and x, it seems difficult to adapt 
the approaches mentioned above to determine the spreading speed, mainly due to the difficulty 
to prove the existence of the corresponding semi-wave solutions. The main goal of this work is 
to establish a different approach to treat the space–time periodic case of problem (1.1). We will 
focus on the monostable case and prove a spreading–vanishing dichotomy, and then show the 
existence of spreading speed when spreading happens.

Our approach is based on Weinberger’s ideas firstly appeared in [31,32], and then developed 
in [16,22–24,26], where the existence of spreading speed for the corresponding Cauchy problem 
is proved without knowing the existence of the corresponding traveling wave solutions. However, 
to adapt these ideas to treat our free boundary problem here, it is necessary to firstly extend the 
existence and uniqueness theory for (1.1) with C2 initial functions (see [13]) to the case that the 
initial functions are merely continuous, which has not been considered before and requires new 
techniques.

Due to the different techniques used, and its length, this work is divided into two separate 
papers. The current paper constitutes Part 1, where we establish the existence and uniqueness the-
ory for (1.1) with continuous initial functions, and also prove a spreading–vanishing dichotomy 
for (1.1). We will prove the existence of asymptotic spreading speed in Part 2 (see [8]), based on 
the results obtained here, and on Weinberger’s ideas already mentioned above.

In the next two subsections, we describe the main results of this paper.

1.2. Existence and uniqueness with continuous initial functions

For any T > 0, by a classical solution of problem (1.1) for 0 < t < T with initial function 
u0 ∈ H(g0, h0), we mean a triple 

(
u(t, x), g(t), h(t)

)
such that u ∈ C1,2(GT ) ∩ C(GT ), g, h ∈

C1((0, T ]) ∩ C([0, T ]), and that all the identities in (1.1) are satisfied pointwisely in GT , where 
GT := {

(t, x) ∈ R2 : t ∈ (0, T ], x ∈ [g(t), h(t)]}.
We note that the result below is for a rather general class of functions f , covering monostable, 

bistable and combustion types of nonlinearities, with no periodicity condition assumed.
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Theorem 1.1. Suppose that (1.2) and (1.3) are satisfied. For any given u0 ∈ H(g0, h0), problem 
(1.1) admits a unique classical solution 

(
u(t, x), g(t), h(t)

)
defined for all t > 0. Moreover, for 

any T > τ > 0, ∥∥u
∥∥

C1+α/2,2+α(Gτ
T )

+ ∥∥g
∥∥

C1+α/2([τ,T ]) + ∥∥h
∥∥

C1+α/2([τ,T ]) ≤ C, (1.6)

h0 ≤ h(t) ≤ h0 + Ht1/2, g0 − Ht1/2 ≤ g(t) ≤ g0 for 0 ≤ t ≤ T , (1.7)

where Gτ
T = {

(t, x) ∈ R2 : t ∈ [τ, T ], x ∈ [g(t), h(t)]}, C and H are positive constants depend-
ing on τ , T , h0 − g0, f and ‖u0‖C([g0,h0]), with H independent of τ ∈ (0, T ).

By slight modifications of the proof and statements of Theorem 1.1, this result can be extended 
to the case where the initial function is bounded and piecewise continuous. Similar problems have 
been addressed for one-dimensional free boundary problems for the heat equation with bounded 
piecewise continuous initial and boundary data in [3,5,17].

1.3. Spreading–vanishing dichotomy

We now focus on monostable f (t, x, u) that is periodic in both t and x. More precisely, we 
assume that the function f satisfies (1.2), (1.4), (1.5) and

∀ (t, x) ∈ R2, the function u �→ f (t, x,u)/u is decreasing for u > 0. (1.8)

We will show that whether spreading or vanishing happens partly depends on the sign of the 
generalized principal eigenvalue of the linear operator L defined by

Lψ := ∂tψ − d∂xxψ − ∂uf (t, x,0)ψ for ψ ∈ C1,2
ω (R2),

where

C1,2
ω (R2) := {φ ∈ C1,2(R2), φ(t + ω,x) = φ(t, x) for all (t, x) ∈R2}.

The generalized principal eigenvalue of L is given by

λ1(L) = sup
{
λ ∈R : there exists ψ ∈ C1,2

ω (R2)

such that ψ > 0 and (L− λ)ψ ≥ 0 in R2
}
.

(1.9)

In what follows, we assume that

λ1(L) < 0. (1.10)

An example of f satisfying all these assumptions is the logistic nonlinearity

f (t, x,u) = u
(
a(t, x) − b(t, x)u

)
(1.11)

where a, b are of class Cα/2,α which are ω-periodic in t and L-periodic in x, and there are 
positive constants κ1, κ2 such that κ1 ≤ a(t, x) ≤ κ2 and κ1 ≤ b(t, x) ≤ κ2 for all (t, x) ∈ R2. 
These conditions may also be satisfied with a(t, x) sign-changing (see [30]).
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It is well known (see [27,28]) that, under the above assumptions on f , the following problem{
pt = dpxx + f (t, x,p) in (t, x) ∈ R2,

p(t, x) is ω-periodic in t and L-periodic in x,
(1.12)

admits a unique positive solution p(t, x) ∈ C1,2(R2), and p(t, x) is globally asymptotically sta-
ble in the sense that for any nonnegative bounded non-null initial function v0 ∈ C(R), there 
holds

v(t + s, x;v0) − p(t + s, x) → 0 as s → ∞ locally uniformly in (t, x) ∈ R2, (1.13)

where v(t, x; v0) is the unique solution of the corresponding Cauchy problem{
vt = dvxx + f (t, x, v), x ∈ R, t > 0,

v(0, x) = v0(x), x ∈ R.
(1.14)

Before stating the spreading–vanishing dichotomy for problem (1.1), let us introduce one 
more notation. Let 

(
u(t, x), g(t), h(t)

)
be the global classical solution of (1.1) with initial func-

tion u0 ∈ H(g0, h0). By the parabolic maximum principle and the Hopf lemma, we easily deduce 
from the Stefan condition that h′(t) > 0 and g′(t) < 0 for all t > 0. Therefore, the limits 
limt→∞ h(t) and limt→∞ g(t) exist and we denote them by h∞ and g∞, respectively.

Theorem 1.2. Suppose that (1.2), (1.4), (1.5), (1.8) and (1.10) are all satisfied. Then the following 
alternative hold: Either

(i) spreading happens, that is, (g∞, h∞) = R, and

lim
t→∞

∣∣u(t, x) − p(t, x)
∣∣ = 0 locally uniformly in x ∈R,

where p(t, x) is the unique positive solution of problem (1.12); or
(ii) vanishing happens, that is, there exists some constant R > 0 such that (g∞, h∞) is a finite 

interval with length no larger than 2R, and there holds

lim
t→∞ max

g(t)≤x≤h(t)
u(t, x) = 0.

(The positive constant R here can be determined; see (3.7).)
For any given initial function u0 ∈ H(g0, h0), we have the following criteria for spreading or 

vanishing.

Theorem 1.3. Suppose that (1.2), (1.4), (1.5), (1.8) and (1.10) are all satisfied. Then there exists 
a positive constant R∗ such that

(i) if (h0 − g0)/2 ≥ R∗, then spreading always occurs;
(ii) if (h0 − g0)/2 < R∗, then there exists a unique μ∗ > 0 depending on u0 such that vanishing 

occurs if 0 < μ ≤ μ∗ and spreading occurs if μ > μ∗.
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In spatially periodic media, the critical size R∗ depends continuously and periodically on the 
value of (g0 + h0)/2 (see (3.4) and Lemma 3.1), while in the spatially homogeneous case, R∗ is 
independent of (g0 + h0)/2 (see [13,14]).

1.4. Outline of the paper

The remaining part of this paper is organized as follows. Section 2 is divided into 3 sub-
sections. In subsection 2.1, we give the proof of Theorem 1.1. In subsection 2.2, we prove the 
continuous dependence of the classical solutions on the initial data and some comparison results. 
In subsection 2.3, we list without proof the corresponding results for a closely related problem 
of (1.1) (see (2.24)), which will be used in Part 2 to determine the spreading speed. Section 3 is 
devoted to the proof of Theorems 1.2 and 1.3.

2. Existence, uniqueness and continuous dependence

This section is devoted to the proof of the existence and uniqueness of classical solutions for 
problem (1.1) as well as some basic properties of these solutions. Throughout this section, we 
assume that f satisfies (1.2) and (1.3).

2.1. Existence and uniqueness of classical solutions

For a given u0 ∈ H(g0, h0), we first prove the local existence of a classical solution and the 
estimates (1.6), (1.7). Once we know the existence of a classical solution (u, g, h) defined for 
t ∈ (0, T ] with some small T > 0, then since u(T , x) is a C2 function one can apply the existing 
theory (see [13]) to extend the solution to all t > T .

We prove the local existence result through an approximation argument. Let ε0 = (h0 −g0)/4. 
For any given u0 ∈ H(g0, h0), we choose a nondecreasing sequence {u0n}n∈N ⊂ C2([g0, h0])
such that for each n ∈N,

u0n(x) = 0 for x ∈ [g0, g0n] ∪ [h0n,h0], 0 < u0n(x) ≤ u0(x) for x ∈ (g0n,h0n),

where g0n = g0 + ε0/n and h0n = h0 − ε0/n, and that

u0n → u0 in C([g0, h0]) as n → ∞.

It follows from [13, Theorem 5.1]1 that for each n ∈ N, problem (1.1) admits a unique classical 
solution (un, gn, hn) defined for all t > 0 with

(un(0, x), gn(0), hn(0)) = (u0n(x), g0n,h0n) for x ∈ [g0n,h0n].

Moreover, by the comparison principle for problem (1.1) with smooth initial values (see, e.g., 
[13, Lemma 5.7]), one obtains that for each n ∈N,

1 We remark that, although [13, Theorem 5.1] only deals with problem (1.1) with a special homogeneous logistic 
nonlinearity f (t, x, u) = u(a − bu), its proof extends straightforwardly to (1.1) with a general nonlinearity f (t, x, u)

satisfying (1.2) and (1.3).
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gn+1(t) ≤ gn(t), hn+1(t) ≥ hn(t) for all t > 0,

and

0 < un(t, x) ≤ un+1(t, x) for gn(t) < x < hn(t), t > 0.

On the other hand, it follows from the comparison principle again that

un ≤ ũ, gn ≥ g̃ and hn ≤ h̃,

where (̃u, ̃g, ̃h) is the classical solution to problem (1.1) with initial function ũ0 ∈ C2([g0 − 1,

h0 + 1]) such that ũ0 > 0 in (g0 − 1, h0 + 1), ũ0(g0 − 1) = ũ0(h0 + 1) = 0 and ũ0 ≥ u0 in 
[g0, h0]. As a consequence, there is a triple (u, g, h) such that

g(t) = lim
n→∞gn(t), h(t) = lim

n→∞hn(t) pointwisely for t ≥ 0, (2.1)

and that

u(t, x) = lim
n→∞un(t, x) pointwisely for g(t) < x < h(t), t ≥ 0. (2.2)

In what follows, we will show, via a sequence of lemmas, that (u, g, h) is a classical solution 
for problem (1.1) with initial function u0.

Lemma 2.1. Let 
(
un, gn, hn

)
be as above. Then for any given 0 < τ0 < T0, there are positive 

constants C1, C2 independent of n such that

0 < un(t, x) ≤ C1 for gn(t) < x < hn(t), 0 ≤ t ≤ T0,

and

−C2 ≤ g′
n(t) < 0, 0 < h′

n(t) ≤ C2 for τ0 ≤ t ≤ T0.

Proof. Applying the parabolic maximum principle and the Hopf lemma to the equation of un, 
one immediately obtains that, for every t > 0,

un(t, x) > 0 for gn(t) < x < hn(t), ∂xun

(
t, hn(t)

)
< 0 and ∂xun

(
t, gn(t)

)
> 0.

It follows that g′
n(t) < 0 and h′

n(t) > 0 for all t > 0.
To find the bound C1 for un, we make use of (1.3), and the comparison principle to obtain

un(t, x) ≤ ūn(t) for gn(t) < x < hn(t), 0 ≤ t ≤ T0,

where ūn(t) solves

dūn/dt = Kūn for t > 0; ūn(0) = ‖u0n‖C([g ,h ]).
0 0
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Since 0 ≤ u0n(x) ≤ u0(x) in [g0, h0] for all n ∈ N, one can choose C1 = ‖u0‖C([g0,h0])eKT0 , 
which clearly is independent of n.

We next show that

−C2 ≤ g′
n(t) and h′

n(t) ≤ C2 for τ0 ≤ t ≤ T0

with some positive constant C2 which is independent of n ∈ N. We only prove the estimate 
for h′

n(t), since the estimate for g′
n(t) can be proved analogously.

We first claim that, for any given τ0, there exists n0 ∈ N such that

hn(τ0) > h0 for all n ≥ n0. (2.3)

With C1 determined above, since f (t, x, 0) = 0 and f is C1 in u ∈ R+, there exists K0 > 0
such that

f (t, x,u) ≥ −K0u for u ∈ [0,C1], (t, x) ∈ R2.

It follows that

(un)t − d(un)xx ≥ −K0un for gn(t) < x < hn(t), 0 ≤ t ≤ T0.

Hence vn(t, x) := eK0t un(t, x) satisfies

(vn)t − d(vn)xx ≥ 0 for gn(t) < x < hn(t), 0 < t ≤ T0,

and

g′
n(t) = −μ(un)x(t, gn(t)) ≤ −μe−K0T0(vn)x(t, gn(t)) for 0 < t ≤ T0,

h′
n(t) = −μ(un)x(t, hn(t)) ≥ −μe−K0T0(vn)x(t, hn(t)) for 0 < t ≤ T0.

Since un(t, x) ≥ u1(t, x) > 0 for t ≥ 0 and x ∈ (g01, h01), there exists δ > 0 small such that

un(t, x) ≥ u1(t, x) ≥ δ for x ∈ [x0 − δ, x0 + δ] ⊂ (g01, h01), t ∈ [0, T0],

where x0 := (h01 + g01)/2.
We now consider the auxiliary problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

wt − dwxx = 0 for x ∈ (x0, s(t)), t ∈ (0, T0],
w(t, x0) = δ, w(t, s(t)) = 0 for t ∈ (0, T0],
s′(t) = −μe−K0T0wx(t, s(t)) for t ∈ (0, T0],
w(0, x) = δχ[x0,x0+δ](x) for x ∈ [x0, h0], s(0) = h0.

(2.4)

By [5], (2.4) has a classical solution (w(t, x), s(t)) and s′(t) > 0 for t ∈ (0, T0]. In particular, 
s(τ0) > h0.

We next choose n0 a large integer such that

h0n > h0 − min{δ, s(τ0) − h0} for n ≥ n0,
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and then define

sn(t) = s(t) − h0 + h0n for t ∈ [0, T0],
wn(t, x) = w(t, x − h0n + h0) for x ∈ [x0 − h0 + h0n, sn(t)], t ∈ [0, T0].

By our choice of n0 we have x0n := x0 − h0 + h0n ∈ [x0 − δ, x0] for n ≥ n0, and thus

vn(t, x) ≥ un(t, x) ≥ δ for t ∈ [0, T0], x ∈ [x0n, x0n + δ], n ≥ n0.

Clearly (wn(t, x), sn(t)) satisfies

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(wn)t − d(wn)xx = 0 for x ∈ (x0n, sn(t)), t ∈ (0, T0],
wn(t, x0n) = δ, wn(t, sn(t)) = 0 for t ∈ (0, T0],
s′
n(t) = −μe−K0T0(wn)x(t, sn(t)) for t ∈ (0, T0],

wn(0, x) = δχ[x0n,x0n+δ](x) for x ∈ [x0n,h0n], sn(0) = h0n.

Since (vn, hn) is a super solution of the above problem, by the comparison principle, we obtain

hn(t) ≥ sn(t) = s(t) − h0 + h0n for t ∈ (0, T0], n ≥ n0.

In particular,

hn(τ0) ≥ s(τ0) − h0 + h0n > h0 for n ≥ n0,

as we claimed. This proves (2.3).
Next, set δ0 = hn0(τ0) − h0 and consider the auxiliary problem

dWxx + f̄ (W) = 0 for − δ0 < x < 0, W(−δ0) = C and W(0) = 0, (2.5)

where C = 1 + max{C1, M} with M being the positive constant in the assumption (1.4), and 
f̄ (s) is a function of class C1(R+) such that

f̄ (0) = f̄ (C) = 0 and f̄ (s) ≥ σ(s)f (t, x, s) for all t ∈ R, x ∈R, s ∈ [0,C],

where σ(s) is a C1 nonnegative function satisfying

σ(s) = 1 for s ≤ C1, σ (C) = 0.

It is easy to see by a sub- and super-solution argument that problem (2.5) admits a solution 
W ∈ C2([−δ0, 0]) such that 0 < W(x) ≤ C for all −δ0 ≤ x < 0. We now show that, for each 
given t ∈ [τ0, T0] and n ≥ n0,

un(t, x) ≤ W
(
x − hn(t)

)
for all hn(t) − δ0 < x < hn(t). (2.6)
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For n ≥ n0 and fixed t ∈ [τ0, T0], since

hn(t) > hn(t) − δ0 ≥ hn(τ0) − δ0 ≥ hn0(τ0) − δ0 = h0 > hn(0),

due to the monotonicity of hn(τ) in τ , there exists a unique tn ∈ (0, t) such that hn(tn) =
hn(t) − δ0. We now apply the parabolic maximum principle to compare un and W over the 
region

�n =
{
(τ, x) : tn < τ ≤ t, hn(t) − δ0 ≤ x ≤ hn(τ)

}
.

More precisely, set φ(τ, x) = un(τ, x) − W
(
x − hn(t)

)
for (τ, x) ∈ �n. It is straightforward to 

check that un

(
tn, hn(t) − δ0

) = un

(
tn, hn(tn)

) = 0, that

φ
(
τ,hn(t) − δ0

) = un

(
τ,hn(t) − δ0

) − W(−δ0) ≤ C1 − C ≤ 0 for all tn < τ ≤ t,

and that

φ
(
τ,hn(τ )

) = un

(
τ,hn(τ )

) − W
(
hn(τ) − hn(t)

) ≤ 0 for all tn < τ ≤ t.

On the other hand, by the assumptions on f̄ , it follows that there exists some bounded function b

such that

φτ − dφxx = σ(un)f (τ, x,un) − f̄ (W)

≤ σ(un)f (τ, x,un) − σ(W)f (τ, x,W)

= b(τ, x)φ for (τ, x) ∈ �n.

One thus concludes from the parabolic maximum principle that un(τ, x) ≤ W
(
x −hn(t)

)
for any 

(τ, x) ∈ �n. This in particular implies the inequality (2.6) by choosing τ = t .
To complete the proof, notice that un

(
t, hn(t)

) = W(0) = 0. It then follows from (2.6) that 
∂xun

(
t, hn(t)

) ≥ W ′(0) for all n ≥ n0, whence −μ−1h′
n(t) ≥ W ′(0). This implies that h′

n(t) ≤
−μW ′(0) for all τ0 ≤ t ≤ T0 and n ≥ n0. By setting

C2 = max
{ − μW ′(0), max

0≤n≤n0, τ0≤t≤T0
h′

n(t)
}
,

one thus gets that h′
n(t) ≤ C2 for all τ0 ≤ t ≤ T0, n ∈ N, and that C2 only depends on T0, τ0, f

and ‖u0‖C([g0,h0]). The proof of Lemma 2.1 is thereby complete. �
Lemma 2.2. Let gn and hn be as in Lemma 2.1. Then for any given T0 > 0, there exists some 
positive constant H independent of n such that

h0n ≤ hn(t) ≤ h0n + Ht1/2 and g0n − Ht1/2 ≤ gn(t) ≤ g0n for all 0 ≤ t ≤ T0. (2.7)
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Proof. For any given T0 > 0 and each n ∈N, consider the following free boundary problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tvn = d∂xxvn, h0n < x < h̃n(t), 0 < t ≤ T0,

vn(t, h0n) = C̃, vn

(
t, h̃n(t)

) = 0, 0 < t ≤ T0,

h̃′
n(t) = −μeKT0∂xvn(t, h̃n(t)), 0 < t ≤ T0,

h̃n(0) = h0n,

(2.8)

where K is the positive constant given in (1.3), and C̃ is some positive constant to be cho-
sen independent of n later. It follows from [3, Theorem 1] that problem (2.8) admits a unique 
classical solution (vn, ̃hn) with h̃n ∈ C1((0, T0]) and h̃n being Hölder continuous at t = 0 with 
exponent 1/2. Namely, there exists some positive constant H such that

h0n ≤ h̃n(t) ≤ h0n + Ht1/2 for all 0 ≤ t ≤ T0. (2.9)

Furthermore, for any n1 ∈ N and n2 ∈ N, it is straightforward to check that 
(
vn1(t, x − h0n2 +

h0n1), h̃n1(t) +h0n2 −h0n1

)
is the solution of problem (2.8) with n = n2. Thus, by the uniqueness 

of such solutions, one concludes that H is independent of n.
Next, for any fixed n ∈ N, due to the assumption (1.3), it is easy to see from the comparison 

principle for problem (1.1) with smooth initial values (see, e.g., [13, Lemma 5.7]) that

ḡn(t) ≤ gn(t), h̄n(t) ≥ hn(t) for all 0 < t ≤ T0, (2.10)

and

0 < un(t, x) ≤ eKt ūn(t, x) for all gn(t) < x < hn(t), 0 < t ≤ T0,

where (ūn, ḡn, h̄n) is the classical solution of the following free boundary problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂t ūn = d∂xxūn, ḡn(t) < x < h̄n(t), 0 < t ≤ T0,

ūn(t, ḡn(t)) = ūn(t, h̄n(t)) = 0, 0 < t ≤ T0,

ḡ′
n(t) = −μeKT0∂xūn(t, ḡn(t)), 0 < t ≤ T0,

h̄′
n(t) = −μeKT0∂xūn(t, h̄n(t)), 0 < t ≤ T0,

ḡn(0) = g0n, h̄n(0) = h0n, u(0, x) = u0n(x), g0n ≤ x ≤ h0n.

Since ūn(t, x) is uniformly bounded for ḡn(t) ≤ x ≤ h̄n(t), 0 ≤ t ≤ T0, one finds some C̃ > 0
such that

ūn(t, h0n) ≤ C̃ for all 0 ≤ t ≤ T0, n ∈N.

It then follows directly from the comparison principle for problem (2.8) established in [3, Theo-
rem 2] that

h̄n(t) ≤ h̃n(t) for all 0 ≤ t ≤ T0, n ∈ N.

This together with (2.9) and (2.10) implies that h0n ≤ hn(t) ≤ h0n +Ht1/2 for all 0 ≤ t ≤ T0 and 
n ∈ N. In a similar way, one can prove the corresponding estimate for gn in (2.7). �
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Next, we prove that the limit (u, g, h) given in (2.1) and (2.2) is a classical solution for prob-
lem (1.1) over GT for some T > 0. We prove this in the next two lemmas.

Lemma 2.3. Let 
(
u(t, x), g(t), h(t)

)
be the limit given in (2.1) and (2.2). Then there is T > 0

such that for t ∈ (0, T ], the first four equations in (1.1) are satisfied by 
(
u(t, x), g(t), h(t)

)
.

Proof. We adopt the notations un, gn, hn, T0, C1 and C2 used in Lemma 2.1. We first straighten 
the free boundaries of problem (1.1) as in [6,13]. Without loss of generality, we assume that 
g0 < 0 < h0. Then there is some n0 ∈ N such that for n ≥ n0, there holds g0n < 0 < h0n, and 
there exist functions ξ+, ξ− ∈ C3(R) satisfying

ξ+(y) = 1 if |y − h0n| < h0

4
, ξ+(y) = 0 if |y − h0n| > h0

2
, |ξ ′+(y)| < 3

h0
for y ∈R,

and

ξ−(y) = 1 if |y − g0n| < −g0

4
, ξ−(y) = 0 if |y − g0n| > −g0

2
, |ξ ′−(y)| < − 3

g0
for y ∈R.

For any fixed n ≥ n0, consider the transformation (t, y) → (t, x) given by

x = φn(t, y) := y + ξ+(y)(hn(t) − h0n) + ξ−(y)(gn(t) − g0n) for 0 ≤ t ≤ T0, y ∈R.

Due to the inequalities in (2.7), there is a positive constant T ≤ T0 (independent of n) small 
enough such that

|hn(t) − h0n| ≤ h0

8
and |gn(t) − g0n| ≤ −g0

8
for all t ∈ [0, T ], n ≥ n0,

whence the above transformation is a diffeomorphism from [0, T ] ×R to [0, T ] ×R. Moreover, 
under this transformation, the free boundaries x = hn(t), x = gn(t) correspond to the straight 
lines y = h0n and y = g0n, respectively.

Set

wn(t, y) := un

(
t, φn(t, y)

)
and

An(t, y) := 1

1 + ξ ′+(y)(hn(t) − h0n) + ξ ′−(y)(gn(t) − g0n)
,

Bn(t, y) := ξ ′′+(y)(hn(t) − h0n) + ξ ′′−(y)(gn(t) − g0n)

[1 + ξ ′+(y)(hn(t) − h0n) + ξ ′−(y)(gn(t) − g0n)]3
,

Cn(t, y) := h′
n(t)ξ+(y) + g′

n(t)ξ−(y)

1 + ξ ′+(y)(hn(t) − h0n) + ξ ′−(y)(gn(t) − g0n)
.

Then a simple calculation gives
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(un)t = (wn)t − Cn(wn)y, (un)x = An(wn)y,

and

(un)xx = A2
n(wn)yy − Bn(wn)y,

whence wn satisfies

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(wn)t − dA2

n(wn)yy + (
dBn − Cn

)
(wn)y

= f
(
t, φn(t, y),wn

)
, (t, y) ∈ (0, T ] × (g0n,h0n),

wn(t, h0n) = wn(t, g0n) = 0, 0 < t ≤ T ,

wn(0, y) = u0n(y), g0n ≤ y ≤ h0n,

(2.11)

and gn, hn satisfy, due to An(t, y) = 1 for y ∈ {g0n, h0n},⎧⎪⎨⎪⎩
h′

n(t) = −μ(wn)y(t, h0n), 0 < t ≤ T ,

g′
n(t) = −μ(wn)y(t, g0n), 0 < t ≤ T ,

hn(0) = h0n, gn(0) = g0n.

(2.12)

Next, we show some further estimates for (wn, gn, hn). It follows from Lemma 2.1 that 
wn(t, y) is positive and uniformly bounded with respect to n ∈N in (t, y) ∈ [0, T ] × [g0n, h0n]. 
Moreover, the coefficients An(t, y), Bn(t, y) and Cn(t, y) are all uniformly bounded and contin-
uous in (t, y) ∈ [τ, T ] × (g0n, h0n) for any given 0 < τ < 2τ < T . Then by applying parabolic 
Lp theory (see, e.g., [25, Theorem 7.15]) and then Sobolev embedding theorem, one obtains 
wn ∈ C(1+α)/2,1+α([τ, T ] × [g0n, h0n]), and∥∥wn

∥∥
C(1+α)/2,1+α([τ,T ]×[g0n,h0n]) ≤ C3 for all n ≥ n0,

where C3 is a positive constant depending on τ , T , h0 −g0, ‖u0‖C([g0,h0]), C1 and C2 (which are 
given in Lemma 2.1). This together with (2.12) implies that gn, hn ∈ C1+α/2([τ, T ]), and there 
exists C4 > 0 independent of n such that∥∥gn

∥∥
C1+α/2([τ,T ]) ≤ C4,

∥∥hn

∥∥
C1+α/2([τ,T ]) ≤ C4 for all n ≥ n0.

This implies that φn(t, y), An(t, y), Bn(t, y) and Cn(t, y) are functions in Cα/2,α([τ, T ] × R)

and their norms in this space have a bound independent of n. We may now apply the parabolic 
Schauder estimates to problem (2.11), to obtain that wn ∈ C1+α/2,2+α([2τ, T ] ×[g0n, h0n]), and∥∥wn

∥∥
C1+α/2,2+α([2τ,T ]×[g0n,h0n]) ≤ C5 for all n ≥ n0,

for some constant C5 independent of n. Thus, one has∥∥un

∥∥
C1+α/2,2+α(G2τ

T )
+ ∥∥gn

∥∥
C1+α/2([2τ,T ]) + ∥∥hn

∥∥
C1+α/2([2τ,T ]) ≤ C6 for any n ≥ n0, (2.13)
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for some positive constant C6 independent of n, where

G2τ
T ,n = {

(t, x) ∈ R2 : t ∈ [2τ, T ], x ∈ [gn(t), hn(t)]
}
.

Finally, by using a diagonal argument and the convergences (2.1), (2.2), one sees that 
(u, g, h) ∈ C1,2(GT ) × C1((0, T ]) × C1((0, T ]), and that

un → u in C
1,2
loc (GT ) as n → ∞,

gn → g and hn → h in C1
loc((0, T ]) as n → ∞.

In particular, this implies that

ut = duxx + f (t, x,u) for all g(t) < x < h(t), 0 < t < T .

Furthermore, for any t ∈ [2τ, T ] and x ∈ (g(t), f (t)), there exists n1 ∈ N such that x ∈(
gn(t), hn(t)

)
for all n ≥ n1, whence∣∣un(t, x)

∣∣ ≤ C6
∣∣x − gn(t)

∣∣, ∣∣(un)x(t, x) − (un)x(t, gn(t))
∣∣ ≤ C6

∣∣x − gn(t)
∣∣ for all n ≥ n1,

where C6 is the positive constant given in (2.13) (independent of n). Passing to the limit n → ∞
in the first inequality gives that 

∣∣u(t, x)
∣∣ ≤ C6

∣∣x − g(t)
∣∣, which clearly implies u(t, g(t)) = 0. 

Similarly, due to (un)x(t, gn(t)) = −μ−1g′
n(t), passing to the limit n → ∞ followed by letting 

x → g(t) in the second inequality yields that ux(t, g(t)) = −1/μg′(t). Since τ can be chosen 
arbitrarily in (0, T/2], one thus obtains that

u(t, g(t)) = 0 and g′(t) = −μux(t, g(t)) for all 0 < t < T .

In a similar way, one concludes that

u(t, h(t)) = 0 and h′(t) = −μux(t, h(t)) for all 0 < t < T .

The proof is complete. �
Lemma 2.4. The triple (u, g, h) in Lemma 2.3 also satisfies the initial conditions in (1.1). That is,

lim
t→0

g(t) = g0, lim
t→0

h(t) = h0, (2.14)

and for any x0 ∈ [g0, h0],

lim
(t,x)∈GT ,t→0,x→x0

u(t, x) = u0(x0). (2.15)

Proof. Letting n → ∞ in (2.7) we immediately obtain

h0 ≤ h(t) ≤ h0 + Ht1/2, g0 − Ht1/2 ≤ g(t) ≤ g0 for t ∈ (0, T0]. (2.16)

This clearly implies (2.14).
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Next, we prove (2.15). Let ū0 ∈ C([g(T ), h(T )]) be a nonnegative function such that ū0(x) =
u0(x) for x ∈ [g0, h0] and ū0(x) = 0 for x ∈ [g(T ), g0] ∪[h0, h(T )]. It follows from the parabolic 
comparison principle that

0 ≤ un(t, x) ≤ ū(t, x) for all gn(t) < x < hn(t), 0 < t ≤ T , n ∈N,

where ū(t, x) is the unique solution of the following initial–boundary value problem⎧⎪⎨⎪⎩
ūt = dūxx + Kū, g(T ) < x < h(T ), 0 < t < T,

ū(t, g(T )) = ū(t, h(T )) = 0, 0 < t < T,

ū(0, x) = ū0(x), g(T ) ≤ x ≤ h(T ),

with K being the constant given in (1.3). This together with the convergence property (2.2)
implies that

0 < u(t, x) ≤ ū(t, x) for all g(t) < x < h(t), 0 < t ≤ T .

Furthermore, since ū0 ∈ C([g(T ), h(T )]), by the parabolic regularity theory on the boundary 
(see, e.g., [18, Theorem 9 in Chapter 3]), one has ū ∈ C([0, T ] × [g(T ), h(T )]).

For any x0 ∈ (g0, h0) and any sequence (tm, xm)m∈N ⊂ R2 with limm→∞ tm = 0 and 
limm→∞ xm = x0, there exists n2 ∈ N such that gn(tm) < g0n < xm < h0n < hn(tm) for all 
n ≥ n2, m ≥ n2, whence un(tm, xm) ≤ u(tm, xm) ≤ ū(tm, xm). This together with the facts that 
limm→∞ un(tm, xm) = u0n(x0) for all n ≥ n2 and that limm→∞ ū(tm, xm) = ū0(x0) implies that

u0n(x0) ≤ lim inf
m→∞ u(tm, xm) ≤ lim sup

m→∞
u(tm, xm) ≤ ū0(x0).

Since u0n(x0) converges to u0(x0) uniformly in x0 ∈ [g0, h0] as n → ∞ and ū0(x0) = u0(x0), it 
follows that limm→∞ u(tm, xm) = u0(x0). Due to the arbitrariness of the sequence (tm, xm)m∈N, 
one obtains the property (2.15) for all x0 ∈ (g0, h0).

In the case where x0 = g0 or x0 = h0, we have lim(t,x)∈GT ,t→0,x→x0 ū(t, x) = ū0(x0) = 0. 
Thus it follows from 0 ≤ u(t, x) ≤ ū(t, x) in GT that

lim
(t,x)∈GT ,t→0,x→x0

u(t, x) = 0 = u0(x0).

Hence (2.15) holds for all x0 ∈ [g0, h0]. The proof of Lemma 2.4 is thereby complete. �
Lemma 2.5. For any u0 ∈ H(g0, h0), (1.1) has a classical solution defined for all t > 0, and it 
satisfies (1.6) and (1.7).

Proof. We already obtained in the previous lemmas a classical solution (u, g, h) of (1.1) which is 
defined for t ∈ (0, T ] with T > 0 sufficiently small. Moreover, by (2.13), it is easy to see that this 
solution satisfies (1.6) for such T and τ ∈ (0, T ). Thus u(T /2, x) is a C2 function meeting the 
requirement for the initial function in [13]. It follows that this solution can be extended uniquely 
to all t > T/2 by the existence theory in [13], and it satisfies (1.6) for T > τ > 0 with an arbitrary 
T > 0. Finally (1.7) follows from (2.16) and (2.13). �
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Remark 2.6. Analogously, for any given u0 ∈ H(g0, h0), we choose a decreasing sequence of 
intervals [̃g0n, ̃h0n] such that ̃g0n ↗ g0, ̃h0n ↘ h0 as n → ∞, and a sequence of functions ̃u0n ∈
C2([̃g0n, ̃h0n]) such that

ũ0n(g̃0n) = ũ0n(̃h0n) = 0, ũ0n > 0 in (g̃0n, h̃0n), n ∈ N,

and that after extending ̃u0n(x) and u0(x) to R by the value zero outside their supporting sets,

ũ0(n−1) ≥ ũ0n in R, lim
n→∞‖ũ0n − u0‖L∞(R) = 0.

Denoting by (̃un, ̃gn, ̃hn) the unique solution of (1.1) with (u0, g0, h0) = (̃u0n, ̃g0n, ̃h0n), then we 
can similarly show that (̃un, ̃gn, ̃hn) satisfies (2.7), (2.13), and converges to a classical solution 
(̃u, ̃g, ̃h) of (1.1) with initial data (u0, g0, h0) for t ∈ (0, T ] with T > 0 small, which can be 
extended to a classical solution of (1.1) for all t > 0, and it satisfies (1.6) and (1.7).

Now we proceed to prove the uniqueness of classical solutions to (1.1). We will adapt the 
weak solution approach in [10] for higher space dimensions to the one space dimension setting 
here.

Lemma 2.7. Assume that (u, g, h) is a classical solution for (1.1) defined over GT for 
some T > 0 with initial function u0 ∈ H(g0, h0). For any given open interval I such that 
[g(T ), h(T )] ⊂ I , denote IT = (0, T ] × I , and

ũ(t, x) =
{

u(t, x) for x ∈ [g(t), h(t)], 0 ≤ t ≤ T ,

0 for x ∈ I \ [g(t), h(t)], 0 ≤ t ≤ T .
(2.17)

Then ̃u ∈ C(IT ) and

T∫
0

∫
I

[
dũφxx + κ(̃u)φt

]
dxdt +

∫
I

κ(̃u0)φ(0, x)dx +
T∫

0

∫
I

f (t, x, ũ)φdxdt = 0 (2.18)

for every function φ ∈ C(IT ) ∩ W 1,2(IT ) such that φ = 0 on ({T } × I ) ∪ ([0, T ] × ∂I), where 
κ(·) is a function defined by κ(w) = w if w > 0 and κ(w) = w − μ−1d if w ≤ 0.

Proof. By the definition of ̃u, clearly ̃u ∈ C(IT ). We now prove that ̃u satisfies (2.18) for every 
φ ∈ C(IT ) ∩ W 1,2(IT ) such that φ = 0 on ({T } × I ) ∪ ([0, T ] × ∂I). To do so, we multiply both 
sides of the first equation in (1.1) by φ and integrate over Gτ

T for any given 0 < τ < T . Since 
u(t, g(t)) = u(t, h(t)) = 0 for all 0 < t < T , integration by parts yields

−
T∫

τ

h(t)∫
g(t)

[
uφt + duφxx

]
dxdt −

h(τ)∫
g(τ)

u(τ, x)φ(τ, x)dx = d

T∫
τ

J (t)dt +
T∫

τ

h(t)∫
g(t)

f (t, x, u)φdxdt,

where
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J (t) = ux(t, h(t))φ(t, h(t)) − ux(t, g(t))φ(t, g(t)).

By elementary calculus,

T∫
τ

∫
I\[g(t),h(t)]

φtdxdt =
T∫

τ

[
φ(t, h(t))h′(t) − φ(t, g(t))g′(t)

]
dt −

∫
I\[g(τ),h(τ)]

φ(τ, x)dx

= − μ

T∫
τ

J (t)dt −
∫

I\[g(τ),h(τ)]
φ(τ, x)dx.

Combining the above, since f (t, x, 0) ≡ 0, we obtain

T∫
τ

∫
I

[
dũφxx + κ(̃u)φt

]
dxdt +

∫
I

κ(̃u(τ, x))φ(τ, x)dx +
T∫

τ

∫
I

f (t, x, ũ)φdxdt = 0.

Since φ ∈ C(IT ) ∩ W 1,2(IT ) and ̃u ∈ C(IT ) (and hence, κ(̃u) is bounded in IT ), passing to the 
limit as τ → 0 in the above equality gives (2.18). The proof for Lemma 2.7 is thereby com-
plete. �
Lemma 2.8. For any u0 ∈ H(g0, h0) and T > 0, there exists at most one classical solution to 
problem (1.1) defined over GT with initial data (u0, g0, h0).

Proof. The proof of this lemma is analogous to that for [10, Theorem 3.5]. For the sake of com-
pleteness, we include the details here. Assume that problem (1.1) admits two classical solutions 
(u1, g1, h1) and (u2, g2, h2) defined for 0 < t ≤ T with the same initial data (u0, g0, h0). Let I be 
an open interval such that I ⊃ [g1(T ), h1(T )] ∪ [g2(T ), h2(T )] and ̃ui be defined by (2.17) with 
(u, g, h) replaced by (ui, gi, hi) for i = 1, 2. Then ̃u1, ̃u2 are continuous over IT , and by (2.18)
we obtain

T∫
0

∫
I

[
κ(̃u2) − κ(̃u1)

]
(∂tφ + de∂xxφ + elφ)dxdt = 0 (2.19)

for every function φ ∈ C2(IT ) such that φ = 0 on (T × I ) ∪ ([0, T ] × ∂I), where

l(t, x) =
⎧⎨⎩

f (t, x, ũ2(t, x)) − f (t, x, ũ1(t, x))

ũ2(t, x) − ũ1(t, x)
if ũ1(t, x) �= ũ2(t, x),

0 if ũ1(t, x) = ũ2(t, x),

and

e(t, x) =
⎧⎨⎩

ũ2(t, x) − ũ1(t, x)

κ(̃u2(t, x)) − κ(̃u1(t, x))
if ũ1(t, x) �= ũ2(t, x),

0 if ũ (t, x) = ũ (t, x).
1 2
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By the definition of κ , one sees that there is some 0 < C1 ≤ 1 such that 0 ≤ e(t, x) ≤ C1 a.e. 
(t, x) ∈ IT . Since the function f (t, x, s) is of class C1 in s ≥ 0 uniformly in (t, x) ∈ R ×R and 
since ̃ui(t, x) is bounded in (t, x) ∈ IT for i = 1, 2, the function l(t, x) is bounded in (t, x) ∈ IT . 
We then approximate e and l by smooth functions em ∈ C∞(IT ) and lm ∈ C∞(IT ) such that

‖em − e‖L2(IT ) → 0, ‖lm − l‖L2(IT ) → 0 as m → ∞, (2.20)

and

inf
IT

em ≥ 1

m
,

∥∥∥ e

em

∥∥∥
L2(IT )

≤ C2, ‖em‖L∞(IT ) ≤ C2, ‖lm‖L∞(IT ) ≤ C2 (2.21)

for some positive constants C2 independent of m (the existence of such an approximation em

follows from [4, Lemma 5]). We now fixed a function q ∈ C∞
c (IT ). It is well known that the 

following problem⎧⎪⎨⎪⎩
∂tφm + dem∂xxφm + emlmφm = q, (t, x) ∈ IT ,

φm(T , x) = 0, x ∈ I,

φm(t, x) = 0, 0 ≤ t ≤ T , x ∈ ∂I,

admits a unique smooth solution φm. Moreover, it follows from the proof in [10, Lem-
mas 3.6–3.7] that there exists some positive constant C3 independent of m such that

∥∥φm

∥∥
L∞(IT )

≤ C3 and
∥∥e

1/2
m ∂xxφm

∥∥
L2(IT )

≤ C3. (2.22)

Taking each φm as a test function in (2.19) gives

T∫
0

∫
I

[
κ(̃u2) − κ(̃u1)

]
(∂tφm + de∂xxφm + elφm)dxdt = 0.

This implies that

T∫
0

∫
I

[
κ(̃u2) − κ(̃u1)

]
qdxdt

=
T∫

0

∫
I

[
κ(̃u2) − κ(̃u1)

](
∂tφm + dem∂xxφm + emlmφm

)
dxdt

=
T∫

0

∫
I

[
κ(̃u2) − κ(̃u1)

]{
d(em − e)∂xxφm + (emlm − el)φm

}
dxdt.

Hence, by the boundedness of κ(̃ui) for i = 1, 2 and the first estimate in (2.22), one has
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T∫
0

∫
I

[
κ(̃u2) − κ(̃u1)

]
qdxdt ≤ C4

T∫
0

∫
I

∣∣em − e
∣∣∣∣∂xxφm

∣∣dxdt + C5

T∫
0

∫
I

∣∣emlm − el
∣∣dxdt

for some positive constants C4 and C5 independent of m. Then, on the one hand, by the conver-
gences in (2.20) and boundedness of em, lm in (2.21), one has

T∫
0

∫
I

∣∣emlm − el
∣∣dxdt → 0 as m → ∞.

On the other hand, it follows from the Hölder inequality that

T∫
0

∫
I

∣∣em − e
∣∣∣∣∂xxφm

∣∣dxdt

≤
( T∫

0

∫
I

|em − e|2
|em| dxdt

) 1
2
( T∫

0

∫
I

|em||∂xxφm|2dxdt
) 1

2

≤ ∥∥em − e
∥∥ 1

2
L2(IT )

( T∫
0

∫
I

|em − e|2
|em|2 dxdt

) 1
4
( T∫

0

∫
I

|em||∂xxφm|2dxdt
) 1

2
.

Therefore, due to the second inequality in (2.21) and the second inequality in (2.22), it follows 
that

T∫
0

∫
I

∣∣em − e
∣∣∣∣∂xxφm

∣∣dxdt → 0 as m → ∞.

We thus obtain 
∫ T

0

∫
I

[
κ(̃u2) − κ(̃u1)

]
qdxdt ≤ 0. Due to the arbitrariness of q ∈ C∞

c (IT ), this 
implies that κ(̃u1) = κ(̃u2) a.e. in IT . By the definition of κ , one gets that ũ1 = ũ2 a.e. in IT . 
Since ui ∈ C(IT ) for i = 1, 2, it follows that ũ1(t, x) = ũ2(t, x) for all (t, x) ∈ IT , and hence 
g1(t) = g2(t) and h1(t) = h2(t) for every 0 < t ≤ T . The proof of Lemma 2.8 is thereby com-
plete. �

Theorem 1.1 clearly follows directly from Lemmas 2.5 and 2.8.

2.2. Continuous dependence and comparison principle

In this section, we first show that the classical solutions obtained in Theorem 1.1 depend 
continuously on the initial data, and then we prove a comparison principle. These results will 
play important roles in Part 2.
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To prove the continuous dependence, we introduce a few notations. For any (u0, g0, h0) ∈
H(g0, h0) × R × R, and any sequence (u0n, g0n, h0n)n∈N ⊂ H(g0n, h0n) × R × R, we say 
(u0n, g0n, h0n) converges to (u0, g0, h0) as n → ∞, if

g0n → g0, h0n → h0 and u0n(x) → u0(x) uniformly in x ∈R,

where u0n and u0 are always extended to R by taking the value 0 outside their supporting sets. 
For any fixed t > 0, the convergence of 

(
un(t, x), gn(t), hn(t)

)
to 

(
u(t, x), g(t), h(t)

)
is defined 

in a similar way, where (un, gn, hn) is the solution of (1.1) with initial data (u0n, g0n, h0n), and 
(u, g, h) is the solution of (1.1) with initial data (u0, g0, h0).

Proposition 2.9.

(i) Suppose that (u0n, g0n, h0n) converges to (u0, g0, h0) as n → ∞. Then for any given T > 0, (
un(t, x), gn(t), hn(t)

)
converges to 

(
u(t, x), g(t), h(t)

)
as n → ∞ uniformly in t ∈ [0, T ].

(ii) Suppose that limn→∞ g0n = −∞ and limn→∞ h0n = ∞ and that u0n(x) converges to u0(x)

locally uniformly in x ∈ R. Then for any given T > 0, un(t, x) converges to v(t, x; u0) lo-
cally uniformly in x ∈ R and uniformly in t ∈ [0, T ], where v(t, x; u0) is the unique solution 
of the Cauchy problem (1.14) with initial datum v(0, ·) = u0(·) in R.

Proof. We only present the proof for the first statement, since the proof for the second one is 
similar and even simpler.

Since (u0n, g0n, h0n) → (u0, g0, h0) as n →∞, we can find (u0n, g0n
, h0n) and (u0n, g0n, h0n)

such that, for every n ∈N,

u0n ∈ C2([g
0n

,h0n]), u0n(g0n
) = u0n(h0n) = 0, u0n(x) > 0 for x ∈ (g

0n
,h0n),

u0n ∈ C2([g0n, h0n]), u0n(g0n) = u0n(h0n) = 0, u0n(x) > 0 for x ∈ (g0n, h0n),

u0n ≤ u0n ≤ u0n in R, g
0n

≥ g0n ≥ g0n, h0n ≤ h0n ≤ h0n,

g
0n

↘ g0, g0n ↗ g0, h0n ↗ h0, h0n ↘ h0 as n → ∞,

and

u0n ↗ u0, u0n ↘ u0 uniformly in R as n → ∞.

Here, as before, the initial functions are extended to R by the value 0 outside their supporting 
sets.

Let (un, gn
, hn) be the unique classical solution of (1.1) with initial data (u0n, g0n

, h0n), and 

(un, gn, hn) be the unique solution of (1.1) with initial data (u0n, g0n, h0n). It follows from the 
proof of [13, Lemma 3.5] that

gn(t) ≤ gn(t) ≤ g
n
(t), hn(t) ≥ hn(t) ≥ hn(t) in (0, T ],

and

un(t, x) ≥ un(t, x) ≥ u (t, x) for 0 < t ≤ T , x ∈R,
n
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where un(t, ·), un(t, ·) and un(t, ·) are extended to all of R by taking the value 0 outside their 
supporting sets.

By Theorem 1.1 and Remark 2.6, we know that

lim
n→∞g

n
(t) = lim

n→∞gn(t) = g(t), lim
n→∞hn(t) = lim

n→∞hn(t) = h(t)

uniformly in t ∈ [0, T ]. It follows that

lim
n→∞gn(t) = g(t), lim

n→∞hn(t) = h(t) uniformly in t ∈ [0, T ].

Moreover, from

lim
n→∞un(t, x) = lim

n→∞un(t, x) = u(t, x) in Cloc(GT ),

and (1.6) and (1.7), we see that

lim
n→∞un(t, x) = lim

n→∞un(t, x) = u(t, x)

uniformly in [τ, T ] ×R for any τ ∈ (0, T ).
Furthermore, by the proof of Lemma 2.4, we easily see that

lim
n→∞,t→0

un(t, x) = lim
n→∞,t→0

un(t, x) = u0(x) in L∞(R).

Combining the above conclusions, we see that

lim
n→∞un(t, x) = u(t, x)

uniformly in x ∈ R, t ∈ [0, T ]. �
Having in hand the above continuous dependence, we now establish the following compar-

ison principle for problem (1.1) with initial function belonging to H(g0, h0), which is an easy 
extension of that for (1.1) with C2 initial functions.

Proposition 2.10. Suppose that T ∈ (0, ∞), that g̃, ̃h ∈ C
([0, T ]) ∩ C1

(
(0, T ]) and that ũ ∈

C
(
D̃T

) ∩ C1,2
(
D̃T

)
with D̃T = {

(t, x) ∈ R2 : 0 < t ≤ T , ̃g(t) ≤ x ≤ h̃(t)
}
.

(i) If

⎧⎪⎨⎪⎩
ũt ≥ dũxx + f (t, x, ũ), 0 < t ≤ T , g̃(t) < x < h̃(t),

ũ(t, g̃(t)) = 0, g̃′(t) ≤ −μũx(t, g̃(t)), 0 < t ≤ T , x = g̃(t),

ũ(t, h̃(t)) = 0, h̃′(t) ≥ −μũx(t, h̃(t)), 0 < t ≤ T , x = h̃(t),

(2.23)
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and

[g0, h0] ⊂ [̃g(0), h̃(0)], u0(x) ≤ ũ(0, x) in [g0, h0],

then the solution (u, g, h) of problem (1.1) with initial data (u0, g0, h0) satisfies

g(t) ≥ g̃(t), h(t) ≤ h̃(t) in (0, T ],

and

u(t, x) ≤ ũ(t, x) for 0 < t ≤ T , g(t) ≤ x ≤ h(t).

(ii) If the inequalities in (2.23) are reversed, and

[g0, h0] ⊃ [̃g(0), h̃(0)] and u0(x) ≥ ũ(0, x) in [̃g(0), h̃(0)],

then the solution (u, g, h) of problem (1.1) with initial data (u0, g0, h0) satisfies

g(t) ≤ g̃(t), h(t) ≥ h̃(t) in (0, T ],

and

u(t, x) ≥ ũ(t, x) for 0 < t ≤ T , g̃(t) ≤ x ≤ h̃(t).

Proof. We only give the proof for part (i), as part (ii) can be proved analogously. Choose se-
quences (g0n)n∈N ⊂ R, (h0n)n∈N ⊂ R such that g0n decreases to g0, h0n increases to h0 as 
n → ∞ and (u0n)n∈N ⊂ C2

([g0n, h0n]
)

such that

0 < u0n(x) ≤ u0(x) in [g0n,h0n] and u0n(g0n) = u0n(h0n) = 0 for each n ∈N,

and that u0n converges to u0 as n → ∞ uniformly in [g0, h0]. For each n ∈N, let (un, gn, hn) be 
the classical solution of problem (1.1) with initial data (u0n, g0n, h0n). It then follows from the 
proof of [13, Lemma 3.5] that

gn(t) ≥ g̃(t), hn(t) ≤ h̃(t) in (0, T ],

and

un(t, x) ≤ ũ(t, x) for 0 < t ≤ T , gn(t) ≤ x ≤ hn(t).

Due to Proposition 2.9, one can pass to the limit n → ∞ in the above inequalities, and obtain all 
the required conclusions. �
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2.3. Parallel results for an auxiliary problem

In order to prove the existence of spreading speeds for problem (1.1) in Part 2, we need to 
study the following auxiliary problem⎧⎪⎨⎪⎩

ut = duxx + f (t, x,u), −∞ < x < h(t), t > 0,

u(t, h(t)) = 0, h′(t) = −μux(t, h(t)), t > 0,

h(0) = h0, u(0, x) = u0(x), −∞ < x ≤ h0,

(2.24)

with initial data u0 ∈ H+(h0), where

H+(h0) :=
{
φ ∈ C

(
(−∞, h0]

) ∩ L∞(
(−∞, h0]

) : φ(h0) = 0, φ(x) > 0 in (−∞, h0)
}
.

All the results in the previous two subsections carry over to this problem without difficulties. 
Here we list these corresponding results while leaving their proofs to the interested reader.

Theorem 2.11. Suppose that (1.2) and (1.3) are satisfied. For any u0 ∈ H+(h0), problem (2.24)
admits a unique classical solution 

(
u(t, x), h(t)

)
defined for all t > 0, and h ∈ C1

(
(0, +∞)

) ∩
C

([0, ∞)
)
, u ∈ C1,2(G+) ∩C

(
G+

)
with G+ = {

(t, x) ∈ R2 : t ∈ (0, ∞), x ∈ (−∞, h(t)]}. Fur-
thermore, for any T > τ > 0 and any A ≤ h0, there holds∥∥u

∥∥
C(1+α)/2,1+α(Gτ

A,T )
+ ∥∥h

∥∥
C1+α/2([τ,T ]) ≤ C,

where Gτ
A,T = {

(t, x) ∈ R2 : t ∈ [τ, T ], x ∈ [A, h(t)]}, and C is a positive constant depending 
on τ , T , f and ‖u0‖L∞((−∞,h0]).

Remark 2.12. We should remark that, for any given u0 ∈ H+(h0), let 
(
u(t, x), h(t)

)
be the 

unique solution of (2.24) with initial datum u(0, x) = u0(x) in (−∞, h0), then for T > 0, u(T , x)

is Lipschitz continuous in (−∞, h(T )]. It follows from the estimate in Theorem 2.11 that the 
Lipschitz constant only depends on T , f and ‖u0‖L∞((−∞,h0)].

Proposition 2.13. Under the assumptions (1.2) and (1.3), the following conclusions hold.

(i) For any given h0 > 0 and any given sequence (h0n)n∈N ⊂ R+, let u0 ∈ H+(h0) and 
u0n ∈ H+(h0n). Suppose that (u0n, h0n) converges to (u0, h0) in Cloc

(
(−∞, h0]

) × R
as n → ∞. Then for any given T > 0, 

(
un(t, x), hn(t)

)
converges to 

(
u(t, x), h(t)

)
in 

Cloc

(
(−∞, h(t)]) × R as n → ∞ uniformly in t ∈ [0, T ], where (un, hn) is the solution 

for (2.24) with un(0, ·) = u0n(·) in (−∞, h0n], and (u, h) is the solution for (2.24) with 
u(0, ·) = u0(·) in (−∞, h0].

(ii) In addition to the assumptions in (i), if h0 = +∞, then for any given T > 0, un(t, x) con-
verges to v(t, x; u0) locally uniformly in x ∈ R and uniformly in t ∈ [0, T ], where v(t, x; u0)

is the solution of the Cauchy problem (1.14) with initial datum v(0, ·) = u0(·) in R.

Proposition 2.14. Suppose that T ∈ (0, ∞), that h̃ ∈ C
([0, T ]) ∩ C1

(
(0, T ]) and that ũ ∈

C
(
D̃+,T

) ∩ C1,2
(
D̃+,T

)
with D̃+,T = {

(t, x) ∈ R2 : 0 < t ≤ T , −∞ < x ≤ h̃(t)
}
.
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(i) If

{
ũt ≥ dũxx + f (t, x, ũ), 0 < t ≤ T , −∞ < x < h̃(t),

ũ(t, h̃(t)) = 0, h̃′(t) ≥ −μũx(t, h̃(t)), 0 < t ≤ T ,

and

h0 ≤ h̃(0) and u0(x) ≤ ũ(0, x) in (−∞, h0],

then the solution (u, h) of problem (2.24) satisfies

h(t) ≤ h̃(t) in (0, T ] and u(t, x) ≤ ũ(t, x) for 0 < t ≤ T , −∞ < x ≤ h(t).

(ii) If in the assumptions of part (i) all the inequalities are reversed, then the solution (u, h) of 
problem (2.24) satisfies

h(t) ≥ h̃(t) in (0, T ] and u(t, x) ≥ ũ(t, x) for 0 < t ≤ T , −∞ < x ≤ h̃(t).

The pair of functions (̃u, ̃h) in part (i) of Proposition 2.14 is often called an upper solution for 
problem (2.24), and in part (ii) it is called a lower solution.

Lastly we note that each of the above listed results for problem (2.24) has a parallel version 
for the following problem

⎧⎪⎨⎪⎩
ut = duxx + f (t, x,u), g(t) < x < ∞, t > 0,

u(t, g(t)) = 0, g′(t) = −μux(t, g(t)), t > 0,

g(0) = g0, u(0, x) = u0(x), g0 ≤ x < ∞,

(2.25)

with initial data u0 ∈ H−(g0), where

H−(g0) :=
{
φ ∈ C

([g0,∞)
) ∩ L∞([g0,∞)

) : φ(g0) = 0, φ(x) > 0 in (g0,∞)
}
.

3. Spreading–vanishing dichotomy

This section is devoted to the proof of Theorems 1.2 and 1.3, on the spreading–vanishing 
dichotomy and sharp criteria for spreading or vanishing.

Throughout this section, the function f (t, x, u) is supposed to satisfy the assumptions (1.2), 
(1.4), (1.5), (1.8) and (1.10). The arguments in this section mainly follow those used in [9,11], 
where similar free boundary problems in homogeneous, or time-periodic media were considered 
in a radially symmetric setting. In order not to repeat the arguments in [9,11], in what follows, 
we only provide the details when considerable changes are needed.

For any fixed y ∈ R and any fixed R > 0, let λy

1,R be the real number λ such that there exists 
a C1,2(R × [−R, R]) function ψ satisfying
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tψ − d∂xxψ − ∂uf (t, x + y,0)ψ = λψ in R× (−R,R),

ψ > 0 in R× (−R,R),

ψ(t,−R) = ψ(t,R) = 0 for all t ∈ R,

ψ(t, x) is ω-periodic in t.

(3.1)

It is well known (see [19]) that this real number λy

1,R is the principal eigenvalue of (3.1), which 
exists uniquely, and ψ is the (unique up to scalar multiplication) corresponding eigenfunction. 
Furthermore, we have the following properties of λy

1,R.

Lemma 3.1. Let λy

1,R be the principal eigenvalue of (3.1). Then λy

1,R is continuous in (y, R) ∈
R × (0, ∞), and λy

1,R is L-periodic in y and strictly decreasing in R > 0. Moreover, for any fixed 
y ∈ R, there holds

lim
R→∞λ

y

1,R = λ1(L) and lim
R→0

λ
y

1,R = ∞,

where λ1(L) is the generalized principal eigenvalue given in (1.9).

Proof. We first prove that λy

1,R is continuous in (y, R) ∈ R × (0, ∞). For any given (y, R) ∈
R × (0, ∞), let ψy

R(t, x) > 0 be the principal eigenfunction corresponding to λy

1,R , normalized 
by ‖ψy

R‖L∞(R×[−R,R]) = 1. Set ϕy
R(t, x) = ψ

y
R(R2t, Rx). Then (λ, ψ) = (R2λ

y

1,R, ϕy
R(t, x)) is 

an eigenpair to the following eigenvalue problem

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tψ − d∂xxψ − μ(t, x, y,R)ψ = λψ in R× (−1,1),

ψ > 0 in R× (−1,1),

ψ(t,−1) = ψ(t,1) = 0 for all t ∈R,

ψ(t, x) is ω/R2-periodic in t,

(3.2)

with

μ(t, x, y,R) := R2∂uf (R2t,Rx + y,0).

Let us observe that, if we denote by ̃λ1(μ) the principal eigenvalue of (3.2), then

λ̃1(μ) = λ̃1(R
2∂uf (R2t,Rx + y,0)) = R2λ

y

1,R,

and if μ is replaced by a constant μ0, then

λ̃1(μ0) = λ∗
1 − μ0,

where λ∗
1 > 0 is the principal eigenvalue of the problem

−dϕ′′ = λϕ in (−1,1); ϕ(−1) = ϕ(1) = 0.
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By the monotonicity of ̃λ1(μ) on μ, we obtain

λ∗
1 − R2m∗ = λ̃1(R

2m∗) ≤ λ̃1(μ) = R2λ
y

1,R ≤ λ̃1(R
2m∗) = λ∗

1 − R2m∗ (3.3)

where

m∗ := min
(t,x)∈R2

∂uf (t, x,0), m∗ := max
(t,x)∈R2

∂uf (t, x,0).

Therefore, for any finite closed interval I ⊂ (0, ∞), λ̃1(μ) = R2λ
y

1,R is bounded in (y, R) ∈
R × I . Furthermore, since the principal eigenvalue ̃λ1(μ) is unique, it then follows from standard 
parabolic estimates and a compactness argument that ̃λ1(μ) is uniformly continuous in (y, R) ∈
R × I . Thus, λy

1,R is continuous in (y, R) ∈R × (0, ∞).
Since the function ∂uf (t, x + y, 0) is L-periodic in y, by the uniqueness of the principal 

eigenvalue λy

1,R , it is obvious that λy

1,R is L-periodic in y.

Next, it follows from [27, Proposition 3.2] and [28, Theorem 2.6] that λy

1,R is nonincreasing 
in R > 0 and converges to λ1(L) uniformly in y ∈R as R → ∞. Moreover, by similar arguments 
to those used in [1, Lemma 3.5], one concludes that λy

1,R is strictly decreasing in R > 0.

Finally, we consider the convergence of λy

1,R as R → 0. By (3.3) we obtain

lim
R→0

R2λ
y

1,R = λ∗
1 > 0,

which clearly implies limR→0 λ
y

1,R = ∞. The proof of Lemma 3.1 is thereby complete. �
In view of Lemma 3.1 and the assumption that λ1(L) < 0 in (1.10), it follows that for any 

y ∈R, there exists a unique R∗ = R∗(y) such that

λ
y

1,R∗ = 0 and λ
y

1,R < 0 for R > R∗, λ
y

1,R > 0 for R < R∗. (3.4)

Furthermore, the function y �→ R∗(y) is continuous and L-periodic in y ∈R. Moreover, one has 
the following property.

Lemma 3.2. For any given y ∈ R and any given R > R∗(y), the following problem{
∂tp − d∂xxp = f (t, x + y,p) in R× (−R,R),

p(t,−R) = p(t,R) = 0 for all t ∈R,
(3.5)

admits a unique positive time ω-periodic solution pR,y ∈ C1,2(R × [−R, R]). Moreover, pR,y is 
globally asymptotically stable in the sense that for any nonnegative non-null function ũ0 ∈
C([−R, R]) with ̃u0(−R) = ũ0(R) = 0, there holds

uR,y(t + s, x; ũ0) − pR,y(t + s, x) → 0 as s → ∞ in C
1,2
loc

(
R× [−R,R]),

where uR,y(t, x; ̃u0) is the unique solution of the following problem
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⎧⎪⎨⎪⎩
∂tu − d∂xxu = f (t, x + y,u) for t > 0, −R < x < R,

u(t,−R) = u(t,R) = 0 for all t > 0,

u(0, x) = ũ0(x) for − R ≤ x ≤ R.

Proof. Let λy

1,R be the principal eigenvalue of problem (3.1). Since R > R∗(y), it is easy to see 
that λy

1,R < 0. This together with the assumptions (1.4) and (1.8) imply all the conclusions of this 
lemma. The proof is almost identical to that of [19, Theorem 28.1], so we omit the details. �

The above existence, uniqueness and stability results for problem (3.5) in a bounded domain 
can be extended to the following problem with an unbounded domain.

Lemma 3.3. The problem{
∂tp+ − d∂xxp+ = f (t, x,p+) in R× (−∞,0),

p+(t,0) = 0 for all t ∈R,
(3.6)

admits a unique positive time ω-periodic solution p+ ∈ C1,2
(
R × (−∞, 0]). Moreover, p+

is globally asymptotic stable in the sense that for any nonnegative non-null function ū0 ∈
C

(
(−∞, 0]) with ū0(0) = 0, there holds

u+(t + s, x; ū0) → p+(t + s, x) as s → ∞ in C
1,2
loc

(
R× (−∞,0]),

where u+(t, x; ū0) is the unique solution of the following problem⎧⎪⎨⎪⎩
∂tu − d∂xxu = f (t, x,u) for t > 0, −∞ < x < 0,

u(t,0) = 0 for all t > 0,

u(0, x) = ū0(x) for − ∞ < x ≤ 0.

Proof. We only prove the existence of positive time periodic solution p+ for problem (3.6), 
since the uniqueness and global asymptotic stability for p+ follows from similar lines to those 
used in [28] for problem (1.12), due to the assumptions (1.4), (1.5), (1.8) and (1.10).

For any R > 2R where

R = max
y∈R

R∗(y), (3.7)

it follows from Lemma 3.2 that the following problem⎧⎪⎨⎪⎩
∂tpR − d∂xxpR = f (t, x,pR) in R× (−R,0),

pR(t, x) is ω-periodic in t ∈R,

pR(t,−R) = pR(t,0) = 0 for all t ∈ R,

(3.8)

has a unique positive solution pR(t, x) ∈ C1,2
(
R × [−R, 0]). Now we show that, for any R2 >

R1 > 2R, there holds

pR (t, x) ≥ pR (t, x) for all (t, x) ∈ R× [−R1,0]. (3.9)
2 1
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To do so, we choose a non-null nonnegative function u0 ∈ C
([−R1, 0]) with u0(0) =

u0(−R1) = 0 such that u0(x) ≤ pR2(0, x) for all x ∈ [−R1, 0]. Then one sees that pR2(t, x)

is a supersolution to the problem⎧⎪⎨⎪⎩
∂tuR1 − d∂xxuR1 = f (t, x,uR1) in t > 0, −R1 < x < 0,

uR1(t,−R1) = uR1(t,0) = 0 for all t > 0,

uR1(0, x) = u0(x) in − R1 ≤ x ≤ 0.

(3.10)

It follows from the parabolic maximum principle that

uR1(t + nω,x) ≤ pR2(t, x) for all t > 0, −R1 ≤ x ≤ 0, n ∈ N.

Since pR1 is a globally asymptotically stable solution of problem (3.8) with R = R1, we have

lim
n→∞uR1(t + nω,x) = pR1(t, x) for t > 0, −R1 ≤ x ≤ 0.

Hence (3.9) holds.
Choose a sequence {Ri}i∈N ⊂ [R0, ∞) with Ri ↗ ∞ as i → ∞, and let pRi

(t, x) ∈ C1,2
(
R ×

[−Ri, 0]) be the positive solution to (3.8) with R = Ri . Since f (t, x, M) ≤ 0, the positive 
constant M is a super solution to the equation satisfied by pRi

(t, x). Therefore by the above 
arguments we obtain

pRi
(t, x) ≤ pRi+1(t, x) ≤ M for t ∈R, x ∈ [−Ri,0], i ∈N.

Hence we can define

p+(t, x) := lim
i→∞pRi

(t, x) for t ∈ R, x ∈ (−∞,0].

For any R0 > 2R, by parabolic estimates to problem (3.8) with R > R0 over the domain 
[0, ω] × [−R0, 0], and a standard diagonal process, we see that

lim
i→∞pRi

(t, x) = p+(t, x) in C
1,2
loc

(
R× (−∞,0]),

and hence p+(t, x) is a positive solution to problem (3.6). The proof of Lemma 3.3 is thereby 
complete. �

Now we give the proof for Theorem 1.2. In the sequel, 
(
u(t, x), g(t), h(t)

)
always denotes the 

unique solution of problem (1.1) with given initial datum u0 ∈ H(g0, h0), and h∞, g∞ are the 
limits of the functions h(t) and g(t) as t → ∞, respectively.

Lemma 3.4. If h∞ < ∞ or g∞ > −∞, then both h∞ and g∞ are finite, and h∞ − g∞ ≤
2R∗(y∞) where y∞ = (h∞ + g∞)/2. Moreover,

lim
t→∞ max

g(t)≤x≤h(t)
u(t, x) = 0.
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Proof. Without loss of generality, we assume that h∞ < ∞, and we proceed to show h∞ −g∞ ≤
2R∗(y∞). The proof for the case g∞ > −∞ is parallel.

We first show that g∞ > −∞. Assume by contraction that g∞ = −∞. Let T0 be the real 
number such that h(t) − g(t) > 2R for all t ≥ T0, where R is given in (3.7). It follows from 
Lemma 3.2 that, for any fixed T > T0, the following problem⎧⎪⎨⎪⎩

∂t (wT ) − d∂xxwT = f (t, x,wT ) in t > 0, g(T ) < x < h(T ),

wT (t, g(T )) = wT (t, h(T )) = 0 for all t > 0,

wT (0, x) = u(T , x) in g(T ) ≤ x ≤ h(T ),

has a unique solution wT (t, x) ∈ C1,2
(
R × [g(T ), h(T )]), and

wT (t + s, x) − w̄T (t + s, x) → 0 as s → ∞ in C
1,2
loc

(
R× [g(T ),h(T )]),

where w̄T is the unique positive time ω-periodic solution to the problem{
∂t w̄T − d∂xxw̄T = f (t, x, w̄T ) in t > 0, g(T ) < x < h(T ),

w̄T (t, g(T )) = w̄T (t, h(T )) = 0 for all t ∈R.

By the parabolic maximum principle, one has u(t + T , x) ≥ wT (t, x) for all t > 0, g(T ) ≤ x ≤
h(T ), whence

lim inf
n→∞ u(t + nω,x) ≥ w̄T (t, x) for all t > 0, g(T ) ≤ x ≤ h(T ).

One the other hand, let ũ0 be the function in C((−∞, h∞]) given by ũ0(x) = u(T , x) for x ∈
[g(T ), h(T )] and ̃u0(x) = 0 for x ∈ (−∞, h∞]) \ [g(T ), h(T )]. It follows from Lemma 3.3 that 
the following problem⎧⎪⎨⎪⎩

∂tw − d∂xxw = f (t, x,w) in t > 0, −∞ < x < h∞,

w(t, h∞) = 0 for all t > 0,

w(0, x) = ũ0(x) in − ∞ < x ≤ h∞,

has a unique solution w(t, x) ∈ C1,2
(
R × (−∞, h∞]), and

w(t + s, x) − w̄(t + s, x) → 0 as s → ∞ in C
1,2
loc

(
R× (−∞, h∞]),

where w̄ is the unique positive time ω-periodic solution for problem{
∂t w̄ − d∂xxw̄ = f (t, x, w̄) in t > 0, −∞ < x < h∞,

w̄(t, h∞) = 0 for all t ∈ R.

By the parabolic maximum principle, one has u(t +T , x) ≤ w(t, x) for all t > 0, −∞ < x < h∞, 
whence
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lim sup
n→∞

u(t + nω,x) ≤ w̄(t, x) for all t > 0, −∞ < x ≤ h∞.

Furthermore, by simple modifications of the proof of Lemma 3.3, one sees that w̄T (t, x) (ex-
tended by 0 outside its supporting set) converges to w̄(t, x) as T → ∞ locally uniformly in 
R × (−∞, h∞]. Therefore,

u(t + nω,x) → w̄(t, x) as n → ∞ locally uniformly in R× (−∞, h∞], (3.11)

which in particular implies that u(nω, x) converges to w̄(0, x) as n → ∞ locally uniformly in 
(−∞, h∞]. Since g(nω) → −∞ and h(nω) → h∞ as n → ∞, and since h∞ < ∞, it follows 
from the continuous dependence stated in Proposition 2.9 that

u(t + nω,x) → w̃(t, x) as n → ∞ locally uniformly in t > 0, −∞ < x ≤ h̃(t), (3.12)

where (w̃, ̃h) is the solution for the following free boundary problem⎧⎪⎨⎪⎩
w̃t = dw̃xx + f (t, x, w̃), −∞ < x < h̃(t), t > 0,

w̃(t, h̃(t)) = 0, h̃′(t) = −μw̃x(t, h̃(t)), t > 0,

h̃(0) = h∞, w̃(0, x) = w̄(0, x), −∞ < x ≤ h∞.

One then obtains from (3.11) and (3.12) that h̃(t) ≡ h∞ and w̃ ≡ w̄. This implies that 
h̃′(t) = 0 for all t > 0, and hence ∂xw̄(t, h∞) = 0, which is a contradiction with the fact that 
∂xw̄(t, h∞) < 0 by Hopf lemma. Therefore, one gets that g∞ > −∞.

Once g∞ > −∞ is obtained, similar strategies used above would further imply that 
h∞ − g∞ ≤ 2R∗(y∞) and the details will not be repeated here. Finally, we prove that 
limt→∞ maxg(t)≤x≤h(t) u(t, x) = 0. As a matter of fact, let ū be the unique solution to the fol-
lowing problem ⎧⎪⎨⎪⎩

ūt = dūxx + f (t, x, ū), t > 0, g∞ < x < h∞,

ū(t, g∞) = 0, ū(t, h∞) = 0, t > 0,

ū(0, x) = ū0(x), g∞ ≤ x ≤ h∞,

where ū0(x) = u0(x) for x ∈ [g0, h0] and ū0(x) = 0 for x ∈ [g∞, h∞] \ [g0, h0]. It follows 
from the parabolic maximum principle that 0 ≤ u(t, x) ≤ ū(t, x) for t > 0, x ∈ [g(t), h(t)]. Fur-
thermore, since h∞ − g∞ ≤ 2R∗(y∞), the principal eigenvalue λy∞

1,(h∞−g∞)/2 ≥ 0, and hence, 
limt→∞ ū(t, x) = 0 uniformly in x ∈ [g∞, h∞] (see e.g., [19, Theorem 28.1]). Therefore, 
limt→∞ maxg(t)≤x≤h(t) u(t, x) = 0. The proof of Lemma 3.4 is now complete. �
Lemma 3.5. If (g∞, h∞) = R, then

lim
t→∞

∣∣u(t, x) − p(t, x)
∣∣ = 0 locally uniformly in x ∈R,

where p(t, x) is the unique positive solution of problem (1.12).

Proof. The proof follows from similar arguments as those used in the proof of [11, Theorem 3.4], 
so we omit the details. �
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Theorem 1.2 clearly follows directly from Lemmas 3.4 and 3.5.

Lemma 3.6. If h0 − g0 ≥ 2R∗(y0) with y0 = (h0 + g0)/2, then (g∞, h∞) = R and spreading 
always occurs.

Proof. We first consider the case h0 − g0 > 2R∗(y0). Assume by contradiction that
(g∞, h∞) � R. It then follows from Lemma 3.4 that both h∞ and g∞ are finite, and that 
limt→∞ maxg(t)≤x≤h(t) u(t, x) = 0. On the other hand, let ũ(t, x) be the unique solution of the 
following problem ⎧⎪⎨⎪⎩

∂t ũ − d∂xxũ = f (t, x, ũ) in t > 0, g0 < x < h0,

ũ(t, g0) = ũ(t, h0) = 0 for all t > 0,

ũ(0, x) = u0(x) in g0 ≤ x ≤ h0.

Since h0 −g0 > 2R∗(y0), it follows from Lemma 3.2 that limt→∞ ũ(t, x) > 0 for all x ∈ (g0, h0). 
By the parabolic maximum principle, one has u(t, x) ≥ ũ(t, x) for all t > 0, g0 ≤ x ≤ h0. One 
then obtains lim inft→∞ u(t, x) > 0 for all g0 < x < h0, which is a contradiction. Therefore, 
(g∞, h∞) = R and spreading always occurs.

Next we consider the remaining case h0 − g0 = 2R∗(y0). Let (u, g, h) be the unique solution 
of (1.1) with initial data (u0, g0, h0). Then h(1) > h0 > g0 > g(1). Therefore there exist g̃0 ∈
(g(1), g0) and ̃h0 ∈ (h0, h(1)) such that y0 is the center of the interval [̃g0, ̃h0]. We now choose 
ũ0(x) such that it is continuous in [̃g0, ̃h0],

ũ0(g̃0) = ũ0(̃h0) = 0, 0 < ũ0(x) < u(1, x) for x ∈ (g̃0, h̃0).

Let (̃u, ̃g, ̃h) be the unique solution of (1.1) with initial data (̃u0, ̃g0, ̃h0). Then by the comparison 
principle we have

h(1 + t) ≥ h̃(t), g(1 + t) ≤ g̃(t), u(1 + t, x) ≥ ũ(t, x) for t > 0, x ∈ [̃g(t), h̃(t)].

Since h̃(0) − g̃(0) > 2R∗(y0), by what has been proved above, we have − limt→∞ g̃(t) =
limt→∞ h̃(t) = ∞. It follows that h∞ = ∞, g∞ = −∞, and hence spreading occurs. �

Lemma 3.6 gives the first statement of Theorem 1.3. Next, we turn to describe the strategy 
for the proof of the second one. As a matter of fact, by minor modifications of the proof for [9, 
Lemma 2.8] and [11, Lemma 3.10], one concludes the following two properties.

Lemma 3.7. Suppose that h0 − g0 < 2R∗(y0) with y0 = (h0 + g0)/2. Then there exists μ0 > 0
depending on u0 such that spreading occurs if μ ≥ μ0.

Lemma 3.8. Suppose that h0 − g0 < 2R∗(y0) with y0 = (h0 + g0)/2. Then there exists μ0 > 0
depending on u0 such that vanishing occurs if μ ≤ μ0.

Based on the above two lemmas, the proof for part (ii) of Theorem 1.3 follows exactly the 
same arguments as those used in the proof of [9, Theorem 2.10].
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