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We consider a nonlinear Schro� dinger equation in a domain 0/Rn with the
inhomegeneous Dirichlet boundary condition u=Q where Q is a given smooth
function. The nonlinear term contributes a positive term to the energy. We prove
the existence of global solutions of finite energy. � 2001 Academic Press
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1. INTRODUCTION

We consider the standard inhomogeneous initial-boundary problem

i �tu=2u& f (u) for x # 0/Rn,

{u(x, 0)=,(x), (1)

u(x, t)=Q(x, t) for x # �0.

One would think that the solution of this problem should be as easy as
the corresponding homogeneous one, but it is not so. For instance, the
simplest identity, conservation of the L2 norm, takes the form

�t |
0

|u|2 dx=2 Im |
�0

u�
�u
�n

dS, (2)
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where the derivative in the boundary integral is not expressible in terms of
the boundary data Q. It is not obvious how to make use of such an estimate.
The usual device for linear problems, that of reduction of the problem to
the corresponding homogeneous one, does not work well either because the
subtraction will spoil the properties of the nonlinear term. Nevertheless, we
are able to prove the global existence.

The purpose of this paper is to prove the following existence theorem.
Let 0 be a (bounded or unbounded) open subset of Rn with a C� boundary.
Let f (u)= g |u| p&1 u for some constants g>0 and p>1. (A more general
nonlinear term can be assumed but we omit such a discussion.)

Theorem 1. Let , # H1(0). Let Q # C3(�0_(&�, �)) have compact
support and satisfy the compatibility condition ,(x)#Q(x, 0) on �0 in the
sense of traces. Let 1<p<�. Then there exists a solution u # L�

loc((&�, �);
H1(0) & L p+1(0)) to the problem (1) for &�<t<�. The PDE is under-
stood in the sense of distributions while the boundary condition is understood
as u( } , t)&Q( } , t) # H 1

0(0) for a.e. t.

In this paper we do not address the questions of uniqueness and
regularity, which are quite non-trivial, except for a brief comment at the
end.

There is a very large literature on nonlinear Schro� dinger equations in Rn.
However, we are aware only of the following papers in a domain 0 with
homogeneous boundary conditions. Y. Tsutsumi [8] and M. Tsutsumi [7]
proved well-posedness for the homogeneous problem in an exterior domain
with sufficiently small and smooth initial data. Large initial data in two
dimensions were treated by Brezis and Gallouet [1] and M. Tsutsumi [6].
There are also some results asserting that solutions blow up under certain
conditions.

For inhomogeneous boundary conditions we are aware only of certain
results in one space dimension. Bu [2] proved the well-posedness of smooth
solutions with arbitrarily large data for n=1 and a nonlinear term of positive
energy. Carroll and Bu [3] proved the same for n=1 and a nonlinear cubic
term of either sign. There are also some results in one dimension using inverse
scattering techniques.

In order to prove Theorem 1, it is required to estimate the normal
derivative �u��n. We combine identity (2) with the energy identity and
two other identities that involve the L2 norm of �u��n over �0 as well
as many other terms. These estimates are derived in Section 2. In
Section 3, we truncate the nonlinear term and combine the previous
estimates for the approximate solution to obtain the required estimate for
the L2 norm of �u��n. The passage to the limit in Section 4 is then
standard.
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2. A PRIORI ESTIMATES

Write F(u)= 2g
p+1 f (u) u� = 2g

p+1 |u| p+1, P={u|�0 , '=�j �j! j={ } ! and
n=(n1 , n2 , ..., nn) standard unit outer normal vector for �0. Since �0 is
smooth, there exists a smooth function !=(!1 , !2 , ..., !n) independent of t
from Rn to Rn such that

!|�0=(n1 , n2 , ..., nn)=n. (3)

In case �0 is unbounded, we assume that (a) the derivatives up to third
order of ! are bounded and (b) there exists R>0 such that Q(x, t)=0 for
|x|>R. We sometimes denote �ju=�u��xj for j=1, 2, ..., n.

Lemma 1. Let u be a smooth solution to the initial-boundary value problem
for the nonlinear Schro� dinger equation (1). Then the following four identities
are available. First,

�t |
0

|u|2 dx=2 Im |
�0

(n } P) Q� dS. (I)

Second,

�t |
0

( |{u| 2+F(u)) dx=2 Re |
�0

(n } P) Q� t dS. (II)

Third,

�t |
0

u(! } {u� ) dx&|
�0

QQ� t dS+|
0

'uu� t dx

=&2i |
�0

|n } P| 2 dS& :
m, j

|
0

�m! j �mu �ju� dx+i |
�0

|P|2 dS

&i |
0

' |{u|2 dx+i |
�0

F(Q) dS&i |
0

'F(u) dx. (III)

Fourth,

i |
�0

[2 |n } P|2&|P|2+(n } P� ) Q'] dS

=|
�0

[QQ� t+iF(Q)] dS&�t |
0

u(! } {u� ) dx

&i |
0

['[2 |{u|2+F(u)]+({' } {u� ) u] dx

&|
0 {:

j, m

�m!j �mu � ju� +'f (u) u� = dx. (IV)
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Proof. To prove (I), we differentiate |u|2 in t, substitute ut=&i 2u+
if (u) and then integrate over 0 to obtain

�t |
0

|u| 2 dx=2 Re |
0

u� ut dx=2 Re |
0

u� (&i 2u+if (u)) dx

=2 Re |
0 \i :

j

(&�j (�ju } u� )+�ju � ju� )+ig |u| p+1+ dx

=&2 Re |
�0

i :
j

nj �ju u� dS=2 Im |
�0

(n } P) Q� dS. (4)

For (II), we look at the following identity directly from the equation

2uu� t+2u� ut& g |u| p&1 (uu� t+u� ut)=0 (5)

and obtain, after integrating over 0, the identity

0=2 Re |
0

:
j

(�j (� ju } u� t)&�j u �ju� t) dx& g |
0

|u| p&1 �t |u| 2 dx

=2 Re |
�0

:
j

(nj �j u) u� t dS&|
0

�t |{u| 2 dx&|
0

�tF(u) dx

=2 Re |
�0

(n } P) Q� t dS&�t \|0
( |{u|2+F(u)) dx+ .

Thus (II) follows.
To establish (III), we write �j u=uj and note that

ut u� j&u� tu j=�t(uu� j)&�j (uu� t). (6)

Multiplying (6) by !j , we find

!j (ut u� j&u� tuj)=! j �t(uu� j)&!j �j (uu� t)=�t(u!ju� j)&�j (uu� t! j)+uu� t �j!j .

(7)

On the other hand,

!j (utu� j&u� tuj)=! j[&2i Re(2u) u� j+2if (u) u� j]

=!j {&2i Re :
m

((umu� j)m&um u� jm)+2if (u) u� j=
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=&2i Re :
m

[�m(!jumu� j)&(�m!j)(umu� j)]

+:
m

[i �j (!j |um | 2)&i(�j!j) |um |2]

+i[�j (!jF(u))&(�j !j) F(u)]. (8)

Integrating (7) and (8) over 0, we have the following two identities

|
0

!j (utu� j&u� tuj) dx=�t |
0

u!ju� j dx&|
�0

njuu� t !j dS+|
0

(uu� t) �j !j dx

=�t |
0

u! ju� j dx&|
�0

n2
j QQ� t dS+|

0
(uu� t) � j!j dx

(9)

and

|
0

!j (ut u� j&u� tu j) dx

=&2i Re :
m

|
0

(�m(!jumu� j)&(�m! j) um u� j) dx

+i :
m

|
0

[�j (!j |um | 2)&(�j !j) |um | 2] dx

+i |
0

[�j (!j F(u))&(�j!j) F(u)] dx

=&2i Re :
m

|
�0

nmnjPmP� j dS+2i Re :
m

|
0

�m!j �mu �ju� dx

+i :
m

|
�0

n2
j |Pm | 2 dS&i :

m
|

0
(�j!j) |um |2 dx

+i |
�0

n2
j F(Q) dS&i |

0
(�j!j) F(u) dx. (10)

Combining (9), (10) and adding j=1, 2, ..., n, we obtain

�t |
0

u(! } {u� ) dx&|
�0

QQ� t dS+|
0

uu� t' dx

=&2i |
�0

|n } P| 2 dS& :
m, j

|
0

�m! j �mu �ju� dx+i |
�0

|P|2 dS

&i |
0

' |{u|2 dx+i |
�0

F(Q) dS&i |
0

'F(u) dx. (11)
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Therefore (III) follows. In (III) we must still transform the term �0 'uu� t dx
into a usable form. This is the purpose of (IV).

To prove (IV), we multiply our Schro� dinger equation (1) by 'u� and
integrate over 0 to obtain

0=|
0

(iut&2u+ f (u)) 'u� dx

=|
0

ut u� ' dx&:
m

|
�0

nmPm'Q� dS

+:
m

|
0

um 'mu� dx+|
0

' |{u|2 dx+|
0

f (u) 'u� dx. (12)

We divide (12) by i and take the complex conjugate to obtain

|
0

'uu� t dx=&i |
�0

n } P� Q' dS+i |
0

({' } {u� ) u dx

+i |
0

' |{u|2 dx+|
0

'f (u) u� dx. (13)

Finally, we replace �0 'uu� t dx in (III) by (13) to obtain

�t |
0

u(! } {u) dx&|
�0

QQ� t dS&i |
�0

n } P� Q' dS

+i |
0

({' } {u� ) u dx+2i |
0

' |{u|2 dx+|
0

'f (u) u� dx

=&2i |
�0

|n } P| 2 dS& :
m, j

|
0

�m! j �mu �ju� dx+i |
�0

|P|2 dS

+i |
�0

F(Q) dS&i |
0

'F(u) dx. (14)

Rearranging (14), we get (IV). K

We will prove the global existence theorem by using the above estimates.
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3. THE APPROXIMATE EQUATION

We will approximate the original equation by truncating the nonlinear
term as follows. Let q0 be an upper bound for |Q|. For any k>q0 , we
define

fk(u)={ g |u| p&1 u
gk p&1u

|u|<k
|u|�k.

(15)

First, we construct the local solution of the truncated problem (15). For
convenience we only consider t�0.

Lemma 2. For any k>q0 and c0>0, there exists T0>0 such that if
&,&H 1�c0 then there exists a unique solution u(k) # C([0, T0]; H1(0)) which
solves

i �t u(k)=2u(k)& fk(u(k)), x # 0/Rn, t>0

{u(k)(x, 0)=,(x) (16)

u(k)(x, t)=Q(x, t) for (x, t) # �0_[0, �).

Proof. Notice that fk is globally Lipschitz for each k>0. By the com-
pact support assumption, Q=0 when |x|>R. We shall always take k>q0 ,
so that fk(Q)= f (Q). For convenience we drop the superscript k. We first
convert the problem into a problem with a homogeneous boundary condi-
tion, by writing v=u&Q� . Here we choose Q� (x, t) to be any C3 function
on 0� _[0, �) with compact support in x such that

2Q� =f (Q)&iQt on �0, (17)

Q� =Q on �0. (18)

(In fact, any finite number of derivatives can be specified on �0; see
for instance Lemma 13.1 in [4]). Then v satisfies the following problem,
equivalent to (1),

ivt&2v=hk

{v(0)=,&Q� (0) (19)

v|�0=0

where hk= fk(v+Q� )&iQ� t+2Q� . Notice that by (17), (18) and (19), hk

formally vanishes on �0. Let ei 2t be the evolution operator for the linear
Schro� dinger equation with homogeneous boundary condition. Then ei 2t is
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a group of unitary operators on H 1
0(0) to itself. Now, the problem (19) can

be written as the integral equation

v(t)=ei 2tv(0)+|
t

0
ei 2(t&{)hk({) d{=Nv(t) (20)

where v(t) # H 1
0(0) and N is defined by the right side of (20).

Taking the H 1
0(0) norm for each T>0, there exists a constant c~ k, T such

that

&Nv(t)&H 1
0
�1 } &v(0)&H1

0
+|

t

0
1 } & fk(Q� +v)&iQ� t+2Q� )({)&H 1

0
d{,

�&v(0)&H 1
0
+ck |

t

0
&v({)&H1

0
d{+c~ k, T (21)

for 0�t�T. Since fk is Lipschitz,

&Nv(t)&Nw(t)&H 1
0
�&v(0)&w(0)&H 1

0
+|

t

0
& fk(Q� +v)& fk(Q� +w)&H1

0
d{

�&v(0)&w(0)&H 1
0
+ck |

t

0
&v({)&w({)&H 1

0
d{. (22)

Let _ }_ denote the norm in C([0, T0]; H 1
0(0)). Let v(0) be given in H 1

0(0)
and &v(0)&H1

0
�c$0 . Let

B=[v # C([0, T0]; H 1
0(0)) : _v_�c*, v(0)=�] (23)

where c*=2(c$0+c~ k, T). If T0� 1
2ck

, then (21) and (22) imply that N is a
contraction on B. Hence for any k>q0 and any c$0>0, there exists T0>0
such that if &v(0)&H 1

0
�c$0 , then there is a unique solution v (k) # B to (20).

Here T0 depends on k and c$0 . If we define �=,&Q� (0), then u(k)=v(k)+Q�
is the unique solution to (16) in [0, T0]. K

The following lemma establishes an a priori bound for the solution u(k)

above.

Lemma 3. Let T>0 and k>q0 be fixed. Let u(k) be a solution of (16)
in the space C([0, T]; H1(0)). Then there exists a constant CT>0 inde-
pendent of k such that &u(k)(t)&H 1�CT for all 0�t�T.

Proof. Define Fk(u)=Gk( |u| ), G$k= gk and fk(u)= gk( |u| ) } u
|u| . Then

gk(0)=0, gk�0 and Gk�0. Further, u� fk(u)= gk( |u| )
|u| uu� = gk( |u| ) |u|�0. We

check each of the identities (I)�(IV) in the case that f is replaced by fk .
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Because of the numerous integrations by parts, these identities are
justifiable only for solutions of sufficient regularity. If we approximate ,, Q
and fk by sufficient smooth functions, then the unique solution u(k) of
Lemma 2 is also smooth, by the same kind of contraction argument. Then
the identities are derived for the approximations and a subsequent passage
to the limit leads to the following identities for u(k). First,

�t |
0

|u|2 dx=2 Im |
�0

(n } P) Q� dS, (Ik)

where u=u(k) is a solution to (16). Second,

�t |
0

( |{u| 2+Fk(u)) dx=2 Re |
�0

(n } P) Q� t dS. (IIk)

Third,

�t |
0

u(! } {u) dx&|
�0

QQ� t dS+|
0

'uu� t dx

=&2i |
�0

|n } P| 2 dS& :
m, j

|
0

�m! j �mu �ju� dx+i |
�0

|P|2 dS

&i |
0

' |{u|2 dx+i |
�0

Fk(Q) dS&i |
0

'Fk(u) dx. (IIIk)

Fourth,

i |
�0

(2 |n } P| 2&|P|2+(n } P� ) Q') dS

=|
�0

[QQ� t+iFk(Q)] dS&�t |
0

u(! } {u) dx

&i |
0

('[2 |{u|2+Fk(u)]+({' } {u� ) u) dx

+|
0 \&:

j, m

�m!j �m u �ju� +'fk(u) u� + dx. (IVk)

Our next goal is to obtain a bound on the integral of |n } P|2 where
P={u|�0 and u=u(k) is a smooth solution of the approximate problem.
Then at each point we can write

|P|2=|n } P|2+|A } P| 2=|n } P|2+|A } {Q� |2 (24)
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where A } P denotes the tangential component of P. Substituting (24) into
(IVk), integrating over 0_[0, t] and using the assumption that up to
three derivatives of ! are bounded, we obtain

|
t

0
|

�0
|n } P|2 dS d{� } |0

u(! } {u) dx }+ } |0
,(! } {,) dx }

+|
t

0
|

�0
|A } {Q� | 2 dS d{

+|
t

0
|

�0
|QQ� t | dS d{+c |

t

0
|

�0
|(n } P� ) Q| dS d{

+c |
t

0
|

0
|{u| |u| dx d{+c |

t

0
|

0
|{u|2 dx d{

+|
t

0
|

�0
Fk(Q) dS d{+c|

t

0
|

0
Fk(u) dx d{. (25)

Here we note that for k>q0 , Fk(Q)=F(Q) and Im 'fk(u) u� =0. Since
, # H 1(0), Q is C3 with compact support in x, each term in (25) involving
, and Q is bounded. Therefore (25) is estimated as

|
t

0
|

�0
|n } P| 2 dS d{�c$+c$ \|

t

0
|

�0
|n } P|2 dS d{+

1�2

+c$ |
0

( |u|2+|{u|2) dx+c$ |
t

0
|

0
( |u|2+|{u|2) dx d{

+c$ |
t

0
|

0
Fk(u) dx d{. (26)

It is important to note that all the constants denoted by c and c$ only
depend on n, p, Q, T, , and �0, but not on k or u. We write

J2=|
t

0
|

�0
|n } P|2 dS d{. (27)

Then (26) is equivalent to J2�:2+2;J, where 2;=c$ and :2 is the sum
of all the other terms in the right side of (26). By completing the square,
we have (J&;)2�:2+;2. Taking the square root of both sides, we obtain

J�2;+:=c$+:. (28)
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Denoting

#(t)=|
0

( |u|2+|{u|2+Fk(u)) dx, (29)

we have

:2�c1+c2#+c3 |
t

0
#({) d{. (30)

Now we use (Ik), (IIk) to estimate #(t) as follows. From (Ik)

&u&2
2�c$+c~ \|

t

0
|

�0
|n } P| 2 dS d{+

1�2

. (31)

From (IIk)

&{u&2
2+|

0
Fk(u) dx�c0+ĉ \|

t

0
|

�0
|n } P| 2 dS d{+

1�2

. (32)

Also we will continue to use c0 , c$, ĉ, c~ etc as generic constants depending
on T. By summing (31) and (32), we have

#(t)�m+m$J. (33)

But (28) and (30) imply that

J�c$1+c$2 - #+c$3 |
t

0
#({) d{. (34)

By the last two inequalities and Gronwall's lemma, #(t) is bounded on [0, T]
for any T. Since Fk>0, we deduce that &u&H1 is bounded for bounded T. This
proves Lemma 3. K

4. GLOBAL EXISTENCE THEOREM FOR THE H1 SOLUTION

Now that we have the bound on the energy, the existence theorem
follows by a well-known argument. For more details of the following proof,
see [5] for instance.

Proof of Theorem 1. Let u(k) be the solution in Lemma 2. It follows
from Lemma 3 that it has a unique extension (we still call it u(k)) to
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0�t<� such that for all T, u(k) # C([0, T]; H 1(0)) and there exists a
constant CT such that

sup
0�t�T

&u(k)(t)&H 1�CT . (35)

For T=1, there exists a subsequence u (k)
1 converging weakly* in

L�([0, 1]; H1(0)). Similarly, for T=2, there exists a subsequence of u (k)
1 ,

denoted by u (k)
2 , converging weakly* in L�([0, 2]; H1(0)). We repeat the

same process for T=1, 2, ... and choose the diagonal sequence u (k)
k , k=1,

2, ... . Then there exists u # L�
loc([0, �); H 1(0)) such that u (k)

k converges
weakly* to u in L�([0, T]; H1(0)) for any T>0. By the fact that �0 Fk(u(k)) dx
is bounded, we know that fk(u(k)) is also bounded in L�([0, T]; L1+L2).
By (16),

�t u(k)=&i 2u (k)+ifk(u(k)) (36)

is bounded in L�([0, T]; L1+H &1). By Aubin's Compactness Theorem
and Cantor diagonalization, there exists a subsequence of u(k) (again called
u(k)) which converges to u a.e. in 0_[0, �). Therefore, fk(u(k)) also con-
verges a.e. to f (u). Since the integral of Fk(u (k)) is bounded (for bounded
t), it follows from Egoroff's lemma that fk(u(k)) � f (u) strongly in L1(0$)
for any bounded set 0$/0_[0, �). Therefore, it follows easily that u is
a solution of (1) for 0�t<�. The case of &�<t�0 is proven in the
same way. K

Uniqueness is an open problem for large p, even in free space. In our
case we can prove uniqueness for small p provided that we impose the
condition

&ei2t&L(L1 (0), L� (0))�
c

tn�2 , (37)

where ei 2t denotes the evolution operator for the free Schro� dinger equation
with homogeneous boundary condition on �0, as above. We note that the
linear estimate (37) is true in many cases. It is true if 0=Rn. It is also true
in the case of a half space, as it is easily proven by explicit formula using
the method of even extensions.

Theorem 2 (Uniqueness). If 1<p<1+ 4
n&2 and if (37) is true, then the

solution in Theorem 1 is unique.
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Proof. The estimate (37) is combined with the fact that the L2 norm is
preserved. An interpolation between these two estimates yields the L( p+1)$

� L p+1 estimate

&ei 2tu0& p+1�ct&(n�2)( p+1)�( p&1) &u0&( p+1)$ (38)

for 1�p<�. Uniqueness follows from exactly the same argument as on
p. 19 of [5]. K
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