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Abstract

The Boltzmann equation which describes the time evolution of a large number of particles through the
binary collision in statistics physics has close relation to the systems of fluid dynamics, that is, Euler equa-
tions and Navier—Stokes equations. As for a basic wave pattern to Euler equations, we consider the nonlinear
stability of contact discontinuities to the Boltzmann equation. Even though the stability of the other two non-
linear waves, i.e., shocks and rarefaction waves has been extensively studied, there are few stability results
on the contact discontinuity because unlike shock waves and rarefaction waves, its derivative has no definite
sign, and decays slower than a rarefaction wave. Moreover, it behaves like a linear wave in a nonlinear set-
ting so that its coupling with other nonlinear waves reveals a complicated interaction mechanism. Based on
the new definition of contact waves to the Boltzmann equation corresponding to the contact discontinuities
for the Euler equations, we succeed in obtaining the time asymptotic stability of this wave pattern with a
convergence rate. In our analysis, an intrinsic dissipative mechanism associated with this profile is found
and used for closing the energy estimates.
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1. Introduction

Consider the Boltzmann equation with “slab symmetry”

fi+&fi=00f ), (fix,t,6)eRxRx R xR, (1.1)

where f(x, t, &) represents the distributional density of particles at space—time (x, ¢) with veloc-
ity £. For monatomic gas, the rotational invariance of the molecule leads to the collision operator
Q(f, f) as a bilinear collision operator in the form of, cf. [6]:

O(f.9)(€)
1
=3 / / (fENg(E) + f(£)8E) — f(E)gED) — f(ENZE))B(IE — &4, 0) dEd 2,

R3§%

with 6 being the angle between the relative velocity and the unit vector £2. Here S% =
(2 € §2: (€ — £,) - £2 > 0}. The conservation of momentum and energy give the following rela-
tion between velocities before and after collision:

{é‘/:E —[(¢ - &) - 2],
E,=6+[¢ -8 212

In this paper, we will consider the Boltzmann equation for the two basic models, i.e., the hard
sphere model and the hard potential with angular cut-off. In these two cases, the collision kernel
B(|& — &4], 0) takes the forms

B(|€ —&41,0) = | (¢ — &, Q)|
and
n=y 1
B(|€ —&l.0) =€ —&["Tb©), b©) € L'([0,7]), n>5,
respectively. Here, n is the index in the inverse power potentials proportional to ! =" with r being
the distance between two particles. Notice that the following analysis also applies to the case for

Maxwellian molecule, n = 5, and other abstract models with some restriction on the collision
kernel and frequency. However, we will not discuss them here.
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The Boltzmann equation has close relations to the systems of fluid dynamics, that is, the
Euler equations and the Navier—Stokes equations. As typical solution profiles for hyperbolic
conservation laws, the solutions to the Euler equations contain three basic wave patterns, i.e.,
shock, rarefaction wave and contact discontinuity. The cases on the nonlinear waves, shocks
and rarefaction waves have been extensively studied, cf. [17,23,26,27,32,33,35,39] and reference
therein. However, there are very few results on contact discontinuities even for the Navier—Stokes
equations, cf. [20,22,28]. One of the reasons is that the contact discontinuity is associated with
the linear degenerate field in the nonlinear system. Therefore, the coupling and interaction with
the nonlinear fields require new techniques in the stability analysis.

As a continuation of our work on the nonlinear stability of wave patterns to the Boltzmann
equation, we will consider the stability of the contact discontinuity in this paper. The stability of
such a linear wave in a nonlinear setting requires some subtle analysis as we will present later
through the intrinsic dissipation of the solution around the solution profile.

For a nontrivial solution profile connecting two different global Maxwellians at x = %00, it
is reasonable and better to decompose the Boltzmann equation and its solution with respect to
the local Maxwellian. This kind of decomposition was introduced in [29,31] by rewriting the
Boltzmann equation into a fluid-type dynamics system with the nonfluid component appearing
in the source terms, coupled with an equation for the time evolution of the nonfluid component.
In fact, set, cf. [29,34],

fx,1,8)=Mx,1,§) +G(x,1,8),

where the local Maxwellian M and G represent the fluid and nonfluid components in the solution,
respectively. Here, the local Maxwellian M is defined by the five conserved quantities, that is,
the mass density p(x,?), momentum m(x,t) = p(x, t)u(x,t), and energy density (E(x,t) +
1/2lu(x, 0)):

p(xst) E.[R3 f(x,t,é)dé,
mi(x,t)EfR3 YiE)f(x,t,6)dE fori=1,2,3, (1.2)
[p(E + L1u)]0e, 1) = o Va(®) £ (x, 1, £) dE,

as

M=My,g/(x,1,8)=

_ 2
P (_w) (1.3)

VQrRO(x,1))3 2RO(x, 1)

Here 6(x, t) is the temperature which is related to the internal energy E by E = (3/2)R6 with
R being the gas constant, and u(x, ¢) is the fluid velocity. It is well known that the collision
invariants ¥ (§) are given by (cf. [6])

Yo6) =1,
Vi)=& fori=1,2,3,
Va(€) = SIE2,
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satisfying

/wj(é)Q(h,g)dS =0, for;j=0,1,2,3,4.

In the sequel, the inner product of %, g in Lg(R3) with respect to a given Maxwellian M is
defined by

1
(h. &) i1 = f ﬁh(é)g(é)dé,

R3

when the integral is well defined. If M is the local Maxwellian M, with respect to the correspond-
ing inner product, the macroscopic space is spanned by the following five pairwise orthogonal
functions

XO(S)_T
xi(€) = E’_“’M fori=1,2,3,

_ |&—u|
X4($)=ﬁ( RO )M
(Xi» xj)=46ij, 1,j=0,1,2,3,4.

Using these five basic functions, we define the macroscopic projection Py and microscopic pro-
jection P as follows:

{ Poh = Zj:o(h, X Xjs
Pih=h— Pyh.

The projections Py and P; are orthogonal and satisfy
PoPy = Po, PP =Py, PyPy =P Py=0.
A function (&) is called microscopic or nonfluid if
/h(é)wj(f;‘)ds =0, j=0,1,2,3,4.
Under this decomposition, the solution f(x, #, &) of the Boltzmann equations satisfies
Pof =M, Pif=G,
and the Boltzmann equation becomes

M+G) +5(M+G)x =20M,G) + Q(G, G),
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which is equivalent to the following fluid-type system for the fluid components (see [29-31] for
details):

Iol’ + (Ioul)x =07
(pu1); + (pu? + p)x = — [ £7G dE,

(pui)s + (purui)y = — [ 616G dé. =23, 14
2 2
(p(e+ ), + (oui(e+ ) + pur) = — [ 361167 Gc di,
or more precisely,
Pt + (pul)x :0’
(pu1)s + (pu? + p)x = (U@ u1)y — [E7Ox dE,
(pui): + (puiui)y = (W(O)uix)x — [£:15OxdE,  i=2,3, (1.5)
2 2
(p(e+15)), + (owr (e +157) + pun),
= (MO)0:)x + §Ourur)x + X (w@uiui)y — [ 55115705 dE,
together with the equation for the nonfluid component G:
Gi+ Pi(§iMy) + P1(51Gx) = LuG + Q(G, G). (1.6)

(1.6) implies that
G=Ly (P& M) + O
with
0 =L, (G + Pi(&1Gx) — O(G, G)).

Here L is the linearized operator of the collision operator with respect to the local Max-
wellian M:

Lyh=QM,h)+ Q(h, M),
and the null space N of Ly, is spanned by the macroscopic variables:
xj.» J=0,1234

Furthermore, there exists a positive constant og(p,u,0) > 0 such that for any function
h(€) e Nt see [18],

(h, Lyh) < —oo{v(1€))h, ),

where v(|£]) is the collision frequency. For the hard sphere and the hard potential with angular
cut-off, the collision frequency v(|£]) has the following property

0 < vo < v(€]) <c(1+ &))"
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for some positive constants vy, ¢ and 0 < 8 < 1. For later use, we list some basic properties of
the projections Py, P; and the linearized collision operator Lj; as follows:

Po(ij)zxij, Pl(l/ij)zo, j=0,1,2,3,4,
LyPi=PLy=Ly, Pi(Q(h h)=Qh,h),

Ly(po) = PoLy =0,  Po(Q(h, h)) =0,

(1//,~M,h) = (ij, Poh), j=0,1,2,3,4,

(h, Lpyg) = (P1h, Ly (P1g)),

(h, Ly} (P1g)) = (L), (Pih), P1g) = (Pih, L} (P1g)).

In the above presentation, we normalize the gas constant R to be 2/3 for simplicity so that
e=06and p = (2/3)p0. Notice also that the viscosity coefficient u(6) > 0 and the heat conduc-
tivity coefficient L(6) > 0 are smooth functions of the temperature 8. And the following relation
holds between these two functions [18]:

15 5
MO) = - Ru(®) = Zu(6), 1.7

after taking R =2/3. (1.7) is used in the following energy estimation. In fact, in our analysis, it
is required that infg A(8) > 5/12sup, n(0) for all 8 under consideration. By (1.7), we know that
this holds when the variation of the temperature is small.

Since our problem is in one-dimensional space x € R, in the macroscopic level, it is more
convenient to rewrite the system and the equation by using the Lagrangian coordinates as in the
study of conservation laws. That is, consider the coordinate transformation:

X
xé/ﬁwjmy t=t.
0

We will still denote the Lagrangian coordinates by (x, ¢) for simplicity of notation. The sys-
tem (1.1) and (1.4) in the Lagrangian coordinates become, respectively,

ui &1
ft_jfx‘i‘;fx:Q(f’f) (1'8)

and

vy —upe =0,
w + py = — [£2G, dE.
Uis=— [£1&6Gyds, =23, (1.9

(e+ M) + (pu)s = — [ 18116126, de.



704 F. Huang, T. Yang / J. Differential Equations 229 (2006) 698—742

Moreover, (1.4) and (1.5) take the form
vy —up =0,
i+ py = $(E%u1,) , — [£201, dE,
uip = (E8u;,) - [£15601dE, =23, (1.10)
(e 155), + (pu = (3200), + 5(“Pun),
+ 0 (P uu), — [ 61161701 dE

and
u 1 1
Gi =~ G+~ PUEIM) + —Pi(61G.) = LuG + Q(G. G). (11D
with
(1
G="Ly'(-PiEM) ) +6
and

1
(~)1=LM1(G1—%GX+;P1($1GX)—Q(G,G)). (1.12)

Since we will investigate the stability of the contact discontinuity for the Boltzmann equation
here, it is worthy to recalling of the contact discontinuity for the hyperbolic conservation laws.
For the Euler equations

Vr — Ulx =Oa
uy + px =0,
ujy =0,
2
(e+15), + (pup)x =0,
with a given Riemann data
{ v,u,0)(x,0)=@w_,0,0-), ifx<0,
(w,u,0)(x,0)=(vy,0,04), ifx >0,

where u = (u1, uz,u3), and v+ > 0 and 6+ > 0 are given constants, the solution is a contact
discontinuity (v¢, u“, 6¢)(x, t) located at x = 0 given by

.0.60), 0,
(€, 4. 0) (x. 1) = @ ) x< (1.13)
vy,0,04), x>0,

provided that

RO
po=——=pp=—m=. (1.14)
V- Uy
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Since the Boltzmann equation contains the viscosity and heat conductivity in the macroscopic
level as for the Navier—Stokes equations, the above contact discontinuity spreads out and be-
comes smooth with these two dissipative effects. Indeed, as shown in Section 2, it behaves like
a nonlinear diffusion wave. Furthermore, coming from the microscopic effect in the Boltzmann
equation and the slow decay of the nonlinear diffusion wave, the definition of the contact wave
for the Boltzmann equation is more complicated than the one for the Navier—Stokes equations
which includes some higher order terms from the nonfluid component besides the viscosity and
heat conductivity. Without giving the detailed construction of this profile in the introduction, we
now simply denote the profile by (5, it, 8)(x, t). Detailed definition will be given in the next
section.

To state our main theorem, we need to introduce the following notations. First, denote the
perturbation around the above profile by

dx,)=v—b, Y. OH=u—i, (x,1)=0-4. (1.15)

Then set

¢(x,t)=/¢(y,t)dy, Yx, 0= f v(y.0)dy,

_ [ wP? o jap
W(x,t):/(e+——e——)(y,t)dy. (1.16)

Since the Boltzmann equation (1.10) and the system for the contact wave defined later are in the
conservation forms, the quantities (@, ¥, W) can be defined in some Sobolev space if the initial
perturbation has zero mass, i.e., @ (00, 0) = ¥ (00, 0) = W (00, 0) = 0. The stability with general
initial perturbation for the contact discontinuity is left for future investigation. Notice that even
for shock wave to the Boltzmann equation, the stability with nonzero mass perturbation is also
unsolved.

The main theorem can be stated as follows.

Theorem 1.1. Let (D, i1, 0)(x, 1) be the contact wave with strength 6 = |04+ — 0_| < 8¢ for some
small positive constant 8. Then there exist a global Maxwellian My = M, 4, 0,1 and a small
positive constant €, such that if the initial data satisfies

<e, (1.17)

Heow s+ X1 iz g+ 2 Haath(Lg(ﬁ\Z))”t:o

lor|=2 0<lol<1

then the Cauchy problem (1.8) admits a unique global solution f(x,t, &) satisfying

O 1 E) = Ms = a1l (@) o201y, < Cle+80)(14+1)"14,
A .10z LE () (1.18)

(@, ®, W)l Lo < C(e + 80) (1 4 1)V /8+CoV5

where C and Cy are positive constants. Here f(€) € Lg(\/;ﬁ) means that 3;% € Lg (R3).
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Remark 1.2. The estimate for the higher derivative can be obtained similarly, provided that the
initial data has the same order regularity.

The stability for the contact discontinuity is a long lasting open problem because of its special
linear degenerate property. Under some restrictive conditions, the stability was discussed in [28].
For the system of Navier—Stokes equations, the stability with a free boundary as particle path was
studied in [20,22], and the Cauchy problem with zero perturbation mass in [21]. There are two
main analytical difficulties for stability of the contact discontinuity. One is that the space deriva-
tive of the nonlinear diffusion wave has no definite sign unlike the shock profile and rarefaction
wave. The other is that the time decay of the background profile behaves like a solution to a heat
equation, which is slower than the one for the rarefaction wave.

There are two main steps to overcome these difficulties. First, unlike the nonlinear diffusion
waves defined for the Navier—Stokes equations [20], our Boltzmann profile includes more terms
in the definition of the diffusion wave taken from the nonfluid component G and its derivatives.
Such a nonlinear diffusion equation will be introduced in Section 2 with the properties of the
solutions given in various norm spaces. Then, in Section 4, we will show that there is an intrinsic
dissipation associated with the profile besides those from the viscosity and heat conductivity. Let
us try to explain this intuitively as follows. The laws of Boyle and Gay-Lussac for ideal gas give
p = Rp6 and for a contact discontinuity we also have 1 = 0. To view this in the perturbation
equations from the quantities defined in (1.16), these two quantities correspond to the two linear
combination of the antiderivatives of the perturbation, that is:

_ 2 )
b= ——W, by =. (1.19)
3p+

Since the solution approaches to the contact wave time asymptotically when the nonlinear waves
spread out, the above two quantities b1 and b3 should approach to zero as time tends to infinity.
This implies that there is some dissipative mechanism on these two quantities. In fact, this kind
of dissipation takes the form of

// 10,1 (b7 + b3) dx dt, (1.20)

where 6 is the temperature function in the definition of the contact wave. It is shown in (4.25)
that the intrinsic dissipation takes another form which is exactly equivalent to (1.20). Here and
in the sequel, ['dx means the integral [ dx, [d& means [p3d& and [dr means f0°° dt for
simplicity of notations. With this dissipation and those classical ones from the viscosity and heat
conductivity, we can close the energy estimates in some Sobolev space and thus obtain the time
asymptotic stability with a convergence rate.

Moreover, even for the Navier—Stokes equations, so far there is no convergence rates obtained
for the shock wave and rarefaction wave. The convergence rate of the solution to the Boltzmann
equation for the contact wave given in Theorem 1.1 is quite particular to this kind of degenerate
waves. Hence, even though the convergence rate given here may not be optimal, it is quite rea-
sonable in the setting of the contact waves in the fully nonlinear system. As we can see in the fol-
lowing analysis, the lowest order estimate may grow in time. The stability and decay rate in time
are obtained by the compensation of the time decay in higher order derivatives estimates. Fur-
thermore, the growth rate of the lowest order to the contact wave depends on the strength of the
contact wave. Therefore, the smallness assumption on the wave strength is essential in this paper.
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At the end of the introduction, we should mention that the Boltzmann equation has been
extensively studied and important contribution has been made in many aspects, such as the renor-
malized solution, fluid dynamic limits, global existence around a global Maxwellian, regularity
of the solutions, cf. [1-5,7-15,24,25,36,37,40] and references therein. Since they are not directly
related to our problem considered here, we will not discuss them in details. On the other hand,
the energy method making uses of the spectrum properties of the linearized operator which was
from Grad to Ukai gives a good description of the perturbation of a global Maxwellian, cf. [18,
38,41,42]. Recently, the energy method based on the decomposition around a global Maxwellian
is also introduced in [19] for the problems on space periodic solutions with or without forces.

The rest of the paper will be arranged as follows. In Section 2, the Boltzmann contact wave is
constructed. In Section 3, the Boltzmann equation is reformulated to an integrated system. And
Section 4 is devoted to the lower order estimate, while Section 5 is for the derivative estimate.
The stability and convergence rate of the contact discontinuity for the Boltzmann equation will
be given in Section 6.

2. Contact wave for the Boltzmann equation

We now construct the contact wave (¥, i, 0)(x, ¢) for the Boltzmann equation. First let us
recall the contact wave (v**, u?*, 0"*) for the one-dimensional Navier—Stokes equations intro-
duced in [20]. Corresponding to the fluid-type system from the Boltzmann equation, the system
of the one-dimensional Navier—Stokes equations is

vy —uiy =0,
wie+ pe = 5(9%uyy) @1
(e +5), + (pune = (226.), +4(“Lusury),.

v
Notice that (2.1) is exactly (1.10) if ® = 0. In this situation, the temperature function 6"° of the
contact wave can be defined as a self-similar solution 8™ (x /+/1 + t ) to the following nonlinear
diffusion equation

6/ = (a(6™)0y") .. 0" (—o0,1)=6_, 6™ (+00,1) =6, (22

where the function a(0) = (9p+1(60))/(106) > 0. Here, we have used the assumption of poly-
tropic gas with y = 5/3 for monatomic gas. In fact, this nonlinear diffusion equation is derived
from the first and the third equation of (2.1) by letting RO™S /v = p™ = p_, and dropping the
faster time-decay terms u/*u'{; and ;—L(“Eﬁs ) u'u'})x, see [20] for details. Let § = [0 —6_], it

is easy to check that

X2
02| = 0() (1 + z)—%eWiawimw, as x — +oo. (2.3)

The velocity u'f* is then defined as %a(em‘)egs with the decay rate 1/+/1 +¢. And v’ = ﬁ.
For the Boltzmann equation, if we still use the Navier—Stokes profile (v"*, u'f*, 0"*), some

non-f-integrable error terms, coming from the nonfluid component, exist for the integrated equa-
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tion for (@, ¥, W). To see this, we first notice that the principle part of the nonfluid component
in the solution G and part of it @1, defined in (1.12), are given by

w—lL—l(P(gM))— ! e (5= ”'29 tE-u (2.4)
_U M 1(S1 My —R 0 M 1 X x .

and
1
O = ( P& 1wy) — Q(w, w)>, (2.5)

respectively. If we substitute (v"*, u'f*, ") into (2.5), then ()1 decays with the rate - which is
nonintegrable in time and not easy to be estimated. To eliminate these non-¢- 1ntegrable terms we
instead use the Boltzmann contact wave, which will be constructed below. First let us distinguish
the leading part coming from the nonfluid component. We rewrite the Boltzmann equation (1.10)
as

vy — Uiy =0,
0 2
wie+ px = 3(4Pun), - 35 [ £76]

wi = (Mu,) ~ Y2, [660] 5. =23, 0
(e+ M), + (pui)e = (2906,) — 2| [Le1EP0] d& + His,
with
Gi—LyG=———p {&('g_ 4 oGy tt- (u—u)) }
R 0 X X
1 _
+“;‘GX—EPI@IGJCHQ(G,G)—G,, Q.7)
where
2 .
1=Lj, I(Gz——Ger Pi(£1Gy) — Q(G, G>)=Z@f,
1
0] =L, 1<UP1<SIG ) — Q(G, G))
=1L, 1(Gt——Gx+ Pi(£1Gy) —20(G, G) — Q(5,6>),
G=_1r-1lp £ & —ul? Op +& ity |M
RO M 1 1 20 X X )
N _ 4 (o 3 T u®
G=G-3, H1=§<ME})u1u1x>+§[¥uiui{|, (2.8)

where the function (v, i1, ) (x, t) is the contact wave which will be constructed later.
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Since the velocity u decays faster than (v, ) in time, the leading part of the energy equation
in (2.6) is

A(0) 1 2 1
O +pvy=—"0) — | 616170, d§. (2.9)
v . 2
By the definition of ©!, we have

1 _ _ _ _
—[ §$1|f§|2@11 d€ = N1+ Fi,  Ni= f110:0x + fiave0x + f1302 + f140sx,
|Fil = O ((Jvxl + 10x] 4 10x] + lux| + litx|) it | 4 lex|16x] + litxx ]), (2.10)

where the coefficients fi;, j = 1,2,3,4, are smooth functions of (v, u, #). Motivated by the
work on the Navier—Stokes equations, we expect that the contact wave (v, i, ) for the Boltz-
mann equation satisfies p =2/30 /0 ~ p as t is large. Thus, by choosing only the leading term
in (2.9), we have

3

6, = (a(0)6:) + S Nix. 2.11)
where a(f) is defined in (2.2). To include more microscopic effect, let the contact wave
0~ 0" (x//1+1) + 0™ (x,1), where 0"/ (x, 1) represents the part of the nonlinear diffusion
wave coming from the nonfluid component not appearing in the Navier—Stokes level. Moreover,

nf ; 1 X : ; nf

the term 6"/ (x, t) in the form «/l_+tD] («/l_+t) is from N7 in (2.10). Note that 8™/ (x, t) decays
faster than 6" (x, ) so that it can be viewed as the perturbation around the Navier—Stokes profile
6 (x, t). To construct 0"/ (x, 1), we linearize Eq. (2.11) around 0™ (x, t) and drop all the higher
order terms. This leads to a linear equation for 0"/ (x, 1) from (2.2)

0 = (a(0")0), + (@ (07)000"), + 3 R .12)

where N1 = (fi1 + 5= fi2 + f13)(01)* + f1a05 with fij = f1;(v™,0,6™), j =1,2,3,4.
Integrating (2.12) with respect to x yields

3~
g1 = a(@ns)glxx —i—a/(@m)@;”g]x + gN], (2.13)

where

X

gi(x, 1) = f 0" (x,t)dx.

—00

Note that N takes the form 1+-t Dg(ﬁ ) and satisfies the property (2.3). It is straightforward to

check that there exists a self-similar solution g1 (1), n = x/+/1 + ¢, for (2.13) with the boundary
condition gi(—o0,t) =d;, g1(+00,t) =d; + §1. Here d| can be any given constant and §;
satisfies 0 < &1 < 8. It is worthy to pointing out that even though the function g (x, ) depends
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on the constants d; and 8;, 6" (x,r) = g1x(x,1) = 0 as t — oo which gives the same time
asymptotic state. That is, the choice of the constants d; and §; has no influence on our main
result as long as 0 < §; < §. From now on, we fix d; and 81 so that the function g is uniformly
determined. And the derivative g1, = 6"/ satisfies the property (2.3).

Now we follow the same procedure to construct the second and third components of the
velocity of the contact wave denoted by u;, i =2, 3. Similarly, the leading part of the equation
for u; coming from (2.6) is

2
i = (%;M) - f £§150) dk. (2.14)

Fori =2, 3, we have

—/slsi@ﬁ dE=Ni+Fi, Ny = firsdy + firveds + fisd2 + fiabor,
(Ei = O)((Jux | + 1621+ 185 + ltta] + i) i 4+ xl Bl + lial)s (2215

with smooth functions f;;,i =2,3, j =1, 2,3, 4. Notice that the symbols N; and F;, i =2, 3,
used here are for the convenience of notation. And N and F; defined in (2.10) are not the case
wheni = 1.

From (2.14) and (2.15), we expect that the contact wave u; (x, t) takes the form (1/+/1+1¢) x
hi(x/+/1+1) and satisfies the following linear equation:

_ 0"%) _ ~ ,
Mit: (%'H}c) +Ni)€a l 22’3a (216)
X

where N; = (fi1 + 50— fiz + fi3) (02°)> + fuabls, fij = fij(0"5,0,6™),i=2,3, j =1,2,3,4.
Integrating (2.16) with respect to x, we have

ns
w= P g+ H, @17)
where g;(x,t) = ffooﬁ,-(x, t)dx. For given 6", it is easy to check that there exists a unique
solution g; () with n = x/+/1 + ¢ satisfying g; (—oo, t) = d;, gi(4+00,1) =d; + §;, where d; can
be any fixed constants and §; satisfies 0 < §; < §. As we explained before, the choice of d; and §;
is not important to our result. From (2.3), it is easy to check that the solution it; = gjx, i =2, 3,
has the following property

2
liii] = |gix| = O)(1 +1)"2¢ PO | a5 x — o0, (2.18)

where b(6+) = max{a(6+), 3f;%z,u(ﬁi)}.
In summary, we can define the contact wave (v, i, 9) for the Boltzmann equation as follows.

To satisfy the conservation of mass, we expect

B — i1y = 0. (2.19)
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By letting v = ﬁ(@”s +6™), we have
2 ns\pns ns\pnf ns\pns gnf 2 <~
—[a(0")0} +a(6™)0x" +4a'(6™)07° 6™ | + —N. (2.20)
T Sp+

However, by plugging (2.20) into the momentum equation of (2.6), we have a nonconservative
term containing N 1:- To avoid this, we define

i = 3127 [a(67)67* +a(67)6 +a'(67)01°0™ ]. 2.21)
+

Similarly, to avoid the nonconservative term (|u |2), in the energy equation, we set
o ns nf 1 _ 2
0=6"+6 —§|u| . (2.22)

Therefore, the Boltzmann contact wave (v, u, ) is finally defined as:

2

b= — (" +9nf ,

=g, )

i = 2 [ (Gnv)env +a(0nv)9"f+a (an)emenf]
3p+

i =gix, i=2,3,

, 1
=0 0" — §|ﬁ|2, (2.23)

where 6" is given by (2.2), onf by (2.12) and g;, i =2, 3, by (2.17).

Notice that even though the Boltzmann profile (v, u, 6) includes some other nonfluid terms,
this profile and the (v"**, u™%, ™) for the Navier—Stokes are equivalent as ¢ tends to infinity be-
cause all the extra nonfluid terms decay with the rate 1/+/1 + ¢. In another word, the contact wave
(v, i1, ) is also an appropriate approximation to the original contact discontinuity (v, u¢, 6¢) for
the Euler equations. In addition, a direct but tedious computation shows that

T — i =%ﬁ
— — 4
=% + Ry,
L_t p()3 1), Ko (2.24)
uit:( i ) +NIX+RIX9 i=2,3,
( i ) +(ﬁﬁ1)x—((79_) _%ﬁ1x+ﬁlx+ﬁ1x+R4m
where
2 ) _
R = 5 (o0 + (a6 1+ 5= e = 5 (A,

x2
=0@)(1+1)"le FET | a5 x| > o0, (2.25)
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3p+n@™)  pn@®71. &~
Ri:[ pJ;Q"S -3 uix + Ni — N
3 _L
=0)(1+1)"2e *OI+ - 75 |x| = 00, i =2,3, (2.26)

Ra=[ 300 + (o)l + o (o)) - 2, |

+(p—ppir+N — N, —H,
,(2
— 0@)(1+1) 3 T, a5 |x| — oo, (2.27)

X2
Ni=0@)(1 + 1)~ e @00 | a5 x| — 00, i =1,2,3, (2.28)

with ¢(6+) = max{a(6+), %b(@i)}, Ni,i=1,2,3,and H; are the corresponding functions de-
fined in (2.8), (2.10) and (2.15) by substituting the variable (v, u, ) by the contact wave profile
(v, u, 6‘_). It is worthy to pointing out that the time-decay rate of R;, i =2,3,4, is of order
(1 + 1)73/2 which is much better than (1 + r)~'. This is the main improvement when we use
the Boltzmann contact wave instead of the Navier—Stokes profile. Furthermore, even though the
time-decay rate of Ry is still (1+ t)_l, it is sufficient to give the desired a priori estimates through
a subtle analysis coming from the intrinsic dissipation mechanism mentioned in the introduction
because it appears in the first equation of the momentum equations.

3. Reformulated system

To prove the main theorem, we now derive the system for the perturbation (¢, ¥, ¢) around
the contact wave (v, u, 6). Set

p=v—1, V=u—i, ;=60-0, 3.1)

and

cD:/(b(y,t)dy, W= / ¥ (y,1)dy,

o wP P
W_/(e—i-T—e—T)(y,t)dy. 3.2)

—00

As mentioned before, we impose @ (00, 0) = ¥ (00, 0) = W (o0, 0) = 0 so that the quantities
@, ¥ and W can be defined in some Sobolev space. The initial data satisfying this condition is
called zero mass perturbation condition. Naturally, we have (¢, V) = (@, ¥), and { + %Wx 124+

S Wi =W,
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Subtracting (2.24) from Eq. (2.6) and integrating the resulting system yield

P+
FE0y, — 390, — Y3, [£10] d& — Ry,
W =0y, OGN, — N+ F, — [6502ds —R;, i=23, (33
W, + puy — pu1=@9x—x(€)0+ IN\+ N —N|+F +H —H,
— [ 3111707 dE — Ry,

Since the variable W is the antiderivative of the total energy, not the temperature, it is more
convenient to introduce another variable

W=W—i¥. (3.4)
It follows that
. 1 ,’ _ -
=W, -7, WlthY=§|lI/x| — U + U Wy + U3y 3.5)

Using the new variable W and linearizing the left-hand side of the system (3.3) by using the
formula (2.8) for Hy, we have

¢1_W1X:_i1’\719
= Py 2 W, = Au@ g, () @)y,

—Z, Jeolde+n+ Y — R =49y, 4+ 0,
i = ilI’ixx-i-(w - M(e))“ix‘|‘Ni —N;+F
— [£1§0%dE — R = “(Q)WZXX+Q,-, i=23, (3.6)
W+ pyn, =2 Qw4 (2O _20yg | IF, L N, N,
+ P+ et g 53 Oy D ] — Ry — i ¥+
— [ L&EPO dE + iR+ Y2, [ €20 dt — 2Dy,
= 20w, + 2N + 0u.

where
n=t=Pry _ |:p A+ %@X — %(9 —9‘)} = 0(W)(@2+ (0 — )+ [al*). (3.7)
J=(p+ — P)Wix = O() (P2 +¥E, + (0 — 0)* + lu]*), (3.8)

400 @ 2
Q1=§<M() ”()> - nglofds+11+3—y R, (3.9)

v
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0 0
Qi:(u() u ()

)u,x—i-N Ni+F — /gls,@lds Ri, i=2,3, (3.10)
v

INC A0
Q4_( ©®) @)

4wy,
———>9 TN = W F e O
v v 3

Tllflx — Ry —u W1 + i Ry

3
2] 0
+Z[“i)mu,~x——“;)‘-‘l / SEEPO2dE +

i=2
2
+ﬁ12/§f@{d§—@Y (3.11)
j=1

In the next section, we will work on the reformulated system (3.6). Since the local existence
follows similarly from the discussions in [19,41], we will omit it here for brevity. To prove the
global existence, we only need to close the following a priori estimate:

N(T)= sup {u(cb W W)+ @ O

\t\

o 2 o 2
//( (aMG) s (aMf) dsdx)}@%’ .

* la|=2

where &g is positive small constant depending on the initial data and M, is a global Maxwellian
chosen later for any T > 0. Here, it is worthy to pointing out that (3.12) also gives the a priori
assumptions on ||(¢¢, ¥y, &)|l, 10% (o, ¥, ¢)|| and ]f |0%G |2/ M, d€ dx (la| = 2). In fact, from
(1.9) and (3.12), we have

G2
(e, v 20| < C(|| (@, ¥es 20| +ff o dEdx+8701 +t>—%>

< C(go +6)2, (3.13)

</§fo dé) / G de (3.14)

| @0 v 0| < €| roue, 00| + €821 +1)73,

| e Vs 20| < Clrs ur, 00) |+ €820 + 1), (3.15)

where we have used

and

To derive the a priori assumption on ||3% (¢, ¥, £)|| (|e| = 2), we use the definition of p, m = pu
and p(0 + (1/2)|u|2). Let |a| =2, by (1.2), we obtain

" AN 199 £ 12 5
3% p,m,p 0+§|u| C i de dx < Ce}. (3.16)
%
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This yields that

ERCRZ ;)”2 < Ceg+C8*(1+1)73? < Cleg+8)?, ol =2. (3.17)
Finally, we have

a2 o r2 o 2
[ g [[IE g [ [

<C(eo+6)2,  la|=2. (3.18)

4. Lower-order estimate

Before proving the a priori estimate (3.12), we list the following basic lemmas based on the
celebrated H-theorem for later use. The first lemma is from [16].

Lemma 4.1. There exists a positive constant C > 0 such that

—1 2 2 2 2 2
/V(Iél) MQ(f,g) d&gc{/l)ﬂi]')f dé/gﬁJr/fﬁdé/U('i';g }
R3 R3 R3

R3 R3

where M can be any Maxwellian so that the above integrals are well defined.

Based on Lemma 4.1, the following three lemmas are proved in [30]. The proofs are straight-
forward by using the Cauchy inequality.

Lemma 4.2. If 6/2 < 0, < 0, then there exist two positive constants 6 = 6 (p, U, 0; px, Uy, 0y)
> 0and no=no(p, u,0; px, Ux, 0x) > 0 such that if |p — px| + [ — ux| + 10 — Ox| < no, we have
for h(¢) e N+,

hLyh _ [ v(EDR?
- [ d§>a/ T de (@.1)
R3 R3

where My = M, . 6,1 and the definition of M|, 4.6 can be found in (1.3).

Lemma 4.3. Under the assumptions in Lemma 4.2, we have

_ _ —122
s SR hPdE <672 [y MR dg,

- “4.2)
fro D\ Lo n 2 d < 572 o YUEDTE g

for each h(§) e N*.
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Lemma 4.4. Under the conditions in Lemma 4.2, there exists a constant C > 0 such that for
positive constants k and A, we have

P k k A 2 )\‘—l 2
‘/ 1P1(&] gz)d%_ /'g1|$| g ‘ C/ lg1l _;/1 122l de.
R3 §

We are now ready to derive the lower order estimates. Multiplying (3.6)1 by p+ @, (3.6)2 by
v, (3.6)3 by ¥;, (3.6)4 by % W respectively and adding all the resulting equations, we have

— 3
P+ -2 1 2 Voo 1 2
—@ —W -y — /8
(2 *3 *3 1+2;’>

P+ ;
- 3 -
4u®) w(®) 2)»(9) 2 |
=——Ys — w2 N —W 4 1
3 IZ:; o 3pd +5 ( +3P+ >+2vt i+ve
4 () 2. (1) 21(9) :
—(*E2) v, - W0 — WW 07
( 3 )x 1¥1x ;( 5 )X i ¥ix (3P+1_)>x x+i§2:Q1 i
2
+—WQOs+(-- ). 4.3)
3p+

Here and in the sequel the notation (- - -), represents the term in the conservative form so that it
vanishes after integration. Since it has no effect on the energy estimates, we do not write them
out in details for clear presentation.

Note that the term Q¥ contains (1 + t)’1 Y1 which cannot be controlled by the dissipation
from the viscosity and heat conductivity. So is the term N 1(—=D +2W/3Bp+)). As we will see
later, an intrinsic dissipation associated with the contact discontinuity is derived by the diag-
onal method and weighted energy estimate to control the above two terms. Let us consider the
equations for the conservation of the mass, the first component of velocity and energy by defining

m= (P, ¥, W), 4.4)

where (-,-,-)" means the transpose of the vector (-,-,-), then from (3.6), we have

m; + Aymy = Aymy, + A3, (4.5)
where
0 -1 0 0 0 0
a=[-z= 0o 2|, a=|0 %2 o [, 4.6)
0 pr O 0o o0 X

CI‘

2 ~ 2 ~\!
Az=|————N1,01,04+-N1 ). 4.7
5p+ 5
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Direct computation shows that the eigenvalues of the matrix A are A1, 0, A3. Here A3 = —A| =
V/3p+/(3v). The corresponding normalized left and right eigenvectors can be chosen as

11=\/3/10(—1,—i,i>, zzz\/%(m,pi),
+

33 3p+
5 2
l3=\/3/10<—1,—,—>, 4.8)
343 3p+
3 t
r1:V3/10(_17_)‘37p+)t7 r2:\/2/5<1’07 Ep-'r) )
r3=+/3/10(—1, 23, p)". 4.9
Hence,
A 0 O
lirj=5ij, i,j=1,2,3, LA1R=A=<() 0 0)’ (4.10)
0 0 A3
where
L=, Lk, R =(r1,r2,73).
Let

B = Lm = (b1, b2, b3), (4.11)
then multiplying Eqs. (4.5) by the matrix L yields that
B+ AB, =LARB,x +2LA>R,B, + [(Lt + ALY)R+ LAszx]B + LA3. (4.12)

A direct computation shows that

b1 b1z b3
LA2R=A4=| b1 bn b12|, (4.13)
biz b by
with
2u(6 3 .
vbll_%+ 2a(@), abu:‘/?—x(e), (4.14)
2u(6 3 _
vbm——% —x(@) B = h(0). (4.15)

It is easy to check that the symmetric matrix A4 is nonnegative and its eigenvalues are

0, 4%9), +0) . From (4.12), we shall use a weighted energy method to derive the intrinsic dis-

sipation. For definiteness, we assume that 7° > 0. The case when 6}° < 0 can be discussed
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similarly. Let v; = 6™/6,, then |v; — 1| < C§. Multiplying (4.12) by B = (vib1, ba, vf”bg)
with a large positive integer n which will be chosen later, we have

2 v " VY 2 (v 2L % B
b + b2+—b3 — 7 bl — T b3+BxA4Bx+BA4xBx
t t t

n—1 —n—1

(ni1viy + vid)bT +

(nA3v1x — V1A320)D3 + (- )y

=2BLA>RBy + B[L,R+ LA>R]B+ BAL,RB + BLA3. (4.16)
Let
» 1 7 1<
+ 52 2 2 2
Ei= =02+ —W?+-w24+-) w?)d
! /(2 HETR +21+2;’>x
Voo Lo v,
40 0 2,\9
Kl_/< ne),, Z“() ()W2+BA4B)d (4.18)
3p
Note that

V(E — B),A4B, dx

gca/|3x|2dx+caf|B|2|9;:S|2dx
<C8(1+1)7'E| 4+ C8K, +C8/|<Dx|2dx. (4.19)

Similarly, the terms in the last second lin_e of (4.3), EAAXBX, BLA>R,B, and B[L;R +
LA>R:x]B satisfy the same estimate. For BAL,RB and BLA3, we need to use the explicit
presentation. By the choice of the characteristic matrix L and R, we have

1 1 0 -1
ALR= 3 (0 0 0 ) , (4.20)
1 0 -1
\/ (N1 + Q4) — %‘
LA; = 20 . .21

2 1 (%7 5
\/EE(Nl + Q4)+ g%

Thus

_ 1
BAL.RB = Ekgx(v’fb% +v;""b1b3 — v}b1b3 — v "b3), (4.22)

_ 2 1 ~
BLA3 =,/ EP—NI (Vb1 + vy "'b3) + qivi b1 + q2by + q3v] b3, (4.23)
+
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where

71 50, 2 04 21 50
J _ 2 = [2E — S o[22 @424
N=V15 5,2 Ve, D=V5, BTV, P eg, s ¢

Combine (4.3), (4.16), (4.19), (4.22), (4.23) and use the Cauchy inequality, we have by choosing
n sufficiently large,

E l ns 2 2 —1
ut+ K+ 07°|(bT + b3) dx < CS(1 + 1)~ (E1 + 1) + CSK,
+C5/q>§dx+1nf, (4.25)

where

_ 3 2
I,,f=/vQ1W1dx+/ZQilPidx+/—WQ4dx
i=2 3p+
+/(q1vq’b1 +q2b2+q3v1_”b3)dx. (4.26)

Here we have used the fact that

~®+ —W V3/6(by + b3), (4.27)
and
/|1V1|(|b1| + |b3]) dx < c5/|9;”|(b% +b3)dx +C8(1+1)7", (4.28)

and for n large enough,

1 1 _
—Ev'f Ynaviy +2viy) + SV "N (nazvix — 201A3¢) — BALLRB > 207 (b3 + b3).
(4.29)

Even though Q; contains the term R; with the decay rate 1+—z’ the terms in (4.26) involving Q1
have factor by or b3 because

=/3/10A3(b3 — by). (4.30)

Thus the terms v Q1¥1, q1v{by and g3v; "b3 can be controlled by the intrinsic dissipation on by
and b3 as shown later. The estimates on the other terms involving Q;, i = 2, 3, 4, are straight-
forward because from (2.25)—(2.28) and (3.10), (3.11), the lowest decay terms of Q; decay as
1+ t)_3/ 2 For brevity, we only estimate f v01¥dx and f q2by dx as follows for illustration.
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Estimation on [0 QW) dx

From (4.30), we have

/f)Q}'J’] dxz\/%/ﬁQ])@(ln—b])dx.

Here we only consider the integral

I :/l_)Ql)\3b1 dx,

(4.31)

(4.32)

and the other term in (4.31) can be estimated similarly. By the definition of Q1 in (3.9), we have

30
—/ﬁ,\3b1R1 dx—/ﬁ,\3b1/g12@1d§dx

=1 +I{ + 1.

4 ] ] 2
I = /mgbl[g(#—“; )>u1x+11+—Y]dx

Since

/ Ib1Y|dx < C(S+e0)|Wel> +C5(1 + 1) E,
and

/ b1 Jildx < Ceo(l|Px)1* + K1) + C8(1 +t)_%,

from (3.7) and the Cauchy inequality, it is straightforward to show that

3
|1} < C©+e0) (K1 + 1D 11?) + CSA+ 1) E; + C85(1+1)72 + Cegllyric 1>

On the other hand, from (2.25), we have

x2
Ri=0@)(1+1)" e % | a5 |x| — 0.

From (2.3), 6° satisfies

XZ
1675 = 0(8)(1 + 1) L& TETN _ ag |x| - oo.

Thus, by (1.7) and the assumption on the weak contact wave, we have

5
AO1) > EM(%).

(4.33)

(4.34)

(4.35)
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(4.35) implies that a(6+) > (1/2)c(6+) which leads to
17| <C5/|9QS|b%dx+Ca(1+t)—l. (4.36)

We now estimate the integral 1 13 Let M, be a global Maxwellian with the state (o4, U, 6)
satisfying 1/20 < 0, < 60 and |p — p«| + |4 — uy| + |0 — 64| < no so that Lemma 4.2 holds.
From (2.8),

/vk3b1f$1@ dgdx—/v,\3b1/gl Ordedx = L' + I}%. (4.37)

The estimation on [ ]3 Iis straightforward by using the intrinsic dissipation on by and (2.8) as
follows:

1 _ _
1= ’fﬁksblffﬁLv[;Pl@lGx)— Q(G,G)} d€ dx

Cf|b1|(!<ﬁx,éx)|2+|(axx,éxx>|+|(ax,éx>||(vx,ux,ex)|)dx
ca/|9;”yb%dx+ca(1 +1)7! +C8||(¢X,1/fx,§x)||2. (4.38)

The estimation on [ 132 is more complicated and it can be done by dividing it into five parts as

follows. From (2.8), we have

1132:_fmbl/gfL;;(Gt)dgdx+/ﬁ,\3b1/gfﬂ o (G dE dx

/ux3b1—fsl [P §1G )]dédx+2/vk3b1/§1 0(G, G)|d€ dx

/ UA3by / £20,}'[0(G, G)]dg dx = 2132'. (4.39)
For the integral 1 1321 , we have
= /vkgblfél 1) dE dx—/vkgln/él o (G dE dx
=2 (4.40)

Note that the linearized operator LA_,,1 satisfies, for any h € N+,

(Lith), = Ly ) =213 {0 (L3 0, 1)),
(Ly'h), =Ly (h) —2L3 { O(Ly b, M)} (4.41)
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Then we have
2 =_fﬁ,\3b1 /gf(L;jG)tdgdx—zfmblfst;j{Q(L;é,Mt)}dgdx

=—</m3b1/§$LM‘c~;dsdx> +f(m3b1),/512L;4‘(~;dgdx
t

—2/ﬁk3b1/élzL;,Il{Q(L;llé,M,)}dex. (4.42)

The Holder inequality and Lemma 4.3 yield

‘f&fr c/sf‘v(|s|)*‘M*ds/—”;f')mjéfds<cf "('g')|G| dt.

(4.43)
Moreover, from Lemmas 4.1-4.3, we have

[ o0 Gm)
<C/V(|$|)}L { (L;,Ilé,Mt)}‘zdg
1 ~
C/V(|§|) ’Q(L_IG Mt)’ dE < /U;f')’L;/Ilezdé/V§5|)|Mt|2d§

<c(v3+u?+93)/v(|§|)lGl d. (4.44)

N

Combining (4.22)—(4.44) gives

21 ¢ (/v)»3b1/§1L Gdédx) +C8(1+1)72 +C81/|b1t| dx
t

4Gy [ [P dg ax + ool v ol (4.45)

where ¢ is small positive constant chosen later. By the definition of G in (2.8), similar to the
estimate in (4.38), we have

117212| —'/vkaln/él (G de dx| <

<CSL+0E +C8(1+1)"2 +C8 | (s vr, ;t)|| . (4.46)

/|b1| |Gtxe, Oxe) | + |G, 00) || (vr, g, 6,)]) dx
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Therefore, (4.45) and (4.46) imply

e <—</m3b1fgqu(~;dgdx> +C5(l+t)’1E1+C81/|b1,|2dx
t

v(IED) ~ _3 2
+ Cq, m |GI*dEdx + CS(1L+1)"2 4+ C(8 +0)||(dr, Y1, &) |- (4.47)

The estimates for 1132i, i =2,4,5, are relatively easy by using the Cauchy inequality and

Lemmas 4.1-4.3 which are given as follows. First, we have

1132| < ff l)(m)lG 2 dt dx —i—C/bluldx

<C8(1+0)7'E| + CeoK +C//%|Gx|2dédx. (4.48)
Since
[nite@.o)
gcfv(|$|)|L—1{Q(G &) as < /v(|§|) 0.5 as
<c [HRRIL G0 as [ U Gras < cla. o [ UNGR s @49)
and

o 1/2
’/gl [0(G, ) dé’ ( U(E')\L {Q(G,G)}|2dé)

1 1/2
<c</”('§') 06,8 dé) <c [P iGrae. (4.50)

it is straightforward to show that

|24+ 5| gC(6+so)f/%|5|2d$dx+C8(l+t)_1E1. 4.51)
ES

The estimate on [ 1323 is similar to the one for / 1321. First,
4
PiEG) ={PiEG)}, + D [E1G, xj)P1(X)x)- (4.52)

j=0

From (4.41) and Lemmas 4.1-4.4, we have
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17— / ( x3b1) / 2L, [P1(615)] dt dx
5 4
- / by / st;;[ZaG Xj Pl(x,x)] dé dx
_2/%X3b1/$12L;/11{ v [PLEG)], M)} de dx

! // %Iéﬁdm +C8(1+0)7"Er+ Cleo + &) (K1 + [ 0x])

+ CSO” (@x, Yxs Ex (4.53)
where we have used the fact that
~ 2 v(|E)G?
G, xi)|"<c | ==—uc.
G <c [ 2505 e
By (4.39), (4.47), (4.48), (4.51) and (4.53), we have
32 - 2713 -1 2
I g—(fv,\3b1/§1LMGdgdx> +C85(1+1) E1+Cs1/|b1,| dx
t
V(&) ~ v(|&])
+C(80+81)(K1+||¢>x||2)+C51/ 1\|4i| 2dedx / A|Z|
+CG+en) Y 09 . O +Co0+1)73, (4.54)
lx|=1
which implies by (4.37) and (4.38) that
< _</m3b1 fst;ﬁdex) +C8(1+07" (E1+ 1)
t
2 1)(|$|) ~12 ns |32
+ Cey | |b1|*dx + Ce, m |G|*d& dx +C8 [ |07°|by dx
*
v
+C/f ;f')|Gx|2d5dx+C(80+sl)(K1 + 14117
*
+CG+e0) Y [0%@. v 0. 4.55)

=1

And finally, (4.33), (4.34), (4.36) and (4.55) yield the estimate on Iy,

I <—</m3b1/§]2L;,115d$dx> +C8(1+)"NE + 1)
t

vl ~
+C(8+80+81)(K1+||4>x||2)+C81/|b1,|2dx+C,sl/ Af 2
k
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+C8/|9'”|b2d +C/f U(|§|)|Gx| dsdx +C@+eo) Y |09, v. O 456)

lor|=1
And this completes the discussion on the term f v ¥ dx.
Estimation on f q2b2dx
Notice that the profile has no intrinsic dissipation on b;. Fortunately, g» = +/2/50Q4/p+ and

the lowest decay terms of Q4 decay as (1 + )~3/2. Thus the estimation on f g2br dx can be
directly obtained even though there is no intrinsic dissipation on b,. For example,

‘/ﬁ]Rlbzdx

<Cs(L+0"'E +Cs(1+1)73,

‘/ / : -3 / (|§|)G2
b0 dE dx| < CS(1+ 1) Ey +C8(1+0)77 +C +e0) | | —o dE dx
+c/f%(cf+c§)d§dx. (4.57)

And the term [[ &|£|?©2b; d& dx can be done by the same estimate for 772, in which the in-
trinsic dissipation on b is not used. Notice also that all the other terms in g, are of higher order
terms. Therefore, we have

12=/qzb2d§ dx
< (//A(g,B)LM‘Gdsdx> L CSA 40 E +C8(1 +1)2
t

v ~
+C(+e0+e1) (K +||<l>x||2)+Csl/|bzt|2dx+cgl //%mﬁdgdx
k

+C// U(|$|) |Gx|2+|Gt|2)d§dX+C(8+80) Z ||aa (4.58)

=1

where A is a linear function of b, and a polynomial of &. Using (4.25), (4.56) and (4.58), we
get

N ~ 1 3
Ey+ (//Al(s, B)L; G de dx) + oK+ fle;“l(b% +b3) dx
t
<CU+07 E+ D+ CL@ +eo+en (@, W) P + 10412)

+Ce, //%Iélzdédx—l—aff%(lGﬂz—i-lG,lz)dédx

+Ci1(8+20) Y [0
loe|=1

(4.59)
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where we have used the smallness of § and &y. Here A is a linear function of B and a polynomial

of &.

Note that K| does not contain the norm ||®,||. To complete the lower order inequality, we

have to estimate @,. From (3.6),, we have

4M(9) P+, 2 SM(G)
3_ _Wlt+T¢x—%Wx 15[7 Ql

Multiplying (4.60) by @, yields

<2u<é>¢2> _(2u(§)> 02— 0,0+ D07 - <3Wx 8@
t t

3v 3v 3v 15p4v
Since
2 2~
D W1 = (P W) — (P 1)x + ¥, — — N1¥1y,
Sp+
we obtain

2u0) /p+ >
D2 _ ¢ w4 P p2g
</1 30 B ) * o5
gc/(w3x+wf)dx+ca(1+t)—% +/Q%dx.

The Q formula (3.9) and the Cauchy inequality directly yield

/ 0} dx < Ceo(Ki + 102 1%) + CO(L+1)73 +Cen 3 0%, v, 0|

=1

2
dE dx.

e

And using Lemmas 4.1-4.3 implies

[

// V(IEI) |Gx|2+|Gt|2)d§dX+C/|9_x|4dx+c(5+80)/

~12
<C(5+eo)// 4‘)('5]8'& dgdx+c/ vj‘f')(

2
dE dx

Plugging (4.64) and (4.65) into (4.63) yields

oo

v(IEDIGI

M

(4.60)

. (461)

(4.62)

(4.63)

(4.64)

dE dx

+1G, %) dE dx + C3(1 +1)77,

(4.65)
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</2”(9)cb2 @ llfldx) /—qbz
3— X

V(IEI)(

3
<C K1+ Ca8(1+1)"2 +C2/ +1G/?) dg dx

G 2
+C(8+ o)// v(EDIG] + C2(8 + &9) Z 0%, v, ;)|| (4.66)

la|=1

__ The microscopic component G can be estimated through Eq. (2.7). Multiplying (2.7) by
G/M,, we get

G? G ~ [ 1 |§ —ul®
(ZM*)I—ELMG—{—R—MP{% O —0)+&- (u—u)x> ]

up 1 — G
+—Gx— —-P1(51Gy) + Q(G, G)—Gz}-—- (4.67)
v v M.

*

Integrating (4.67) with respect to £ and x and using the Cauchy inequality and Lemmas 4.1-4.4,

we have
([ Gpor) 3 505
2M,

<C33(1+073 4+ C3 (I l? + 15 1?) + C // ”('é')Gx dEdx.  (4.68)

On the other hand, since (@, ¥, W), can be represented by (@, ¥, W), and (D, ¥, W), from
Eq. (3.6), we can get an estimate for (®;, ¥;, W;) as follows:

/|(¢>,np, W), |* dx

c41<1+c4/|q> Pdx+Ca Y |04 . O+ Cad (1 +1)" 2

la|=1

~12
+C4//1)(|51\|4ﬂd§dx+c4/ v;'f”( < P)dedx.  (4.69)

We now complete the lower order estimate. Since Ay is a linear function of the vector B and
a polynomial of &£, we get

‘//Al(g,B)L;;édgdx

We choose large constants C;>1,Cy>1,Cs> 1 and small constant &; so that

<1k +C//52dsd (4.70)
\4 1 M* X. .
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728
= T = H() 2
ALy, Gdédx +Cy 3% —— &, — D, W dx + Cs
4.71)

C1E1+Cy

1 wn(@ )
>-C1E C —d&d
> 5C 1+ 2/ 3% // §dx,

C] = D+ = 2

— —C2C,—C1C1e1Cy | Ky + Czﬁ—C1C1€1(1+C4) D dx
>—K1~|—C / P g2 4 4.72)

(4.73)

and
_ _ _ o —
C3—C1C161C4 — C, Cy > ZC3.

| Qi

Hence, by multiplying (4.59) by C1, (4.66) by C, (4.68) by C3, (4.69) by C1(8 + g9 + £1)C1

and adding all these inequalities together, we have

Ey + K+ f|9;”|(b% +b3) dx
V(gD

Cs5(1+ 1)~V (s + 1)+C5/

+ Cs Z ”8‘1

|or|=1

1 +1G,[*) d dx

where
o, — W dx

EnglEl+61//A1L;415d§dx+62/

_ G2
+C3//

——K1+C/ ZEp2dx + (@, 0, W), P + = C3//Vdédx

5. Derivative estimate

(4.74)

(4.76)

To obtain the estimate for the first order derivative of (®,, ¥,, W,). We shall use the convex
entropy based on the macroscopic version of the Boltzmann equations. From (1.10) and (2.24)

we have
¢ —wu:—ﬁﬁu
Y1+ (p— e = (4%, — £240,,) + 0s.
Vie = (“Puix — 4P ) +Qivar i=2.3,
_ﬁﬁlxz(T)Qx @ex)x‘i‘%ﬁlx%’QS»

&t + puix

5.1)
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where
—/é{"@udé — Rix, (5.2)
Oivi=— / E16:O1, dE — Niy — Riy. i =2.3. (5.3)
4 (6 (2]
Qs=§$ui{+;ﬁ“( L2 +Z [ - 3 [aieroras
_ _ 1
= Nix = Hix = Rax + 5 (1), + paitr. (5.4)

Multiplying (5.1), by ¥, (5.1)3 by ¢, we have

3
(% (% (% (%
( ZW,Z) (P p)llflx (Mf) ) Ulx — g_lx)wlx (?uz Mf) )ﬁ1x>w1x

l\)l'—

3

Z Qiyavi+ (- (5.5)

Since p — p=RO(E — 1) + £ we get

3
0
(EZ )—Re(———>¢,——w1x —Qvnx

3 ~ 3 N
0 0 0 0 [2)
+3 j#wm 3<“fj ) _ “f} )>ﬁ1xw1x+ ) j(“f} ) _ ”“(ﬁ ))a,-xw,»x
[ =2

=2
3
2R (1 1\ ~
:ZQi+4wi +—9(_ — = |Nix + (- )x. (5.6)
— Spy \v v
Let
D(s)=s—1—Ins. (5.7)

It is easy to check that 5’(1) =0and & (s) is strictly convex around s = 1. Moreover,

(v _~fv _ 1 1 - v 1\ _ - 1 1\_
ROD g =R9t¢ - +R9 -4 = ¢t+R9 —_—2+ vt+R9 —— 4+ =)
v ' v v v v v v

1

¥>, (5.8)
v

(4

where

U(s)=s"'—1+Ins. (5.9)
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Substituting (5.8) into (5.6) yields

1< . 4 (0
<§Z¢,2+R9@<%>> +P‘1’< )Uz——ilﬁlx _,u( )Wlx
0 n(o 0 (% 9
+ZQWZX < f} ) ( )>u1x1p1x Z(Mi ) f} ))Mtx'(//zx

i=2

2R 1 1
= Z Qisati + 79(— - —)le + 5P < ) + e (5.10)

i=1

On the other hand, we calculate

72(5)] = (=)o

)93 (5.11)
and
. 7]
(1-5)
6 _ A(0)0,  A(B)Dy 2
:(1_5>{_pu1x+l7“1x+( ’ _f) +§N1x+Q8}

v

R A0,  A(6)6,
=—;w1x+5(ﬁ—p)mx—<5) ( ©) —&>+—5N1x+ Os+ ()

0 0 v v 56
R N X A(O) N -
=Ryt (i~ g g“—(Q _ Q)ex
v vl 0 v v
0y (M(0)0x  A(O)Oy 2¢ ~
+ = 5 < . T) + ggle + = Q8+( Dx- (5.12)

Substituting (5.11) and (5.12) into (5.10) gives

1< . (0 40 0 A0
(Ezl/fiz—i—R@@(%) +9¢<5>> o )l/,lx ZM% ng
i=1

i=2

3
w®) @) w(®) u(9)
)‘5(7 T )”“‘”““Z< v 0 )‘”

i=2

3 _
2R (1 1\ ~ X 2O -
+ZQi+4‘/fi+zg(——t N1x+§( P)“]x—g<ﬁ— (_)>9x

v v

X X g -x 2¢ ~ ~ =
+ ﬂ(“9)9 _2oe ) + oMt Eo- W@)@ AN (5.13)

62 v v
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Let
1< v 0
— - 2 7o Z 7ol Z
E3_/2;w, ~|—R9<D<l_))+0¢><0_)dx (5.14)
and
4 10 0 Y C)
K3:/§¥¢fx+zgwm Q;X ) (5.15)

i=2

Note that @ (s) is strictly convex around s = 1 so that there exist positive constants c¢1 and ¢y,

—~ ~(0
19’ < <D<3) <ap’, ail< @(5) <l (5.16)
v

l17(s) is also convex around s = 1 and this leads to

[lo(5)slos [l2(5)o]

where we have used (¢, V) = (D, ¥y), and { = — Y. On the other hand, we have

<Cs(1+0" 'Ky +C5(1+1)73, (5.17)

/<|§|+ ‘(1 - %)Duv ldx < CS(1+1)""Ky+ C8(1 +1)"2.

Integrating (5.13) with respect to x and using the Cauchy inequality, we get

1
Ey + 5 K3 <Co(1+1) 'Ky +C8(1 +1)"2 +/ZQ1+4¢, dx+/ $ ogdx. (5.18)
i=1

Since
/ [Rix¥ildx < C8(1 +t)*% +C85(1+07"Ky, i=1,2,3, (5.19)

from (5.2) and (5.3), we only need to consider the slowest decay terms f f £1& 01, dEY; dx,
i =1,2,3, in order to estimate f QitaVidx. From (2.8) and (4.65), we have

‘//sléi@lxdgwidx :)//51&@1 d&vix dx

1 3 V(€D | a
<gKs+csd+n) 2+CZ// 0G| dé dx

|=1

~2
+C(8+80)//$d§dx. (5.20)
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Since [ % Qg dx can be estimated similarly, we have

1
Byt 3Ka < ol 407 Kot Coat+n v co 3 [ [ HE oGP e
*

la|=1

2
+C6(8+80)//$d§dx.

Note that the norm ||¢, || in not included in K3 (see (5.15)). To complete the first derivative
estimate, we follow the same way to estimate @, in the previous section. We rewrite Eq. (5.1)2

(5.21)

as

4 (0
gl/«(_ )¢xt — Y1 —(p— P
v
4 (@ 8 wu®) ~ 4 9 3
- __<“(_ )> Yix — T '“'—(_ )lex - _|:<“( ) ,u(_ ))ulx:| —Q0s, (522
X P+ v 3 v B

3\ v
by using the equation of conservation of the mass (5.1). Multiplying (5.22) by ¢,, we get

2 ] 2 ]
5(“(_ )¢3) - —<M) 62— Y1y — (p — Pxcbx
v , 3\ v /,
4/ 8 0) ~ 4 0 ]
={—§(“(_)) Ve — @Nm——[(“( )—“(_)>u1x} —Q5}¢x- (5.23)
v/, 15p+ v 3 v N

Since
D R D R R
b x_Tgx‘f‘(E—g)vx_ <_ - T)Gx (5.24)
v v v v v

and
2 ~
Gx1e = (xV1)r — (P ¥ri)x + VP, — N, (5.25)
P+

integrating (5.23) with respect to x and using the Cauchy inequality yield
2u0) 5 1%
</ 35 — ¢xY1dx t+ 2—1_)¢de
5
<C1K3 4+ C18(01+ )7 'Ky + C78(1+1)72 + C7£o/w12xx dx

+Cre0 Y //%D“@fdédx%—& 3 // v;f|)|8“6|2d€dx. (5.26)

|o]=2

0|1
Here we have used

/(-

dx < Ceollgx|I* + C8(1+1) 'K

CI|~G|

) Uy Px
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and

fggdx<c5(1+t)‘%+0(5+so) > //%M“é!zd%'dx

0<lel<1

+C Yy //%M“G\zdsdx, (5.27)

la|=2

due to (4.41) and Lemmas 4.1-4.4. To estimate (¢, ¥, ¢);, we use the original equation (1.9).
For example, multiplying (1.9); by ¥;, we have

Vi i+ (p— PV + purns = —/élsz d&yn;. (5.28)

Integrating (5.28) with respect to x and using (5.24) give
5
/% dx < C7(K3 + 19 11*) + C786(1 + 1) Ky + C78(1 +1)72

+Cr Y f/%wacfdgdx. (5.29)

la|=1

Similar estimates hold ¢y, V2, ¥3; and ¢;. Thus we choose large constants C4 and Cs so that

_ _ [2u® C _ 0
C4E3 +Cs / 2O 2 g pdx > ey 4 Cs / KO 42 g (5.30)
30 2 3v
and
L= (@s5+50 > 24, 55/£¢2dx—sc7||¢x||2> E/izszdx. (531)
4 8 20 4 v
Let
- ~ [200) , // G2
Es= E — 0 — d déd 5.32
4 =Ca 3+C5/ 3% oy — OxY1dx + 20, §dx, (5.32)
1 Cs [ 5 . .
K4=—C4K3+—5/5¢§dx+/(¢3+|wt|2+;,2)dx+5[f@|c|2dx. (5.33)
8 4 v 4 M,

Then we have estimate on the (¢, v, ¢), from (4.68), (5.21), (5.26) and (5.29)—(5.31),

3
Ey+Ki <C38(14+1)"2+Cs8(14+1)"'K> +C380/1ﬂ12” dx

+Cs Y. /f%wacfdgdx. (5.34)

I<lal<2
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Next we derive the higher order derivative estimate. Applying d, to (5.1) yields

$xi = Yixx = =50 Niaa,

Vixe — Loux + Bor = (X2 y14x) , + Q0.
Vise = (“DLyiey) + Qiss. i =23,

Set + PViax = (%;xx)x + Q12,

(5.35)

where

P—D. ¢ _ _ 2p
Uyx + Pxx+—(p_ )x + vx¢x

v

4 0 [ 2}

—(("( )) m) —[(“( ) _ )> u] + 051, (5.36)
v 3 v v x

0 ] 7]
Oivs = ((“( )> wix) +[(¥—¥>u} F(Qisa)s (537)

_ __ 2~
Q12 =—pxlt1x — pltixx + (Pl1x)x + glex + Osgx

N ((@) ;X> N [(@ _ @)gx] _ (5.38)
v X X v v XX

Then multiplying (5.35)1 by pox, (5.35)2 by vy, (5.35)3 by iy, (5.35)4 by g;x, we have

Qg =——

w

3
p v R p v R
(5@% TR 5;3) S it (5) &2+ Pty
i=2 t 4

3
R S TR

—gxx
vp
2p ~ 4u(6 NG R
= _5_pN1xx¢x - M( )Wlxxvxwlx - Qé‘xx (_) &+ UQ91/f1x
P+ v P/
+ Z Qiys¥ic + — lecx + () (5.39)
i=2

Let

3
p v R
Es= / Ed),% 1 wax +) i+ Egﬁ dx, (5.40)
i=2

46 0 RA(O
K5=f M()Wm ZM() w2+ ()Cxx . (5.41)
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Integrating (5.39) with respect to x yields

1
Esi+ 5 Ks <C(6+e0)Ka+Co(1+0772 + /(UQ9W1X+ZQ1+8%X+ leé“x)dx
i=2
(5.42)

The estimate for [vQoy1xdx, [ Qiys¥ixdx, [ % Q12¢x dx is easy. Here we only consider the

integral ['vQoV dx. The other integrals can be estimated similarly. By (5.24) and (5.36), we
have

/Zﬁ(p Pxtrix|dx < CE+e0)Ks+ CS(1+1)72K,
and
‘/stmxdx <‘/va5w1xdx +'/stwmdx C(5 + e0)Ks + — K5+/Q5dx,
which give

1
'/ngwlxdx < g1<5+C<3(1+t)*% O +e0)Ka

+C8(1+1)72K, +c/ 0%dx. (5.43)
From (5.27), (5.42) and (5.43), we get

v(I§D)

1
Es; + ;K5 < Co(8+ £0)Ka + Cod(1+1)" z+c92f/

10“G|* d& dx
4 Joe|=2

+Co(8+20) Y f/ V(EDIB“G; dedx + Cod(1+1)2Ka.  (5.44)
la|=1

To get the estimation for ¢y, we use the first momentum equation of (1.9). Applying 0y
on (1.9),, we have

WIxt + ’/_tlxt + (P - ﬁ)xx + ﬁxx = / glszx dé’_ (545)

Note that

2v 2p
"(p— Py — —

i R 1 ¢
(p_p)xx:_£¢xx+_§xx__(p_p)vxx__pxx_ ¢x-
v v v v

v
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Multiplying (5.45) by —¢x and using (5.24) imply

—(U1xPxx)r + / ¢ dx < C10K5+C105(1+t)_7+C10(5+80)K4+C105(1+t) 2K,

VgD |
co Y [ [ 4 oGl e x. (5.46)

la|=2

To estimate (¢, ¥, ¢)y; and (@, ¥, { ), we use the original fluid-type equation (1.9). Here we
only consider the case [ 1,012)” dx since the other terms can be estimated similarly. From (1.9),
and (5.45), we have

1aﬁl)ct = —(P - ﬁ)xx - ﬁxx - /Elszx d%_ - ’let' (547)

Similarly, using the Cauchy inequality implies that
3
/ Yl dx <C1i8(14+1)72 4 C11Ks+ CrisoKs + C118(1 4+ 1) 72 K>

+Cu Yy // v(|é|)|8°‘G| dE dx. (5.48)

la|=2

Let C be a large constant, then we have

66(E5—/w1x¢”dx> > [1o@.v.0f ax

||=2

<Cnd+ 4 CnG+anKi+ Cod+e) Y [ [HP]06 dsax
la|=1
V(IEI) a -2
+Cn Y. |a G|’ ddx + C128(1 +1)2Ka. (5.49)

Ja|=2

To close our argument, we need to estimate the nonfluid component G. That is, we need the
estimates for 0“G, 1 < |a| < 2. Applying d, on (1.11), we have

78 1 1
Gxt_(TGx> +{;Pl(élMx)} +{;P1(51Gx)}
=LyGy+20M,,G)+20(G,, G). (5.50)

Since

ey | s~
l(élMx)—R— &1 =0« + & uyx
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we have

C(v3 + 143 + 65 + 6ux| + ] )| BE)| M,

1
H P1($1M)}

X

where B (&) is a polynomial of &. This yields that

i) &

V(gD o _3
§ 2 Crdsdx+ CKs +C(6 +e0)Ks +Co(1+1)72.

dt dx

Also, we have

G.
‘[/ Q(MX,G)ﬁdédX)
// v(|§|)G§d€dx+C/</ ”<'5')M2dg/f ”('5')szg)

<%// v;fDGidgdx+C(8+80)K4+C8(1+t)_%.

Thus, multiplying (5.50) by and using the Cauchy inequality and Lemmas 4.1-4.4, we get

(J Gyar) 3 [t

v(I€D)

G2, dgdx + CKs. (5.51)

<C81+073 +C6 +e0)Ka + c//

Similarly, we have

(/] zewas) +5 [ [ i s

<51+ +C+e0)Ks+C6+ o)ff
// PUED 2 e gy +C/1ﬂxt+§x,dx (5.52)

Finally, we need the highest order estimate in our discussion to control f YixPxx dx and
[ SR 104G 2 d& dix, o] = 2 in (5.49). To estimate [ y1x¢y dx, it is sufficient to study the a

priori estimate for [ X219 |2 d& dx (je| =2) due to (3.16), (3.17). To this end, apply 9
(Ja| =2) to (1.8), we have

v([§D)

G2 ddx

@*f), - a“(“‘ f‘ fx> =3%0(f, /)=3[LuG + (G, G)]. (5.53)
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Multiply (5.53) by ;L = M 4 2°C  we obtain

M,y M,
9 2
|0% f1 +
oM, ),

oa—p u1—§1 B 3af_ a .30‘G
> Cl. pd (—v )a foo = Lud*G - —

1Bl=1 * *
e =) 0 (ui =&\ 1Y v M
=9 ( )fx ( 5 )x 7 + Ly3%G - 7
+<Z 2097 M, 9%G) +20(8°M G)> YT 006,65 1 (. 55
181=1 ’ ’ M. M a '

where we have used

3Ly G =Lyd"G+ Z 200 PM, 97 G) +20(3*M, G), |a|=
1Bl=1

Since M,, M; € N, P1(0% M) does not contain 3% (v, u, ). Thus, we have

Lyd*G - 9% M Lyd*G - P (3*M
‘//%dgdx:‘ff ud"G - PLOTM) e gy

M
3 0
<C(‘3'|'80)K4+C6(1+t)—7.|_§/f

”;'/i') 0%G|* d& dx (5.55)

and

‘//LME)“‘Gﬂ“ <Mi—ﬁ)dsdx
o v(I&D |0 @
5//7*‘3 G|*dedx + 0%, v, O
L O+ e0)Ka+C8(1+1)2, (5.56)

where the small constant ng is defined in Lemma 4.2. Thus integrating (5.54) and using
f =M + G, Lemma 4.2 and Cauchy inequality give

(Zf |8°‘f|2dédx> +_ Z/f v<|s|)|8aG| dE dx

Ja|=2 |oe|=2

<csta+nircere) Y [ [HFPeG dedx + 6+ ek

la|=1

+CO+8+e0) Y [0%@. v. 0|, (5.57)

la|=2
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By (3.16) and (3.17), we choose suitable constants a- >1,i=1,2,3,4, so that
~ —~ —~ 1
E6=C1E4+C2C6(E5—/t/flxquxdx)+C3 > //ﬁ|aa(;|2d§dx
la]=1 *
_~ 1 )
C — 0% f|"dEd
" 4%:2//%' I ddx

k 1 ~
> 6,9, O+ [ (e v, 20| — €820 +1)73 —I—//ﬁlGlzdédx

L g2 L g2
+|§::1ffﬁ*|a G| dédx+(§::2//m|8 f| dg dx. (5.58)
Let
_ V(€D ~ // V(IED | 12
Kﬁ—// . |G| dédx+l<%:<2 M |09G|” d& dx

+ > %@ 0l (5.59)

I<lal<2

Then using (5.34), (5.49), (5.51), (5.52) and (5.57), we obtain the final energy estimate
Ee +Ks <CS(1+1)"3 +C5(1+1)""K». (5.60)
We note that the derivative estimate (5.60) is independent of the lower order one (4.74) except
the term (14 1)~ ! K. This kind of derivative estimate is crucial for the stability and convergence
rate of the contact wave.

6. Stability and convergence rate

This section is devoted to the stability and convergence rate for the Boltzmann contact wave.
By combining (4.74) and (5.60) and choosing a large constant Cs, we have

(E; + CsEe); + Ko+ CsKe < Cov/3 (1 +1) N (Ep + CsEg +/3), 6.1)
where we have used the smallness of 8. Let
E7=E2+65E6, K7=K2+65K6. (6.2)

Then the Granwall’s inequality yields

t
E7 < C(E7(0) +/38)(1+ 103, /1<7 dt < C(E7(0) +V8)(1+ V3. (6.3)
0
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Hence we have
|(®, w, W)||* < C(E7(0) +8) (1 4 1)V, (6.4)

Notice that (6.4) gives no uniform estimate in the lower order estimate. However, the growth
rate of the L? norm of (®, ¥, W) is slow with the power Co~/8 depending on the strength of the
contact wave. Hence, if the L? norm of the derivative for the variable (®, ¥, W) decreases with
a decay rate independent of the small parameter 8. Then the Sobolev inequality gives the L*°
norm decay of the perturbation. In fact, multiply (5.60) by (1 + ), we have

[(1+1)Es], < C8(1+ 1) + C8Ks + Eg < C8(1 +1)7% + CK7, (6.5)

where we have used the fact that Eq < CK7 + C82(1 + t)_%. Integrating (6.5) with respect to ¢
and using (6.3) imply

Ee < C(E7(0) +V8)(1+1)72. (6.6)

Notice that in the a priori assumption (3.12), all norms are included in E¢ except the norm
(D, ¥, W)|L~. To close the energy estimate, we have to show that the L* norm of (@, ¥, W)
is uniformly bounded. Since we have already obtained the decay property (6.6) for the derivative
variable (@, Wy, W,), the L estimate for (@, ¥, W) is quite straightforward. In fact, since
(¢, V)= (®,¥), and ¢ = W, — Y and the norm ||(¢, ¥, £)||? is included in Eg, we have
2 _14% /5
[(@, &, W)} < C|(®, &, W) ||(@x, W, W) | < C(E7(0) +V/8) (1 +1)"472

< C(E7(0) +8). 6.7)

The last step to prove our main Theorem 1.1 is to justify the first decay rate of (1.18). By (6.6),
we have

1F (@ 1.6) — My 5y M~ My G’
// i § [p,u,0] dsd}(g//ﬂdédx-l—//—dédx
M, M My

G2
<clo.volf+c [ -da

< C(E2(0) +/8)(1+1)72 (6.8)

and

// |fx(xyt,§)_(M[l5),;’g'])x|2 dE dx
M

|Mx - (M[ﬁ i é])x|2 G2
< Lk ded Zx gt d
// M, : H//M* s

G2
<CRA+ 0@ O + || Brs a2 + cf/ - dedx
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< C(E7(0) +38) (14173 6.9)

It is straightforward to imply (1.18) by (6.8) and (6.9) and the Sobolev inequality. Therefore the
main Theorem 1.1 is proved.
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