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Abstract

We study a diffusive logistic equation with nonlinear boundary conditions. The equation arises as a model
for a population that grows logistically inside a patch and crosses the patch boundary at a rate that depends
on the population density. Specifically, the rate at which the population crosses the boundary is assumed
to decrease as the density of the population increases. The model is motivated by empirical work on the
Glanville fritillary butterfly. We derive local and global bifurcation results which show that the model can
have multiple equilibria and in some parameter ranges can support Allee effects. The analysis leads to
eigenvalue problems with nonstandard boundary conditions.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction and background

In this article we continue the examination of the diffusive logistic problem

∂u

∂t
= d∇2u + ru(1 − u) in Ω × (0,∞),

α(u)∇u · �η + (
1 − α(u)

)
u = 0 on ∂Ω × (0,∞),

(1.1)
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which we began in [5]. In [5], in (1.1), u = u(x, t) designates the density of a biological species
at spatial location x and time t , and Ω designates a focal patch of habitat for the species. Math-
ematically Ω is a bounded open domain in R

N (in applications N is usually 1, 2, or 3) with
sufficiently smooth boundary, d and r are positive parameters giving the diffusion rate and in-
trinsic growth rate for the species, respectively, and α(·) is a smooth function of the density u

which describes the behavior of the species along the boundary. The carrying capacity in (1.1)
has been scaled to equal 1.

Our interest in (1.1) has been motivated by some empirical work by the ecologist Ilkka Hanski
and his collaborators [10] on mechanisms producing an Allee effect in the Glanville fritillary
butterfly. A biological species is said to exhibit an Allee effect in a habitat patch if its per capita
rate of growth in the patch is increasing at low densities. If the growth rate in the patch is actually
negative when the density is below some threshold value, the species is said to exhibit a strong
Allee effect. In such an event, the species could not be expected to establish itself in the patch if
introduced into the patch at a low enough density. In other words, it could not invade the patch.
If the per capita growth rate remains positive at low densities, the species is said to exhibit a
weak Allee effect. In this case, the species can be expected to invade the patch, if the patch is
sufficiently large. However, the minimal patch size for invasion is larger for a species exhibiting
a weak Allee effect than for another species with the same maximal per capita growth rate if the
other species’ per capita growth rate is a decreasing function of population density, as is the case
with logistic growth.

In [10], Kuussaari et al. demonstrate empirically that having emigration rates from butterfly
habitat patches increase as butterfly population density near the edge of habitat patches decreases
is a possible mechanism for inducing an Allee effect in the Glanville fritillary butterfly. In [5],
we propose (1.1) as a mathematical model capturing this mechanism. To this end, we require that
α(u) be nondecreasing in u and that

α
([0,1]) ⊆ [0,1]. (1.2)

Since the local carrying capacity of the species inside Ω is normalized without loss of generality
to the value 1, u ∈ [0,1] represents a density less than or equal to the local carrying capacity.
When α(u) ∈ [0,1], the boundary condition

α(u)∇u · �η + (
1 − α(u)

)
u = 0 (1.3)

represents a tension between a tendency for the species to be lost through the boundary of the
patch to the environs surrounding the patch and a tendency for the species to remain in the patch.
As the value of α(u) increases the tendency of the species to remain in the patch becomes more
dominant. (If α(u) = 0, (1.3) is the Dirichlet condition

u = 0,

while if α(u) = 1, it is the Neumann condition

∇u · �η = 0.)

Consequently, as u increases from 0 to 1, the tendency of the species to emigrate from Ω is non-
increasing, and is strictly decreasing whenever α is strictly increasing, capturing the mechanism
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in [10]. In the special case that α(u) ≡ α∗ ∈ [0,1], the dynamics of (1.1) are well known [6].
Depending only on the ratio r/d , either all nonnegative solutions to (1.1) tend to 0 over time
or all nonnegative nontrivial solutions to (1.1) tend to a unique equilibrium which is positive
throughout Ω . As a result, an Allee effect is not possible when α(u) ≡ α∗ ∈ [0,1].

In [5], we began our examination of (1.1) and showed that an Allee effect can be expected
for appropriate values of the ratio r/d so long as α(u) is sufficiently small for u near 0 and
sufficiently large for u less than but near 1. We obtained our results in [5] via a linearized stability
analysis and comparison principles based on upper and lower solution techniques. From the
standpoint of exhibiting a model that predicts an Allee effect on the basis of the mechanism
delineated by Hanski and his collaborators, the analysis in [5] is quite satisfactory. However, the
observations in [5] represent only a first step toward a thorough understanding of the asymptotic
behavior of positive solutions to (1.1).

A more detailed analysis of (1.1) leads to a number of intriguing mathematical challenges and
provides enhanced insight into how Allee effects arise in the model outcomes. The asymptotic
disposition of (1.1) depends strongly on what specific assumptions are placed upon the density-
dependent term α(u), beyond requiring that α(u) be nondecreasing in u and that (1.2) hold.
Indeed, there appears to be a range of possibilities that is beyond the scope of a single article.
Consequently, our approach here will be to identify what we view as the most significant addi-
tional factors in determining the asymptotic behavior of solutions to (1.1) and then to treat some
interesting and important cases. We plan to examine further cases in subsequent work.

The most important additional assumption that one places upon α(u) regards the value of
α(0). If α(0) > 0, we may assume without loss of generality that

α(R) ⊆ (δ,R) (1.4)

for some 0 < δ < R < ∞. In this case, the results of Amann [2] may be employed to conclude
that (1.1) is well-posed. It follows from the logistic form of the reaction term in (1.1) that positive
solutions to (1.1) exist and are bounded for all positive time.

If α(0) = 0, then (1.3) can be expressed as

u
(
β(u)∇u · �η + (

1 − α(u)
)) = 0 (1.5)

on ∂Ω × (0,∞), where β(u) in (1.5) is given by

β(u) =
{

α(u)
u

, u 	= 0,

α′(0), u = 0.

As a result, if α(0) = 0, the boundary condition in (1.1) can be satisfied in more than one way
and hence (1.1) is not well-posed in this case. One possibility is u ≡ 0 on ∂Ω . However, if the
initial data for (1.1) is positive throughout Ω̄ , a corresponding solution u could not be zero on
∂Ω for t ∈ (0, t0) for some t0 > 0. In this event, such a u must satisfy

β(u)∇u · �η + (
1 − α(u)

) = 0 (1.6)

for x ∈ ∂Ω and t ∈ (0, t0). Since α(u) is nondecreasing, the definition of β guarantees that
β(u) � 0 for u � 0. If we make the additional assumption that

α′(0) > 0, (1.7)



R.S. Cantrell, C. Cosner / J. Differential Equations 231 (2006) 768–804 771
then β(u) > 0 for u � 0 and we may assume that β(u) satisfies (1.4) for appropriate values of δ

and R. So the well-posedness of

∂u

∂t
= d∇2u + ru(1 − u) in Ω × (0,∞),

β(u)∇u · �η + (
1 − α(u)

) = 0 on ∂Ω × (0,∞)

(1.8)

follows from [2], as was the case with (1.1) when α(0) > 0. Strong maximum principle ar-
guments and the logistic form of the reaction-term guarantee that a solution u of (1.8) with
u(x,0) > 0 on Ω̄ exists for all positive time and satisfies

0 < u(x, t) < M

for x ∈ Ω̄ and t � 0, where M = M(u(x,0)). Consequently, if (1.7) holds, a solution to (1.1)
with initial data that is positive on Ω̄ is uniquely determined as the solution to (1.8).

In our preceding paper [5] we treated (1.1) in the case in which

α(u) = α0 for u � u1 and α(u) = 1 for u � u2, (1.9)

where 0 < u1 < u2 < 1. Consequently, in light of the preceding discussion, we will restrict our
attention in this article to cases in which α(0) > 0 or α(0) = 0 but α′(0) > 0.

The asymptotics of (1.1) also depend significantly upon the value of α(1). When α(1) < 1,
u ≡ 0 is the only spatially homogeneous equilibrium for (1.1). Moreover, we may assume without
loss of generality that for an appropriate value of R ∈ (0,1), α(u) < R for u � 0. On the other
hand, if α(1) = 1, (1.1) admits both u ≡ 0 and u ≡ 1 as equilibria. Given our examination in [5]
of (1.1) when α(u) satisfies (1.9), we will assume in this article that

α′(1) > 0 (1.10)

whenever α(1) = 1.
As previously noted, we showed in [5] that for appropriate choices of α(u) and the ratio r/d ,

a species density described by (1.1) exhibits an Allee effect in the habitat Ω . More specifically,
we showed that solutions to (1.1) with initial data above a certain threshold remain above that
threshold for all subsequent time, while solutions to (1.1) with initial data below a second smaller
threshold tend over time to 0. In order to demonstrate that such is the case, we compared solutions
to (1.1) for the α(u) in question to solutions to (1.1) with α(u) ≡ α∗ ∈ [0,1]. As we have noted,
the dynamics of (1.1) when α(u) ≡ α∗ are well-understood [6]. Namely, when the average growth
rate over Ω of the species in question at low densities is positive, positive solutions to (1.1)
tend over time to a globally attracting equilibrium which is positive in Ω . Otherwise, positive
solutions to (1.1) tend to zero. The average growth rate σ = σ(α∗, r, d) at low densities is given
by the principal eigenvalue in the elliptic problem

d∇2φ + rφ = σφ in Ω,

α∗∇φ · �η + (1 − α∗)φ = 0 on ∂Ω.
(1.11)

The average growth rate σ in (1.11) is related to the demographic, geometric and habitat interface
parameters in the model (1.1) via the formula

σ = σ(α∗, r, d) = r − dλ1
α∗(Ω), (1.12)
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where λ = λ1
α∗(Ω) is the principal nonnegative eigenvalue of −∇2 on Ω relative to the given

boundary condition; i.e., the principal eigenvalue in

−∇2φ = λφ in Ω,

α∗∇φ · �η + (1 − α∗)φ = 0 on ∂Ω.
(1.13)

When α∗ = 1, λ1
α∗(Ω) in (1.13) is zero. Otherwise, λ1

α∗(Ω) > 0. Indeed, λ1
α∗(Ω) is a smooth

strictly decreasing function of α∗ ∈ [0,1] and it follows immediately from (1.12) that

σ(α∗, r, d) > 0 ⇔ r/d > λ1
α∗(Ω). (1.14)

If we now let φα∗ = φα∗(r, d) denote the unique positive eigenfunction in (1.11) satisfying∫
Ω

φ2
α∗ dx = 1

and uα∗ = uα∗(r, d) denote the globally attracting positive equilibrium for (1.1) with α(u) ≡ α∗
(which exists when r/d > λ1

α∗(Ω)), we can readily summarize the main result of [5]. To this end,
we note first that if α∗ > 0, φα∗ and uα∗ (when it exists) are positive on Ω̄ . Let α(u) be a density
dependent choice of α which is nondecreasing, smooth and satisfies (1.2). Fix α1, α2 ∈ (0,1)

with α1 < α2 and suppose that

λ1
α2

(Ω) < r/d � λ1
α1

(Ω). (1.15)

Then if α(u) satisfies

α
(
min
Ω̄

uα2(r, d)
)
> α2, (1.16)

a solution u(x, t) to (1.1) satisfies

u(x, t) > uα2(r, d)(x)

for x ∈ Ω̄ and t > 0 provided that

u(x,0) > uα2(r, d)(x)

for x ∈ Ω̄ . If, in addition,

α
(
ε max

Ω̄

φα1

)
< α1 (1.17)

for some ε > 0, a solution u(x, t) to (1.1) tends to 0 over time provided that

u(x,0) < εφα1(x).

Consequently, if (1.16) and (1.17) hold, (1.1) admits an Allee effect for any (r, d) satisfying
(1.15). It turns out that (1.16) and (1.17) can be satisfied for some α1, α2 provided α(1) = 1 and
α′(1) is small.
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As noted, throughout the remainder of this article, we shall assume that either α(0) > 0 or that
α(0) = 0 with α′(0) > 0. In Section 2, we explore the possibility of obtaining an Allee effect in
(1.1) on the basis of a local subcritical bifurcation of positive equilibria to (1.1) from the trivial
equilibrium. We show that in the case when α(0) > 0 such a phenomenon is indeed possible
under suitable conditions on α′(0) and α′′(0). In contrast, we show that when α(0) = 0 with
α′(0) > 0, there can be no subcritical bifurcation of positive equilibria and hence no Allee effect
based on subcritical bifurcation. In this case, solutions to the Dirichlet problem

∂u

∂t
= d∇2u + ru(1 − u) in Ω × (0,∞),

u = 0 on ∂Ω × (0,∞)

(1.18)

are always solutions to (1.1), and we show that the only positive equilibria to (1.1) that can
emanate from the zero equilibrium are the positive equilibria to (1.18).

If we assume in addition that α(u) satisfies α(1) = 1, we open the possibility of obtaining an
Allee effect in (1.1) on the basis of having both the equilibria u ≡ 0 and u ≡ 1 locally asymp-
totically stable, as was the case in [5] when we assumed that α(u) satisfied (1.9). In Section 3,
we make a local bifurcation analysis of the equilibria to (1.1) about u ≡ 1 in order to investigate
this possibility. The only equilibria to (1.1) that can be asymptotic limits of positive solutions to
(1.1) must take on values between 0 and 1 on Ω , and hence our primary interest is determin-
ing whether branches of such equilibria emanate from u ≡ 1. Recall that in this article we are
assuming that α′(1) > 0 when α(1) = 1. This assumption creates a mathematical wrinkle in the
analysis. Namely, if we consider the equilibrium problem corresponding to (1.1), write u = 1+v,
and linearize about v ≡ 0 we are led to the eigenvalue problem

d∇2φ − rφ = 0 in Ω,

∇φ · �η − α′(1)φ = 0 on ∂Ω.
(1.19)

Since α′(1) > 0, standard elliptic theory à la [9] does not apply to (1.19). We circumvent this
difficulty by a change of variable of the form

w = hu, (1.20)

where h in (1.20) is a suitably chosen positive function on Ω̄ . In so doing, we obtain an equivalent
reformulation of (1.1) to which we may apply the Crandall–Rabinowitz local bifurcation results
[6]. In particular, we find that there is a unique and positive value of the ratio r/d for which (1.19)
admits a positive solution and at which equilibrium solutions to (1.1) with values in (0,1) on Ω

emanate from u ≡ 1. We then identify conditions on α(u) for which there is a range of values
of the ratio r/d so that both u ≡ 0 and u ≡ 1 are locally asymptotically stable as equilibrium
solutions of (1.1). For such values of r/d , (1.1) exhibits an Allee effect on the same basis as in
[5] when α(u) satisfies (1.9).

Continuing to assume that α(1) = 1, it is natural next to inquire as to the global structure
of the branches of equilibria to (1.1) with values in (0,1) on Ω which emanate from u ≡ 0 and
from u ≡ 1, and we turn to this topic in Section 4. Setting up a suitable functional analytic frame-
work in which Rabinowitz’s global bifurcation result [14] or one of its generalizations apply is
somewhat complicated by the nonlinear nature of the boundary condition in (1.1). Moreover, we
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have found that the most advantageous means of setting up such a functional analytic framework
differs depending upon which case was under consideration (i.e., when α(0) > 0 versus when
α(0) = 0 with α′(0) > 0).

When α(0) = 0 and α′(0) > 0, solutions to (1.18) are always solutions to (1.1). Consequently,
the unbounded global branch of positive equilibria to (1.18) which emanates from u ≡ 0 (and
which is a well-studied object [6]) must be a subset of the positive equilibria to (1.1). Indeed, as
we have noted, we show in Section 2 that these are the only equilibria to (1.1) which emanate
from the zero equilibrium. On the other hand, when α(0) = 0 and α′(0) > 0, equilibrium solu-
tions to (1.1) which emanate from u ≡ 1 must necessarily satisfy (1.6). The results of Section 2
show that (except possibly when the spatial domain Ω is a ball) such equilibria are isolated in
R×C1,γ (Ω̄) from the global branch of positive equilibria to (1.18) which emanates from u ≡ 0.
As a result, the global branch of equilibria to (1.1) which emanates from u ≡ 1 with values in
(0,1) on Ω must itself be unbounded in R×C1,γ (Ω̄) and must be distinct from the global branch
of positive equilibrium solutions that emanates from u ≡ 0. In particular, we demonstrate in this
case that for all large enough values of the ratio r/d , (1.1) has at least 3 equilibrium solutions
with values in (0,1] on Ω (including u ≡ 1).

When α(0) > 0, we show that there are unbounded continua of nontrivial equilibria to (1.1)
with values in [0,1] on Ω̄ emanating from both u ≡ 0 and u ≡ 1. Clearly, an equilibrium solution
to (1.1) with u ≡ 1 is “nontrivial” with respect to the equilibria with u ≡ 0. But notice that the
reverse is also true; i.e., if the ray of equilibria u ≡ 1 represents the base or trivial branch of
equilibria to (1.1) under consideration, then an equilibrium with u ≡ 0 is “nontrivial” with respect
to this branch. As a result, there is no inconsistency with global bifurcation theory if the u ≡ 0 and
u ≡ 1 equilibria to (1.1) are linked by equilibria with values in (0,1) on Ω̄ . Indeed, it is entirely
conceivable that if we regard the ratio r/d as the bifurcation parameter in our discussion, such a
“linking set” of equilibria could have compact closure in R × C1,γ (Ω̄). In Section 4, we show
that there are α(u) with α(0) > 0 so that for all large enough values of r/d , the only equilibria
to (1.1) with values in [0,1] on Ω̄ are u ≡ 0 and u ≡ 1. For such α(u), the u ≡ 0 and u ≡ 1
branches of equilibria are thus linked in R × C1,γ (Ω̄) by a precompact (hence bounded in R)
continuum of equilibria to (1.1) with values in (0,1) on Ω̄ . So for such α(u), the global structure
of branches of equilibria to (1.1) is very different from the case when α(u) is such that α(0) = 0
and α′(0) > 0. We do not know at present whether such always is the case, since our proof places
assumptions on α(u) beyond having α(0) > 0.

Finally, in Section 5, we consider a side question that arises naturally from the discussion
in Section 3. Recall from Section 3 that the only equilibria that can arise as asymptotic lim-
its of nonnegative biologically relevant solutions to (1.1) must take values on [0,1] on Ω̄ and
correspond to ratios of r/d with both r � 0 and d > 0. There is a unique and positive value
of r/d at which such equilibria bifurcate from the equilibria with u ≡ 1 on Ω̄ . This positive
value of r/d is the unique value for which (1.19) admits an eigenfunction φ which is positive
on Ω̄ . Conceivably, there could be additional positive values of r/d for which (1.19) admits a
nonzero solution. At such points there could be bifurcation of positive equilibria to (1.1) from
u ≡ 1. These equilibria would take on values above and below 1 on Ω̄ and are not relevant from
a biological point of view. However, they are part of the set of positive equilibria to (1.1), so
it is of some interest to ask if there are additional positive values of r/d for which (1.19) ad-
mits a nonzero solution. We answer this question in Section 5 in the special case where Ω is an
interval.
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2. Possibility of Allee effects via subcritical bifurcation of equilibria from the zero state

In this section, we employ the classical local bifurcation results of Crandall and Rabinowitz
(see, for example, [6, Chapter 3]) to explore the possibility of obtaining an Allee effect in (1.1)
via a subcritical bifurcation of equilibrium solutions from the zero state. To this end, equilibrium
solutions to (1.1) may be realized as the zeros of the mapping F : R × C2,γ (Ω̄) → Cγ (Ω̄) ×
C1,γ (∂Ω) that is given by

F(λ,u) = (∇2u + λu(1 − u), α(u)∇u · �η + (
1 − α(u)

)
u
)
, (2.1)

where λ = r/d . A straightforward calculation shows that the linearization of (2.1) with respect
to u at u = 0 is given by

Fu(λ,0)w = (∇2w + λw, α(0)∇w · �η + (
1 − α(0)

)
w

)
. (2.2)

By (1.2), α(0) ∈ [0,1]. Suppose now that α(0) > 0. Then if λ = λ1
α(0)(Ω), where λ1

α(0)(Ω) is
as in (1.13), it follows from the results of [9,11] that Fu(λ,0) in (2.2) is a Fredholm opera-
tor of index 0 from C2,γ (Ω̄) to Cγ (Ω̄) × C1,γ (∂Ω). Moreover, the kernel N(Fu(λ,0)) = 〈φ〉,
where φ is an eigenfunction corresponding to λ1

α(0)(Ω) in (1.13) and φ(x) > 0 in Ω . (Note

that φ(x) > 0 on Ω̄ as α(0) > 0.) Consequently, the co-dimension of the range R(Fu(λ,0)) in
Cγ (Ω̄) × C1,γ (∂Ω) is 1 when λ = λ1

α(0)(Ω).
Hence we may employ the Crandall–Rabinowitz theorem to analyze the zeros of (2.1) in a

neighborhood of (λ1
α(0)(Ω),0) provided that we show that Fλu(λ

1
α(0)(Ω),0)φ /∈ R(Fu(λ

1
α(0)(Ω),

0)). Now Fλu(λ
1
α(0)

(Ω),0)φ = (φ,0), so we need to eliminate the possibility of the existence of

a function y ∈ C2,γ (Ω̄) so that

∇2y + λ1
α(0)(Ω)y = φ in Ω,

α(0)∇y · �η + (
1 − α(0)

)
y = 0 on ∂Ω.

(2.3)

Should such a y exist, multiplying the top equation in (2.3) by φ, integrating and employing
Green’s second identity and (1.13) leads to the conclusion that∫

Ω

φ2 dx = 0,

a contradiction. So the Crandall–Rabinowitz theorem applies. As a result, the zeros of (2.1) in a
neighborhood of (λ1

α(0)
(Ω),0) may be precisely described. Specifically, if any complement W of

〈φ〉 in C2,γ (Ω̄) is fixed, there are continuously differentiable functions λ(s) and ρ(s) defined on
an open interval I0 about 0 in R and mapping into R and W , respectively, with λ(0) = λ1

α(0)(Ω),
ρ(0) = 0 and

F
(
λ(s), sφ + sρ(s)

) = 0

for s ∈ I0. Moreover, if F(λ,y) = 0 and (λ, y) is sufficiently close to (λ1
α(0)(Ω),0), then either

y = 0 or else there is s 	= 0 ∈ I so that

(λ, y) = (
λ(s), sφ + sρ(s)

)
. (2.4)
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Suppose now that α(0) = 0. Then any solution of

∇2y + λy(1 − y) = 0 in Ω,

y = 0 on ∂Ω
(2.5)

is also a solution of

∇2y + λy(1 − y) = 0 in Ω,

α(y)∇y · �η + (
1 − α(y)

)
y = 0 on ∂Ω.

(2.6)

When α(0) = 0 and F : R × C2,γ (Ω̄) → Cγ (Ω̄) × C1,γ (∂Ω) is as in (2.1), the results of [9,11]
guarantee that Fu(λ,0) is a Fredholm operator of index 0. However, they show that it is Fredholm
of index 0 as a map between C2,γ (Ω̄) and Cγ (Ω̄) × C2,γ (∂Ω), not between C2,γ (Ω̄) and
Cγ (Ω̄) × C1,γ (∂Ω). Consequently, in this case, we cannot appeal to the Crandall–Rabinowitz
theorem to assert that the only positive solutions to (2.6) in a neighborhood of (λ1

α(0)(Ω),0) are
solutions of (2.5). Fortunately, we can establish this fact directly. To this end, suppose there is a
sequence {(λn,un)} ⊆ R × C2,γ (Ω̄) with λn > 0, un > 0 in Ω so that

−∇2un = λnun(1 − un) in Ω,

α(un)∇un · �η + (
1 − α(un)

)
un = 0 on ∂Ω,

where

α(un) 	≡ 0 on ∂Ω

and (λn,un) → (λ̄,0) in R × C2,γ (Ω̄) for some λ̄ � 0. As in (1.7) we assume α′(0) > 0. Then
for each n, there is an xn ∈ ∂Ω so that α(un(xn)) 	= 0, which implies un(xn) 	= 0. So we have

∇un(xn) · �η = α(un(xn)) − 1

β(un(xn))
(2.7)

for all n, where β is as in (1.5). Since un → 0 in C2,γ (Ω̄), the left-hand side of (2.7) must con-
verge to 0. However, the right-hand side converges to − 1

β(0)
< 0, a contradiction. Consequently,

there can be no such sequence. Hence the only solutions to (2.6) which can bifurcate from 0 in
this case are solutions to (2.5). It is well known [6] that if λ > λ1

0(Ω), there is a unique positive
solution ū(λ) of (2.5) in C2,γ (Ω̄) and that the map λ → ū(λ) is smooth from (λ1

0(Ω),∞) to
C2,γ (Ω̄) with limλ→λ1

0(Ω)+ ū(λ) = 0. As a result, there is not a subcritical bifurcation of equi-
libria to (1.1) in this case. (Of course, more is known about ū(λ). Namely, if one considers the
model

∂u

∂t
= ∇2u + λu(1 − u) in Ω × (0,∞),

u = 0 on ∂Ω × (0,∞),

(2.8)

any solution u(x, t) with u(x,0)
>	≡ 0 converges over time to ū(λ) in C1,γ (Ω̄) if λ > λ1

0(Ω) and
to 0 if λ � λ1(Ω).)
0
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The preceding observations show that if α(0) = 0, and α′(0) > 0, there cannot be an Allee
effect in (1.1) resulting from a subcritical bifurcation of equilibria from the zero state. In fact, they
show more. Namely, for any bounded interval [a, b] ⊂ (0,∞), there must be an ε = ε([a, b]) > 0
so that there is no (λ,u) ∈ [a, b] × C2,γ (Ω̄) solving (2.6) with λ ∈ [a, b], u > 0 in Ω , α(u) 	≡ 0
on ∂Ω and ‖u‖C2,γ (Ω̄) < ε. So the only small norm positive equilibria to (1.1) when α(0) = 0

are those along {(λ, ū(λ)): λ > λ1
0(Ω)} with λ near λ1

0(Ω).
It is natural to ask whether the set {(λ, ū(λ)): λ > λ1

0(Ω)} is globally isolated as a subset
of the solution set to (2.6). To address this issue, first recall from the introduction that (1.1) is
ill-posed when α(0) = 0. However, recall also that when α′(0) > 0, any solution u(x, t) of (1.1)
with u(x,0) > 0 on Ω̄ necessarily satisfies

β(u)∇u · �η + (
1 − α(u)

) = 0 (2.9)

on ∂Ω × (0,∞), where

β(u) =
{

α(u)
u

, u 	= 0,

α′(0), u = 0.

Consequently, if α′(0) > 0, any equilibrium solution to (1.1) which could be in the omega
limit set of such a solution to (1.1) must satisfy (2.9). So in considering whether the set
C = {(λ, ū(λ)): λ > λ1

0(Ω)} is isolated as a subset of the solutions to (2.6), we will continue to
assume α′(0) > 0 and only consider solutions to (2.6) which are such that u ≡ 0 on ∂Ω or which
satisfy (2.9) on ∂Ω . We already know that C is isolated relative to solutions to (2.6) which vanish
on ∂Ω . So now suppose that λ > λ1

0(Ω), and that there is a sequence {(λn,wn)} in R ×C1,γ (Ω̄)

converging to (λ, ū(λ)) in R × C1,γ (Ω̄) with

∇2wn + λnwn(1 − wn) = 0 in Ω,

β(wn)∇wn · �η + (
1 − α(wn)

) = 0 on ∂Ω.
(2.10)

Since wn → ū(λ) in C1,γ (Ω̄) as n → ∞, wn → 0 in C1,γ (∂Ω) and ∇wn · �η → ∇ū(λ) · �η in
Cγ (∂Ω) as n → ∞. As a consequence, it follows from the second equation in (2.10) that

α′(0)∇ū(λ) · �η + 1 = 0 (2.11)

on ∂Ω . So from (2.11), we have that for such a λ, ū(λ) and ∇ū(λ) · �η are constant on ∂Ω . A result
of Serrin [15] tells us that Ω is a ball. So provided that Ω is not a ball, {(λ, ū(λ)): λ > λ1

0(Ω)}
is isolated among the solutions to (2.6) globally in the sense described above.

If Ω is a ball, it is sometimes possible to have a positive solution of (2.6) which vanishes on
∂Ω and also satisfies (2.9), meaning that our restriction to cases in which Ω is not a ball is not
artificial. To see that such is the case, take Ω = (0,1) and let u be a positive solution of (2.5) for
some positive value of λ. There is then a γ > 0 so that ∇u · �η = −γ at x = 0 and x = 1. Provided
β in (2.9) is such that β(0) = 1/γ , u also satisfies (2.9).

We now know that in order for an Allee effect to arise in (1.1) via a subcritical bifurcation of
equilibria from the zero state when λ = λ1

α(0)(Ω), we must require α(0) > 0. So we assume

α(0) > 0. (2.12)
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A subcritical bifurcation of equilibria to (1.1) boils down to having λ′(0) < 0, where λ(s) is as
given in (2.4). The Crandall–Rabinowitz theorem justifies differentiating the expressions in (2.1)
with respect to s for s near 0. Indeed, since F in (2.1) is differentiable to any order in λ and in u,
we may take as many derivatives with respect to s as is necessary. Our calculation of λ′(0) will
require differentiating (2.1) with respect to s twice. To this end, let ′ = d/ds and ′′ = d2/ds2.
Then differentiating F(λ,u) = 0, where F is as in (2.1), once yields

∇2u′ + λ′(u − u2) + λ(1 − 2u)u′ = 0 in Ω, (2.13)

d

du

(
α(u)

)
u′∇u · �η + α(u)∇u′ · �η − d

du

(
α(u)

)
u′u + (

1 − α(u)
)
u′ = 0 on ∂Ω, (2.14)

a second differentiation produces

∇2u′′ + λ′′(u − u2) + 2λ′(1 − 2u)u′ − 2λ(u′)2 + λ(1 − 2u)u′′ = 0 in Ω, (2.15)

d2(α(u))

du2
(u′)2∇u · �η + d(α(u))

du
u′′∇u · �η + 2

d

du

(
α(u)

)
u′∇u′ · �η + α(u)∇u′′ · �η

− d2

du2

(
α(u)

)
(u′)2u − 2

d

du

(
α(u)

)
(u′)2 − d

du

(
α(u)

)
u′′u + (

1 − α(u)
)
u′′ = 0 on ∂Ω.

(2.16)

When s = 0, u = 0, u′ = φ and λ = λ1
α(0)(Ω). Consequently (2.13)–(2.14) and (2.15)–(2.16)

reduce to

∇2φ + λ1
α(0)(Ω)φ = 0 in Ω, (2.17)

α(0)∇φ · �η + (
1 − α(0)

)
φ = 0 on ∂Ω (2.18)

and

∇2u′′ + 2λ′φ − 2λ1
α(0)(Ω)φ2 + λ1

α(0)(Ω)u′′ = 0 in Ω, (2.19)

2
dα

du
(0)φ∇φ · �η + α(0)∇u′′ · �η − 2

dα

du
(0)φ2 + (

1 − α(0)
)
u′′ = 0 on ∂Ω, (2.20)

respectively.
To determine λ′(0), we multiply (2.19) by φ and integrate, obtaining

∫
Ω

φ∇2u′′ dx + 2λ′(0)

∫
Ω

φ2 dx − 2λ1
α(0)(Ω)

∫
Ω

φ3 dx + λ1
α(0)(Ω)

∫
Ω

u′′φ dx = 0. (2.21)

Now
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∫
Ω

φ∇2u′′ dx =
∫
Ω

u′′∇2φ dx +
∫

∂Ω

(φ∇u′′ · �η − u′′∇φ · �η)dS

= −λ1
α(0)(Ω)

∫
Ω

u′′φ dx

+
∫

∂Ω

{
φ

α(0)

[
2
dα

du
(0)φ2 − 2

dα(0)

du
φ∇φ · �η − (

1 − α(0)
)
u′′

]

− u′′

α(0)

[−(
1 − α(0)

)
φ
]}

dS

= −λ1
α(0)(Ω)

∫
Ω

u′′φ dx + 2 dα
du

(0)

α(0)

∫
∂Ω

φ3
(

1 + 1 − α(0)

α(0)

)
dS

= −λ1
α(0)(Ω)

∫
Ω

u′′φ dx + 2 dα
du

(0)

(α(0))2

∫
∂Ω

φ3 dS

by Green’s second identity and (2.17)–(2.20). Substituting into (2.21) yields

2λ′(0)

∫
Ω

φ2 dx − 2λ1
α(0)(Ω)

∫
Ω

φ3 dx + 2 dα
du

(0)

(α(0))2

∫
∂Ω

φ3 dS = 0

so that

λ′(0) =
λ1

α(0)(Ω)
∫
Ω

φ3 dx − dα
du

(0)

(α(0))2

∫
∂Ω

φ3 dS∫
Ω

φ2 dx
. (2.22)

It is important to note that λ1
α(0)(Ω) and φ depend on the value of α(0) but are independent of

dα
du

(0). Consequently, it follows from (2.22) that λ′(0) < 0 provided

dα

du
(0) >

(
α(0)

)2
λ1

α(0)(Ω)

∫
Ω

φ3 dx∫
∂Ω

φ3 ds
. (2.23)

Under assumption (2.23), there is a subcritical bifurcation of equilibria to (1.1) at (λ1
α(0)

(Ω),0).
To have the possibility of obtaining an Allee effect in (1.1) from this phenomenon, we need to
know two things. Namely, we need to know first of all that the zero equilibrium to (1.1) is stable
for 0 < λ < λ1

α(0)
(Ω) and unstable for λ > λ1

α(0)
(Ω). Secondly, we need to know that the equi-

librium (λ(s), s(φ + ρ(s))) is unstable for s > 0 and small. We may demonstrate both via the
method of upper and lower solutions in a manner analogous to [4], provided we can appeal to the
extension [8] of the Crandall–Rabinowitz theory which relates the linearized stability/instability
of the zero equilibria to (1.1) to that along the bifurcating branch (λ(s), s(φ + ρ(s))) for s small
(i.e., near the bifurcation point). In essence, the Crandall–Rabinowitz result establishes that hav-
ing a subcritical bifurcation (in the λ parameter) from the branch of trivial solutions is equivalent
to the bifurcating branch of nonzero solutions having the opposite linearized stability (when
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viewed as equilibria to the corresponding dynamical problem) as the trivial solutions along the
direction of bifurcation in λ. Such an appeal is valid in our case, since the map u → (u,0) is a
continuous embedding of C2,γ (Ω̄) into Cγ (Ω̄) × C1,γ (∂Ω) that makes it possible to consider
eigenvalue problems of the form

Fu(λ,u)z = σz, (2.24)

where F is as in (2.1).
Under assumption (2.23), it follows from formula (1.17) of [8] that the principal eigenvalue

σ in (2.24) is positive for the nonzero equilibrium solutions (λ,u) of (1.1) which are sufficiently
close to (λ1

α(0)(Ω),0) in R × C1,γ (Ω̄). Hence such solutions are linearly unstable. To obtain a
more refined picture of the instability, let z be an eigenfunction corresponding to σ , so that z can
be assumed to be positive in Ω̄ and to satisfy

∇2z + λ(1 − 2u)z = σz in Ω,

α(u)∇z · �η + α′(u)∇u · �ηz − α′(u)uz + (
1 − α(u)

)
z = 0 on ∂Ω.

(2.25)

For such a z, it is easy to show that

∇2(u + εz) + λ(u + εz)
(
1 − (u + εz)

)
> 0 (2.26)

on Ω . On ∂Ω , one has that

∇(u + εz) · �η +
(

1

α(u + εz)
− 1

)
(u + εz)

= −
(

1

α(u)
− 1

)
u + ε

[
−

(
1

α(u)
− 1

)
z + α′(u)

α(u)
uz − α′(u)

α(u)
∇u · �ηz

]

+
(

1

α(u + εz)
− 1

)
(u + εz)

=
(

1

α(u + εz)
− 1

α(u)

)
(u + εz) + α′(u)

α(u)
uεz − α′(u)

α(u)
∇u · �ηεz

=
(

1

α(u + εz)
− 1

α(u)

)
(u + εz) + α′(u)

α(u)
uεz + α′(u)

α(u)

(
1

α(u)
− 1

)
uεz

=
(

1

α(u + εz)
− 1

α(u)

)
(u + εz) + α′(u)

[α(u)]2
uεz. (2.27)

Now by the mean value theorem there are ρ and ρ̃ with u < ρ̃ < ρ < u + εz so that the last
formula in (2.27) becomes

=
(

1

α(u)
− α′(ρ)

[α(ρ)]2
εz − 1

α(u)

)
(u + εz) + α′(u)

[α(u)]2
uεz

= − α′(ρ)

2
uεz − α′(ρ)

2
ε2z2 + α′(u)

2
uεz
[α(ρ)] [α(ρ)] [α(u)]
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=
[

α′(u)

[α(u)]2
− α′(ρ)

[α(ρ)]2

]
uεz − α′(ρ)

[α(ρ)]2
ε2z2

=
(

2α′(ρ̃)2 − α(ρ̃)α′′(ρ̃)

[α(ρ̃)]3

)
(u − ρ)uεz − α′(ρ)

[α(ρ)]2
ε2z2. (2.28)

If now

2
[
α′(0)

]2 − α(0)α′′(0) > 0, (2.29)

we have that (2.27) (or (2.28)) is negative on ∂Ω provided (λ,u) is close enough to (λ1
α(0)

(Ω),0)

in R × C1,γ (Ω̄) and ε > 0 is sufficiently small. Consequently, if (2.23) and (2.29) hold, u + εφ

is a strict lower solution for F(λ,u) = 0, where F is as in (2.1) provided that (λ,u) is an equi-
librium for (1.1) sufficiently close to (λ1

α(0)(Ω),0) in R × C1,γ (Ω̄) and ε > 0 is sufficiently
small.

One may show that the semi-flow associated to (1.1) is order-preserving for u values in (0,1).
As a result, one may proceed as in [4] to show that if (λ,u) and ε are as in the preceding para-
graph and w is the solution of (1.1) with w(x,0) = u(x) + εz(x), then w(x, t) is an increasing
function in t and converges to an equilibrium solution of (1.1) as t → ∞. In particular, it follows
that any solution of (1.1) with initial data exceeding u(x) must exceed u(x) for all positive time.
Consequently, if both (2.23) and (2.29) hold, we may employ the method of upper and lower
solutions to obtain a threshold effect for solutions to (1.1) with initial data near (λ1

α(0)
(Ω),0).

As previously noted, the linearized instability of points along the branch of nonzero equilibria
to (1.1) which emanates from (λ1

α(0)
(Ω),0) may be deduced solely on the basis of (2.23). We

employ (2.29) in order to get a more refined description of this instability via the method of upper
and lower solutions. Whether (2.29) (which depends on α′′(0) as well as on α′(0) and α(0)) is a
necessary condition to obtain this threshold effect is an interesting open question.

Summing up, the analysis in this section shows that obtaining an Allee effect in the solutions
to (1.1) via a subcritical bifurcation of equilibria to (1.1) from the set of trivial solutions is
only possible when the function α(u) satisfies α(0) > 0. In this case, subcritical bifurcation of
equilibria for (1.1) at (λ1

α(0)(Ω),0) occurs when (2.23) holds. When the additional condition
(2.29) is assumed, we obtain a threshold effect among solutions to (1.1) via the method of upper
and lower solutions. We shall continue discussion of Allee effects and multiple equilibria over
the next two sections of the paper.

3. Bifurcation from u ≡ 1: Multiple equilibria and Allee effects

Let us now assume that α(1) = 1, so that u ≡ 1 is an equilibrium solution to (1.1) for all
choices of d > 0 and r > 0. Recall from our discussion in Section 1 that we shall also assume
that α′(1) > 0 when α(1) = 1. As in the previous section, let λ = r/d and consider F(λ,u) = 0,
where F is as in (2.1); i.e.,

−∇2u = λu(1 − u) in Ω,

α(u)∇u · �η + (
1 − α(u)

)
u = 0 on ∂Ω.

(3.1)
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In order to look for bifurcation from u ≡ 1, one should write u = 1 + v and substitute into (3.1),
leading to

−∇2v = −λv(1 + v) in Ω,

α(1 + v)∇v · �η + (
1 − α(1 + v)

)
(1 + v) = 0 on ∂Ω.

(3.2)

Bifurcation from u ≡ 1 in (3.1) corresponds to bifurcation from v ≡ 0 in (3.2). To apply the
Crandall–Rabinowitz theorem, one would then need to calculate and examine the linearization
of (3.2) about v ≡ 0, which turns out to be

−∇2φ = −λφ in Ω,

∇φ · �η − α′(1)φ = 0 on ∂Ω.
(3.3)

Since α′(1) > 0, the Robin boundary condition in (3.3) “goes the wrong way” and hence is such
that standard elliptic theory (e.g., [9]) no longer applies. Alternatively, problem (3.3) could be
regarded as a Stekloff problem [3], in which α′(1) is the principal Stekloff eigenvalue for the
operator ∇2 − λI . However, in our treatment, it is more suitable to think of α′(1) as a given
quantity and λ = r/d as the parameter of primary interest, so we shall not pursue this approach
further.

Consequently, we are not able to verify the hypotheses of the Crandall–Rabinowitz theorem if
we simply proceed in the most direct route toward bifurcation from u ≡ 1 in (3.1). To circumvent
the problem, we make an initial change of variables

w = hu, (3.4)

where h = h(x) is a positive function on Ω̄ that we shall specify a bit later. (Here our approach
was inspired by Protter and Weinberger’s approach to establishing the generalized maximum
principle [13], although our focus is substantively different.) A straightforward calculation via
(3.4) shows that the first equation in (3.1) can be expressed in terms of w as

1

h
∇2w − 2∇h · ∇w

h2
−

(∇2h

h2
− 2|∇h|2

h3

)
w + λ

(
w

h
− w2

h2

)
= 0

in Ω , which upon division by h yields

∇ · 1

h2
∇w −

(∇2h

h3
− 2|∇h|2

h4

)
w + λ

(
w

h2
− w2

h3

)
= 0 (3.5)

in Ω . Likewise, the boundary condition in (3.1) in terms of w is

α

(
w

h

)
∇w · �η −

[
α

(
w

h

)∇h · �η
h

−
(

1 − α

(
w

h

))]
w = 0 (3.6)

on ∂Ω . In order for the boundary condition to “go the right way” in our context, we need

α

(
w

)∇h · �η −
(

1 − α

(
w

))
< 0 (3.7)
h h h
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for all w � 0. Since (3.7) can be re-written as

α

(
w

h

)[∇h · �η
h

+ 1

]
< 1,

(3.7) holds so long as

∇h · �η
h

= −K (3.8)

for any K > 1. (If ∂Ω is smooth, it is always possible to choose such an h for a given K .)
Assuming (3.8), we express (3.1) in terms of w as (3.5)–(3.6). Then w ≡ h in (3.5)–(3.6)

corresponds to u ≡ 1 in (3.1). So now write w = ρ + h. Let V ⊆ C2,γ (Ω̄) be a neighborhood
of 0 which is such that if p ∈ V , p + h > 0 in Ω̄ . Define G : R × V → Cγ (Ω̄) × C1,γ (∂Ω) by

G(λ,ρ) =
(

∇ · 1

h2
∇(ρ + h) −

(∇2h

h3
− 2|∇h|2

h4

)
(ρ + h)

+ λ

(
ρ + h

h2
− (ρ + h)2

h3

)
, α

(
ρ + h

h

)
∇(ρ + h) · �η

−
[
α

(
ρ + h

h

)∇h · �η
h

−
(

1 − α

(
ρ + h

h

))]
(ρ + h)

)

=
(

∇ · 1

h2
∇ρ −

(∇2h

h3
− 2|∇h|2

h4

)
ρ

+ λ

(
ρ

h2
− (ρ2 + 2ρh)

h3

)
, α

(
ρ + h

h

)
∇(ρ + h) · �η

−
[
α

(
ρ + h

h

)∇h · �η
h

−
(

1 − α

(
ρ + h

h

))]
(p + h)

)
. (3.9)

It follows from (3.5)–(3.6) that G(λ,ρ) = (0,0) in (3.9) if and only if F(λ,
ρ+h

h
) = (0,0)

in (2.1). In particular, we have that

G(λ,0) = (0,0) (3.10)

for all λ ∈ R.
Our aim now is to establish bifurcation from u ≡ 1 in (3.1) by applying the Crandall–

Rabinowitz theorem to G(λ,ρ). (At an appropriate point in our verification of the hypotheses
of the Crandall–Rabinowitz theorem, we will identify a suitable choice of h satisfying (3.8).)
Now

Gρ(λ,ρ)z =
(

∇ · 1

h2
∇z −

(∇2h

h3
− 2|∇h|2

h4

)
z

+ λ

(
1
2
z − 1

3
(2ρ + 2h)z

)
, α′

(
ρ + h

)
z ∇(ρ + h) · �η + α

(
ρ + h

)
∇z · �η
h h h h h



784 R.S. Cantrell, C. Cosner / J. Differential Equations 231 (2006) 768–804
−
[
α′

(
ρ + h

h

)
z

h

∇h · �η
h

+ α′
(

ρ + h

h

)
z

h

]
(ρ + h)

−
[
α

(
ρ + h

h

)∇h · �η
h

−
(

1 − α

(
ρ + h

h

))]
z

)
,

which when ρ = 0 yields

(
∇ · 1

h2
∇z −

(∇2h

h3
− 2|∇h|2

h4

)
z − λ

z

h2
, ∇z · η −

[
α′(1) + ∇h · �η

h

]
z

)
. (3.11)

We noted earlier that if ∇h·�η
h

= −K , where K > 1, the boundary condition “goes the right way”
in the nonlinear problem for any w � 0. Consequently, such is the case in G(λ,ρ) for all ρ ∈ V

provided h > 0 on Ω̄ . Such an h can be obtained, for example, as the solution of the boundary
value problem

−∇2h = 1 in Ω,

∇h · �η + Kh = 0 on ∂Ω,
(3.12)

where K > 1. In light of (3.11), we assume in addition that

K > α′(1). (3.13)

Assuming (3.13), then Gρ(λ,0) in (3.11) is a Fredholm operator of index 0 from C2,γ (Ω̄) to
Cγ (Ω̄) × C1,γ (∂Ω) for all λ ∈ R. Moreover, standard elliptic theory [7,9] now implies that the
set of λ for which the null space

N
(
Gρ(λ,0)

) 	= {0} (3.14)

is a decreasing sequence λn, n � 0, with limn→∞ λn = −∞. Moreover, N(Gρ(λ0,0)) = 〈z〉,
where z may be chosen positive on Ω̄ and λ0 is the only member of the collection {λn: n � 0}
admitting such a z.

Since Gρ(λ0,0) is Fredholm of index 0, the first condition of the Crandall–Rabinowitz theo-
rem is met when λ = λ0. Of course, in our application λ corresponds to r/d � 0. So obtaining
bifurcation from the line {(λ,0)} of trivial solutions to G(λ,ρ) = 0 is only of interest to us if
λ0 � 0. Of course, when λ0 > 0, there may be a finite number of additional values λ1, . . . , λm

so that (3.14) holds and λm � 0. (We will examine this interesting side question in Section 5 in
the case wherein Ω is an interval.) Potentially, there could be bifurcation from u ≡ 1 in (3.1) at
these additional values. However, the maximum principle tells us that any equilibrium solution
to (1.1) which is an asymptotic temporal limit of a positive solution to (1.1) must be less than or
equal to 1 throughout Ω . Translated to G(λ,ρ) = 0, such an equilibrium solutions corresponds
to a ρ ∈ (−h,0). Since λ0 is the only λn so that N(Gρ(λn,0)) contains a function which is of
one sign on Ω̄, λ0 is the only value of λ so that (λ,0) could be the limit of a sequence of solu-
tions to G(λ,ρ) = 0 with −h < ρ < 0. So we will only look for bifurcation from u ≡ 1 in (3.1)
at λ = λ0.
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In order to employ the Crandall–Rabinowitz theorem to assert bifurcation of equilibria to (1.1)
from (λ,1), it remains to establish that λ0 > 0 and that if N(Gρ(λ0,0)) = 〈z〉 with z > 0 in Ω̄ ,
then

Gλρ(λ0,0)z /∈ R
(
Gρ(λ0,0)

)
. (3.15)

Assume for the moment that λ0 > 0. It is not difficult to establish that

Gλρ(λ,ρ)v =
(

− 1

h2
v − 2ρ

h3
v,0

)

so that

Gλρ(λ0,0)z =
(

− 1

h2
z,0

)
. (3.16)

If (3.15) fails, it follows from (3.16) that there is a y ∈ C2,γ (Ω̄) so that

∇ · 1

h2
∇y −

(∇2h

h3
− 2|∇h|2

h4

)
y − λ0

(
y

h2

)
= − z

h2
in Ω,

∇y · �η + (
K − α′(1)

)
y = 0 on ∂Ω.

(3.17)

Multiply the top equation in (3.17) by z and integrate to obtain

∫
Ω

z∇ · 1

h2
∇y dx −

∫
Ω

(∇2h

h3
− 2|∇h|2

h4

)
yzdx − λ0

∫
Ω

yz

h2
dx = −

∫
Ω

(
z

h

)2

dx. (3.18)

It follows from the divergence theorem and the second equation in (3.17) that

∫
Ω

z∇ ·
(

1

h2
∇y

)
dx =

∫
Ω

y∇ ·
(

1

h2
∇z

)
dx. (3.19)

Substituting (3.19) into (3.18) and employing (3.11) shows that

∫
Ω

(
z

h

)2

dx = 0,

a contradiction. Consequently, there can be no such y and (3.15) holds.
To determine that λ0 > 0, first observe that if Gρ(λ,0)z = 0 for some λ ∈ R and z ∈ C2,γ (Ω̄),

then φ = z/h satisfies (3.3). Thus λ0 may be characterized also as the unique real value for which
(3.3) admits a positive solution. For purposes of estimating λ0, one can work with either (3.3) or
(3.11). Note that (3.3) gives

λ0 = ∇2φ
. (3.20)
φ
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Since ∇ · (∇φ
φ

) = ∇2φ
φ

− |∇φ|2
φ2 , integrating (3.20) yields

|Ω|λ0 =
∫
Ω

∇2φ

φ
dx

=
∫
Ω

∇ ·
(∇φ

φ

)
dx +

∫
Ω

|∇φ|2
φ2

dx

=
∫

∂Ω

∇φ · �η
φ

dS +
∫
Ω

|∇φ|2
φ2

dx

= α′(1)|∂Ω| +
∫
Ω

|∇φ|2
φ2

dx,

allowing us to conclude that

λ0 > α′(1)
|∂Ω|
|Ω| if α′(1) > 0. (3.21)

(Note that when α′(1) = 0, it is immediate from (3.3) that λ0 = 0.)
To obtain an upper bound on λ0, let k be a normalized principal eigenfunction for

−∇2k = λk in Ω,

∇k · �η + α′(1)k = 0 on ∂Ω.
(3.22)

By (1.13), λ in (3.22) is given by λ = λ1
α∗(Ω), where

α∗ = 1

1 + α′(1)
. (3.23)

Now let

z = kφ (3.24)

where k > 0 is as in (3.22) and φ is as in (3.3). Then preceding as after (3.4), we have that z

in (3.24) satisfies

∇ · 1

k2
∇z −

(∇2k

k3
− 2|∇k|2

k4

)
z − λ0

z

k2
= 0 in Ω,

∇z · �η = 0 on ∂Ω.

(3.25)

The variational characterization of (3.25) [7] tells us that
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λ0 = sup
z∈W 1,2(Ω)

∫
Ω

[−|∇z|2
k2 − (∇2k

k
− 2|∇k|2

k2

)
z2

k2

]
dx∫

Ω
z2

k2 dx

� sup
z∈W 1,2(Ω)

∫
Ω

(−∇2k
k

+ 2|∇k|2
k2

)
z2

k2 dx∫
Ω

z2

k2 dx

� sup
z∈W 1,2(Ω)

∫
Ω

(−∇2k
k

)
z2/k2 dx∫

Ω
z2/k2 dx

+ sup
z∈W 1,2(Ω)

∫
Ω

2|∇k|2/k2 · z2

k2 dx∫
Ω

z2/k2 dx

� λ1
α∗(Ω̄) + sup

Ω̄

2|∇k|2/k2.

Hence

λ0 � λ1
α∗(Ω̄) + sup

Ω̄

2|∇k|2/k2. (3.26)

It follows from (3.22) and (3.23) that the right-hand side of (3.26) converges to 0 as α′(1) → 0.
Moreover, the right-hand side of (3.21) can be made as large as desired simply by making α′(1)

large enough. Consequently, not only is λ0 > 0 if α′(1) > 0, but it is also the case that as α′(1)

ranges over the positive numbers, so does λ0.
We now have that λ0 is positive and that the hypotheses of the Crandall–Rabinowitz theorem

are satisfied for G(λ,ρ) = 0. It follows from (3.4), (3.5), (3.6), (3.12), (3.13) and the definition of
G that for (λ,ρ) in a neighborhood of (λ0,0) and (λ,u) in a neighborhood of (λ0,1), solutions
to G(λ,ρ) = 0 correspond to solutions of F(λ,u) = 0, where F is as in (2.1), via the equivalence

G(λ,ρ) = 0 ⇔ F

(
λ,

ρ + h

h

)
= 0. (3.27)

By (3.27), we may return to (3.1) to determine the direction of bifurcation λ′(s) (s = 0) of the
branch of equilibria to (1.1) which emanates from the line of solutions (λ,1) to (3.1) at the
parameter value λ = λ0. Our calculation of first and second derivatives with respect to s along
this branch proceeds exactly as in (2.13) to (2.16). However, now when s = 0, u ≡ 1, λ = λ0 and
u′ = φ, where φ is as in (3.3). Since we are interested in equilibria to (1.1) with u � 1 on Ω̄ , the
branch of primary interest to us is that corresponding to s < 0 and small.

Substituting into (2.13)–(2.14) and (2.15)–(2.16) and calculating along the lines of (2.17)–
(2.20), we obtain

∇2φ − λ0φ = 0 in Ω, (3.28)

∇φ · �η − dα

du
(1)φ = 0 on ∂Ω (3.29)

and

∇2u′′ − 2λ′(0)φ − 2λ0φ
2 − λ0u

′′ = 0 in Ω, (3.30)
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2
dα

du
(1)φ∇φ · �η + ∇u′′ · �η − d2α

du2
(1)φ2 − dα

du
(1)u′′ − 2

dα

du
(1)φ2 = 0 on ∂Ω. (3.31)

To calculate λ′(0) here, we multiply (3.28) by u′′ and (3.30) by φ, integrate and employ Green’s
second identity and (3.28)–(3.31). On one hand, we get

∫
Ω

(
φ∇2u′′ − u′′∇2φ

)
dx

=
∫
Ω

[
φ
(
2λ′(0)φ + 2λ0φ

2 + λ0u
′′) − u′′(λ0φ)

]
dx

= 2
∫
Ω

[
λ′(0)φ2 + λ0φ

3]dx,

while on the other we have

∫
Ω

(
φ∇2u′′ − u′′∇2φ

)
dx

=
∫

∂Ω

(φ∇u′′ · �η − u′′∇φ · �η)dS

=
∫

∂Ω

[
φ

(
−2

dα

du
(1)φ∇φ · �η + d2α

du2
(1)φ2

+ dα

du
(1)u′′ + 2

dα

du
(1)φ2

)
− u′′

(
dα

du
(1)φ

)]
dS

=
∫

∂Ω

φ3
[
−2

(
dα

du
(1)

)2

+ 2
dα

du
(1) + d2α

du2
(1)

]
dS.

It now follows that

λ′(0) =
∫
∂Ω

φ3
[

d2α

du2 (1) + 2 dα
du

(1) − 2
(

dα
du

(1)
)2]

dS − 2λ0
∫
Ω

φ3 dx

2
∫
Ω

φ2 dx
. (3.32)

Note that in (3.32), λ0 and φ depend on dα
du

(1), but are independent of the choice of d2α

du2 (1).

Consequently, once any fixed value of dα
du

(1) > 0 is specified (and hence λ0 is determined),
the direction of bifurcation λ′(0) of the branch of solutions to (3.1) emanating from the line of

solutions (λ,1) at λ0 is controlled solely by the value of d2α

du2 (1). Indeed, λ′(0) may be positive,
negative or zero. Recall that the branch of solutions (λ(s), u(s)) of interest to us corresponds to
s < 0 and small. So, for instance, when λ′(0) > 0, λ(s) < λ0 for such solutions for s near enough
to 0.



R.S. Cantrell, C. Cosner / J. Differential Equations 231 (2006) 768–804 789
We now want to determine the stability of the equilibrium solutions to (1.1) near the bifurca-
tion point (λ0,1) thought of as solutions to (1.1). To do so, we recast the time dependent problem
(1.1) in terms of ρ, as before, obtaining

∂ρ

∂t
= ∇2ρ − 2∇h · ∇ρ

h
−

(∇2h

h
− 2|∇h|2

h2

)
ρ + λ

(
ρ − ρ2 + 2ρh

h

)
in Ω × (0,∞),

α

(
ρ

h
+ 1

)
∇(ρ + h) · �η +

[
(K − 1)α

(
ρ

h
+ 1

)
+ 1

]
(ρ + h) = 0 on ∂Ω × (0,∞). (3.33)

The linearization about equilibria to (3.33) with respect to ρ at ρ = 0 yields the expressions

∇2z − 2∇h · ∇z

h
−

(∇2h

h
− 2|∇h|2

h2

)
z − λz in Ω,

∇z · �η + (
K − α′(1)

)
z on ∂Ω.

As in (2.24), we may determine the linearized stability of the zero equilibrium to (3.33) at λ � 0
via the sign of μ in

∇2z − 2∇h · ∇z

h
−

(∇2h

h
− 2|∇h|2

h2

)
z − λz = μz in Ω,

∇z · �η + (
K − α′(1)

)
z = 0 on ∂Ω,

(3.34)

where z > 0 on Ω̄ . If one divides the top equation in (3.34) by h2, then (3.34) may be recast as

Gρ(λ + μ,0)z = 0. (3.35)

Since z > 0 in Ω̄ , it follows from (3.35) that λ + μ = λ0. So μ < 0 if λ > λ0 and μ > 0 if
λ < λ0. Consequently, we may conclude that u ≡ 1 is asymptotically stable as an equilibrium to
(1.1) when λ > λ0 and unstable when λ < λ0. The stability of the branch of equilibria (λ(s), u(s))

emanating from (λ,1) at λ = λ0 and corresponding to s < 0 and small can now be assessed via
the extension of the Crandall–Rabinowitz theorem [8] and we conclude that equilibria along the
branch are asymptotically stable when λ′(0) > 0 and so λ(s) < λ0 for small s and unstable when
λ′(0) < 0 and hence λ(s) > λ0 for small s.

We can combine the results of this section and the preceding one to draw some conclusions
about Allee effects and multiple equilibria in (1.1) when α(0) > 0, α(1) = 1 and α′(1) > 0. To
this end, first recall that equilibria to (1.1) emanate from (λ,0) at λ = λ1

α(0)(Ω) and emanate

from (λ,1) at λ = λ0. The value of λ1
α(0)(Ω) is determined in (1.13) and depends solely and

continuously on the value of α(0) ∈ (0,1). Hence λ1
α(0)

(Ω) may take on any value in the interval

(0, λ1
0(Ω)). On the other hand, λ0 is determined solely by α′(1) and it follows from (3.21) and

(3.26) that λ0 may assume any positive value. As a result, any one of the three possibilities
λ0 < λ1

α(0)(Ω), λ0 = λ1
α(0)(Ω), λ0 > λ1

α(0)(Ω) may obtain.

Let us suppose now that λ0 < λ1
α(0)(Ω). Then we have that u ≡ 0 and u ≡ 1 are both asymp-

totically stable as equilibrium solutions to (1.1) for λ ∈ (λ0, λ
1
α(0)(Ω)). So for such values of

λ = r/d , solutions to (1.1) with u(x,0) positive and sufficiently small decay over time to 0 while
solutions to (1.1) with u(x,0) less than but close to 1 on Ω̄ converge over time to 1. Clearly, in
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such a case, (1.1) exhibits what amounts to an Allee effect for (r, d) with r/d ∈ (λ0, λ
1
α(0)(Ω)).

Here the Allee effect is reminiscient of those we displayed in [5]. In [5], we presumed α(0) to
be small while α(u) ∈ (0,1) was relatively large for u close enough to 1. However, the value
of α(0) could be relatively arbitrary in (0,1) and the construction of [5] would remain valid.
The primary effect of increasing the value of α(0) would be to narrow the range of parameter
values λ = r/d for which the effect would be detected. Presently, we can have α(0) take on any
value in (0,1), with λ1

α(0)
(Ω) approaching 0 as α(0) approaches 1. So again, if α(0) is increased,

the range of parameter values λ for which we can detect an Allee effect in (1.1) by virtue of hav-
ing λ ∈ (λ0, λ

1
α(0)(Ω)) is necessarily narrowed. At the other end, if α(1) = 1 and α′(1) > 0 but

sufficiently small, α(u) ∈ (0,1) will be relatively large when u is less than but close to 1.
Suppose next that λ0 = λ1

α(0)(Ω). If the branch of equilibria to (1.1) given by (λ(s), u(s)),
−1 � s < 0 which emanates from (λ,1) at λ0 is such that λ′(0) > 0, then for λ = λ(s) < λ0,
u(s) is a large asymptotically stable equilibrium to (1.1) and 0 is also asymptotically stable.
Consequently, in this case, (1.1) exhibits an Allee effect. If λ′(0) < 0, (1.1) may exhibit multiple
stable equilibria and hence a threshold effect along the lines of [12]. Additionally, if the branch of
equilibria to (1.1) which emanates from (λ,0) at λ1

α(0)(Ω) = λ0 bends in the same direction with
respect to λ as does {(λ(s), u(s))}, then (1.1) has at least three nontrivial equilibria (including
u ≡ 1) for λ near λ0 (here λ > λ0 in the case wherein λ′(0) < 0 and λ < λ0 when λ′(0) > 0).

When λ0 > λ1
α(0)(Ω), notice that u ≡ 0 is unstable as a solution to (1.1) for λ near λ0 and that

u ≡ 1 is unstable when λ is near λ1
α(0)(Ω). Consequently, obtaining Allee effects on the basis of

local bifurcation from u ≡ 1 as described above is no longer possible. We can still obtain Allee
effects and multiple equilibria on the basis of subcritical bifurcation from the trivial equilibria at
λ = λ1

α(0)(Ω), as in the preceding section. Our description of this phenomenon will be enhanced
if we employ global as well as local bifurcation results. We establish the necessary results in the
next section and continue this discussion there.

When α(0) = 0, the results of [5] show that u ≡ 0 remains an asymptotically stable equi-
librium to (1.1) when λ < λ1

α(0)(Ω) = λ1
0(Ω). Consequently, much of the preceding discussion

remains valid if α(0) = 0, α′(0) > 0, α(1) = 1 and α′(1) > 0. Certainly, if λ0 < λ1
0(Ω), (1.1)

exhibits an Allee effect for λ ∈ (λ0, λ
1
0(Ω)) just as before. When λ0 = λ1

0(Ω), we get an Allee
effect when λ′(0) > 0 and multiple equilibria when λ′(0) < 0. However, if λ0 > λ1

0(Ω), the re-
sults of Section 2 show that we cannot obtain an Allee effect on the basis of subcritical bifurcation
from the trivial equilibria at λ = λ1

0(Ω).

4. Global bifurcation results

In order to establish global results about the set of equilibria to (1.1) which bifurcate from
either the set of trivial equilibria {(λ,0): λ ∈ R} or the set {(λ,1): λ ∈ R}, we again need to
distinguish between the cases α(0) = 0 and α(0) > 0. Some of the reasons for this distinction
are technical. However, the distinction is also related to the possibility of linking solutions that
emanate from u ≡ 0 to solutions that emanate from u ≡ 1.

We will begin our discussion assuming that α(0) > 0. In this situation, in Section 2, when we
were concerned with local bifurcation from the set of trivial equilibria, we could formulate the
question in terms of solutions to

F(λ,u) = 0 = (0,0), (4.1)
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where F(λ,u) is as in (2.1). Now, however, we can no longer assume that u is in a small neighbor-
hood of 0 in C2+α(Ω̄). Consequently, we employ the positive auxiliary function h given in (3.12)
(assuming (3.8) and (3.13)) so as to reformulate (4.1) along the lines (3.5)–(3.6); namely, we con-
sider

∇ · 1

h2
∇w −

(∇2h

h3
− 2|∇h|2

h4

)
w + λ

(
w

h2
− w2

h3

)
= 0 (4.2)

in Ω with

α

(
w

h

)
∇w · �η −

[
α

(
w

h

)∇h · �η
h

−
(

1 − α

(
w

h

))]
w = 0 (4.3)

on ∂Ω . (Recall that since α(0) > 0, we may assume that (1.4) holds and also that w in (4.2)–(4.3)
corresponds to hu by (3.4).)

Now choose an M > 0 so that

∇2h

h3
− 2|∇h|2

h4
+ M

h2
> 0 (4.4)

on Ω̄ and rewrite (4.2) as

−∇ ·
(

1

h2
∇w

)
+

(∇2h

h3
− 2|∇h|2

h4
+ M

h2

)
w = (λ + M)

(
w

h2

)
− λ

(
w2

h3

)
(4.5)

in Ω . Then for any fixed w ∈ C1,γ (Ω̄), it follows from (4.4), (3.8) and (3.13) that the equations

−∇ ·
(

1

h2
∇z

)
+

(∇2h

h3
− 2|∇h|2

h4
+ M

h2

)
z = y in Ω, (4.6)

α

(
w

h

)
∇z · �η −

[
α

(
w

h

)∇h · �η
h

−
(

1 − α

(
w

h

))]
z = p on ∂Ω (4.7)

define a continuous linear solution operator from Cγ (Ω̄) × C1,γ (∂Ω) into C2,γ (Ω̄). Let us
denote this operator by A(w), so that (4.6)–(4.7) can be expressed as

z = A(w)(y,p). (4.8)

By [9], we can view A(w) as a compact operator from C1,γ (Ω̄) × C1,γ (∂Ω) into C1,γ (Ω̄).
So now define a continuous linear operator A(w) :Cγ (Ω̄) → C2,γ (Ω̄) by

A(w)y = A(w)(y,0). (4.9)

(We may view A(w) as a compact map from C1,γ (Ω̄) to C1,γ (Ω̄).) Then (4.5) and (4.3) are
equivalent to the operator equation

w = A(w)

(
(λ + M)

(
w

2

)
− λ

(
w2

3

))
. (4.10)
h h
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It follows from [6, Theorem 1.2] and [11, Chapter 3, Theorem 3.1] that if {λk} is bounded in
R and {wk} is bounded in C1,γ (Ω̄), then

A(wk)

(
(λk + M)

(
wk

h2

)
− λk

(
w2

k

h3

))

is bounded in C2,γ (Ω̄) and hence is precompact in C1,γ (Ω̄). That the right-hand side of (4.10)
is a differentiable map from C1,γ (Ω̄) to C1,γ (Ω̄) is also a consequence of [11, Chapter 3, The-
orem 3.1]. To see that such is the case, we proceed as follows. Notice first that if p = 0 in (4.7),
(4.7) can be written as

∇z · �η +
(

K − 1 + 1

α(w
h
)

)
z = 0 on ∂Ω. (4.11)

(Here we use (3.13).) Then for ρ ∈ C1,γ (Ω̄), define the compact linear operator B(ρ) :Cγ (Ω̄)×
C1,γ (∂Ω) → C1,γ (Ω̄) by

z = B(ρ)(y,p)

if and only if

−∇ ·
(

1

h2
∇z

)
+

(∇h

h2
− 2|∇h|2

h4
+ M

h2

)
z = y in Ω, (4.12)

∇z · �η + (K − 1 + ρ)z = p on ∂Ω. (4.13)

So by (4.11), the right-hand side of (4.10) is differentiable in w so long as the map

ρ → B(ρ)(y,0)

is differentiable in ρ as a map from C1,γ (Ω̄) to C1,γ (Ω̄). Let y ∈ C1,γ (Ω̄) be fixed and let
z1 = B(ρ)(y,0) and z2 = B(ρ + v)(y,0), where v ∈ C1,γ (Ω̄). By (4.12)–(4.13),

B(ρ + v)(y,0) −B(ρ)(y,0) = z2 − z1 = B(ρ)(0,−z2v). (4.14)

Since Theorem 3.1 of [11, Chapter 3] guarantees that z2 ∈ C2,γ (Ω̄) is bounded if v ∈ C1,γ (Ω̄)

is bounded, it follows from (4.14) that B(ρ)(y,0) is continuous in ρ. Consequently,

B(ρ + v)(y,0) −B(ρ)(y,0) −B(ρ)
(
0,−vB(ρ)(y,0)

)
= B(ρ)(0,−z2v) −B(ρ)(0,−z1v) = B(ρ)

(
0,−(z2 − z1)v

)
,

which is o(‖v‖) since z2 → z1 as v → 0 by the continuity of B(ρ)(y,0) in ρ. Hence B(ρ)(y,0)

is differentiable in ρ and thus the right-hand side of (4.10) is a differentiable map from C1,γ (Ω̄)

to C1,γ (Ω̄). As a consequence, a direct calculation shows that we can recast (4.10) as

w = A(0)(λ + M)

(
w

2

)
+ R(λ,w), (4.15)
h
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where R(λ,w) = o(‖w‖) uniformly for λ in bounded subsets of R. So we have an appropriate
functional analytic setting in which to apply the Rabinowitz global bifurcation theorem [6,14] to
the set of equilibria to (1.1) which bifurcate from the set of trivial solutions {(λ,0): λ ∈ R} under
the assumption that α(0) > 0.

Keeping the assumption that α(0) > 0, it is straight forward to modify the preceding discus-
sion by substituting

w = ρ + h (4.16)

into (4.5) and (4.3) to establish that the set of equilibria to (1.1) which emanate from {(λ,1): λ ∈
R} can also be analyzed via the Rabinowitz global bifurcation theorem. We leave the details to
the interested reader.

Let us now turn to the case α(0) = 0, where we also assume α′(0) > 0. In this case, we es-
tablished in Section 2 that the positive equilibria to (1.1) which bifurcate from the set of trivial
solutions must themselves vanish on the boundary ∂Ω of the domain Ω , and noted there the
global description of this set as the smooth arc {(λ, ū(λ)): λ > λ1

0(Ω)} in R×C2,γ (Ω̄). Further-
more, assuming Ω is not a ball in R

N , we also showed in Section 2 that {(λ, ū(λ)): λ > λ1
0(Ω)}

is isolated in a reasonable sense as a subset of the positive equilibria to (1.1). For the present, we
will assume this form of isolation for {(λ, ū(λ)): λ > λ1

0(Ω)}. Under this assumption, our dis-
cussion of global bifurcation of positive equilibria of (1.1) from the trivial solutions is complete
in this case and we need only focus on establishing a suitable context for a global analysis of
the equilibria to (1.1) which bifurcate from the set {(λ,1): λ ∈ R}. To this end, it follows from
Section 2 that equilibria to (1.1) near (λ∗,1) for some λ∗ � 0 must satisfy

∇2u + λu(1 − u) = 0 in Ω,

β(u)∇u · �η + (
1 − α(u)

) = 0 on ∂Ω,
(4.17)

where β is given by

β(u) =
{

α(u)
u

, u 	= 0,

α′(0), u = 0

and we may assume

β(R) ⊆ (δ,R) (4.18)

for some 0 < δ < R. Letting

u = 1 + ρ (4.19)

we can recast (4.17) as

−∇2ρ = −λρ(1 + ρ) in Ω,

∇ρ · �η + ρ = α(1 + ρ) − 1 + ρ on ∂Ω.
(4.20)
β(1 + ρ)
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Now let L :Cγ (Ω̄) × C1,γ (∂Ω) → C2,γ (Ω̄) be the bounded linear operator given by

z = L(f,g) (4.21)

if and only if

−∇2z = f in Ω,

∇z · �η + z = g on ∂Ω.
(4.22)

By (4.21)–(4.22), (4.20) is equivalent to

ρ = L

(
−λρ(1 + ρ),

α(1 + ρ) − 1

β(1 + ρ)
+ ρ

)
, (4.23)

which is of the form

ρ = F(λ,ρ), (4.24)

where F is a map from R×C1,γ (Ω̄) into C1,γ (Ω̄). It follows from (4.18) and (4.20)–(4.21) that
F is compact and continuous, uniformly for λ in bounded intervals.

In this case, the fact that λ occurs only in the first component of the right-hand side of (4.23)
means that (4.24) is not of the form to which the original Rabinowitz global bifurcation theorem
[14] applies, in contrast to (4.15). Of course, there are various extensions of Rabinowitz’s work
that will apply to (4.24), among them that of Alexander and Antman [1], which we will employ
in the case of (4.24).

Now, whether we are considering (4.15) or (4.24) (and consequently using Rabinowitz’s orig-
inal results or Alexander and Antman’s extension), the essential element that must be verified
in order to make assertions about the global dispensation of bifurcating continua of equilibria
to (1.1) is the same. Namely, we need to verify that for appropriate values of λ the generalized
null space of the linearization about 0 is of odd dimension. In the cases under consideration the
dimension is one; i.e. we have algebraic simplicity. In the case of (4.15) the necessary argument
is rather straight forward and we leave it to the interested reader to verify the result. However, for
(4.24) the formulation is a bit more novel, so we have chosen to include it here. It follows from
(4.21)–(4.23) that the relevant value of λ is λ0, where λ0 is given in (3.14) and that if

z = Fρ(λ0, z), (4.25)

then

z = L
(−λ0z,

(
α′(1) + 1

)
z
)

so that

−∇2z = −λ0z in Ω,

∇z · �η − α′(1)z = 0 on ∂Ω,
(4.26)
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which is just (3.3). Hence dimN(I −Fρ(λ0, ·)) = 1. Let N(I −Fρ(λ0, ·)) = 〈φ〉, where φ > 0
on Ω̄ . Then if w ∈ N((I −Fρ(λ0, ·))2),

w − L
(−λ0w,

(
α′(1) + 1

)
w

) = cφ (4.27)

for some c ∈ R. Then

w − cφ = L
(−λ0w,

(
α′(1) + 1

)
w

)
and (4.21)–(4.23) implies

−∇2(w − cφ) = −λ0w in Ω,

∇(w − cφ) · �η + (w − cφ) = (
α′(1) + 1

)
w on ∂Ω.

(4.28)

Now multiply (4.28) by φ and integrate, obtaining

∫
Ω

−φ∇2w dx + c

∫
Ω

φ∇2φ dx = −λ0

∫
Ω

φw dx. (4.29)

The first term on the left-hand side of (4.29) becomes

∫
Ω

−φ∇2w dx =
∫
Ω

−w∇2φ dx +
∫

∂Ω

(−φ∇w · �η + w∇φ · �η)dS

= −λ0

∫
Ω

wφ dx +
∫

∂Ω

(−φc∇φ · �η + cφ + α′(1)w
)
dS

+
∫

∂Ω

w
(
α′(1)φ

)
dS

= −λ0

∫
Ω

wφ dx − c

∫
∂Ω

(
α′(1) + 1

)
φ2 dS. (4.30)

Since φ∇2φ + |∇φ|2 = div(φ∇φ), the second term on the left-hand side of (4.29) yields

∫
Ω

φ∇2φ = −
∫
Ω

|∇φ|2 dx + α′(1)

∫
∂Ω

φ2 dS. (4.31)

Substituting (4.30) and (4.31) into (4.29) and simplifying we obtain

c

[ ∫
∂Ω

φ2 dS +
∫
Ω

|∇φ|2 dx

]
= 0, (4.32)
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whence we conclude that c = 0 and hence that

N
((

I = Fρ(λ0, ·)
)2) = N

(
I −Fρ(λ0, ·)

)
,

as required.
We have now established the following result.

Theorem 4.1. Consider the equilibrium solutions to (1.1) where α(u) is smooth, nondecreasing
and satisfies (1.2) with α(1) = 1 and α′(1) > 0.

(i) If α(0) > 0, assume (1.4). Let h ∈ C2,γ (Ω̄) be a positive function and K a positive constant
so that (3.8) and (3.13) hold and let M be a positive constant so that (4.4) holds.

(ii) If α(0) = 0, assume α′(0) > 0 and that (4.18) holds. Assume also that positive solutions to

∇2u + λu(1 − u) = 0 in Ω,

u = 0 on ∂Ω
(4.33)

are isolated among the equilibrium solutions to (1.1) in the sense described in Section 2.
Then:
(a) There exists a continuum of equilibrium solutions (λ,u) to (1.1) with 0 � u � 1 on Ω̄

which emanates from {(λ,0): λ ∈ R} at λ = λ1
α(0)(Ω), where λ1

α(0)(Ω) > 0 is as given

in (1.13) and which is unbounded in R × C1,γ (Ω̄).
(b) There exists a continuum of equilibrium solutions (λ,u) to (1.1) with 0 � u � 1 on Ω̄

which emanates from {(λ,1): λ ∈ R} at λ = λ0, where λ0 > 0 is as given in (3.14) and
which is unbounded in R × C1,γ (Ω̄).

Remark. The unboundedness of the continua in Theorem 4.1(a) and (b) is argued as follows.
The exposition preceding the statement of the theorem enables us to apply Rabinowitz’s Global
Bifurcation Theorem (or one of its generalizations) to assert the existence of continua emanating
from {(λ,0): λ ∈ R} and {(λ,1): λ ∈ R}. Each of these continua must then satisfy Rabinowitz’s
global alternatives relative to its base (or “trivial”) set of solutions. Since λ1

α(0)(Ω) and λ0 are
the unique parameter values from which solutions (λ,u) with 0 < u < 1 on Ω may emanate
from {(λ,0): λ ∈ R} and {(λ,1): λ ∈ R}, respectively, it must be the case that both continua are
unbounded in R × C1,γ (Ω̄).

The preceding observation can be refined substantially. Denote the continuum emanating from
{(λ,0): λ ∈ R} by C0 and the continuum emanating from {(λ,1): λ ∈ R} by C1. Since 0 � u �
1 for points (λ,u) ∈ Ci for i = 0,1, the assumptions (1.4) and (4.18) on α allow us employ
regularity theory to conclude that for i = 0 or 1{‖u‖C2,γ (Ω̄): (λ,u) ∈ Ci and λ ∈ [a, b]}
is bounded for any finite bounded interval [a, b]. Consequently, the only way in which Ci , i = 0,1
can be unbounded is to have {λ ∈ R: (λ,u) ∈ Ci} be unbounded.

As previously noted, only equilibria (λ,u) with λ � 0 have any relevance to the underlying
application. It is indeed the case that for i = 0,1 the set π(Ci ) = {λ ∈ R: (λ,u) ∈ Ci for some u ∈
C1,γ (Ω̄) with 0 < u < 1 on Ω} is contained in (0,∞). Since λ1

α(0)
(Ω) and λ0 are both positive,

this fact is a direct corollary of the following result.
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Proposition 4.2. Assume α is as in Theorem 4.1. Suppose that u satisfies

∇2u = 0 in Ω,

α(u)∇u · �η + (
1 − α(u)

)
u = 0 on ∂Ω,

0 � u � 1 on Ω̄.

(4.34)

Then u ≡ 0 or u ≡ 1.

Proof. We have u∇2u = 0 on Ω . Hence

0 =
∫
Ω

u∇2udx =
∫
Ω

∇ · (u∇u)dx −
∫
Ω

|∇u|2 dx

=
∫

∂Ω

u∇u · �η dS −
∫
Ω

|∇u|2 dx =
∫
Γ

[
α(u) − 1

α(u)

]
u2 dS −

∫
Ω

|∇u|2 dx,

where Γ = {x ∈ ∂Ω: α(u(x)) 	= 0} and the integral over Γ is understood to be 0 if Γ = ∅.
(If Γ = ∅, it follows from (4.34) that u = 0 on ∂Ω .) Since 0 � u � 1 on ∂Ω by (4.34), 0 �
α(u) � 1 on ∂Ω . Thus

∫
Γ

[α(u)−1
α(u)

]u2 dS � 0, and so
∫
Γ

[α(u)−1
α(u)

]u2 dS = ∫
Ω

|∇u|2 dx = 0. Since∫
Ω

|∇u|2 dx = 0, u is constant on Ω̄ . If Γ = ∅, clearly this constant must be 0. If Γ 	= ∅, then
Γ = ∂Ω and if u ≡ k, then α(k) > 0. It follows that

α(k) = 1

and thus k = 1 by the assumptions on α.
Notice that it is completely consistent with global bifurcation theory to have π(Ci ) bounded

for i = 0,1, so long as

C0 ∪ (
R × {0}) = C1 ∪ (

R × {1}). (4.35)

In such a case, equilibrium solutions to (1.1) which emanate from R × {0} in R × C1,γ (Ω̄) at
(λ1

α(0)(Ω),0) reach infinity by linking up to the ray of equilibrium solutions R × {1} at (λ0,1).
So if (4.35) holds, π(C0) = π(C1). When α(0) = 0, the assumptions in Theorem 4.1 rule this
possibility out. In that event, π(C0) = (λ1

α(0)(Ω),∞) and (λ0,∞) ⊆ π(C1). As a result, for all

λ > max{λ1
α(0)(Ω),λ0}, (1.1) has at least three equilibrium solutions (λ,u) with 0 � u � 1 on

Ω̄ and u > 0 on Ω (one of which is u ≡ 1). (For these values of λ, u ≡ 1 and u ≡ 0 are stable
and unstable, respectively, as equilibria to (1.1). Since the nonzero equilibria to (1.1) emanating
from (λ1

0(Ω),0) are stable as equilibria to (1.1) with α(u) ≡ 0, one would expect a net instability
among the equilibria to (1.1) which emanate from (λ0,1).) When α(0) > 0, if (4.35) does not
hold, (1.1) will again have at least three nonzero equilibria for λ > max{λ1

α(0)(Ω),λ0}. It is an
extremely interesting question to ask whether there are choices of α with α(0) > 0 for which
π(Ci ), i = 0,1, are bounded. The answer, as we show next, is yes.

To establish that π(Ci ), i = 0,1, are bounded for some α with α(0) > 0, we need to show that
for such an α the set {u ∈ C1,γ (Ω̄): (λ,u) is an equilibrium solution of (1.1) with 0 < u < 1
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on Ω} is empty for all large enough values of λ. To this end, suppose for an α satisfying the
conditions of Theorem 4.1 with α(0) > 0 that for all λ > λ1

α(0)(Ω) there is a function u with

∇2u + λu(1 − u) = 0 in Ω,

α(u)∇u · �η + (
1 − α(u)

)
u = 0 on ∂Ω,

0 < u < 1 in Ω.

(4.36)

Let λ0 be as in (3.14) and let φ > 0 satisfy

∇2φ − λ0φ = 0 in Ω,

∇φ · �η − α′(1)φ = 0 on ∂Ω,
(4.37)

and define I by

I =
∫
Ω

[
u∇2φ − φ∇2u − ∇2φ

]
dx. (4.38)

It is straightforward to calculate on one hand that I in (4.38) equals

∫
Ω

(
λ0uφ + λφu(1 − u) − λ0φ

)
dx

=
∫
Ω

(
λφu(1 − u) − λ0φ(1 − u)

)
dx =

∫
Ω

λφ(1 − u)

(
u − λ0

λ

)
dx.

Now for any fixed α with α(0) > 0 any positive solution to (4.36) is an upper solution to

∇2u + λu(1 − u) = 0 in Ω,

α(0)∇u · �η + (
1 − α(0)

)
u = 0 on ∂Ω.

(4.39)

From (4.39) and the method of upper and lower solutions we conclude that u � uα(0)(λ), the
unique positive solution of (4.39). Hence

u − λ0

λ
� uα(0)(λ) − λ0

λ
. (4.40)

It is immediate from the method of upper and lower solutions that uα(0)(λ) increases in λ. Con-
sequently, it follows from (4.40) that I > 0 for all large values of λ.

On the other hand, we have that

I =
∫

∂Ω

[u∇φ · �η − φ∇u · �η − ∇φ · �η]dS

=
∫ [

α′(1)uφ − φ

(
1 − 1

α(u)

)
u − α′(1)φ

]
dS
∂Ω
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=
∫

∂Ω

(
α′(1)(u − 1)φ + φ

(
1

α(u)
− 1

)
u

)
dS. (4.41)

Now

1

α(u)
= 1

1
− α′(1)

[α(1)]2
(u − 1) + 1

2

[
1

α(u)

]′′∣∣∣∣
u=û

(u − 1)2

= 1 − α′(1)(u − 1) + 1

2

[
1

α(u)

]′′∣∣∣∣
u=û

(u − 1)2

where u < û < 1. Substituting into (4.41) we have that

I =
∫

∂Ω

(
α′(1)(u − 1)φ − α′(1)(u − 1)φu + φu

(
1

2

)[
1

α(u)

]′′∣∣∣∣
u=û

(u − 1)2
)

dS

=
∫

∂Ω

(
−α′(1)φ(u − 1)2 + 1

2

[
1

α(u)

]′′∣∣∣∣
u=û

(u − 1)2φu

)
dS

=
∫

∂Ω

φ(u − 1)2
(

−α′(1) + 1

2

[
1

α(u)

]′′∣∣∣∣
u=û

u

)
dS

�
∫

∂Ω

φ(u − 1)2
(

−α′(1) + u

2
max

u∈[0,1]

[
1

α(u)

]′′)
dS.

If α is such that

−α′(1) + u

2
max

u∈[0,1]

[
2[α′(u)]2 − α(u)α′′(u)

[α(u)]3

]
< 0 on ∂Ω (4.42)

for any solution u of (4.36), then I < 0 for any λ > λ1
α(0)(Ω) and any corresponding u, contra-

dicting the positivity of I for all large values of λ. So if (4.42) holds for some α with α(0) > 0,
π(C0) and π(C1) are bounded for that α.

It is easy to demonstrate that there are α satisfying the hypotheses of Theorem 4.1 with
α(0) > 0 which are also such that (4.42) holds. For example, let us assume that α′′(u) > 0. Then
a very crude approximation tells us that

−α′(1) + u

2
max

u∈[0,1]

[
2[α′(u)]2 − α(u)α′′(u)

[α(u)]3

]

< −α′(1) + [α′(1)]2

[α(0)]3
= α′(1)

[
−1 + α′(1)

[α(0)]3

]
.

Consequently, when α′′(u) > 0, (4.42) holds if

α′(1) <
[
α(0)

]3
. (4.43)
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A standing assumption in our discussion is that α(0) ∈ (0,1). So the condition (4.43) that we
give for a concave α to be such that π(C0) and π(C1) are bounded requires that α′(1) < 1, so that
such an α is relatively flat. Of course, (4.43) is only a sufficient condition. It is an open question
whether (4.35) always holds when α satisfies the conditions of Theorem 4.1 with α(0) > 0. We
should note that we can also give a somewhat constructive description of a function α meeting
the conditions of Theorem 4.1 with α(0) > 0 for which (4.35) holds, based on knowledge of
solutions to (4.39) as α(0) approaches 1 and the method of upper and lower solutions. The
function α which arises in the construction is again relatively flat on [0,1], although it does not
need to satisfy α′(1) < 1.

More generally, it is very natural to ask just what conditions on α(u) beyond having α(0) > 0,
α(1) = 1 and α′(1) > 0 are needed in order for (4.35) to hold. As noted, at present, we do not
know the answer to this question. However, prompted by some interesting and useful feedback
from the anonymous referee of this paper, we do have some thoughts on the subject that may be
of some use in addressing the question. First of all, obviously it must be the case that α(1) = 1
in order for {(λ,1): λ ∈ R} to be equilibria to (1.1) at all. So without the assumption α(1) = 1
the question is meaningless. However, it seems to us that the fact that α(1) = 1 will play more
than just a basic background role in any successful resolution of the question. Let us elaborate.
Notice that should (4.35) hold for some choice of α(u), the set D = {u ∈ C1,γ (Ω̄): 0 < u < 1
on Ω and (λ,u) ∈ C0 for some λ ∈ (0,∞)} is bounded and thus pre-compact in C1(Ω̄). Indeed,
it would be the case that {(λ,u) ∈ R × C1,γ (Ω̄): 0 < u < 1 on and (λ,u) ∈ C0} is bounded, but
let us focus on D.

Let α(u) satisfy (1.2) with α(0) > 0 be fixed. Then if (λ,u) ∈ C0 with 0 < u < 1 for λ >

λ1
α(0)

(Ω), the method of upper and lower solutions guarantees that u > uα(0)(λ), the unique
positive solution to

−∇2u = λu(1 − u) in Ω,

α(0)∇u · �η + (
1 − α(0)

)
u = 0 on ∂Ω.

We know that C0 for the equilibria to (1.1) when α(u) ≡ α(0) is {(λ,uα(0)(λ): λ > λ1
α(0)

(Ω)}
and that uα(0)(λ)(x) ↗ 1 for x ∈ Ω as λ → ∞. It follows that for our fixed choice of α(u),
we must have a sequence of points (λn,un) along C0 with λn < λn+1, 0 < un < 1 on Ω and
un(x) → 1 for x ∈ Ω as n → ∞. Were the set {un: n � 1} pre-compact in C1(Ω̄), there would
be a subsequence (which we could relabel if need to be) so that un → 1 in C1(Ω̄). Since

α(un)∇un · η + (
1 − α(un)

)
un = 0

on ∂Ω , we obtain by passing to the limit that

1 − α(1) = 0,

so that α(1) = 1. So D can be bounded in C1,γ (Ω̄) only if α(1) = 1.
As previously noted, (4.35) boils down to having π(C0) = {λ ∈ R: (λ,u) ∈ C0 for some u ∈

D} be bounded. Now for any sequence (λn,un) along C0 with λn → +∞ as n → ∞, it is the case
that un(x) → 1 for any x ∈ Ω . Since α(1) = 1, there is no obvious reason why such a sequence
{un}n�1 should not converge to 1 in C1(Ω̄). So it is at least plausible that one could have D
bounded in C1,γ (Ω̄) without π(C0) being bounded in R. On the other hand, it may be possible
to rule out an unbounded π(C0) if certain a priori estimates hold that are uniform in λ. Deciding
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whether π(C0) can be unbounded in R, and if so, under what additional conditions on α(u), if
any, are worthy topics for further investigation in our estimation, and we plan to explore these
issues further in subsequent work.

Let us return briefly to the discussion at the end of the previous section. In the case where
λ1

α(0)
(Ω) < λ0 for some given choice of α satisfying the conditions of Theorem 4.1 with

α(0) > 0, the equilibrium solution (λ,1) of (1.1) is linearly unstable for λ in the neighborhood
(0, λ0) of λ1

α(0)
(Ω). Consequently, as noted in Section 3, obtaining an Allee effect in the system

on the basis that both (λ,0) and (λ,1) are stable equilibrium solutions of (1.1) for an interval
of λ values is ruled out. However, as observed in Section 2, in this instance, we can still detect
an Allee effect in the system for values of λ in the interval (λ1

α(0)(Ω) − δ,λ1
α(0)(Ω)) when the

conditions (2.23) and (2.29) hold on the basis of the instability of the positive equilibria (λ,u)

which emanate from (λ1
α(0)(Ω),0), as in [4]. Such equilibria are the elements of C0 which lie in

a small enough neighborhood of (λ1
α(0)

(Ω),0) in R × C1,γ (Ω̄). In such a case, π(C0) has a pos-

itive minimum value λ∗(C0) < λ1
α(0)(Ω), and for all λ ∈ (λ∗(C0), λ

1
α(0)(Ω)) there are at least two

equilibrium solutions (λ,u) of (1.1) with u taking values in (0,1) on Ω so that (λ,u) ∈ C0. For
λ close enough to λ1

α(0)(Ω), one of these equilibrium solutions, say u1, is the minimal positive
equilibrium solution to (1.1) and is linearly unstable as a solution to (1.1). If there are only two
elements of C0 for this value of λ, say {u1, u2}, then u2 > u1 on Ω̄ and all solutions to (1.1) with
initial data between u1 and u2 converge to u2 as t → ∞. �
5. A spectral theoretic observation

Recall that in Section 3 the question of bifurcation of equilibria to (1.1) from the ray of
equilibria (λ,1), λ ∈ R, when α(1) = 1 and α′(1) > 0 led to the eigenvalue problem

∇2φ − λφ = 0 in Ω,

∇φ · �η − α′(1)φ = 0 on ∂Ω.
(5.1)

Since α′(1) is assumed to be positive, the Robin boundary condition in (5.1) is such that standard
elliptic theory as in [9] was not directly applicable for our purposes. We circumvented this issue
via the change of variables (3.4), which enabled us to recast the equilibria to (1.1) as solutions
to an equivalent boundary value problem on Ω in which the boundary condition was of a form
to which standard elliptic theory applied. In the reformulated problem, the linear eigenvalue
problem corresponding to (5.1) is (3.11). Both problems admit nontrivial solutions for precisely
the same values of the parameter λ. As a result, we know from our analysis in Section 3 that (5.1)
has nontrivial solutions for a discrete set {λn}∞n=0 of values with λ0 > 0, λ0 > λ1, λn � λn+1 and
limn→∞ λn = −∞.

The equilibrium solutions (λ,u) to (1.1) of applied interest in our context have the property
that 0 < u < 1 and that λ � 0. We observe in Section 3 that such solutions can emanate from the
ray of solutions (λ,1) only at λ = λ0, since λ0 is the only element in the collection {λn}n�0 for
which the corresponding φ in (5.1) is of one sign on Ω . Solutions emanating from (λ,1) at any
other value λn will still be positive on Ω , but must take on values both above and below 1, since
the eigenfunctions corresponding to λn in (5.1) must change sign on Ω .

As noted, we know from our analysis in Section 3 that λ0 > 0. Indeed, we know from (3.21)
and (3.26) that limα′(1)→0 λ0 = 0 and limα′(1)→+∞ λ0 = +∞, so that λ0 may assume any positive
value. Whether any other value λn may be nonnegative is an interesting question. The purpose
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of this section is to answer this question when Ω = (a, b), a bounded interval in R
1. To this end

consider

φ′′ − λφ = 0 on (a, b),

−φ′(a) − α′(1)φ(a) = 0,

φ′(b) − α′(1)φ(b) = 0.

(5.2)

For x ∈ (0,1), define ψ(x) by

ψ(x) = φ
(
a + (b − a)x

)
. (5.3)

It follows from (5.2) and (5.3) that ψ satisfies

ψ ′′ − λ(b − a)2ψ = 0 on (0,1),

−ψ ′(0) − α′(1)(b − a)ψ(0) = 0,

ψ ′(1) − α′(1)(b − a)ψ(1) = 0.

(5.4)

So from (5.4) we see that to determine if any of {λn}n�1 may be nonnegative in (5.2), we can
assume without loss of generality that (a, b) = (0,1) in (5.2).

So now assume that (a, b) = (0,1) in (5.2). One may readily check that the boundary con-
ditions in (5.2) are symmetric in the sense of [16, Section 5.3] so that all eigenvalues are real
valued. If one looks for an eigenvalue λ = μ2 of (5.2) with μ > 0, then φ must be of the form

φ(x) = c1 cosh(μx) + c2 sinh(μx)

on (0,1). Plugging into the boundary conditions, an easy computation shows that such a λ is an
eigenvalue of (5.2) provided

tanhμ = 2α′(1)μ

μ2 + [α′(1)]2
. (5.5)

Now tanhμ is a strictly increasing concave down function on [0,∞) with the value 0 at μ = 0
and the limit limμ→∞ tanhμ = 1. If we set f (μ) = 2α′(1)μ

μ2+[α′(1)]2 , then

f ′(μ) = 2α′(1)[[α′(1)]2 − μ2]
[μ2 + [α′(1)]2]2

and

f ′′(μ) = 4α′(1)μ[μ2 − 3[α′(1)]2]
[μ2 + [α′(1)]2]3

.

Hence f (μ) is increasing on [0, α′(1)) with the value 0 at μ = 0 and decreasing on (α′(1),∞)

with limμ→∞ f (μ) = 0. It is concave downward on (0,
√

3α′(1)) and concave upward on
(
√

3α′(1),∞). The maximum value of f (μ) is 1 occurring at μ = α′(1). The graphs are as
in Fig. 1. As a result, there can be either one or two positive values of μ > 0 for which (5.5)
holds and hence by extension either one or two positive eigenvalues of (5.2). The determining
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Fig. 1. Sketches of the graphs of y = tanh(μ) and y = f (μ) from (5.5).

factor in this regard is the value of f ′(0). Since d
dμ

(tanhμ) = sech2(μ), d
dμ

(tanhμ)|μ=0 = 1.
If f ′(0) < 1, the graph of y = f (μ) lies below that of y = tanhμ for 0 < μ � 1. In this case,
there must be two intersections of the curves for positive μ and hence two positive eigenval-
ues of (5.2). Now f ′(0) = 2

α′(1)
so having f ′(0) < 1 requires α′(1) > 2. On the other hand,

when α′(1) < 2, f ′(0) > 1 and the graph of y = f (μ) lies above the graph of y = tanhμ

for 0 < μ � 1. In this case, there is a unique positive eigenvalue of (5.2). When α′(1) = 2,
f ′(0) = 1 and the two curves have the same tangent line at (0,0). However, one may calculate
that limμ→0+ (tanhμ)′′

μ
= −2 < − 3

2 = limμ→0+ f ′′(μ)
μ

. Thus the graph of y = f (μ) lies above that
of y = tanhμ for 0 < μ � 1, so that there is a unique positive eigenvalue of (5.2) in this case.

To determine if 0 can be an eigenvalue of (5.2), one sets φ(x) = A + Bx, so that φ(0) = A,
φ(1) = A + B and φ′(x) ≡ B . The boundary conditions in (5.2) become

−B − α′(1)A = 0 = B − α′(1)(A + B),

which simplifies to B(α′(1) − 2) = 0. Hence α′(1) = 2 is the only value of α′(1) for which 0
is an eigenvalue of (5.2). Consequently, we may now conclude that the second eigenvalue λ1
in the collection {λn}n�0 is positive when α′(1) > 2, zero when α′(1) = 2 and negative when
α′(1) ∈ (0,2).
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