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the shear modulus tend to zero. Using this result, we show that the
asymptotic expansion of the displacement vector in the presence
of small inclusion is uniform with respect to Lamé parameters.
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1. Introduction

Recently there is growing interest in partial differential equations with high contrast coefficients
in various contexts. Among them are the photonic and phononic band gap problems where the elec-
tromagnetic parameter or the bulk modulus tend to infinity, biomedical imaging where anomalous
tissues have large material parameters, and the stress concentration in between two inclusions with
extreme material properties to name a few. See [10,9,3] and references therein. The purpose of this
paper is to prove two basic theorems in relation to the PDEs with high contrast coefficients. The first
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one is to show that when the material parameters tend to the extreme, the corresponding solutions
converge strongly in appropriate norms. The other one is to show that the asymptotic expansion of
the solution in the presence of small inclusions holds uniformly with respect to material parameters.
We prove these facts in the context of the system of linear elasticity. Corresponding results for the
conductivity equation (a scalar equation) have been obtained in [22,13,29].

We consider a linear isotropic elastic body containing an inclusion with different elastic parame-
ters. When the bulk and shear moduli of the inclusion are finite, the solution satisfies the transmission
condition along the interface (the boundary of the inclusion). If the shear modulus of the inclusion is
infinity, then the interface transmission condition is replaced by a null condition of the displacement
(see Section 2). If the bulk and shear moduli are zero, then it is replaced by the traction zero condi-
tion on the boundary of the inclusion. The first objective of this paper is to prove the convergence in
an appropriate H1 space of the solution to the Lamé system as the bulk and shear moduli tend to the
extreme (zero or infinity) (see Theorem 4.2).

The second objective of this paper is to prove a closely related problem of uniformity of the
asymptotic expansion. In imaging small inclusions from boundary measurements, it is of fundamental
importance to catch the boundary signature of the presence of anomalies. In this respect, an asymp-
totic expansion of the boundary perturbations of the solutions due to the presence of the inclusion, as
the diameter of the inclusion tends to zero, has been derived. The asymptotic expansion is derived in
[22,18,6] for the conductivity (scalar) equation, and in [12,28] for the Lamé system of linear isotropic
elasticity. The asymptotic expansions have been effectively used for imaging diametrically small in-
clusions. See for example [18,25,7,8,26,1]. We also mention the topological derivative based shape
optimization where the asymptotic expansion is an essential ingredient (see for example [17,23,5,2]).
In [2] topological derivative based detection algorithms for the localization of an elastic inclusion of
vanishing characteristic size have been developed and their resolution and stability with respect to
measurement and medium noises analyzed.

In these applications, it is important to know that the asymptotic expansion holds uniformly with
respect to the pair of Lamé parameters. We prove this in the second half of this paper under the
assumption that the compressional modulus is bounded, which is necessary (see Theorem 6.1 for
precise statements). It is worthwhile to mention that this result may have a relation with the cloaking
as discussed in [29,14].

The methods of this paper are different from those of [29], where uniform validity of the asymp-
totic expansion for the conductivity (scalar) equations is proved, in that they are based on the layer
potential techniques. The solutions to the Lamé system can be expressed as a single layer potential
on the boundary of inclusion. We show that H−1/2-norms of the potentials are bounded uniformly
with respect to Lamé parameters, and the main results follow from this fact.

This paper is organized as follows. In Section 2, we set up the problems for finite and extreme
moduli, and review the representation of solutions using layer potential techniques. In Section 3,
we prove that the energy functional is uniformly bounded. As a consequence, we obtain that the
potentials on the boundary of the inclusion are uniformly bounded. In Section 4 we show that these
potentials converge as the bulk and shear moduli tend to extreme values and prove Theorem 4.2.
In Section 5, we briefly discuss that similar boundedness and convergence result hold to be true for
the boundary value problem. Section 6 is to prove Theorem 6.1 which asserts that the small volume
expansion holds independently of Lamé parameters. The results and methods hold to be true even if
there are multiple inclusions. We make a brief remark on this in the last section.

2. Problem setting and representation of solutions

Let D be an elastic inclusion which is a bounded domain in R
d (d = 2,3) with the Lipschitz

boundary. Let (λ,μ) be the pair of Lamé (shear and compressional) parameters of D while (λ0,μ0)

is that of the background R
d \ D . Then the elasticity tensors for the inclusions and the background

can be written respectively as C
1 = (C1

i jk�
) and C

0 = (C0
i jk�

) where

C1
i jk� = λδi jδk� + μ(δikδ j� + δi�δ jk),
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C0
i jk� = λ0δi jδk� + μ0(δikδ j� + δi�δ jk),

and the elasticity tensor for R
d in the presence of the inclusion D is given by

C := 1DC
1 + (1 − 1D)C0, (2.1)

where 1D is the indicator function of D . We assume that the strong convexity condition holds, i.e.,

μ > 0, dλ + 2μ > 0, μ0 > 0, and dλ0 + 2μ0 > 0. (2.2)

We also assume that

(λ − λ0)(μ − μ0) > 0, (2.3)

which is required to have the representation of the displacement vectors by the single layer potential
in the following. We also denote the bulk modulus by κ which is given by κ = λ + 2μ/d.

We consider the problem of the Lamé system of the linear elasticity: For a given function h satis-
fying ∇ ·C0∇sh = 0 in R

d ,

{∇ ·C∇su = 0 in R
d,

u(x) − h(x) = O
(|x|1−d) as |x| → ∞,

(2.4)

where ∇su is the symmetric gradient (or the strain tensor), i.e.,

∇su := 1

2

(∇u + (∇u)T )
(T for transpose).

Let

Lλ,μu := ∇ ·C1∇su = μ�u + (λ + μ)∇∇ · u

and define the corresponding conormal derivative ∂u/∂ν on ∂ D by

∂u

∂ν
:= C

1(∇su
)
n = λ(∇ · u)n + μ

(∇u + (∇u)T )
n on ∂ D, (2.5)

where n is the outward unit normal to ∂ D . Let Dc := R
d \ D . Let Lλ0,μ0 and ∂

∂ν0
be those correspond-

ing to (λ0,μ0). Then (2.4) is equivalent to the following problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Lλ0,μ0 u = 0 in Dc,

Lλ,μu = 0 in D,

u|− = u|+ on ∂ D,

∂u

∂ν

∣∣∣∣− = ∂u

∂ν0

∣∣∣∣+ on ∂ D,

u(x) − h(x) = O
(|x|1−d) as |x| → ∞,

(2.6)

where the subscripts + and − indicate the limits from outside and inside D , respectively.
We also consider the two limiting cases of (2.6): when both κ and μ tend to 0, and when μ → ∞

while λ is fixed. In relation to the latter case it is worth mentioning that if λ → ∞ and μ is fixed,
(2.6) approaches to a different problem. Roughly speaking, if λ → ∞, then ∇ · u is approaching to 0



H. Ammari et al. / J. Differential Equations 254 (2013) 4446–4464 4449
while λ∇ · u stays bounded. So (2.6) approaches to the modified Stokes’ problem μ�u +∇p = 0 with
p = λ∇ · u. (See [4].) Hence we assume that λ is bounded throughout this paper.

If κ = μ = 0 (or λ = μ = 0), one can easily see what the limiting problem should be. Since
∂u
∂ν |− = 0, we have from the fourth line of (2.6) that ∂u

∂ν0
|+ = 0. So the elasticity equation in this

case is

⎧⎪⎪⎨
⎪⎪⎩
Lλ0,μ0 u = 0 in Dc,

∂u

∂ν0

∣∣∣∣+ = 0 on ∂ D,

u(x) − h(x) = O
(|x|1−d) as |x| → ∞.

(2.7)

To describe the equation when μ = ∞ while λ remains bounded, we need to introduce the fol-
lowing functional space: Let Ψ be the d(d + 1)/2-dimensional vector space defined by

Ψ := {
ψ = (

ψ(1), . . . ,ψ(d)
)T

: ∂iψ
( j) + ∂ jψ

(i) = 0, 1 � i, j � d
}
. (2.8)

We emphasize that Ψ is the space of solutions Lλ,μu = 0 in D and ∂u/∂ν = 0 on ∂ D for any (λ,μ).
Let ψ j , j = 1, . . . ,d(d + 1)/2, be a basis of Ψ . If μ → ∞, then from the second and fourth equations
in (2.6) we have

�u + ∇∇ · u = 0 in D,
(∇u + (∇u)T )

n = 0 on ∂ D,

which is another elasticity equation (with μ = 1 and λ = 0) with zero traction on the boundary. Thus
there are constants α j such that

u(x) =
d(d+1)/2∑

j=1

α jψ j(x), x ∈ D.

So, the elasticity problem when μ = ∞ is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lλ0,μ0 u = 0 in Dc,

u =
d(d+1)/2∑

j=1

α jψ j on ∂ D,

u(x) − h(x) = O
(|x|1−d) as |x| → ∞.

(2.9)

We need extra conditions to determine the coefficients α j . Note that the solution u to (2.6) satisfies

∫
∂ D

∂u

∂ν0

∣∣∣∣+ · ψl dσ = 0, l = 1, . . . ,
d(d + 1)

2
. (2.10)

So, by taking a (formal) limit, one can expect that the solution u to (2.9) should satisfy the same
condition, and the constants α j in (2.9) are determined by this orthogonality condition.

We now review the representation of the solution to (2.6) using the single layer potential for the
Lamé system following [27,20,21,9]. The Kelvin matrix of the fundamental solution Γ = (Γi j)

d
i, j=1 to

the Lamé system Lλ,μ is given by
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Γi j(x) :=
{ α

2π δi j ln |x| − β
2π

xi x j

|x|2 if d = 2,

− α
4π

δi j
|x| − β

2π
xi x j

|x|3 if d = 3,
x �= 0

where

α = 1

2

(
1

μ
+ 1

2μ + λ

)
and β = 1

2

(
1

μ
− 1

2μ + λ

)
.

When D is a simply connected domain, the single layer potentials of the density function ϕ =
[ϕ1 · · · ϕd ]T on ∂ D associated with the Lamé parameters (λ,μ) are defined by

SD [ϕ](x) :=
∫
∂ D

Γ (x − y)ϕ(y)dσ(y), x ∈ R
d. (2.11)

We denote by Γ 0 , S0
D [ϕ] the fundamental solution and the single layer potential associate with the

Lamé parameter (λ0,μ0) respectively. The conormal derivative of SD [ϕ] enjoys the jump relation on
∂ D:

∂

∂ν
SD [ϕ]|± =

(
±1

2
I +K∗

D

)
[ϕ] a.e. on ∂ D, (2.12)

where K∗
D is defined by

K∗
D [ϕ](x) = p.v.

∫
∂ D

∂

∂νx
Γ (x − y)ϕ(y)dσ(y) a.e. x ∈ ∂ D, (2.13)

where p.v. stands for the Cauchy principal value. We denote by K0∗
D the operator corresponding to

(λ0,μ0).
We introduce a weighted norm, ‖u‖H1

w (Ω) , in two dimensions: let Ω be either R
d or Dc , and let

‖u‖2
H1

w (Ω)
:=

∫
Ω

|u(x)|2√
1 + |x|2 dx +

∫
Ω

∣∣∇u(x)
∣∣2

dx.

This weighted norm is introduced because the solutions u satisfies only u(x) = O (|x|−1) in two di-
mensions as |x| → ∞. For convenience in presenting results of this paper, we put W (Ω) := H1

w(Ω)

in two dimensions, and W (Ω) := H1(Ω), the usual Sobolev space, in three dimensions. Let Ψ be the
space introduced in (2.8), and define

H−1/2
Ψ (∂ D) := {

ϕ ∈ H−1/2(∂ D)d: 〈ϕ,ψ〉 = 0 for all ψ ∈ Ψ
}
. (2.14)

Here 〈ϕ,ψ〉 denotes the H−1/2–H1/2 product. Then ± 1
2 I + K∗

D is invertible on H−1/2
Ψ (∂ D). We also

have

∥∥SD [ϕ]∥∥W (Rd)
� C‖ϕ‖H−1/2(∂ D) (2.15)

for all ϕ ∈ H−1/2(∂ D)d .
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It is proved in [21] that the solution u to (2.6) is represented as

u(x) =
{

h(x) + S0
D [ϕ](x), x ∈ Dc,

SD [ψ](x), x ∈ D,
(2.16)

where the pair (ϕ,ψ) ∈ H−1/2
Ψ (∂ D) × H−1/2(∂ D) is the solutions to

⎧⎨
⎩
SD [ψ](x) − S0

D [ϕ](x) = h(x)

∂SD [ψ]
∂ν

∣∣∣∣−(x) − ∂S0
D [ϕ]

∂ν0

∣∣∣∣+(x) = ∂h

∂ν0
(x)

for x ∈ ∂ D. (2.17)

Even if κ = μ = 0 or μ = ∞, we have a similar representation:

uκ (x) = h(x) + S0
D [ϕκ ](x), x ∈ Dc, κ = 0,∞. (2.18)

When κ = μ = 0, ϕ0 satisfies

(
1

2
I + (

K0
D

)∗
)

[ϕ0] = − ∂h

∂ν0
on ∂ D, (2.19)

and if μ = ∞, then ϕ∞ satisfies

(
−1

2
I + (

K0
D

)∗
)

[ϕ∞] = − ∂h

∂ν0
on ∂ D. (2.20)

We emphasize that ϕκ ∈ H−1/2
Ψ (∂ D). See, for example, [9] for details of the above mentioned repre-

sentation of the solutions.
A similar representation formula holds for the solutions to the boundary value problems. Let Ω be

a bounded Lipschitz domain in R
d containing D , which is also Lipschitz. Let u be the solution to

∇ ·C∇su = 0 in Ω, (2.21)

with either the Dirichlet boundary condition u = f or the Neumann boundary condition ∂u
∂ν0

= g on
∂Ω . Let

h(x) := −
∫

∂Ω

Γ 0(x − y)
∂u

∂ν0

∣∣∣∣−(y)dσ(y) +
∫

∂Ω

∂Γ 0(x − y)

∂ν0(y)
u(y)dσ(y), x ∈ Ω. (2.22)

Then u is represented as

u(x) =
{

h(x) + S0
D [ϕ](x), x ∈ Ω \ D,

SD [ψ](x), x ∈ D,
(2.23)

where the pair (ϕ,ψ) ∈ H−1/2
Ψ (∂ D) × H−1/2(∂ D) is the solutions to (2.17).
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3. Energy estimates

Let

J [u] := 1

2

∫
D

C
1∇su : ∇su + 1

2

∫
Dc

C
0∇s(u − h) : ∇s(u − h). (3.1)

Here and throughout this paper A : B = ∑d
i, j=1 aijbi j for A = (aij) and B = (bij). For the solution u to

(2.6), we prove that J [u] is bounded regardless of κ and μ. More precisely we prove the following
lemma.

Lemma 3.1. Let u be the solution to (2.6). If λ � Λ for some constant Λ, then there is a constant C depending
on Λ, but otherwise independent of μ and κ , such that

J [u] � C

∥∥∥∥ ∂h

∂ν0

∥∥∥∥
2

H−1/2(∂ D)

. (3.2)

As a consequence of Lemma 3.1 we have

Lemma 3.2. Let ϕ be the potential defined in (2.16). If λ � Λ for some constant Λ, then there is a constant C
depending on Λ, but otherwise independent of μ and κ , such that

‖ϕ‖H−1/2(∂ D) � C

∥∥∥∥ ∂h

∂ν0

∥∥∥∥
H−1/2(∂ D)

. (3.3)

Proof. Let v := u − h. Then (2.16) yields v(x) = S0
D [ϕ](x) for x ∈ Dc . Thus, we have from (2.12)

∂v

∂ν0

∣∣∣∣+ =
(

1

2
I + (

K0
D

)∗
)

[ϕ] on ∂ D.

Since 1
2 I + (K0

D)∗ is invertible on H−1/2
Ψ (∂ D), we have

‖ϕ‖H−1/2(∂ D) � C

∥∥∥∥ ∂v

∂ν0

∣∣∣∣+
∥∥∥∥

H−1/2(∂ D)

.

Let η be a function in H1/2(∂ D) satisfying
∫
∂ D η = 0 and let w be the solution to �w = 0 in Dc

with w(x) = O (|x|1−d) and w = η on ∂ D , so that the following estimate holds:

∥∥∇sw
∥∥

L2(Dc)
� C‖η‖H1/2(∂ D).

Since

∫
Dc

C
0∇sv : ∇sw dx = −

∫
∂ D

∂v

∂ν0

∣∣∣∣+ · ηdσ(x), (3.4)

we have
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∣∣∣∣
∫
∂ D

∂v

∂ν0

∣∣∣∣+ · ηdσ(x)

∣∣∣∣ � C
∥∥∇sv

∥∥
L2(Dc)

∥∥∇sw
∥∥

L2(Dc)
� C

∥∥∇sv
∥∥

L2(Dc)
‖η‖H1/2(∂ D).

Since η ∈ H1/2(∂ D) is arbitrary, we have from (3.2)

∥∥∥∥ ∂v

∂ν0

∣∣∣∣+
∥∥∥∥

H−1/2(∂ D)

� C
∥∥∇sv

∥∥
L2(Dc)

� C

∥∥∥∥ ∂h

∂ν0

∥∥∥∥
H−1/2(∂ D)

,

and so follows (3.3). �
Proof of Lemma 3.1. Let v := u − h. It is known (see for example [16]) that v is the minimizer in
W (Rd) of the functional

I[v] := 1

2

∫
Rd

C
(∇sv + 1DG∇sh

) : (∇sv + 1DG∇sh
)
, (3.5)

where G= I4 − (C1)−1
C

0 and I4 is the identity 4-tensor. Note that

I[v] = 1

2

∫
D

(
C

1∇s(v + h) −C
0∇sh

) : (∇s(v + h) − (
C

1)−1
C

0∇sh
) + 1

2

∫
Dc

C
0∇sv : ∇sv

= 1

2

∫
D

C
1∇sv : ∇sv +

∫
D

(
C

1 −C
0)∇sv : ∇sh

+ 1

2

∫
D

(
C

1 − 2C0 +C
0(
C

1)−1
C

0)∇sh : ∇sh + 1

2

∫
Dc

C
0∇sv : ∇sv. (3.6)

Let

v∞ := u∞ − h. (3.7)

Then v∞ ∈ W (Rd), and (v∞ + h)|D ∈ Ψ which implies that ∇s(v∞ + h) = 0 in D . So, we have from
the first line in (3.6) that

I[v∞] = 1

2

∫
D

C
0(
C

1)−1
C

0∇sh : ∇sh + 1

2

∫
Dc

C
0∇sv∞ : ∇sv∞. (3.8)

We then have

J [u] = J [v + h]
= 1

2

∫
D

C
1∇sv : ∇sv +

∫
D

C
1∇sv : ∇sh + 1

2

∫
D

C
1∇sh : ∇sh + 1

2

∫
Dc

C
0∇sv : ∇sv

= I[v] +
∫
D

C
0∇sv : ∇sh +

∫
D

C
0∇sh : ∇sh − 1

2

∫
D

C
0(
C

1)−1
C

0∇sh : ∇sh

= I[v] +
∫

C
0∇su : ∇sh − 1

2

∫
C

0(
C

1)−1
C

0∇sh : ∇sh.
D D
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Since I[v] � I[v∞], it follows from (3.8) that

J [u] � I[v∞] +
∫
D

C
0∇su : ∇sh − 1

2

∫
D

C
0(
C

1)−1
C

0∇sh : ∇sh

= 1

2

∫
Dc

C
0∇sv∞ : ∇sv∞ +

∫
D

C
0∇su : ∇sh. (3.9)

Note that since λ is bounded, we have

∫
D

C
0∇su : ∇sh = C

(∫
D

∣∣∇su
∣∣2 +

∫
D

∣∣∇sh
∣∣2

)

� C

(
1

μ

∫
D

C
1∇su : ∇su +

∫
D

∣∣∇sh
∣∣2

)

� C

(
1

μ
J [u] +

∫
D

∣∣∇sh
∣∣2

)
.

So, if μ is sufficiently large, then we have from (3.9) that

J [u] � C
(∥∥∇sv∞

∥∥2
L2(Dc)

+ ∥∥∇sh
∥∥2

L2(D)

)
for some constant C . Since

∥∥∇sv∞
∥∥

L2(Dc)
� C‖ϕ∞‖H−1/2(∂ D) � C

∥∥∥∥ ∂h

∂ν0

∥∥∥∥
H−1/2(∂ D)

,

we have (3.2) when μ is large.
When κ and μ are bounded, we need a function which plays the role of v∞ in the above. For that

we use ϕ0 in (2.18): define

v0(x) := S0
D [ϕ0](x) for x ∈R

d. (3.10)

It is worth emphasizing that v0 is defined not only on Dc but on R
d . Then one can show as above

that

J [u] � I[v0] +
∫
D

C
0∇sv : ∇sh +

∫
D

C
0∇sh : ∇sh − 1

2

∫
D

C
0(
C

1)−1
C

0∇sh : ∇sh.

Using (3.6), one can see that

J [u] � 1

2

∫
D

C
1∇sv0 : ∇sv0 +

∫
D

(
C

1 −C
0)∇sv0 : ∇sh + 1

2

∫
D

C
1∇sh : ∇sh

+ 1

2

∫
c

C
0∇sv0 : ∇sv0 +

∫
C

0∇sv : ∇sh. (3.11)
D D
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Since ∂(v0+h)
∂ν0

|+ = 0 on ∂ B , we have

∫
D

C
0∇sv : ∇sh =

∫
∂ D

∂h

∂ν0
· v = −

∫
∂ D

∂v0

∂ν0

∣∣∣∣+ · v =
∫
Dc

C
0∇sv0 : ∇sv

� C

ε

∫
Dc

C
0∇sv0 : ∇sv0 + Cε

∫
Dc

C
0∇sv : ∇sv

for a (small) constant ε . If ε is sufficiently small, then we obtain by combining this with (3.11)

J [u] � C
(∥∥∇sv0

∥∥2
L2(Rd)

+ ∥∥∇sh
∥∥2

L2(D)

)
(3.12)

for some constant C independent of κ and μ. Since

∥∥∇sv0
∥∥

L2(Dc)
� C‖ϕ0‖H−1/2(∂ D) � C

∥∥∥∥ ∂h

∂ν0

∥∥∥∥
H−1/2(∂ D)

,

we have (3.2). This completes the proof. �
4. Convergence of potentials and solutions

Lemma 3.2 shows that the potential defined in (2.16) is uniformly bounded with respect to μ and
λ as long as λ is bounded. We now prove the following lemma.

Lemma 4.1. Let ϕ , ϕ0 and ϕ∞ be potentials defined by (2.16), (2.19) and (2.20), respectively.

(i) Suppose that λ � Λ for some constant Λ. There are constants μ1 and C such that

‖ϕ − ϕ∞‖H−1/2(∂ D) � C√
μ

∥∥∥∥ ∂h

∂ν0

∥∥∥∥
H−1/2(∂ D)

(4.1)

for all μ � μ1 .
(ii) There are constants δ and C such that

‖ϕ − ϕ0‖H−1/2(∂ D) � C(κ + μ)1/4
∥∥∥∥ ∂h

∂ν0

∥∥∥∥
H−1/2(∂ D)

(4.2)

for all κ,μ � δ.

Proof. We may assume that ‖ ∂h
∂ν0

‖H−1/2(∂ D) = 1. Let w = u − u∞ so that w satisfies

⎧⎨
⎩

∇ ·C0∇sw = 0 in Dc,

w − u|D ∈ Ψ in D,

w(x) = O
(|x|1−d) as |x| → ∞.

(4.3)

Since ∇s(w − u) = 0 in D , we have from Lemma 3.1 that

∫
|∇sw|2 dx � 1

2μ

∫
C

1∇sw : ∇sw dx = 1

2μ

∫
C

1∇su : ∇su dx � C

μ
. (4.4)
D D D
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Let ψ j , j = 1, . . . ,d(d + 1)/2, be a basis of Ψ as before, and let

e =
d(d+1)/2∑

j=1

β jψ j,

where β j are chosen so that

∫
D

[
(w − e) · ψ j + ∇(w − e) : ∇ψ j

] = 0, j = 1, . . . ,d(d + 1)/2. (4.5)

We then apply Korn’s inequality (see for example [19]) to w − e to have

∫
D

[|w − e|2 + ∣∣∇(w − e)
∣∣2] � C

∫
D

∣∣∇s(w − e)
∣∣2 � C

∫
D

∣∣∇sw
∣∣2

(4.6)

for some constant C independent of μ. It then follows from (4.4) that

‖w − e‖H1(D) � C√
μ

, (4.7)

and from the trace theorem that

‖w − e‖H1/2(∂ D) � C√
μ

(4.8)

for some constant C independent of μ. By the strong convexity (2.2) of C0, there is a constant C such
that

∥∥∇sw
∥∥2

L2(Dc)
� C

∫
Dc

C
0∇sw : ∇sw dx = −C

∫
∂ D

∂w

∂ν0

∣∣∣∣+ · w dσ(x)

= −C

∫
∂ D

∂w

∂ν0

∣∣∣∣+ · (w − e)dσ(x) � C‖w − e‖H1/2(∂ D)

∥∥∥∥ ∂w

∂ν0

∣∣∣∣+
∥∥∥∥

H−1/2(∂ D)

,

where the second equality holds because of the orthogonality property (2.10). It then follows from
(4.8) that

∥∥∇sw
∥∥2

L2(Dc)
� C√

μ

∥∥∥∥ ∂w

∂ν0

∣∣∣∣+
∥∥∥∥

H−1/2(∂ D)

. (4.9)

We then obtain using the H−1/2–H1/2 duality, divergence theorem on Dc , Korn’s inequality, and the
trace theorem that

∥∥∥∥ ∂w

∂ν0

∣∣∣∣+
∥∥∥∥

2

H−1/2(∂ D)

� C
∥∥∇sw

∥∥2
L2(Dc)

,

and from (4.9) that
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∥∥∥∥ ∂w

∂ν0

∣∣∣∣+
∥∥∥∥

H−1/2(∂ D)

� C√
μ

. (4.10)

Using the representations (2.16) and (2.18), we have

w(x) = u(x) − u∞(x) = S0
D [ϕ − ϕ∞](x), x ∈ Dc. (4.11)

Thus, (2.12) yields

∂w

∂ν0

∣∣∣∣+ =
(

1

2
I + (

K0
D

)∗
)

[ϕ − ϕ∞] on ∂ D. (4.12)

So, (4.1) follows from (4.10).
To prove (4.2), let v0 be as defined in (3.10) and let z := v − v0 in R

d . Then z = u − u0 in Dc and
the following holds

∫
Dc

∣∣∇sz
∣∣2

dx � C

∫
Dc

C
0∇sz : ∇sz dx = −C

∫
∂ D

∂z

∂ν0

∣∣∣∣+ · z = −C

∫
∂ D

∂u

∂ν0

∣∣∣∣+ · z

= −C

( ∫
∂ D

∂u

∂ν0

∣∣∣∣+ · u −
∫
∂ D

∂u

∂ν0

∣∣∣∣+ · u0

)

for some constant C > 0. Since

∫
∂ D

∂u

∂ν0

∣∣∣∣+ · u =
∫
∂ D

∂u

∂ν

∣∣∣∣− · u =
∫
D

C
1∇su : ∇su � 0,

we have

∫
Dc

∣∣∇sz
∣∣2

dx � C

∫
∂ D

∂u

∂ν0

∣∣∣∣+ · u0 = C

∫
∂ D

∂u

∂ν0

∣∣∣∣+ · (v0 + h)

= C

∫
∂ D

∂u

∂ν

∣∣∣∣− · (v0 + h) = C

∫
D

C
1∇su : ∇s(v0 + h).

By Cauchy’s inequality, we obtain that

∫
D

C
1∇su : ∇s(v0 + h) � C

( ∫
D

C
1∇su : ∇su

)1/2( ∫
D

C
1∇s(v0 + h) : ∇s(v0 + h)

)1/2

.

Thus, from (3.2) it follows that

∫
Dc

∣∣∇sz
∣∣2

dx � C

( ∫
D

C
1∇s(v0 + h) : ∇s(v0 + h)

)1/2

� C
√

κ + μ
∥∥∇s(v0 + h)

∥∥
2 � C

√
κ + μ
L (D)
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for a constant C independent of κ . Therefore, we arrive at

∥∥∥∥ ∂z

∂ν0

∣∣∣∣+
∥∥∥∥

H−1/2(∂ D)

� C
∥∥∇sz

∥∥
L2(Dc)

� C(κ + μ)1/4. (4.13)

Note that z = u − u0 = S0
D [ϕ − ϕ0] in Dc . So by the same reasoning as above we have (4.2), and the

proof is complete. �
As a consequence of Lemma 4.1, we obtain the first main result of this paper.

Theorem 4.2. Suppose that (2.2) and (2.3) hold. Let u, u∞ and u0 be the solutions to (2.6), (2.9) and (2.7),
respectively.

(i) Suppose that λ � Λ for some constant Λ. There are constants μ1 and C such that

‖u − u∞‖W (Rd) � C√
μ

∥∥∥∥ ∂h

∂ν0

∥∥∥∥
H−1/2(∂ D)

(4.14)

for all μ � μ1 .
(ii) There are constants δ and C such that

‖u − u0‖W (Dc) � C(κ + μ)1/4
∥∥∥∥ ∂h

∂ν0

∥∥∥∥
H−1/2(∂ D)

(4.15)

for all κ,μ � δ.

It is not clear if the convergence rate, μ−1/2 and (κ + μ)1/4, are optimal or not.

Proof of Theorem 4.2. Assume that ‖ ∂h
∂ν0

‖H−1/2(∂ D) = 1. Since u − u0 = S0
D [ϕ − ϕ0] on Dc , (4.15) fol-

lows from (4.2).
Since u − u∞ = S0

D [ϕ − ϕ∞] on Dc , we have

‖u − u∞‖W (Dc) � C√
μ

. (4.16)

Moreover, we have

‖u − u∞‖H1/2(∂ D) = ∥∥S0
D [ϕ − ϕ∞]∥∥H1/2(∂ D)

� C‖ϕ − ϕ∞‖H−1/2(∂ D) � C√
μ

,

and hence

‖u − u∞‖H1(D) � C√
μ

. (4.17)

This completes the proof. �
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5. Boundary value problems

We now show that the results on the boundedness of the energy functional and on the conver-
gence of solutions similar to the previous ones hold for the boundary value problems.

Let Ω be a bounded domain in R
d and let D be an open subset in Ω . We assume that Ω and D

have Lipschitz boundaries and satisfy

dist(D, ∂Ω) � c

for some c > 0. We consider

⎧⎪⎨
⎪⎩

∇ ·C∇su = 0 in Ω,
∂u

∂ν0
= g on ∂Ω,

u|∂Ω ∈ L2
Ψ (∂Ω),

(5.1)

where C is given by

C = 1DC
1 + 1Ω\DC

0. (5.2)

The Dirichlet problem can be treated in the exactly same way.
The relevant energy functional for the boundary value problem is

JΩ [u] := 1

2

∫
Ω

C∇su : ∇su. (5.3)

Then the solution u to (5.1) is the minimizer of JΩ over H1(Ω) with the given boundary condition.
Let u∞ be the solution when μ = ∞ (λ is bounded). Then we have

JΩ [u] � JΩ [u∞] = 1

2

∫
Ω

C∇su∞ : ∇su∞.

Since u∞|D ∈ Ψ , we have C
1∇su∞ = 0 in D , and so,

JΩ [u] � 1

2

∫
Ω\D

C
0∇su∞ : ∇su∞ � C‖g‖H−1/2(∂Ω), (5.4)

where C is independent of μ,λ.
Using (5.4) one can show as before that

‖u − u∞‖H1(Ω) � C√
μ

(5.5)

for all μ � μ1 when λ is bounded, and

‖u − u0‖H1(Ω\D) � C(κ + μ)1/4 (5.6)

for all κ,μ � δ. Here u0 is the solution when κ = μ = 0. We also note that (5.4) together with Korn’s
inequality implies that ‖u‖H1/2(∂Ω) � C independently of μ,λ. It then follows from (2.22) that
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‖h‖H1(Ω) � C (5.7)

independently of μ,λ.

6. Uniformity of asymptotic expansions

Let us first recall the notion of elastic moment tensors (EMTs) associated to the inclusion D with
the Lamé constants (μ,λ) when the background Lamé constants are (λ0,μ0). Let α,β ∈ N

d be multi-
indices, and let {ek}d

k=1 be the standard basis of R
d . For α ∈ N

d, j = 1, . . . ,d, let (ϕ
j
α,ψ

j
α) be the

solution to (2.17) with h replaced by xαe j . Here xα = xα1
1 · · · xαd

d . The EMT associated with D is defined
by

M j
αβ(D) =

∫
∂ D

xβϕ
j
α dσ (6.1)

for α,β ∈ N
d and j = 1, . . . ,d. It is worth mentioning that M j

αβ is a vector, i.e., M j
αβ = (m j1

αβ,m j2
αβ,

m j3
αβ) where

m jp
αβ(D) =

∫
∂ D

xβep · ϕ j
α dσ . (6.2)

If |α| = |β| = 1, we may write m jp
αβ as mijpq for i, j, p,q = 1, . . . ,d. It is known that (mijpq) is an

(anisotropic) elasticity tensor. See [12]. We emphasize that

∥∥ϕ j
α

∥∥
H−1/2(∂ D)

� C (6.3)

for some C independent of μ and κ as long as λ is bounded.
Suppose that D is diametrically small and it is given by

D = z0 + εB, (6.4)

where ε is a small parameter representing the diameter of D , B is a reference domain containing 0,
and z0 represents the location of D . Let u be the solution to (5.1) and U be the background solution,
i.e., the solution to ⎧⎪⎪⎨

⎪⎪⎩
∇ ·C0∇sU = 0 in Ω,
∂U

∂ν0
= g on ∂Ω,

U|∂Ω ∈ L2
Ψ (∂Ω).

(6.5)

Let N be the Neumann function which is the solution to⎧⎪⎪⎨
⎪⎪⎩

∇ ·C0∇sN(x, y) = −δy(x)I in Ω,
∂N(·, y)

∂ν0
= − 1

|∂Ω| I on ∂Ω,

N(·, y) ∈ L2
Ψ (∂Ω) for each y ∈ Ω,

(6.6)

where I is the identity matrix. It is proved in [12] (see also [7]) that the following asymptotic expan-
sion holds on ∂Ω: for x ∈ ∂Ω
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u(x) = U(x) −
d∑

j=1

d∑
|α|=1

d+1−|α|∑
|β|=1

ε|α|+|β|+d−2

α!β! ∂αU j(z0)∂
β
z N(x, z0)M j

αβ(B) + O
(
ε2d),

where U = (U1, . . . , Ud). Our goal in this section is to show that this asymptotic formula holds uni-
formly in λ and μ. More precisely we have the following result.

Theorem 6.1. Suppose that (2.2) and (2.3) hold. We have for x ∈ ∂Ω

u(x) = U(x) −
d∑

j=1

d∑
|α|=1

d+1−|α|∑
|β|=1

ε|α|+|β|+d−2

α!β! ∂αU j(z0)∂
β
z N(x, z0)M j

αβ(B) + E(x), (6.7)

where the error term satisfies

‖E‖L∞(∂Ω) � Cε2d (6.8)

for some constant C independent of μ and λ as long as λ � Λ for some constant Λ.

We emphasize that (6.7) contains not only the leading order (εd) term but also higher order terms
up to ε2d−1. The terms higher than ε2d are expressed in terms of not only EMTs but also interactions
between the boundary ∂Ω and the inclusion(s), and become much more complicated.

Proof of Theorem 6.1. We closely follow the proof in [12]. By (2.23), the solution u can be written in
the form:

u(x) =
{

h(x) + S0
D [ϕ](x), x ∈ Ω \ D,

SD [ψ](x), x ∈ D,
(6.9)

where h is the function given by (2.22) and ϕ,ψ ∈ H−1/2(∂ D) are the solutions to

⎧⎨
⎩
SD [ψ](x) − S0

D [ϕ](x) = h(x)

∂SD [ψ]
∂ν

∣∣∣∣−(x) − ∂S0
D [ϕ]

∂ν0

∣∣∣∣+(x) = ∂h

∂ν0
(x)

for x ∈ ∂ D. (6.10)

Let ϕ̃(x) := εϕ(z0 + εx) and ψ̃(x) := εψ(z0 + εx). By a change of variables, (6.10) can be scaled
into, for x ∈ ∂ B ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
SB [ψ̃](x) − S0

B [ϕ̃](x) = h(z0 + εx) − δd2
α lnε

2π

∫
∂ B

ψ̃,

∂SB [ψ̃]
∂ν

∣∣∣∣−(x) − ∂S0
B [ϕ̃]

∂ν0

∣∣∣∣+(x) = ∂

∂ν0
h(z0 + εx),

(6.11)

where δd2 is the Kronecker delta function. By the Taylor expansion of h = (h1, . . . ,hd), we have

h(z0 + εx) =
d∑

j=1

d∑
|α|=0

ε|α|

α! ∂αh j(z0)xαe j + O
(
εd+1). (6.12)
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Here the error term is independent of λ,μ, and ∂αh(z0) is bounded independently of λ,μ as long as
λ is bounded because of (5.7). By (6.12) and the linearity of (6.11) we have

ϕ̃(x) =
d∑

j=1

d∑
|α|=1

ε|α|

α! ∂αh j(z0)ϕ
j
α + O

(
εd+1), (6.13)

where ϕ
j
α is given in the definition of EMT. Here we see from Lemma 3.2 that the error term in (6.13)

is uniform with respect to λ, μ as long as λ is bounded.
It is known that

u(x) = U(x) −
∫
∂ D

N(x, y)ϕ(y)dσ(y), x ∈ ∂Ω (6.14)

(see [12]). Using (6.13) and the Taylor expansion of N(x, y), we have

N(x, z0 + ε y) =
∞∑

|β|=0

1

β!ε
|β|∂β

z N(x, z0)yβ, x ∈ ∂Ω,

and so, for x ∈ ∂Ω ,

u(x) = U(x) −
∫
∂ B

N(x, z0 + ε y)ϕ̃(y)εd−2dσ(y)

= U(x) −
d∑

j=1

d∑
|α|=1

d+1−|α|∑
|β|=1

ε|α|+|β|+d−2

α!β! ∂αh j(z0)∂
β
z N(x, z0)M j

αβ + O
(
ε2d). (6.15)

The formula (6.15) implies in particular that

‖u − U‖H1/2(∂Ω) = O
(
εd),

where O (εd) is uniform with respect to λ and μ. Since

h(x) =
∫

∂Ω

∂Γ 0(x − y)

∂ν0(y)
u(y)dσ(y) −

∫
∂Ω

Γ 0(x − y)g(y)dσ(y)

= U(x) +
∫

∂Ω

∂Γ 0(x − y)

∂ν0(y)
(u − U)(y)dσ(y),

we have

∂αh(z0) = ∂αU(z0) + O
(
εd), (6.16)

independently of λ and μ. By substituting this into (6.15), we have (6.1). �
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7. The case of multiple inclusions

So far we deal with the case where the inclusion D is a simply connected inclusion, but the
methods and results of this paper work even when there are multiple simply connected inclusions.

Let us make a brief remark on the case when D has n disjoint simply connected components, say
D1, . . . , Dn . In this case, the solution u to (2.6) is represented as

u(x) =
{

h(x) + ∑n
j=1 S0

j [ϕ( j)](x), x ∈ Dc,

S j[ψ( j)](x), x ∈ D j, j = 1, . . . ,n,
(7.1)

where S0
j and S j denote single layer potentials on ∂ D j , and ϕ( j),ψ( j) are the solutions to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S j
[
ψ( j)](x) −

n∑
j=1

S0
j

[
ϕ( j)](x) = h(x)

∂S j[ψ( j)]
∂ν

∣∣∣∣−(x) −
n∑

j=1

∂S0
j [ϕ( j)]
∂ν0

∣∣∣∣+(x) = ∂h

∂ν0
(x)

for x ∈ ∂ D j, j = 1, . . . ,n. (7.2)

If κ is either 0 or ∞, we have a similar representation:

uκ (x) = h(x) +
n∑

j=1

S0
j

[
ϕ

( j)
κ

]
(x), x ∈ Dc, κ = 0,∞, (7.3)

where ϕ
( j)
κ satisfies appropriate integral equations. We can show in a similar way that

n∑
j=1

∥∥ϕ( j) − ϕ
( j)∞

∥∥
H−1/2(∂ D j)

� C√
μ

n∑
j=1

∥∥∥∥ ∂h

∂ν0

∥∥∥∥
H−1/2(∂ D j)

(7.4)

and

n∑
j=1

∥∥ϕ( j) − ϕ
( j)
0

∥∥
H−1/2(∂ D j)

� C(κ + μ)1/4
n∑

j=1

∥∥∥∥ ∂h

∂ν0

∥∥∥∥
H−1/2(∂ D j)

. (7.5)

So, Theorems 4.2 and 6.1 are valid even if D has several components.
It is worth mentioning that if there are multiple inclusions, the convergence depends on the dis-

tance between inclusions since |∇u| may be arbitrarily large as the distance between inclusions tends
to zero. This fact was proved in, for example, [11,30,13] for the conductivity problem. (See [3] for
an extensive list of recent papers on this problem.) For the elasticity problem, it is shown in [24] by
numerical computations that |∇u| may blow up as the distance between inclusions tends to zero.

8. Conclusion

In this paper we have used layer potential techniques to prove uniform convergence in an appro-
priate function spaces of solutions to the Lamé system as the bulk and shear moduli tend to extreme
values (zero or ∞) provided that the compressional modulus is bounded. Making use of this result,
we have shown that the asymptotic expansion of the solution due to the presence of diametrically
small inclusions is uniform with respect to the bulk and shear moduli. These results are obtained
under the assumption that the Lamé parameters of the background and inclusions are constant. We
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expect that the same results hold even if the background Lamé parameters are not constants, but
variables, even though the methods of this paper do not apply to that case. Another interesting case
is when the inclusion is thin, and the thickness tends to zero [15]. In this case we expect that the
asymptotic expansion is not uniform.
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