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Abstract

In this paper we study an indefinite Kirchhoff type equation with steep potential well. Under some suit-
able conditions, the existence and the non-existence of nontrivial solutions are obtained by using variational
methods. Furthermore, the phenomenon of concentration of solutions is also explored.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we investigate the existence and concentration of solutions to a class of Kirchhoff
type problems: ⎧⎪⎪⎨⎪⎪⎩

−
(

a

∫
RN

|∇u|2 dx + b

)
�u + λV (x)u = f (x,u) in R

N,

u ∈ H 1(
R

N
)
,

(Kλ,a)
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where N � 3, f ∈ C(RN × R,R), the parameters a, b,λ > 0 and the potential V satisfies the
following conditions:

(V 1) V ∈ C(RN) and V � 0 on R
N ;

(V 2) there exists c > 0 such that the set {V < c} = {x ∈ R
N | V (x) < c} is nonempty and has

finite measure;
(V 3) Ω = int V −1(0) is nonempty and has smooth boundary with Ω = V −1(0).

Kirchhoff type problems are often referred to as being nonlocal because of the presence of the
integral over the entire domain Ω . It is analogous to the stationary case of equations that arise in
the study of string or membrane vibrations, namely,

utt −
(

a

∫
Ω

|∇u|2 dx + b

)
�u = f (x,u), (1.1)

where Ω is a bounded domain in R
N , u denotes the displacement, f (x,u) is the external force

and b is the initial tension while a is related to the intrinsic properties of the string (such as
Young’s modulus). Equations of this type were first proposed by Kirchhoff in 1883 to describe
the transversal oscillations of a stretched string, particularly, taking into account the subsequent
change in string length caused by oscillations. The solvability of the Kirchhoff type equation (1.1)
has been well-studied in general dimensions and domains by various authors (see, for examples,
[10,11,14,16,18,20,22,24] and the references therein).

Nonlocal effect also finds its applications in biological systems. A parabolic version of
Eq. (1.2) can, in theory, be used to describe the growth and movement of a particular species.
The movement, modeled by the integral term, is assumed dependent on the “energy” of the entire
system with u being its population density. Alternatively, the movement of a particular species
may be subject to the total population density within the domain (for instance, the spreading of
bacteria) which gives rise to equations of the type ut − a(

∫
Ω

udx)�u = f . Chipot and Lovat [8]
and Corrêa et al. [9], for examples, studied the existence of solutions and their uniqueness for
such nonlocal problems as well as their corresponding elliptic problems.

More recently, the stationary problem of Eq. (1.1):⎧⎪⎨⎪⎩
−

(
a

∫
Ω

|∇u|2 dx + b

)
�u = f (x,u) in Ω,

u = 0 on ∂Ω,

(1.2)

has been studied by many authors; for example, Alves et al. [1] and many others [5,7,19] us-
ing variational methods, proved the existence of positive solutions while Zhang and Perera [25]
obtained sign changing solutions via invariant sets of descent flow. Bensedik and Bouchekif
[5] studied the asymptotically linear case and obtained the existence of positive solutions for
Eq. (1.2) when the assumptions about the asymptotic behaviors of f are the following

(f1) t �−→ f (x,t)
t

is a nondecreasing function for any fixed x ∈ Ω ;

(f2) limt→0
f (x,t)

t
= p(x) and limt→∞ f (x,t)

t
= q(x) uniformly in x ∈ Ω , where 0 � p(x),

q(x) ∈ L∞(Ω) and supx∈Ω p(x) < m0λ1, λ1 is the first eigenvalue of (−�,H 1(Ω)).
0



J. Sun, T.F. Wu / J. Differential Equations 256 (2014) 1771–1792 1773
On the other hand, the conditions (V 1)–(V 3) imply that λV represents a potential well whose
depth is controlled by λ. λV is called a steep potential well if λ is sufficiently large and one ex-
pects to find solutions which localize near its bottom Ω . This problem has found much interest
after being first introduced by Bartsch and Wang [4] in the study of the existence of positive solu-
tions for nonlinear Schrödinger equations and has been attracting much attention, see [2,3,21,23].
Very recently, Jiang and Zhou [15] first applied the steep potential well into Schrödinger–Poisson
system, and obtained the existence and concentration results by combining domains approxima-
tion with priori estimates. Later, Zhao et al. [26] studied another Schrödinger–Poisson system
with V satisfying the conditions (V 1)–(V 3), namely,

{
−�u + λV (x)u + K(x)φu = |u|p−2u in R

3,

−�φ = K(x)u2 in R
3,

where λ > 0, K � 0 for x ∈ R
3 and K ∈ L2(R3) (or L∞(R3)). They obtained the existence

and concentration results for p ∈ (3,6) via variational methods. In particular, the potential V is
allowed to be sign-changing for the case p ∈ (4,6).

Inspired by the above facts, the aim of this paper is to consider the Kirchhoff type equations
with steep potential well. To the author’s knowledge, this case seems to be considered by few
authors. We mainly study the existence of ground state solution for Eq. (Kλ,a) with the indefinite
nonlinear term f (x,u). Furthermore, the non-existence and concentration of nontrivial solutions
are also discussed.

Before stating our results we need to introduce some notations and definitions.

Notation 1.1. Throughout this paper, we denote by | · |r the Lr -norm, 1 � r � ∞, and we have
to use the notations p± = sup{±p,0} and the critical exponent 2∗ = 2N

N−2 for N � 3. Also if we
take a subsequence of a sequence {un} we shall denote it again {un}. We use o(1) to denote any
quantity which tends to zero when n → ∞.

Definition 1.1. u is a ground state of Eq. (Kλ,a) we mean that u is such a solution of Eq. (Kλ,a)
which has the least energy among all nontrivial solutions of Eq. (Kλ,a).

We need the following the minimum problem: for each positive integer k = 1,3,4,

λ
(k)
1 = inf

{( ∫
Ω

|∇u|2 dx

) k+1
2 ∣∣∣ u ∈ H 1

0 (Ω),

∫
Ω

q|u|k+1 dx = 1

}
, (1.3)

where q is a bounded function on Ω with q+ �≡ 0. Then λ
(k)
1 > 0, which is achieved by some

φk ∈ H 1
0 (Ω) which

∫
Ω

q|φk|k+1 dx = 1 and φk > 0 a.e. in Ω , by the compactness of Sobolev
embedding from H 1

0 (Ω) into Lk+1(Ω) and Fatou’s lemma (see Figueiredo [13]). In particular,

λ
(k)
1

∫
Ω

q|u|k+1 dx �
( ∫

Ω

|∇u|2 dx

) k+1
2

for all u ∈ H 1
0 (Ω). (1.4)
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Now, we give our main results.

Theorem 1.2. Suppose that the conditions (V 1)–(V 3) hold. In addition, for each k = 1,3,4,
we assume that the function f satisfies the following conditions:

(D1) f (x, s) is a continuous function on R
N ×R such that f (x, s) ≡ 0 for all s < 0 and x ∈ R

N .
Moreover, there exists p ∈ L∞(RN) with

∣∣p+∣∣∞ < Θ0 := S2 min{b,1}
|{V < c}| 2∗−2

2∗

such that

lim
s→0+

f (x, s)

sk
= p(x) uniformly in x ∈ R

N

and

f (x, s)

sk
� p(x) for all s > 0 and x ∈ Ω,

where S is the best constant for the embedding of D1,2(RN) in L2∗
(RN), and | · | is the

Lebesgue measure;
(D2) there exists q ∈ L∞(RN) with q+ �≡ 0 on Ω such that

lim
s→∞

f (x, s)

sk
= q(x) uniformly in x ∈R

N ;

(D3) there exists a constant d0 satisfying 0 � d0 <
S2 min{b,1}

4 |{V < c}| 2−2∗
2∗ such that

F(x, s) − 1

4
f (x, s)s � d0s

2 for all s > 0 and x ∈R
N.

Then we have the following results:

(i) If k = 1, N � 3 and bλ
(1)
1 < 1, then there exists a positive number a∗ such that for every

a ∈ (0, a∗), there exists Λ∗ > 0 such that Eq. (Kλ,a) has at least one nontrivial solution for
all λ > Λ∗.

(ii) If k = 3 and N = 3, then for each a ∈ (0,1/λ
(3)
1 ) there exists Λ∗ > 0 such that Eq. (Kλ,a)

has at least one nontrivial solution for all λ > Λ∗.
(iii) If k = 4 and N = 3, then for each a > 0 there exists Λ∗ > 0 such that Eq. (Kλ,a) has at

least one nontrivial solution for all λ > Λ∗.

Theorem 1.3. Suppose that the conditions (V 1)–(V 3) hold. In addition, for each k = 1,3,4,
we assume that the function f satisfies the conditions (D1)–(D3) and the following condition:

(D4) f ∈ C1(RN ×R,R) and s �−→ f (x,s)
k is non-decreasing function for any fixed x ∈ R.
s
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Let Λ∗ > 0 be as in Theorem 1.2. Then we have the following results:

(i) If k = 1, N � 3 and bλ
(1)
1 < 1, then there exists a positive number a∗ such that for every

a ∈ (0, a∗), there exists Λ∗∗ � Λ∗ such that Eq. (Kλ,a) has a ground state solution for
all λ > Λ∗.

(ii) If k = 3 and N = 3, then for each a ∈ (0,1/λ
(3)
1 ) and λ > Λ∗, Eq. (Kλ,a) has a ground state

solution.
(iii) If k = 4 and N = 3, then for each a > 0 and λ > Λ∗, Eq. (Kλ,a) has a ground state solution.

Now, we consider the following the minimum problem:

λ̂
(3)
1 = inf

{( ∫
RN

|∇u|2 dx

)2 ∣∣∣ u ∈ H 1(
R

N
)
,

∫
RN

q|u|4 dx = 1

}
� 0. (1.5)

Clearly, λ̂
(3)
1 � λ

(3)
1 . Then we have the following result.

Theorem 1.4. Suppose that the conditions (V 1)–(V 3) hold. In addition, for each k = 1,3, we as-
sume that the function f satisfies the conditions (D2) and (D4). Then we have the following
results:

(i) If k = 1, N � 3 and b > |q|∞S−2|Ω| 2∗−2
2∗ , then there exists positive number Λ∗ such that

for every a > 0 and λ > Λ∗, Eq. (Kλ,a) does not admit any nontrivial solution.

(ii) If k = 3 and N = 3 and λ̂
(3)
1 > 0, then for every a � 1/̂λ

(3)
1 and λ > 0, Eq. (Kλ,a) does not

admit any nontrivial solution.

On the concentration of solutions we have the following result.

Theorem 1.5. Let uλ be the solution obtained by Theorem 1.2. Then for every r ∈ [2,2∗),
uλ → u0 strongly in Lr(RN) as λ → ∞, where u0 ∈ H 1

0 (Ω) is the nontrivial solution of equa-
tion: ⎧⎪⎨⎪⎩

−
(

a

∫
Ω

|∇u|2 dx + b

)
�u = f (x,u) in Ω,

u = 0, on ∂Ω.

(K∞)

The remainder of this paper is organized as follows. In Section 2, some preliminary results
are presented. In Sections 3–6, we give the proofs of our main results.

2. Variational setting and preliminaries

In this section, we give the variational setting for Eq. (Kλ,a) following [11] and establish
compactness conditions. Let

X =
{
u ∈ H 1(

R
N

) ∣∣∣ ∫
N

V (x)u2 dx < ∞
}

R
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be equipped with the inner product and norm

〈u,v〉 =
∫
RN

(∇u∇v + V uv)dx, ‖u‖ = 〈u,u〉1/2.

For λ > 0, we also need the following inner product and norm

〈u,v〉λ =
∫
RN

(∇u∇v + λV uv)dx, ‖u‖λ = 〈u,u〉1/2
λ .

It is clear that ‖u‖ � ‖u‖λ for λ � 1.
Set Xλ = (X,‖u‖λ). It follows from the conditions (V 1)–(V 2) and the Hölder and Sobolev

inequalities, we have∫
RN

(|∇u|2 + u2)dx

=
∫
RN

|∇u|2 dx +
∫

{V <c}
u2 dx +

∫
{V �c}

u2 dx

�
∫
RN

|∇u|2 dx +
( ∫

{V <c}
1dx

) 2∗−2
2∗ ( ∫

{V <c}
|u|2∗

dx

) 2
2∗

+ 1

c

∫
{V �c}

V (x)u2 dx

�
(
1 + ∣∣{V < c}∣∣ 2∗−2

2∗ S−2) ∫
RN

|∇u|2 dx + 1

c

∫
RN

V (x)u2 dx

� max

{
1 + ∣∣{V < c}∣∣ 2∗−2

2∗ S−2,
1

c

}( ∫
RN

|∇u|2 dx +
∫
RN

V (x)u2 dx

)
,

which implies that the imbedding X ↪→ H 1(RN) is continuous. Moreover, using the same con-
ditions and techniques, for any r ∈ [2,2∗], we also have

∫
RN

|u|r dx �
( ∫

{V �c}
u2 dx +

∫
{V <c}

u2 dx

) 2∗−r
2∗−2

(
S−2∗

( ∫
RN

|∇u|2 dx

) 2∗
2
) r−2

2∗−2

�
(

1

λc

∫
{V �c}

λV (x)u2 dx +
( ∫

{V <c}
1dx

) 2∗−2
2∗ ( ∫

{V <c}
|u|2∗

dx

) 2
2∗ ) 2∗−r

2∗−2

·
(

S−2∗
( ∫

N

|∇u|2 + λV (x)u2 dx

) 2∗
2
) r−2

2∗−2
R
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�
(

1

λc

∫
RN

λV (x)u2 dx + ∣∣{V < c}∣∣ 2∗−2
2∗ S−2

∫
RN

|∇u|2 dx

) 2∗−r
2∗−2

· (S−2∗‖u‖2∗
λ

) r−2
2∗−2

�
(

max

{
1

λc
,
|{V < c}| 2∗−2

2∗

S2

}
‖u‖2

λ

) 2∗−r
2∗−2

S
−2∗(r−2)

2∗−2 ‖u‖
2∗(r−2)

2∗−2
λ

=
(

max

{
S2

λc
,
∣∣{V < c}∣∣ 2∗−2

2∗
}) 2∗−r

2∗−2

S−r‖u‖r
λ for all λ > 0, (2.1)

this implies that

∫
RN

|u|r dx �
∣∣{V < c}∣∣ 2∗−r

2∗ S−r‖u‖r
λ for all λ � S2

c

∣∣{V < c}∣∣ 2−2∗
2∗ . (2.2)

It is well known that Eq. (Kλ,a) is variational and its solutions are the critical points of the
functional defined in H 1(RN) by

Jλ,a(u) = 1

2

(
b

∫
RN

|∇u|2 dx +
∫
RN

λV u2 dx

)
+ a

4

( ∫
RN

|∇u|2 dx

)2

−
∫
RN

F (x,u)dx,

where F(x,u) = ∫ u

0 f (x, s) ds. Furthermore, it is easy to prove that the functional Jλ,a is of
class C1 in H 1(RN), and that

〈
J ′

λ,a(u), v
〉 = (

b + a

∫
RN

|∇u|2 dx

) ∫
RN

∇u∇v dx +
∫
RN

λV uv dx −
∫
RN

f (x,u)v dx.

Hence, if u ∈ H 1(RN) is a critical point of Jλ,a , then u is a solution of Eq. (Kλ,a). Furthermore,
we have the following result.

Lemma 2.1. Suppose that the conditions (V 1)–(V 3) hold. In addition, for each k = 1,3,4, we
assume that the function f satisfies the condition (D3). Then for each nontrivial solution uλ of
Eq. (Kλ,a), we have Jλ,a(uλ) > 0.

Proof. If uλ is a nontrivial solution of Eq. (Kλ,a), then

(
b

∫
RN

|∇uλ|2 dx +
∫
RN

λV u2
λ dx

)
+ a

( ∫
RN

|∇uλ|2 dx

)2

=
∫
RN

f (x,uλ)uλ dx.
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Moreover, by the condition (D3),

∫
RN

[
F(x,uλ) − 1

4
f (x,uλ)uλ

]
dx �

∫
RN

d0u
2
λ dx,

this implies that

Jλ,a(uλ) = 1

4

(
b

∫
RN

|∇uλ|2 dx +
∫
RN

λV u2
λ dx

)
−

∫
RN

[
F(x,uλ) − 1

4
f (x,uλ)uλ

]
dx

� min{b,1}
4

‖uλ‖2
λ − d0

∫
RN

u2
λ dx

�
(

min{b,1}
4

− d0
∣∣{V < c}∣∣ 2∗−2

2∗ S−2
)

‖uλ‖2
λ

> 0.

This completes the proof. �
Next, we give a useful theorem. It is the variant version of the mountain pass theorem, which

allows us to find a so-called Cerami type (PS) sequence.

Theorem 2.2. (See [12], Mountain Pass Theorem.) Let E be a real Banach space with its dual
space E∗, and suppose that I ∈ C1(E,R) satisfies

max
{
I (0), I (e)

}
� μ < η � inf‖u‖=ρ

I (u),

for some μ < η,ρ > 0 and e ∈ E with ‖e‖ > ρ. Let ĉ � η be characterized by

ĉ = inf
γ∈Γ

max
0�τ�1

I
(
γ (τ)

)
,

where Γ = {γ ∈ C([0,1],E): γ (0) = 0, γ (1) = e} is the set of continuous paths joining 0 and e.
Then there exists a sequence {un} ⊂ E such that

I (un) → ĉ � η and
(
1 + ‖un‖

)∥∥I ′(un)
∥∥

E∗ → 0, as n → ∞.

In what follows, we give the following lemmas which ensure that the functional Jλ,a has the
mountain pass geometry.

Lemma 2.3. Suppose that the conditions (V 1)–(V 2) hold. In addition, for each k = 1,3,4, we
assume that the function f satisfies the conditions (D1)–(D2). Then there exist ρ > 0 and η > 0

such that inf{Jλ,a(u): u ∈ Xλ with ‖u‖λ = ρ} > η for all λ > S2 |{V < c}| 2−2∗
2∗ .
c
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Proof. For any ε > 0, it follows from the conditions (D1) and (D2) that there exists Cε > 0
such that

F(x, s) � |p+|∞ + ε

2
s2 + Cε

r
|s|r , for all s ∈R, (2.3)

where max{2, k} < r < 2∗. Then, by (2.2), (2.3) and the Sobolev inequality, for every u ∈ Xλ and

λ � S2

c
|{V < c}| 2−2∗

2∗ ,

∫
RN

F (x,u)dx � |p+|∞ + ε

2

∫
RN

u2 dx + Cε

r

∫
RN

|u|r dx

� (|p+|∞ + ε)|{V < c}| 2∗−2
2∗

2S2
‖u‖2

λ + Cε |{V < c}| 2∗−r
2∗

rSr
‖u‖r

λ,

this implies that

Jλ,a(u) = 1

2

(
b

∫
RN

|∇u|2 dx +
∫
RN

λV u2 dx

)
+ a

4

( ∫
RN

|∇u|2 dx

)2

−
∫
RN

F (x,u)dx

� 1

2

(
b

∫
RN

|∇u|2 dx +
∫
RN

λV u2 dx

)
− (|p+|∞ + ε)|{V < c}| 2∗−2

2∗

2S2
‖u‖2

λ

− Cε |{V < c}| 2∗−r
2∗

rSr
‖u‖r

λ

� 1

2

(
min{b,1} − (|p+|∞ + ε)|{V < c}| 2∗−2

2∗

S2

)
‖u‖2

λ − Cε |{V < c}| 2∗−r
2∗

rSr
‖u‖r

λ.

Therefore, by the condition (D1), fixing ε ∈ (0,Θ0 − |p+|∞) and letting ‖u‖λ = ρ > 0 small
enough, it is easy to see that there is η > 0 such that this lemma holds. �
Lemma 2.4. Suppose that the conditions (V 1)–(V 2) hold. In addition, for each k = 1,3,4, we
assume that the function f satisfies the conditions (D1)–(D2). Let ρ > 0 be as in Lemma 2.3.
Then we have the following results:

(i) If k = 1, N � 3 and λ
(1)
1 < 1

b
, then there exist a∗ > 0 and e ∈ H 1(RN) with ‖e‖λ > ρ such

that Jλ,a(e) < 0 for all a ∈ (0, a∗) and λ > 0.
(ii) If k = 3 and N = 3, then there exists e ∈ H 1(RN) with ‖e‖λ > ρ such that Jλ,a(e) < 0 for

all 0 < a < 1/λ
(3)
1 and λ > 0.

(iii) If k = 4 and N = 3, then there exists e ∈ H 1(RN) with ‖e‖λ > ρ such that Jλ,a(e) < 0 for
all a > 0 and λ > 0.
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Proof. (i) By bλ
(1)
1 < 1, the condition (D2) and Fatou’s lemma, we have

lim
t→+∞

Jλ,0(tφ1)

t2
= 1

2

(
b

∫
RN

|∇φ1|2 dx +
∫
RN

λV φ2
1 dx

)
− lim

t→+∞

∫
RN

F (x, tφ1)

t2φ1
φ1 dx

� b

2

∫
Ω

|∇φ1|2 dx − 1

2

∫
Ω

qφ2
1 dx � 1

2

(
b − 1

λ
(1)
1

)∫
Ω

|∇φ1|2 dx

< 0,

where Jλ,0(u) = Jλ,a(u) with a = 0. Thus, if Jλ,0(tφ1) → −∞ as t → +∞, then there exists
e ∈ H 1(RN) with ‖e‖λ > ρ such that Jλ,0(e) < 0. Since Jλ,a(e) → Jλ,0(e) as a → 0+, we see
that there exists a∗ > 0 such that Jλ,a(e) < 0 for all a ∈ (0, a∗).

(ii) and (iii) By (1.3), we define

ψk =
{

φ3, if k = 3,

φ4, if k = 4.

Then, by (D1), (D2) and Fatou’s lemma, one has

lim
t→+∞

Jλ,a(tψk)

tk+1
=

⎧⎨⎩
a
4 (

∫
RN |∇φ3|2 dx)2 − limt→+∞

∫
RN

F(x,tφ3)

t4φ4
3

φ4
3 dx, if k = 3,

− limt→+∞
∫
RN

F(x,tφ4)

t5φ5
4

φ5
4 dx, if k = 4

�
{

1
4 [a(

∫
Ω

|∇φ3|2 dx)2 − ∫
Ω

qφ4
3 dx], if k = 3,

− 1
5

∫
Ω

qφ5
4 dx, if k = 4

=
{

1
4 (aλ

(3)
1 − 1), if k = 3,

− 1
5 , if k = 4

< 0,

this implies that Jλ,a(tψk) → −∞ as t → +∞. Therefore, there exists e ∈ H 1(RN) with
‖e‖λ > ρ such that Jλ,a(e) < 0 and the lemma is proved. �
3. Proof of Theorem 1.2

First we define

αλ,a = inf
γ∈Γλ

max
0�t�1

Jλ,a

(
γ (t)

)
,

and

α0,a(Ω) = inf
γ∈Γ λ(Ω)

max
0�t�1

Jλ,a|H 1
0 (Ω)

(
γ (t)

)
,

where Jλ,a| 1 is a restriction of Jλ,a on H 1(Ω),
H0 (Ω) 0
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Γλ = {
γ ∈ C

([0,1],Xλ

)
: γ (0) = 0, γ (1) = e

}
and

Γ λ(Ω) = {
γ ∈ C

([0,1],H 1
0 (Ω)

)
: γ (0) = 0, γ (1) = e

}
.

Note that

Jλ,a|H 1
0 (Ω)(u) = 1

2

∫
RN

|∇u|2 dx + a

4

( ∫
RN

|∇u|2 dx

)2

−
∫
RN

F (x,u)dx for u ∈ H 1
0 (Ω),

and α0,a(Ω) independent of λ. Moreover, if the conditions (D1)–(D3) hold, similar to the proofs
of Lemmas 2.3 and 2.4, we can conclude that Jλ,a|H 1

0 (Ω) also satisfies the mountain pass hypoth-

esis in Theorem 2.2. Note that H 1
0 (Ω) ⊂ Xλ for all λ > 0, then 0 < η � αλ,a � α0,a(Ω) for all

λ � S2

c
|{V < c}| 2−2∗

2∗ . Define

m(k) =

⎧⎪⎨⎪⎩
a∗, if k = 1,

1/λ
(3)
1 , if k = 3,

∞, if k = 4.

Then for each k ∈ {1,3,4} and a ∈ (0,m(k)), we can take a positive number Da such that

0 < η � αλ,a � α0,a(Ω) < Da for all λ � S2

c

∣∣{V < c}∣∣ 2−2∗
2∗ .

Thus, by Lemmas 2.3 and 2.4 and Theorem 2.2, we obtain that for each a ∈ (0,m(k)) and λ �
S2

c
|{V < c}| 2−2∗

2∗ , there exists {un} ⊂ Xλ such that

Jλ,a(un) → αλ,a > 0 and
(
1 + ‖un‖λ

)∥∥J ′
λ,a(un)

∥∥
X−1

λ
→ 0, as n → ∞, (3.1)

where 0 < η � αλ,a � α0,a(Ω) < Da . Furthermore, we have the following result.

Lemma 3.1. Suppose that the conditions (V 1)–(V 3) hold. In addition, for each k = 1,3,4,
we assume that the function f satisfies the conditions (D1)–(D3). Then for each λ �
S2

c
|{V < c}| 2−2∗

2∗ and {un} defined in (3.1), we have {un} is bounded in Xλ.

Proof. For n large enough, by (D3) and (2.2), we have

αλ,a + 1 � Jλ,a(un) − 1

4

〈
J ′

λ,a(un), un

〉
= 1

4

(
b

∫
N

|∇un|2 dx +
∫
N

λV u2
n dx

)
+

∫
N

[
1

4
f (x,un)un − F(x,un)

]
dx
R R R



1782 J. Sun, T.F. Wu / J. Differential Equations 256 (2014) 1771–1792
� min{b,1}
4

‖un‖2
λ −

∫
RN

[
F(x,un) − 1

4
f (x,un)un

]
dx

� min{b,1}
4

‖un‖2
λ − d0

∫
RN

u2
n dx

�
(

min{b,1}
4

− d0
∣∣{V < c}∣∣ 2∗−2

2∗ S−2
)

‖un‖2
λ,

this implies that

‖un‖λ �
(

4S2(αλ,a + 1)

S2 min{b,1} − 4d0|{V < c}| 2∗−2
2∗

)1/2

.

Therefore, {un} is bounded in Xλ. �
Next, we investigate the compactness conditions for the functional Jλ,a . Recall that a C1

functional I satisfies Cerami condition at level c ((C)c condition for short) if any sequence
{un} ⊂ E such that I (un) → c and (1 + ‖un‖)‖I ′(un)‖E∗ → 0 has a convergent subsequence,
and such sequence is called a (C)c-sequence.

Proposition 3.2. Suppose that the conditions (V 1)–(V 3) hold. In addition, for each k = 1,3,4,
we assume that the function f satisfies the conditions (D1)–(D3). Then for each D > 0 there
exists Λ0 = Λ(D) � 4d0

c
> 0 such that Jλ,a satisfies the (C)α-condition in Xλ for all α < D

and λ > Λ0.

Proof. Let {un} be a (C)α-sequence with α < D. Then, by Lemma 3.1, {un} is bounded in Xλ.
Therefore, there exist a subsequence {un} and u0 in Xλ such that

un ⇀ u0 weakly in Xλ;
un → u0 strongly in Lr

loc

(
R

N
)
, for 2 � r < 2∗.

Moreover, J ′
λ,a(u0) = 0. Now we prove that un → u0 strongly in Xλ. Let vn = un −u0. It follows

from the condition (V 2) that∫
RN

v2
n dx =

∫
{V �c}

v2
n dx +

∫
{V <c}

v2
n dx

� 1

λc

∫
{V �c}

λcv2
n dx +

∫
{V <c}

v2
n dx

� 1

λc

(
b

∫
RN

|∇vn|2 +
∫
RN

λV v2
n

)
+ o(1). (3.2)

Then, by the Hölder and Sobolev inequalities, we have
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∫
RN

|vn|r dx �
( ∫
RN

|vn|2 dx

) 2∗−r
2∗−2

( ∫
RN

|vn|2∗
dx

) r−2
2∗−2

�
(

1

λc

(
b

∫
RN

|∇vn|2 +
∫
RN

λV v2
n

)) 2∗−r
2∗−2

(
S−2∗

b
2

2∗
(

b

∫
RN

|∇vn|2 dx

) 2∗
2
) r−2

2∗−2

�
(

1

λc

) 2∗−r
2∗−2

S
− 2∗(r−2)

2∗−2 b
2(r−2)

2∗(2∗−2)

(
b

∫
RN

|∇vn|2 +
∫
RN

λV v2
n

)r/2

+ o(1). (3.3)

Moreover, by the conditions (D1)–(D2) and Brezis–Lieb Lemma [6], we have

Jλ,a(vn) = Jλ,a(un) − Jλ,a(u0) + o(1) and J ′
λ,a(vn) = o(1).

Consequently, this together with the condition (D3), (3.2) and Lemma 2.1, we obtain

D � α − Jλ,a(u0)

� Jλ,a(vn) − 1

4

〈
J ′

λ,a(vn), vn

〉 + o(1)

= 1

4

(
b

∫
RN

|∇vn|2 dx +
∫
RN

λV v2
n dx

)
−

∫
RN

[
F(x, vn) − 1

4
f (x, vn)vn

]
dx + o(1)

� 1

4

(
b

∫
RN

|∇vn|2 dx +
∫
RN

λV v2
n dx

)
− d0

∫
RN

v2
n dx + o(1)

� λc − 4d0

4λc

(
b

∫
RN

|∇vn|2 dx +
∫
RN

λV v2
n dx

)
+ o(1),

which implies that for every λ >
4d0
c

,

min{b,1}‖vn‖2
λ �

(
b

∫
RN

|∇vn|2 dx +
∫
RN

λV v2
n dx

)
� 4λcD

λc − 4d0
+ o(1).

Moreover, by (2.2), one has∫
RN

|vn|r dx �
∣∣{V < c}∣∣ 2∗−r

2∗ S−r‖u‖r
λ

�
∣∣{V < c}∣∣ 2∗−r

2∗ S−r

(
4λcD

min{b,1}(λc − 4d0)

) r
2 + o(1). (3.4)

Since 〈J ′ (vn), vn〉 = o(1) and
λ,a
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∫
RN

f (x, vn)vn dx �
(∣∣p+∣∣∞ + ε

) ∫
RN

v2
n dx + Cε

∫
RN

|vn|r dx,

it follows from (3.3) and (3.4) that

o(1) =
(

b

∫
RN

|∇vn|2 dx +
∫
RN

λV v2
n dx

)
+ a

( ∫
RN

|∇vn|2 dx

)2

− (∣∣p+∣∣∞ + ε
) ∫
RN

v2
n dx − Cε

∫
RN

|vn|r dx

� min{b,1}‖vn‖2
λ − (|p+|∞ + ε)

λc
min{b,1}‖vn‖2

λ

− Cε

( ∫
RN

|vn|r dx

)(r−2)/r( ∫
RN

|vn|r dx

)2/r

� min{b,1}
(

1 − (|p+|∞ + ε)

λc

)
‖vn‖2

λ

− (∣∣{V < c}∣∣ 2∗−r
2∗ S−r

)(r−2)/r
(

4λcD

min{b,1}(λc − 4d0)

)(r−2)/2

·
[(

1

λc

) 2∗−r
2∗−2

S
− 2∗(r−2)

2∗−2 b
2(r−2)

2∗(2∗−2)

]2/r

‖vn‖2
λ

� ‖vn‖2
λ · min{b,1} ·

[
1 − (|p+|∞ + ε)

λc

−
(

4λcD|{V < c}| 2∗−r
2∗

min(b,1)(λc − 4d0)Sr

) r−2
r

((
1

λc

) 2∗−r
2∗−2

S
− 2∗(p−2)

2∗−2 b
2(r−2)

2∗(2∗−2)

)2/r]
+ o(1).

Therefore, there exists Λ0 = Λ0(D) � 4d0
c

> 0 such that vn → 0 strongly in Xλ for λ > Λ0. This
completes the proof. �

Now we give the proof of Theorem 1.2: By Proposition 3.2 and 0 < η � αλ,a � α0,a(Ω) for

all λ � S2

c
|{V < c}| 2−2∗

2∗ , for each a ∈ (0,m(k)) and Da > α0,a(Ω) there exists

Λ∗ � max

{
S2

c|{V < c}| 2∗−2
2∗

,
4d0

c

}
> 0

such that for every λ > Λ∗ and (C)αλ,a -sequence {un} for Jλ,a on Xλ there exist a subsequence
{un} and uλ ∈ Xλ such that un → uλ strongly in Xλ. Moreover, Jλ,a(uλ) = αλ,a and uλ is a
nontrivial solution of Eq. (Kλ,a).
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4. Proof of Theorem 1.3

First we define the Nehari manifold

Nλ,a := {
u ∈ Xλ \ {0}: 〈

J ′
λ,a(u),u

〉 = 0
}

for λ > Λ∗.

Then by Proposition 3.2, Nλ,a is nonempty. Define

Ψλ,a(u) = 〈
J ′

λ,a(u),u
〉

= b

∫
RN

|∇u|2 dx +
∫
RN

λV u2 dx + a

( ∫
RN

|∇u|2 dx

)2

−
∫
RN

f (x,u)udx.

Then for u ∈Nλ,a ,

〈
Ψ ′

λ,a(u),u
〉 = 2

(
b

∫
RN

|∇u|2 dx +
∫
RN

λV u2 dx

)
+ 4a

( ∫
RN

|∇u|2 dx

)2

−
∫
RN

fu(x,u)u2 dx −
∫
RN

f (x,u)udx

= −2

(
b

∫
RN

|∇u|2 dx +
∫
RN

λV u2 dx

)
+ 3

∫
RN

f (x,u)udx

−
∫
RN

fu(x,u)u2 dx. (4.1)

Moreover, we have the following result.

Proposition 4.1. Suppose that the conditions (V 1)–(V 3) hold. In addition, for each k = 1,3,4,
we assume that the function f satisfies the conditions (D1)–(D4). Then we have the following
results:

(i) Let a∗ > 0 be as in Lemma 2.4. If k = 1 and bλ
(1)
1 < 1, then for each a ∈ (0, a∗), there exists

Λ∗∗ > 0 such that Nλ,a is a natural constraint for all λ > Λ∗∗.

(ii) Let Λ∗ > 0 be as in Theorem 1.2. If k = 3, then for each a ∈ (0,1/λ
(3)
1 ) and λ > Λ∗, Nλ,a

is a natural constraint.
(iii) Let Λ∗ > 0 be as in Theorem 1.2. If k = 4, then for each a > 0 and λ > Λ∗, Nλ,a is a

natural constraint.

Proof. (i) By (4.1) and the condition (D4), for u ∈ Nλ,a one has

〈
Ψ ′

λ,a(u),u
〉
� −2

(
b

∫
N

|∇u|2 dx +
∫
N

λV u2 dx −
∫
N

f (x,u)udx

)

R R R
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� −2

( ∫
{V >0}

(
b|∇u|2 + λV u2)dx −

∫
{V >0}

qu2 dx +
(

b − 1

λ
(1)
1

)∫
Ω

|∇u|2 dx

)

� −2

( ∫
{V >0}

(
b|∇u|2 + λV u2)dx −

∫
{V >0}

qu2 dx

)
. (4.2)

Moreover, by the condition (V 2), there exists c0 > 0 such that

|q|∞b−1S−2
∣∣{0 < V � c0}

∣∣ � 1,

which implies that∫
{V >0}

qu2 dx � |q|∞
∫

{0<V �c0}
u2 dx + |q|∞

∫
{V >c0}

u2 dx

� |q|∞b−1S−2
∣∣{0 < V � c0}

∣∣ ∫
{0<V �c0}

b|∇u|2 dx + |q|∞
λc0

∫
{V >c0}

λV u2 dx

�
∫

{0<V �c0}
b|∇u|2 dx + |q|∞

λc0

∫
{V >c0}

λV u2 dx. (4.3)

Therefore, by (4.2) and (4.3), for every λ >
c0|q|∞ , we have

〈
Ψ ′

λ,a(u),u
〉
� −2b

( ∫
{V >0}

|∇u|2 dx −
∫

{0<V �c0}
|∇u|2 dx

)

− 2

( ∫
{V >0}

λV u2 dx − |q|∞
λc0

∫
{V >c0}

λV u2 dx

)
< 0.

Take Λ∗∗ = max{ c0|q|∞ ,Λ∗}, where Λ∗ > 0 is as in Theorem 1.2. Then Nλ,a is a natural constraint
for all λ > Λ∗∗.

(ii) and (iii) By (4.1) and the condition (D4), for u ∈ Nλ,a we have

〈
Ψ ′

λ,a(u),u
〉 = 2

(
b

∫
RN

|∇u|2 dx +
∫
RN

λV u2 dx

)
+ 4a

( ∫
RN

|∇u|2 dx

)2

−
∫
RN

fu(x,u)u2 dx −
∫
RN

f (x,u)udx

� 2

(
b

∫
N

|∇u|2 dx +
∫
N

λV u2 dx

)
+ 4a

( ∫
N

|∇u|2 dx

)2
R R R
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− (k + 1)

∫
RN

f (x,u)udx

= −2

(
b

∫
RN

|∇u|2 dx +
∫
RN

λV u2 dx

)
− (k − 3)

∫
RN

f (x,u)udx < 0.

Therefore, Nλ,a is a natural constraint. This completes the proof. �
Now we give the proof of Theorem 1.3: For any u ∈Nλ,a , we have

0 = 〈
J ′

λ,a(u),u
〉
� min{b,1}‖u‖2

λ −
∫
RN

f (x,u)udx.

Now, choose ε ∈ (0,Θ0 −|p+|∞) as in the proof of Lemma 2.3 and use the conditions (D1) and
(D2) to get

∣∣∣∣ ∫
RN

f (x,u)udx

∣∣∣∣ �
∫
RN

[(∣∣p+∣∣∞ + ε
)
u2 + Cε |u|r]dx. (4.4)

Therefore, for every u ∈Nλ,a we have

0 � min{b,1}‖u‖2
λ − (|p+|∞ + ε)|{V < c}| 2∗−2

2∗

S2
‖u‖2

λ − Cε |{V < c}| 2∗−r
2∗

Sr
‖u‖r

λ. (4.5)

We recall that u �= 0 whenever u ∈Nλ,a and (4.5) implies that

‖u‖λ �
(

min{b,1} − (|p+|∞ + ε)|{V < c}| 2∗−2
2∗ S−2

Cε |{V < c}| 2∗−2
2∗ S−r

)1/(r−2)

> 0, for all u ∈ Nλ,a.

(4.6)

Hence any limit point of a sequence in the Nehari manifold is different from zero. Use a similar
argument to the proof in Lemma 2.1, we can claim that there exists d0 > 0 such that Jλ,a(u) > d0
for all u ∈Nλ,a , i.e., Jλ,a is bounded from below on Nλ,a . So, we may define

βλ,a = inf
{
Jλ,a(u): u ∈Nλ,a

}
,

and βλ,a > 0. Let {ūn} ⊂ Nλ,a be such that Jλ,a(ūn) → βλ,a as n → ∞. Following almost the
same procedures as the proofs of Lemma 3.1 and Proposition 3.2, we can show that {ūn} is
bounded in Xλ and it has a convergent subsequence, strongly converging to v0 ∈ Nλ,a . Thus,
Jλ,a(v0) = βλ,a . Moreover, by Proposition 4.1, J ′

λ,a(v0) = 0. Therefore, v0 ∈ Xλ is a ground
state solution of Eq. (Kλ,a).
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5. Proof of Theorem 1.4

In this section, we give the proof of Theorem 1.4.

Proof. Suppose that u is a nontrivial solution of Eq. (Kλ,a). Then

〈
J ′

λ,a(u),u
〉 = ∫

RN

(
b|∇u|2 + λV u2)dx + a

( ∫
RN

|∇u|2 dx

)2

−
∫
RN

f (x,u)udx = 0.

(i) By the conditions (V 1)–(V 3) and b > |q|∞S−2|Ω| 2∗−2
2∗ , there exists c1 > 0 such that

b > |q|∞S−2
∣∣{V < c1}

∣∣ 2∗−2
2∗ ,

which implies that∫
RN

qu2 dx � |q|∞
∫

{V <c1}
u2 dx + |q|∞

∫
{V �c1}

u2 dx

� |q|∞
∣∣{V < c1}

∣∣ 2∗−2
2∗ S−2

∫
RN

|∇u|2 dx + |q|∞
λc1

∫
{V �c1}

λV u2 dx

< b

∫
RN

|∇u|2 dx + |q|∞
λc1

∫
{V �c1}

λV u2 dx.

Then, by the conditions (D2), (D4) and (2.2), for λ > Λ∗ := |q|∞
c1

we have

0 = 〈
J ′

λ,a(u),u
〉
�

∫
RN

(
b|∇u|2 + λV u2)dx −

∫
RN

qu2 dx

>

∫
RN

(
b|∇u|2 + λV u2)dx −

(
b

∫
RN

|∇u|2 dx + |q|∞
λc1

∫
{V �c1}

λV u2 dx

)

�
(

1 − |q|∞
λc1

) ∫
{V �c1}

λV u2 dx � 0,

which is a contradiction. Therefore, Eq. (Kλ,a) does not admit any nontrivial solution.
(ii) We consider the proof in two cases:
Case I (

∫
RN qu4 dx = 0): By (2.2), we have

0 = 〈
J ′

λ,a(u),u
〉

= b

∫
N

|∇u|2 dx +
∫
N

λV u2 dx + a

( ∫
N

|∇u|2 dx

)2

−
∫
N

f (x,u)udx
R R R R
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�
∫
RN

(
b|∇u|2 + λV u2)dx + a

( ∫
RN

|∇u|2 dx

)2

−
∫
RN

qu4 dx

=
∫
RN

(
b|∇u|2 + λV u2)dx + a

( ∫
RN

|∇u|2 dx

)2

> 0,

which is a contradiction.
Case II (

∫
RN qu4 dx > 0): Set

v = u

(
∫
RN qu4 dx)1/4

.

Clearly,
∫
RN qv4 dx = 1. Then, by the conditions (D2), (D4) and (1.5), we have

0 = 〈
J ′

λ,a(u),u
〉

�
∫
RN

(
b|∇u|2 + λV u2)dx + 1

λ̂
(3)
1

( ∫
RN

|∇u|2 dx

)2

−
∫
RN

qu4 dx

=
( ∫
RN

qu4 dx

)1/2 ∫
RN

(
b|∇v|2 + λV v2)dx

+ 1

λ̂
(3)
1

( ∫
RN

qu4 dx

)( ∫
RN

|∇v|2 dx

)2

−
∫
RN

qu4 dx

=
( ∫
RN

qu4 dx

)1/2 ∫
RN

(
b|∇v|2 + λV v2)dx

+ 1

λ̂
(3)
1

∫
RN

qu4 dx

(( ∫
RN

|∇v|2 dx

)2

− λ̂
(3)
1

)
> 0,

which is a contradiction. Therefore, Eq. (Kλ,a) does not admit any nontrivial solution. This
completes the proof. �
6. Concentration for solutions

In this section, we investigate the concentration for solutions and give the proof of Theo-
rem 1.5.

Proof of Theorem 1.5. We follows the argument in [2] (or see [26]). For any sequence λn → ∞,
let un := uλn be the critical points of Jλn,a obtained in Theorem 1.2. Since

D � αλn,a = Jλn,a(un) �
(

min{b,1} − d0
∣∣{V < c}∣∣ 2∗−2

2∗ S−2
)

‖un‖2
λn

,

4
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one has

‖un‖λn � C0, (6.1)

where the constant C0 is independent of λn. Therefore, we may assume that un ⇀ u0 weakly in
X and un → u0 strongly in Lr

loc(R
N) for 2 � r < 2∗. By Fatou’s lemma, we have

∫
RN

V u2
0 dx � lim inf

n→∞

∫
RN

V u2
n dx � lim inf

n→∞
‖un‖2

λn

λn

= 0,

this implies that u0 = 0 a.e. in R
N \ V −1(0), and u0 ∈ H 1

0 (Ω) by the condition (V 3). Now for
any ϕ ∈ C∞

0 (Ω), since 〈J ′
λn,a(un),ϕ〉 = 0, it is easy to check that(

b + a

∫
RN

|∇u0|2 dx

) ∫
RN

∇u0 · ∇ϕ dx =
∫
RN

f (x,u0)ϕ dx,

that is, u0 is a weak solution of (K∞) by the density of C∞
0 (Ω) in H 1

0 (Ω). Now we show
that un → u0 in Lr(RN) for 2 � r < 2∗. Otherwise, by Lions vanishing lemma [17] there exist
δ > 0,R0 > 0 and xn ∈R

N such that∫
BN(xn,R0)

(un − u0)
2 dx � δ.

Since |B(xn,R0) ∩ {x ∈R
N : V < c}| → 0 as xn → ∞, by Hölder inequality, we have∫

B(xn,R0)∩{V <c}
(un − u0)

2 dx → 0.

Consequently,

‖un‖2
λn

� λnc

∫
B(xn,R0)∩{V �c}

(un)
2 dx = λnc

∫
B(xn,R0)∩{V �c}

(un − u0)
2 dx

= λnc

( ∫
B(xn,R0)

(un − u0)
2 dx −

∫
B(xn,R0)∩{V <c}

(un − u0)
2 dx + o(1)

)
→ ∞,

which contradicts (6.1). Therefore, un → u0 in Lr(RN) for 2 � r < 2∗. Then, by the conditions
(D1), (D2) and un → u0 in Lr(RN),∫

N

f (x,un)un dx →
∫
N

f (x,u0)u0 dx. (6.2)
R R
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Now, choose ε ∈ (0,Θ0 − |p+|∞) as in the proof of Lemma 2.3. Since 〈J ′
λn,a(un), un〉 = 0,

by (2.2), (4.4) and the fact that un �= 0, for n large we have

min{b,1}‖un‖2
λn

�
(

b

∫
RN

|∇un|2 dx +
∫
RN

λnV u2
n dx

)

� (|p+|∞ + ε)|{V < c}| 2∗−2
2∗

S2
‖un‖2

λn
+ Cε |{V < c}| 2∗−r

2∗

Sr
‖un‖r

λn
,

which implies that

‖un‖λn �
(

Sr(Θ0 − |p+|∞ − ε)min{b,1}
CεΘ0|{V < c}| 2∗−r

2∗

)1/(r−2)

> 0. (6.3)

Moreover,∫
RN

f (x,un)un dx =
(

b

∫
RN

|∇un|2 dx +
∫
RN

λnV u2
n dx

)
+ a

( ∫
RN

|∇un|2 dx

)2

� min{1, b}‖un‖2
λn

. (6.4)

Therefore, by (6.2)–(6.4), we have

∫
RN

f (x,u0)u0 dx � min{b,1}
(

Sr(Θ0 − |p+|∞ − ε)min{b,1}
CεΘ0|{V < c}| 2∗−r

2∗

)2/(r−2)

> 0,

this shows that u0 �= 0. This completes the proof. �
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