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Abstract

In this paper we consider a class of higher dimensional differential systems in Rn which have a two
dimensional center manifold at the origin with a pair of pure imaginary eigenvalues. First we characterize
the existence of either analytic or C∞ inverse Jacobian multipliers of the systems around the origin, which
is either a center or a focus on the center manifold. Later we study the cyclicity of the system at the origin
through Hopf bifurcation by using the vanishing multiplicity of the inverse Jacobian multiplier.
© 2014 Elsevier Inc. All rights reserved.
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1. Background and statement of the main results

For real planar differential systems, the problems on center–focus and Hopf bifurcation are
classical and related. They are important subjects in the bifurcation theory and also in the study
of Hilbert’s 16th problem [6,7,15,17].

For planar non-degenerate center, Poincaré provided an equivalent characterization.

Poincaré center Theorem. For a real planar analytic differential system with the origin as a
singularity having a pair of pure imaginary eigenvalues, the origin is a center if and only if the
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system has a local analytic first integral, and if and only if the system is analytically equivalent
to

u̇ = −iu
(
1 + g(uv)

)
, v̇ = iv

(
1 + g(uv)

)
,

with g(uv) without constant terms, where we have used the conjugate complex coordinates in-
stead of the two real ones.

This result has a higher dimensional version, see for instance [13,18,20], which characterizes
the equivalence between the analytic integrability and the existence of analytic normalization of
analytic differential systems to its Poincaré–Dulac normal form of a special type.

Reeb [14] in 1952 provided another characterization on planar centers via inverse integrating
factor. Recall that a function V is an inverse integrating factor of a planar differential system if
1/V is an integrating factor of the system. From [8,9,11,12] we know that inverse integrating
factors have better properties than integrating factors.

Reeb center Theorem. Real planar analytic differential system

ẋ = −y + f1(x, y), ẏ = x + f2(x, y),

has the origin as a center if and only if it admits a real analytic local inverse integrating factor
with non-vanishing constant part.

Poincaré center Theorem was extended to higher dimensional differential systems which have
a two dimensional center manifold by Lyapunov. Consider analytic differential systems in Rn

ẋ = −y + f1(x, y, z) = F1(x, y, z),

ẏ = x + f2(x, y, z) = F2(x, y, z),

ż = Az + f (x, y, z) = F(x, y, z), (1.1)

with z = (z3, . . . , zn)
tr , A is a real square matrix of order n − 2, and f = (f3, . . . , fn)

tr and
F = (F3, . . . ,Fn)

tr . Hereafter we use tr to denote the transpose of a matrix. Moreover we assume
that f := (f1, f2, f ) = O(|(x, y, z)|2) are n dimensional vector valued analytic functions. We
denote by

X = F1(x, y, z)
∂

∂x
+ F2(x, y, z)

∂

∂y
+

n∑
j=3

Fj (x, y, z)
∂

∂zj

the vector field associated to systems (1.1).
Assume that the eigenvalues of A all have non-zero real parts. Then from the Center Manifold

Theorem we get that system (1.1) has a center manifold tangent to the (x, y) plane at the origin
(of course center manifolds are not necessary unique, and may not be analytic even not C∞).
Moreover this center manifold can be represented as

Mc =
n⋂{

zj = hj (x, y)
}
. (1.2)
j=3
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Lyapunov center Theorem. Assume that A has no eigenvalues with vanishing real parts. The
following statements hold.

(a) System (1.1) restricted to the center manifold has the origin as a center if and only if it admits
a real analytic local first integral of the form Φ(x,y, z) = x2 + y2 + higher order term in a
neighborhood of the origin in Rn.

(b) If the condition in statement (a) holds, then the center manifold is unique and analytic.

For a proof of the Lyapunov center Theorem, we refer to [16] and [2, Theorems 3.1, 3.2
and §5].

Reeb center Theorem via inverse integrating factor was extended to differential systems in R3

by Buică, García and Maza [4]. A smooth function J (x) is an inverse Jacobian multiplier of
system (1.1) if

X (J ) = J divX .

In fact, if J (x) is an inverse Jacobian multiplier of system (1.1) then 1/J is a Jacobian multiplier
of the system, i.e.

∂x

(
F1

J

)
+ ∂y

(
F2

J

)
+ ∂z3

(
F3

J

)
+ · · · + ∂zn

(
Fn

J

)
= 0,

where ∂x denotes the partial derivative with respect to x.
Buică et al.’s main results in [4] can be summarized as follows.

Buică, García and Maza center–focus Theorem. Assume that system (1.1) is defined in R3 and
A is a non-zero real number. The following statements hold.

(a) System (1.1) restricted to the center manifold has the origin as a center if and only if it admits
an analytic local inverse Jacobian multiplier of the form J (x, y, z) = z + higher order term
in a neighborhood of the origin in R3. Moreover, if such an inverse Jacobian multiplier
exists, then the analytic center manifold Mc ⊂ J−1(0).

(b) If system (1.1) restricted to the center manifold has the origin as a focus, then there exists
a local C∞ and non-flat inverse Jacobian multiplier of the form J (x, y, z) = z(x2 + y2)k +
higher order term with k � 2, in a neighborhood of the origin in R3. Moreover, there exists
a local C∞ center manifold M such that M ⊂ J−1(0).

In this paper we will extend Buică et al.’s results to any finite dimensional differential sys-
tem (1.1). We should say that this extension is not trivial, because for higher dimensional differ-
ential systems we need new ideas and techniques than those in [4,5]. Parts of the methods in [4,5]
are only suitable for three dimensional differential systems but not for higher dimensional ones.

Let λ3, . . . , λn be the eigenvalues of the matrix A. Then system (1.1) at the origin has the
eigenvalues λ = (i,−i, λ3, . . . , λn), where i = √−1. Let

R = {
k ∈ Zn: 〈k,λ〉 = 0, k + ej ∈ Zn , j = 3, . . . , n

}
,
+
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where Z+ denotes the set of non-negative integers, ej is the unit vector with its j th component
equal to 1 and the others all vanishing, and 〈k,λ〉 = k1i−k2i+∑n

j=3 kjλj . We remark that in the
definition R we choose k ∈ Zn but not k ∈ Zn+, because we will also discuss the case 〈k,λ〉 = λj

for k ∈ Zn+ and j ∈ {1, . . . , n}.
In this paper we have a basic assumption.

(H) R is one dimensional and A can be diagonalizable in C.

Clearly if A has its eigenvalues either all having positive real parts or all having negative
real parts, then R has only one linearly independent element with generator (1,1,0). For three
dimensional differential systems of the form (1.1), this condition always holds provided that A

is a nonzero real number.
By the assumption (H) we get easily that Reλj �= 0 for j = 3, . . . , n. So from the Center

Manifold Theorem we get that system (1.1) has a center manifold tangent to the (x, y) plane at
the origin, and it can be represented in (1.2).

In the case that A has complex eigenvalues, we assume without loss of generality that there ex-
ists an m ∈ Z+ with 2m � n− 2 such that λ3+2j and λ3+2j+1, j = 0,1, . . . ,m− 1, are conjugate
complex eigenvalues of A. Of course if m = 0 then all the eigenvalues are real.

Our first result provides an equivalent characterization on the center manifold Mc at the origin
via inverse Jacobian multipliers.

Theorem 1.1. Assume that the analytic differential system (1.1) satisfies (H) and the eigenval-
ues of A either all having positive real parts or all having negative real parts. The following
statements hold.

(a) System (1.1) restricted to Mc has the origin as a center if and only if the system has a local
analytic inverse Jacobian multiplier of the form

J (x, y, z) =
m−1∏
j=0

[(
z3+2j − p3+2j (x, y, z)

)2 + (
z3+2j+1 − p3+2j+1(x, y, z)

)2]

×
n∏

l=3+2m

(
zl − pl(x, y, z)

)
V (x, y, z), (1.3)

in a neighborhood of the origin in Rn, where pj = O(|(x, y, z)|2) for j = 3, . . . , n, and
V (0,0,0) = 1. For m = 0 the first product does not appear.

(b) If system (1.1) has the inverse Jacobian multiplier as in statement (a), then the center mani-
fold Mc is unique and analytic, and Mc ⊂ J−1(0).

We note that the set of matrices satisfying (H) is a full Lebesgue measure subset in the set of
real matrices of order n.

The second result shows the existence of C∞ smooth local inverse Jacobian multiplier pro-
vided that the origin on the center manifold is a focus.

Theorem 1.2. Assume that the differential system (1.1) satisfies (H). The following statements
hold.
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(a) If system (1.1) restricted to Mc has the origin as a focus, then the system has a local C∞
inverse Jacobian multiplier of the form

J (x, y, z) =
m−1∏
j=0

[(
z3+2j − p3+2j (x, y, z)

)2 + (
z3+2j+1 − p3+2j+1(x, y, z)

)2]

×
n∏

s=3+2m

(
zs − ps(x, y, z)

)[(
x − q1(x, y, z)

)2 + (
y − q2(x, y, z)

)2]l
× h

((
x − q1(x, y, z)

)2 + (
y − q2(x, y, z)

)2)
V (x, y, z), (1.4)

in a neighborhood of the origin in Rn, where l � 2, pj , qi = O(|(x, y, z)|2), and h(0) =
V (0,0,0) = 1.

(b) There exists a local C∞ center manifold M such that M⊂ J−1(0).

We call l vanishing multiplicity of the inverse Jacobian multiplier.
Next we will study the Hopf bifurcation of system (1.1) under small perturbations through

inverse Jacobian multipliers. In this direction the first study is due to Buică, García and Maza [5]
for a three dimensional differential system.

Consider an analytic perturbation of system (1.1) in the following form

ẋ = −y + g1(x, y, z, ε) = G1(x, y, z, ε),

ẏ = x + g2(x, y, z, ε) = G2(x, y, z, ε),

ż = Az + g(x, y, z, ε) = G(x,y, z, ε), (1.5)

where ε ∈ Rm is an m dimensional parameter and ‖ε‖ 
 1, g := (g1, g2, g) = O(|(x, y, z)|)
are analytic in a neighborhood of the origin, and g(x, y, z,0) = f(x, y, z) with f defined in (1.1).
These conditions make sure that the origin is always a singularity of system (1.5) for all ‖ε‖ 
 1.
In addition, in order to keep the monotone property of the origin, we assume that the determi-
nant of the Jacobian matrix of G = (G1,G2,G) with respect to (x, y, z) at the origin has the
eigenvalues

α(ε) ± i, λj + μj (ε), j = 3, . . . , n,

satisfying α(0) = μj (0) = 0. For convenience we denote by Xε the vector field associated
to (1.5). Then X0 =X .

Next we shall study the Hopf bifurcation of system (1.5) at the origin when the parameters ε

vary near 0 ∈ Rm. That is, when the values of ε change, the stability of the origin of system (1.5)
will probably change, and so there bring appearance or disappearance of small amplitude limit
cycles of system (1.5) which are bifurcated from the origin, i.e. if ε tend to 0 these limit cycles
will approach to the origin. The maximal number of limit cycles which can be bifurcated from
the Hopf at the origin of systems (1.5) is called cyclicity of system (1.1) at the origin under the
perturbation (1.5). Denote this number by Cycl(Xε,0).

Now we can state our third result on the Hopf bifurcation.
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Theorem 1.3. Assume that the analytic differential system (1.1) satisfies (H). If system (1.1)
restricted to Mc has the origin as a focus, then Cycl(Xε,0) = l − 1, where l is the vanishing
multiplicity of the inverse Jacobian multiplier defined in Theorem 1.2.

This result is an extension of the main result of [5] to any finite dimensional differential
systems.

For the real differential system (1.1) there always exists an invertible linear transformation
which sends A to its Jordan normal form. So in what follows we assume without loss of generality
that A in system (1.1) is in the real Jordan normal form.

In the rest of this paper we will prove our main results. In the next section we will prove
Theorems 1.1 and 1.2. The proof of Theorem 1.3 will be given in Section 3.

2. Proofs of Theorems 1.1 and 1.2

2.1. Preparation to the proof

For simplifying notations we will use conjugate complex coordinates instead of the real ones
which correspond to conjugate complex eigenvalues of the linear part of system (1.1) at the
origin.

Set ξ = x + iy, η = x − iy. Since A is real, if it has complex eigenvalues, they should appear in
pair. Corresponding to a pair of conjugate complex eigenvalues of A, the associated coordinates
are zj and zj+1 by assumption. Then instead of this pair of real coordinates we choose a pair
of conjugate complex coordinates ζj = zj + izj+1 and ζj+1 = zj − izj+1. Under these new
coordinates system (1.1) can be written in

ξ̇ = −iξ + f̃1(ξ, η, ζ ) = F̃1(ξ, η, ζ ),

η̇ = iη + f̃2(ξ, η, ζ ) = F̃2(ξ, η, ζ ),

ζ̇ = Bζ + f̃ (ξ, η, ζ ) = F̃ (ξ, η, ζ ), (2.1)

with B = diag(λ3, . . . , λn), where we have used the assumption (H) and the fact that A is in the
real Jordan normal form. Denote by X̃ the vector field associated to system (2.1). We note that
system (2.1) is different from system (1.1) only in a rotation. But using the coordinates (ξ, η, ζ ),
some expressions will be simpler than in the coordinates (x, y, z). This idea was first introduced
in [19].

First we recall a basic fact on inverse Jacobian multipliers of vector fields under transforma-
tions, which will be used in the full paper.

Lemma 2.1. Let X be the vector field associated to system (1.1) and J be an inverse Ja-
cobian multiplier of X . Under an invertible smooth transformation of coordinates (x, y, z) =
Φ(u,v,w), the vector field X becomes

ẇ = (
DΦ(w)

)−1F ◦ Φ(w),

where F = (F1,F2,F )tr and w = (u, v,w)tr . Then this last system has an inverse Jacobian mul-
tiplier J̃ (w) = J (Φ(w)) .
DΦ(w)
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Recall that hereafter we use DΦ to denote the determinant of the Jacobian matrix of Φ with
respect to its variables.

In the proof of our main results we need the Poincaré–Dulac normal form theorem. For an
analytic or formal differential system in Rn or Cn

ẋ = Cx + f (x), (2.2)

with C in the Jordan normal form, and f (x) has no constant and linear part, the Poincaré–Dulac
normal formal theorem shows that system (2.2) can always be transformed to a system of the
form

ẏ = Cy + g(y),

through a near identity transformation x = y + ψ(y) with ψ(0) = 0 and ∂ψ(0) = 0, where g(y)

contains resonant terms only, and ∂ψ(y) denotes the Jacobian matrix of ψ with respect to y.
Recall that a monomial ykej in the j th component of g(y) is resonant if μj = 〈k,μ〉, where
μ = (μ1, . . . ,μn) are the eigenvalues of C. The transformation from (2.2) to its normal form is
called normalization. Usually the normalization is not unique. If a normalization contains only
non-resonant terms, then it is called distinguished normalization. Distinguished normalization is
unique. A monomial xk in a normalization or in a function is resonant if 〈k,μ〉 = 0.

In our case, by the Poincaré–Dulac normal form theorem we have the following result.

Lemma 2.2. Under the assumption (H) system (2.1) is formally equivalent to

u̇ = −u
(
i + g1(uv)

)
,

v̇ = v
(
i + g2(uv)

)
,

ẇj = wj

(
λj + gj (uv)

)
, j = 3, . . . , n, (2.3)

through a distinguished normalization of the form (x, y, z) = (u, v,w) + · · · , where dots denote
the higher order terms.

About the smoothness of the transformation in Lemma 2.2 we have the following results.

Lemma 2.3. Under the assumption (H), for system (2.1) to its Poincaré–Dulac normal form (2.3)
the following statements hold.

(a) If system (2.1) restricted to the center manifold Mc has the origin as a focus, then the
distinguished normalization is C∞.

(b) If system (2.1) restricted to Mc has the origin as a center, and the eigenvalues of A have
either all positive real parts or all negative real parts, then the distinguished normalization
is analytic.

Proof. (a) We note that u and v are conjugate in (2.3), we have g2 = g1. Since the origin of
system (2.3) on w = 0 is a focus, it follows that Reg1 �= 0. So our vector fields (2.3) are outside
the exception set which was defined on page 254 of [1]. Hence we get from Theorem 1 of
Belitskii [1] that the distinguished normalization from systems (2.1) to (2.3) is C∞.
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(b) Since the eigenvalues of A have non-vanishing real parts, we have

λj �= k1(−i) + k2i = (k2 − k1)i, k1, k2 ∈ Z+ for j = 3, . . . , n.

So by Theorem 10.1 of [2], system (2.1) is formally equivalent to

u̇ = −u
(
i + g1(uv)

)
,

v̇ = v
(
i + g2(uv)

)
,

ρ̇j = λjρj + hj (u, v,ρ), j = 3, . . . , n, (2.4)

with g1, g2 = o(1), hj = O(|(u, v,ρ)|2) and hj (u, v,0) = 0 for j = 3, . . . , n, through a distin-
guished normalization of the form

ξ = u + ψ1(u, v,ρ), η = v + ψ2(u, v,ρ), ζ = ρ + ψ(u, v),

where ρ = (ρ3, . . . , ρn) and ψ = (ψ3, . . . ,ψn) with ψ1,ψ2,ψ = O(|(u, v,ρ)|2). System (2.4) is
called a quasi-normal form of system (2.1), see [2].

By the assumption system (2.4) has the origin as a center on the center manifold w = 0 and
so has a formal first integral. By Zhang [18] we get that g1(uv) = g2(uv) in (2.4). Applying
Theorems 10.2, 3.2 and §5 of [2] to our case, we get that the distinguished normalization from
system (2.1) to (2.4) is convergent. This means that systems (2.1) and (2.4) are analytically
equivalent through a near identity change of variables.

Next we prove that system (2.4) is analytically equivalent to system (2.3). Take the change of
variables

u = u, v = v, ρ = w + ϕ(u, v,w),

for which system (2.4) is transformed to (2.3). Then we have

∂ϕ

∂w
Bw − i

∂ϕ

∂u
u + i

∂ϕ

∂v
v − Bϕ = Bh

(
u,v,w + ϕ(u, v,w)

)
− ∂ϕ

∂w
wg + ug1

∂ϕ

∂u
− vg2

∂ϕ

∂v
, (2.5)

where wg = (w3g3, . . . ,wngn)
tr , and we look ϕ as a column vector and ∂ϕ

∂w
is the Jacobian

matrix of ϕ with respect to w. The linear operator

L = ∂

∂w
Bw − i

∂

∂u
u + i

∂

∂v
v − B,

has the spectrum{〈k,λ〉 − pi + 1i − λj : k ∈ Zn−2+ , |k| = l, p, q ∈ Z+, j = 3, . . . , n
}
,

in the linear space Hl+p+q which consists of n − 2 dimensional vector valued homogeneous
polynomials of degree l in w and of degrees p and q in u and v, respectively.
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Expanding ϕ, h, g1, g2 and g in the Taylor series, and equating the homogeneous terms in (2.5)
which have the same degree, we get from induction and the assumption (H) that Eqs. (2.5) have
a formal series solution ϕ with its monomials all nonresonant. Moreover, by the assumption that
A has its eigenvalues either all having positive real parts or all having negative real parts, there
exists a number σ > 0 such that if 〈k,λ〉 − pi + 1i − λj �= 0 for (p, l, k) ∈ Zn+ we have

∥∥〈k,λ〉 − pi + 1i − λj

∥∥ � σ.

This shows that ϕ in the transformation does not contain small denominators. Then similar to the
proof of the classical Poincaré–Dulac normal form theorem we can prove that ϕ is convergent,
see for instance [2,18], where similar proofs on convergence of ϕ were provided. This proves
statement (b), and consequently the lemma. �

Next result shows the existence of analytic integrating factor on the center manifold provided
the existence of analytic inverse Jacobian multiplier of system (2.1) in a neighborhood of the
origin.

Lemma 2.4. Assume that system (2.1) has an analytic inverse Jacobian multiplier of the form

J (ξ, η, ζ ) = (
ζ3 − φ3(ξ, η, ζ )

)
. . .

(
ζn − φn(ξ, η, ζ )

)
V (ξ, η, ζ ),

with φj = O(|(ξ, η, ζ )|2) for j ∈ {3, . . . , n} and V analytic, and V (0,0,0) �= 0. Then:

(a) M = ⋂n
j=3{ζj = φj (ξ, η, ζ )} is an invariant analytic center manifold of X̃ in a neighbor-

hood of the origin.
(b) V |M is an analytic inverse integrating factor of X̃ |M.

Proof. (a) By the expression of J we get from X̃ (J ) = J div X̃ that

n∑
j=3

X̃ (ζj − φj )(ζ3 − φ3) . . . ̂(ζj − φj ) . . . (ζn − φn)V (ξ, η, ζ ) + (ζ3 − φ3) . . . (ζn − φn)X̃ (V )

= (ζ3 − φ3) . . . (ζn − φn)V div X̃ ,

where ̂(ζj − φj ) denotes its absence in the product. Since ζ3 − φ3, . . . , ζn − φn are relatively
pairwise coprime in the algebra of analytic functions which are defined in a neighborhood of the
origin, so there exist analytic functions

L0(ξ, η, ζ ), L3(ξ, η, ζ ), . . . , Ln(ξ, η, ζ ),

such that

X̃
(
V (ξ, η, ζ )

) = L0(ξ, η, ζ )V (ξ, η, ζ ),

X̃
(
ζj − φj (ξ, η, ζ )

) = Lj(ξ, η, ζ )
(
ζj − φj (ξ, η, ζ )

)
, (2.6)
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for j = 3, . . . , n. This shows that ζj = φj (ξ, η, ζ ), j = 3, . . . , n, are invariant under the flow
of X̃ .

Applying the Implicit Function Theorem to the equations

ζj − φj (ξ, η, ζ ) = 0, j = 3, . . . , n,

we get a unique solution ζ = k(ξ, η), i.e.

ζj = kj (ξ, η), j = 3, . . . , n,

in a neighborhood of the origin, which is analytic. Hence

M =
n⋂

j=3

{
ζj = kj (ξ, η)

}
,

in a neighborhood of the origin. Again the Implicit Function Theorem shows that kj (0,0) = 0
and ∂ξ kj (0,0) = ∂ηkj (0,0) = 0 for j = 3, . . . , n. These imply that M is an analytic center
manifold of X̃ in a neighborhood of the origin which is tangent to the (ξ, η) plane.

(b) Since

X̃
(
ζj − φj (ξ, η, ζ )

) = 0 on M,

we have

F̃j

(
ξ, η, k(ξ, η)

) − F̃1
(
ξ, η, k(ξ, η)

)∂φj

∂ξ
− F̃2

(
ξ, η, k(ξ, η)

)∂φj

∂η

− ∂ζ φj F̃
(
ξ, η, k(ξ, η)

) = 0, j = 3, . . . , n.

Here we have used the conventions ∂ζ φj = (∂ζ3φj , . . . , ∂ζnφj ) and F̃ = (F̃3, . . . , F̃n)
tr . Write

these equations in a unified vector form, we have

(E − ∂ζ φ)F̃ = F̃1∂ξφ + F̃2∂ηφ on M, (2.7)

where ∂sφ = (∂sφ3, . . . , ∂sφn)
tr , s ∈ {ξ, η}.

In addition, since

k(ξ, η) = φ
(
ξ, η, k(ξ, η)

)
,

we have

(E − ∂ζ φ)∂ξ k = ∂ξφ, (E − ∂ζ φ)∂ηk = ∂ηφ, (2.8)

where ∂sk = (∂sk3, . . . , ∂skn)
tr , s ∈ {ξ, η}.
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Set C(ξ, η) = V (ξ, η, k(ξ, η)). Some calculations show that

X̃ |M
(
C(ξ, η)

) = F̃1
(
ξ, η, k(ξ, η)

)∂C

∂ξ
+ F̃2

(
ξ, η, k(ξ, η)

)∂C

∂η

= F̃1[w]
(

∂V

∂ξ
+ ∂V

∂ζ3

∂k3

∂ξ
+ · · · + ∂V

∂ζn

∂kn

∂ξ

)
+ F̃2[w]

(
∂V

∂η
+ ∂V

∂ζ3

∂k3

∂η
+ · · · + ∂V

∂ζn

∂kn

∂η

)
= F̃1[w]∂V

∂ξ
+ F̃1[w]∂ζ V (E − ∂ζ φ)−1∂ξφ

+ F̃2[w]∂V

∂η
+ F̃2[w]∂ζ V (E − ∂ζ φ)−1∂ηφ

∣∣∣∣
M

= F̃1[w]∂V

∂ξ
+ F̃2[w]∂V

∂η
+ ∂ζ V F̃ [w]

∣∣∣∣
M

= X̃ (V )|M = L0V |M = L0|MC, (2.9)

where [w] = (ξ, η, k(ξ, η)), and in the third and fourth equalities we have used respectively (2.8)
and (2.7). Recall that ∂ζ V = (∂ζ3V, . . . , ∂ζnV ).

Next we shall prove that L0|M = div(X̃ |M). From the definition of inverse Jacobian multi-
pliers and (2.6), we get that

J div X̃ = X̃ (J ) = (L0 + L3 + · · · + Ln)J.

This reduces to

L0 = div X̃ − L3 − · · · − Ln. (2.10)

Note that for j = 3, . . . , n

Lj

(
ζj − φj (ξ, η, ζ )

) = X̃
(
ζj − φj (ξ, η, ζ )

)
= F̃j − F̃1∂ξφj − F̃2∂ηφj − ∂ζ φj F̃ .

Writing these equations in vector form gives

diag(L3, . . . ,Ln)
(
ζ − φ(ξ, η, ζ )

) = (E − ∂ζ φ)F̃ − ∂ξφ F̃1 − ∂ηφ F̃2. (2.11)

Recall that F̃ , ∂ξφ, ∂ηφ are n − 2 dimensional column vectors.
On the center manifold M we have

φj (ξ, η, ζ ) = ζj , j = 3, . . . , n.

So from these we get that

∂ξ ∂ζs φj = ∂η∂ζs φj = ∂ζs ∂ζ φj = 0 on M, for all 3 � s, j, l � n.

l
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Differentiating (2.11) with respect to ζ , together with these last equalities, yield

diag(L3, . . . ,Ln)(E − ∂ζ φ) = (E − ∂ζ φ)∂ζ F̃ − ∂ξφ ∂ζ F̃1 − ∂ηφ ∂ζ F̃2 on M.

We note that ∂ζ F̃ is a matrix of order n−2, and ∂ζ F̃s for s = 1,2 are n−2 dimensional horizontal
vectors. Rewrite this last equation in the following form

diag(L3, . . . ,Ln) = (E − ∂ζ φ)∂ζ F̃ (E − ∂ζ φ)−1

− ∂ξφ ∂ζ F̃1(E − ∂ζ φ)−1 − ∂ηφ ∂ζ F̃2(E − ∂ζ φ)−1. (2.12)

Since similar matrices have the same trace, we have

trace
(
(E − ∂ζ φ)∂ζ F̃ (E − ∂ζ φ)−1) = trace(∂ζ F̃ ) =

n∑
j=3

∂ζj
F̃j . (2.13)

Moreover some calculations show that

trace
(
∂ξφ ∂ζ F̃1(E − ∂ζ φ)−1) = trace

(
(E − ∂ζ φ)−1∂ξφ ∂ζ F̃1

)
= ∂ζ F̃1(E − ∂ζ φ)−1∂ξφ, (2.14)

and

trace
(
∂ηφ ∂ζ F̃2(E − ∂ζ φ)−1) = trace

(
(E − ∂ζ φ)−1∂ηφ ∂ζ F̃2

)
= ∂ζ F̃2(E − ∂ζ φ)−1∂ηφ. (2.15)

Combining (2.12), (2.13), (2.14) and (2.15) gives

L3 + · · · + Ln =
n∑

j=3

∂ζj
F̃j − ∂ζ F̃1(E − ∂ζ φ)−1∂ξφ − ∂ζ F̃2(E − ∂ζ φ)−1∂ηφ.

This together with (2.10) show that

L0|M = ∂ξ F̃1 + ∂ηF̃2 + ∂ζ F̃1(E − ∂ζ φ)−1∂ξφ + ∂ζ F̃2(E − ∂ζ φ)−1∂ηφ
∣∣
M

= ∂ξ F̃1 + ∂ηF̃2 + ∂ζ F̃1 ∂ξ k + ∂ζ F̃2 ∂ηk
∣∣
M

= ∂ξ F̃1
(
ξ, η, k(ξ, η)

) + ∂ηF̃2
(
ξ, η, k(ξ, η)

) = div (X̃ |M), (2.16)

where in the second equality we have used (2.8).
Now the equalities (2.9) and (2.16) verify that C(ξ, η) is an analytic inverse integrating factor

of the vector field X̃ |M.
We complete the proof of the lemma. �

Remark 2.5. Replacing analyticity by C∞ smoothness Lemma 2.4 holds, too.
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We now study the properties of C∞ inverse Jacobian multiplier restricted to center manifolds.

Lemma 2.6. Assume that system (1.1) satisfies (H) and has a C∞ inverse Jacobian multiplier,
written in conjugate complex coordinates as

J (ξ, η, ζ ) =
n∏

j=3

(
ζj − ψj (ξ, η, ζ )

)
V (ξ, η, ζ ),

where ψj = O(|(ξ, η, ζ )|2) and V has no factor ζl − ψl(ξ, η, ζ ) for any l ∈ {3, . . . , n}. Then the
following statements hold.

(a) M∗ = ⋂n
j=3{ζj = ψj (ξ, η, ζ )} is a center manifold of system (1.1) at the origin.

(b) For any smooth center manifold M of system (1.1) at the origin, if X |M has the origin as a
center, then J |M = 0.

Proof. (a) As in the proof of Lemma 2.4 there exist C∞ smooth functions L3, . . . ,Ln such that

X̃
(
ζj − ψj(ξ, η, ζ )

) = Lj (ξ, η, ζ )
(
ζj − ψj (ξ, η, ζ )

)
, j = 3, . . . , n,

where X̃ is X written in the conjugate complex coordinates as those did in (2.1). Note that each
surface ζj − ψj (ξ, η, ζ ) is invariant under the flow of X̃ . By the Implicit Function Theorem the
equations

ζj − ψj (ξ, η, ζ ) = 0, j = 3, . . . , n,

have a unique solution ζ = k(ξ, η), which is C∞. Representing ζ = k(ξ, η) in the cartesian
coordinates gives

z = h(x, y), i.e. zj = hj (x, y), j = 3, . . . , n.

Clearly ∂xhj (0,0) = ∂yhj (0,0) = 0 for j = 3, . . . , n. Then

M∗ =
n⋂

j=3

{
ζj − kj (ξ, η)

} =
n⋂

j=3

{
zj − hj (x, y)

}
,

is a center manifold of system (1.1) at the origin.
(b) Let P0 = (x0, y0, z0) be any point on M in a sufficiently small neighborhood of the origin,

and let ϕt be the orbit of (1.1) passing through P0. Then we have

dJ (ϕt )

dt
=X (J )|ϕt = J divX |ϕt .

This equation has the solution

J
(
ϕt (x0, y0, z0)

) = J (x0, y0, z0) exp

( t∫
divX |ϕs ds

)
. (2.17)
0
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By the assumption ϕt is a periodic orbit. Denote its period by T0. This last equation can be
simplified to

J (x0, y0, z0) = J (x0, y0, z0) exp

( T0∫
0

divX |ϕs ds

)
. (2.18)

Restricted to the center manifold M system (1.1) becomes

ẋ = −y + f1
(
x, y,h(x, y)

)
, ẏ = x + f2

(
x, y,h(x, y)

)
. (2.19)

Written in polar coordinates (x, y) = (r cos θ, r sin θ), we get from this two dimensional system

dθ

1 + O(r)
= dt.

Integrating along the periodic orbit gives

T0 = 2π + O(r).

So we have

T0∫
0

divX |ϕs ds =
T0∫

0

(
Λ + O

(|P0|
))

ds = 2πΛ + O
(|P0|

)
.

This together with (2.18) yield that in a sufficiently small neighborhood of the origin

J (x0, y0, z0) = 0.

By the arbitrariness of P0 ∈M we get that J |M ≡ 0. This proves statement (b).
We complete the proof of the lemma. �
Having the above preparations we can prove Theorems 1.1 and 1.2.

2.2. Proof of Theorem 1.1

(a) Sufficiency. If the matrix A has conjugate complex eigenvalues, we write system (1.1)
in (2.1). By Lemma 2.4 and its proof we get that system (2.1) has an analytic center manifold
M = ⋂n

j=3{ζj = kj (ξ, η)}. Again by Lemma 2.4, system (2.1) restricted to M, i.e. (2.19), has

an analytic inverse integrating factor C(ξ, η) = Ṽ (ξ, η, k(ξ, η)), where Ṽ is V (x, y, z) written
in (ξ, η, ζ ).

We note that either ζj = zj is a real coordinate or ζj = zj + izj+1 and ζj+1 = zj − izj+1 for
some j are conjugate complex coordinates. In the latter write kj (ξ, η) = hj (x, y) + ihj+1(x, y),
we have zj = hj (x, y). In the former write hj = kj . Then we have

M =
n⋂{

zj = kj (x, y)
}
.

j=3
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Since C(0,0) = V (0,0,0) �= 0, integrating the one-form

x + f2(x, y,h(x, y))

V (x, y,h(x, y))
dx + y − f1(x, y,h(x, y))

V (x, y,h(x, y))
dy,

provides an analytic first integral H(x,y) of (2.19) and it has the form H(x,y) = (x2 + y2)/

C(0,0)+ higher order term. So we get from the Poincaré center Theorem that the vector field X
has the origin as a center on the center manifold M.

The vector field X restricted to the center manifold M has the origin as a center and it has
an analytic first integral. These facts together with Theorems 6.3 and 7.1 of Sijbrand [16] show
that the center manifold at the origin is unique and analytic. So we have Mc = M. Hence
system (1.1) restricted to Mc has the origin as a center.

Necessity. First we write system (1.1) in (2.1) with the conjugate complex coordinates. Lem-
mas 2.2 and 2.3 show that system (2.1) is analytically equivalent to its distinguished normal form,
i.e. system (2.3), through a distinguished normalization.

For the analytic differential system (2.3) we have g1 = g2 by the proof of Lemma 2.3. We can
check easily that J̃ = w3 . . .wn is an inverse Jacobian multiplier of system (2.3) and is clearly
analytic. Hence using the near identity analytic transformation from (2.1) to (2.3) we get that
system (2.1) has an analytic inverse Jacobian multiplier

J ∗ = (
ζ3 − φ3(ξ, η, ζ )

)
. . .

(
ζn − φn(ξ, η, ζ )

)
/D(ξ, η, ζ ),

where D(ξ,η, ζ ) is the determinant of the Jacobian matrix of the transformation from (2.1)
to (2.3), and satisfies D(0,0,0) = 1.

Going back to the (x, y, z) coordinates we get that system (1.1) has an analytic inverse Jaco-
bian multiplier of the form (1.3).

(b) The analyticity and uniqueness of the center manifolds were proved in the sufficient part
of statement (a). Mc ⊂ J−1(0) follows from Lemma 2.6 (b) and the first assertion.

We complete the proof of the theorem. �
2.3. Proof of Theorem 1.2

(a) Under the assumption of the theorem, we get from Lemma 2.3 (a) that system (2.1) is
locally C∞ equivalent to its Poincaré–Dulac normal form (2.3) with g1 �= g2. Direct calculations
show that system (2.3) has the C∞ inverse Jacobian multiplier

J̃ = w3 . . .wnuv
(
g2(uv) − g1(uv)

)
,

where g1(s), g2(s) are C∞ functions and g2 − g1 is non-flat at s = 0. This shows that
J̃ = w3 . . .wn(uv)lh(uv) with l � 2 and h(0) �= 0. Without loss of generality we can assume
h(0) = 1. By the inverse transformations from (2.1) to (2.3) we get that system (2.3) has a C∞
inverse Jacobian multiplier of the form

J (ξ, η, ζ ) =
n∏(

ζj − φj (ξ, η, ζ )
)(

(ξ − φ1)(η − φ2)
)l

h
(
(ξ − φ1)(η − φ2)

)
/D(ξ, η, ζ ),
j=3
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where the C∞ smoothness follows from the facts that J̃ and the near identity transformation
from (2.1) to (2.3) are both C∞ smooth, D(ξ,η, ζ ) is the determinant of the Jacobian matrix of
the transformation satisfying D(0,0,0) = 1.

Note that φ1 and φ2 are conjugate. And for j = 3, . . . , n, either φj is real if ζj is real, or
φj and φk are conjugate if some ζj and ζk are conjugate. So written the conjugate complex
coordinates (ξ, η, ζ ) (if exist) in the real ones (x, y, z) we get that system (1.1) has the inverse
Jacobian multiplier in the prescribed form (1.4).

(b) The proof follows from statement (a) and Lemma 2.6.
We complete the proof of the theorem. �

3. Proof of Theorem 1.3

3.1. Preparation to the proof

Under the assumption of Theorem 1.3 we get from Theorem 1.2 that system (1.1) has a C∞
inverse Jacobian multiplier of the form

J (x, y, z) =
m−1∏
j=0

[(
z3+2j − ψ3+2j (x, y, z)

)2 + (
z3+2j+1 − ψ3+2j+1(x, y, z)

)2]

×
n∏

s=3+2m

(
zs − ψs(x, y, z)

)(
x2 + y2)l

V (x, y, z),

where V (0,0,0) = 1. Moreover, it follows from the proofs of Lemmas 2.4 and 2.6 that sys-
tem (1.1) has a C∞ center manifold Mc at the origin, which is defined by the intersection of the
invariant surfaces

zj = ψj(x, y, z), j = 3, . . . , n. (3.1)

Furthermore the center manifold can be represented as Mc = ⋂n
j=3{zj = hj (x, y)}, where z =

h(x, y) is the unique solution of (3.1) defined in a neighborhood of the origin, which is obtained
from the Implicit Function Theorem. Recall that z = (z3, . . . , zn) and h = (h3, . . . , hn).

If m > 0, set for j = 0, . . . ,m − 1

ζ3+2j = z3+2j + iz3+2j+1, ψ∗
3+2j (x, y, ζ ) = ψ3+2j + iψ3+2j+1,

ζ3+2j+1 = z3+2j − iz3+2j+1, ψ∗
3+2j+1(x, y, ζ ) = ψ3+2j − iψ3+2j+1.

Note that the determinant of the Jacobian matrix of the transformation from (x, y, z) to (x, y, ζ )

is a nonzero constant. If ψj(x, y, z) �= 0, we take the change of variables

(u, v,w) = Φ(x,y, z) = (
x, y, ζ − ψ∗(x, y, ζ )

)
, (3.2)

where ζ = (ζ3, . . . , ζ2m+2, z2m+3, . . . , zn) and ψ∗ = (ψ∗
3 , . . . ,ψ∗

2m+2,ψ2m+3, . . . ,ψn). Then
system (1.1) is transformed to
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u̇ = −v + g1(u, v,w),

v̇ = u + g2(u, v,w),

ẇj = wj(λj + gj (u, v,w)), j = 3, . . . , n (3.3)

where g1, g2 = O(|(u, v,w)|2) and gj = O(|(u, v,w)|), j = 3, . . . , n. Correspondingly sys-
tem (3.3) has the center manifold w = 0. Moreover system (3.3) has the associated inverse
Jacobian multiplier

J ◦ Φ−1(u, v,w)

DΦ−1(u, v,w)
= w3 . . .wn

(
u2 + v2)l

Ṽ (u, v,w)

where Ṽ (0,0,0) �= 0, and DΦ−1 is the determinant of the Jacobian matrix of Φ−1 with respect
to its variables and DΦ(0,0,0) = 1.

Since systems (1.1) and (3.3) are C∞ equivalent in a neighborhood of the origin and the
corresponding inverse Jacobian multipliers have the same forms, so in what follows we assume
without loss of generality that system (1.1) has the center manifold z = 0 and the coordinate
hyperplane zj = 0 is invariant for j = 3, . . . , n.

Taking the cylindrical coordinate changes

x = r cos θ, y = r sin θ, z = rs,

with r � 0, system (1.5) is transformed to

θ̇ = 1 + Θ(θ, r, s, ε), ṙ = R(θ, r, s, ε) ṡ = As + S(θ, r, s, ε), (3.4)

where

Θ(θ, r, s, ε) = cos θg2(r cos θ, r sin θ, rs, ε) − sin θg1(r cos θ, r sin θ, rs, ε)

r
,

R(θ, r, s, ε) = cos θg1(r cos θ, r sin θ, rs, ε) + sin θg2(r cos θ, r sin θ, rs, ε),

S(θ, r, s, ε) = g(r cos θ, r sin θ, rs, ε) − sR(θ, r, s, ε)

r
,

where g = (g3, . . . , gn)
tr with g3, . . . , gn given in (3.3). Notice that

R(θ,0, s, ε) = 0, R(θ, r, s,0) = O
(
r2),

Θ(θ, r, s,0) = O(r), S(θ, r, s,0) = O(r).

Corresponding to the inverse Jacobian multiplier J (x, y, z) of system (1.1), system (3.4) with
ε = 0 has the inverse Jacobian multiplier

J (r cos θ, r sin θ, rs)/rn−1 = s3 . . . snr
2l−1k(θ, r, s), (3.5)

with k(θ,0,0) = constant �= 0.



X. Zhang / J. Differential Equations 256 (2014) 3278–3299 3295
For |ε| 
 1 and |r| suitably small, we always have θ̇ > 0. So system (3.4) can be equivalently
written in

dr

dθ
= R(θ, r, s, ε)

1 + Θ(θ, r, s, ε)
=: p(θ, r, s, ε),

ds

dθ
= As + S(θ, r, s, ε)

1 + Θ(θ, r, s, ε)
=: As + q(θ, r, s, ε). (3.6)

Furthermore, we have

p(θ,0, s, ε) = 0, p(θ, r, s,0) = O
(
r2), q(θ, r, s,0) = O(r). (3.7)

And q = (q3, . . . , qn)
tr with qj having the factor sj when ε = 0 for j = 3, . . . , n.

Associated to system (3.6) we have a vector field

Yε = ∂θ + p(θ, r, s, ε)∂r + 〈
As + q(θ, r, s, ε), ∂s

〉
,

where ∂s = (∂s3 , . . . , ∂sn). Related to the inverse Jacobian multiplier (3.5) of system (3.4), the
vector field Y0 has the inverse Jacobian multiplier

Jc(θ, r, s) = J (r cos θ, r sin θ, rs)

rn−1(1 + Θ(θ, r, s,0))
= s3 . . . snr

2l−1K(θ, r, s), (3.8)

where K = 1 + O(r).
Clear p, q are periodic in θ with period 2π , and they are well defined on the cylinder C =

{(θ, r, s, ε) ∈ R/(2πR) × Rn−1 × Rm: |r|, |ε| 
 1}. Furthermore we note that each periodic
orbit of system (1.5) corresponds to a unique periodic orbit of system (3.6) on C. So, to study the
periodic orbits of system (1.5) is equivalent to study the periodic orbits of system (3.6).

Denote by ψθ(r0, s0, ε) the solution of system (3.6) with the initial point ψ0(r0, s0, ε) =
(r0, s0) ∈ C. We have

ψθ(r0, s0, ε) = (
rθ (r0, s0, ε), sθ (r0, s0, ε)

)
.

On the cylinder C, θ = 2π coincides with θ = 0. We define the Poincaré map on the transversal
section θ = 0 of the flow of (3.6) by

P(r0, s0; ε) = ψ2π (r0, s0, ε).

Since system (3.6) is analytic, and so is the Poincaré map P . Set

P(r0, s0, ε) = (
Pr (r0, s0, ε),Ps(r0, s0, ε)

)
,

with

Pr (r0, s0, ε) = r2π (r0, s0, ε) and Ps(r0, s0, ε) = s2π (r0, s0, ε).
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Then

Pr (r0, s0, ε) = r0 +
2π∫

0

p
(
v, rv(r0, s0, ε), sv(r0, s0, ε), ε

)
dv,

Ps(r0, s0, ε) = eA2π

(
Es0 +

2π∫
0

e−Avq
(
v, rv(r0, s0, ε), sv(r0, s0, ε), ε

)
dv

)
,

where E is the unit matrix of order n − 2.
Define the displacement function by

D(r0, s0, ε) =P(r0, s0, ε) − (r0, s0).

Then the periodic orbit of system (3.6) is uniquely determined by the zero of the displacement
function D. Set

Dr =Pr − r0, Ds =Ps − s0.

Then D = (Dr ,Ds).
In order to study the zeros of D(r0, s0, ε) on (r0, s0) for any fixed ε sufficiently small, we will

solve Ds(r0, s0, ε) = 0 in s0 as a function of (r0, ε) in a small neighborhood of (r0, ε) = (0,0).
In fact, by (3.7) we get easily that

Ds(0,0,0) = 0,
∂Ds

∂s
(0,0,0) = e2πA − E.

These together with the assumption on A show that the matrix e2πA − E is invertible. So the
Implicit Function Theorem yields that Ds(r0, s0, ε) = 0 has a unique solution s0 = s∗(r0, ε) in a
neighborhood of (r0, ε) = (0,0), which is analytic. Substituting s∗ into Dr gives

d(r0, ε) := Dr

(
r0, s

∗(r0, ε), ε
)
.

Note that d(r0, ε) is analytic. Thus the number of periodic orbits of system (3.6) is equal to the
number of positive roots r0 of d(r0, ε) = 0.

Having the above preparation we can prove Theorem 1.3.

3.2. Proof of Theorem 1.3

As we discussed in Subsection 3.1, for proving Theorem 1.3 we only need to study the number
of zeros of d(r0, ε) in r0.

From the expression of the inverse Jacobian multiplier Jc it follows that Jc is periodic in θ with
period 2π . The inverse Jacobian multiplier Jc and the Poincaré map P(r0, s0,0) of system (3.6)
with ε = 0 has the relation

Jc

(
0,P(r0, s0,0)

) = Jc(0, r0, s0)DP(r0, s0,0), (3.9)
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where DP denotes the determinant of the Jacobian matrix of P with respect to (r0, s0). For a
proof, see [3]. Here for completeness we provide a proof. From (2.17) we have

Jc

(
0, ϕθ (r0, s0,0)

) = Jc

(
0, ϕ0(r0, s0,0)

)
exp

( θ∫
0

divY0 ◦ ϕs(r0, s0,0) ds

)
, (3.10)

where ϕθ (r0, s0, ε) is the flow of the vector field Yε or of system (3.6) satisfying ϕ0(r0, s0, ε) =
(r0, s0). Restricted (3.10) to θ = 2π and by the definition of the Poincaré map, we have

Jc

(
0,P(r0, s0,0)

) = Jc(0, r0, s0) exp

( 2π∫
0

divY0 ◦ ϕs(r0, s0,0) ds

)
. (3.11)

Since the Jacobian matrix ∂ϕθ (r0,s0,ε)
∂(r0,s0)

satisfies the variational equations of system (3.6) along the
solution (r, s) = ϕθ (r0, s0, ε),

dZ

dθ
= ∂(p,As + q)

∂(r, s)
◦ ϕ(r0, s0, ε)Z.

By the Liouvellian formula we have

det
∂ϕθ (r0, s0, ε)

∂(r0, s0)
= det

∂ϕ0(r0, s0, ε)

∂(r0, s0)
exp

( θ∫
0

divYε ◦ ϕs(r0, s0, ε) ds

)
.

Taking ε = 0 and θ = 2π , this last equation can be written in

det
∂ϕ2π (r0, s0,0)

∂(r0, s0)
= exp

( 2π∫
0

divY0 ◦ ϕs(r0, s0,0) ds

)
.

This together with (3.11) verify (3.9).
Writing (3.9) in components and using (3.8), we have

Ps3 . . .PsnP2l−1
r K(0,Pr ,Ps) = s03 . . . s0nr

2l−1
0 K(0, r0, s0)DP(r0, s0,0), (3.12)

where Ps = (Ps3, . . . ,Psn).
Since the hyperplane sj = 0 is invariant under the flow of (3.6) with ε = 0 for j = 3, . . . , n,

we get that

Ps(r0, s0,0) = (
s03P∗

s3(r0, s0), . . . , s0nP∗
sn(r0, s0)

) =: 〈s0,P∗
s (r0, s0)

〉
, (3.13)

where s0 = (s03, . . . , s0n). These together with (3.12) show that

P ∗ . . .P∗ P2l−1K(0,Pr ,Ps) = r2l−1K(0, r0, s0)DP(r0, s0,0). (3.14)
s3 sn r 0
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Direct calculations show that DP(r0, s0,0)|s0=0 = P∗
s3 . . .P∗

sn∂rPr |s0=0. So (3.14) is simplified
to

P2l−1
r K(0,Pr ,0) = r2l−1

0 K(0, r0,0)∂rPr for s0 = 0. (3.15)

From (3.13) it follows that the solution s∗(r0,0) of Ds(r0, s0, ε) = 0 with ε = 0 satisfies
s∗(r0,0) ≡ 0. So we have d(r0,0) =D(r0,0,0). Expanding d(r0,0) in the Taylor series gives

d(r0,0) = δkr
k
0 + O

(
rk+1

0

)
,

with δk �= 0 a constant. Then

Pr (r0,0,0) = r0 + δkr
k
0 + O

(
rk+1

0

)
.

Consequently we have K(0,Pr ,0) = K(0, r0,0) + O(rk
0 ). Substituting these expressions

in (3.15), with some simple calculations, gives

K(0, r0,0)
[
(2l − 1)δkr

2l−2+k
0 + O

(
r2l−1+k

)] + O
(
r2l−1+k

0

) = K(0, r0,0)kδkr
2l−2+k
0 .

Since K(0,0,0) = 1, equating the coefficients of r2l−2+k
0 in the last equation we get

k = 2l − 1.

Note that l � 2 by Theorem 1.2, it follows that k � 3.
From the expression of d(r0,0) and the Weierstrass Preparation Theorem we get that d(r0, ε)

has at most 2l − 1 zeros. Since system (3.4) is invariant under the symmetric change of variables
(θ, r, s) → (θ + π,−r,−s), and r0 = 0 is always a solution of d(r0, ε) = 0, these verify that
d(r0, ε) = 0 has at most l − 1 positive roots.

We note that the 2π periodic solutions of (3.6) one to one correspond to periodic orbits of (1.5)
in a neighborhood of the origin. While each 2π periodic solution of (3.6) in a neighborhood of
the origin is uniquely determined by a positive zero of d(r0, ε). So system (1.5) has at most l − 1
small amplitude limit cycles which are bifurcated from the Hopf on the two dimensional center
manifold.

Finally we provide an example showing that there exist systems of form (1.5) which do have
l − 1 limit cycles under sufficient small perturbation. Consider a special perturbation to sys-
tem (3.3)

u̇ = −v + g1(u, v,w) + uh(u, v, ε),

v̇ = u + g2(u, v,w) + vh(u, v, ε),

ẇj = wj

(
λj + gj (u, v)

) + wjh(u, v, ε), j = 3, . . . , n (3.16)

with h(u, v, ε) = ∑l−1
s=1 εl−sas(u

2 + v2)s and ε a single parameter. Recall that if λj is complex
with nonvanishing imaginary part, it must have a conjugate one, saying λj+1, then the variables
wj and wj+1 are conjugate complex ones. Write system (3.16) in cylindrical coordinates (θ, r, s),
we get a system as in the form (3.4) with Θ(θ, r, s, ε) and S(θ, r, s, ε) independent of ε, and
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R(θ, r, s, ε) = R(θ, r, s,0) + ∑l−1
s=1 εl−sasr

2s+1. Then similar to [5,10] we get that for |ε| 
 1
and suitable choices of a1, . . . , al−1 system (3.16) can have l − 1 small amplitude limit cycles in
a neighborhood of the origin.

We complete the proof of the theorem. �
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