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Abstract

In this paper, we study the relaxation limit of the relaxing Cauchy problem for non-isentropic compress-
ible Euler equations with damping in multi-dimensions. We prove that the velocity of the relaxing equations 
converges weakly to the velocity of the relaxed equations, while other variables of the relaxing equations 
converge strongly to the corresponding variables of the relaxed equations. We prove that as relaxation time 
approaches 0, there exists an initial layer for the ill-prepared data, the convergence of the velocity is strong 
outside the layer; while there is no initial layer for the well-prepared data, the convergence of the velocity 
is strong near t = 0. The strong convergence rates of all variables are also estimated.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we use p, u, S, � to denote the pressure, velocity, entropy and density of ideal 
gases respectively with the equation of gas state

� = �(p,S) := 1
γ√
A

p
1
γ exp{− S

γ
},
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where A > 0, γ = Cp

CV
> 1 are constants. Assume the constants p̄, �̄, S̄ satisfy p̄ > 0, �̄ > 0, p̄ =

A�̄γ eS̄ . Then we study the relaxation limit of the relaxing Cauchy problem for 3D non-isentropic 
compressible Euler equations with damping:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pt + u · ∇p + γp∇ · u = 0,

τ 2ut + τ 2u · ∇u + 1
�
∇p + u = 0,

St + u · ∇S = 0,

(p,u,S)(x,0) = (p0(x, τ ),
U0(x,τ )

τ
, S0(x, τ )),

(1.1)

where (p0(x, τ), U0(x, τ), S0(x, τ)) are small perturbations of (p̄, 0, S̄). In (1.1), (p, u, S, �) →
(p̄, 0, S̄, �̄) as |x| → +∞. τ is a small positive parameter representing the relaxation time, let 
τ ∈ (0, 1]. The density � satisfies the equation �t + u · ∇� + �∇ · u = 0 by (1.1), and �0(x, τ) =
�(p0(x, τ), S0(x, τ)) is small perturbation of �̄ = �(p̄, S̄).

The equations (1.1) are derived from

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p̂t ′ + U · ∇p̂ + γ p̂∇ · U = 0,

Ut ′ + U · ∇U + 1
�̂
∇p̂ + 1

τ
U = 0,

Ŝt ′ + U · ∇Ŝ = 0,

(p̂,U , Ŝ)(x,0) = (p0(x, τ ),U0(x, τ ), S0(x, τ )),

(1.2)

with the time rescaling:

t = τ t ′, u(x, t) = U
τ
(x, t ′),p(x, t) = p̂(x, t ′), �(x, t) = �̂(x, t ′), S(x, t) = Ŝ(x, t ′), (1.3)

then (p(x, t), u(x, t), S(x, t), �(x, t)) satisfy the equations (1.1).
(1.2) has no explicit form of its relaxed system, so we study its equivalent system (1.1) after 

the time rescaling. Note that the initial velocity of (1.1) differs from that of (1.2). For both 
(1.1) and (1.2), the smallness of the initial data requires ‖U0(x, τ)‖H 4(R3) to be small. While 

u(x, 0) = U0(x,τ )
τ

in (1.1) may be large when τ is small.
Let τ = 0 in the relaxing equations (1.1), we formally obtain the following relaxed equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pt + u · ∇p + γp∇ · u = 0,

1
�
∇p + u = 0,

St + u · ∇S = 0,

(p,S)(x,0) = ( lim
τ→0

p0(x, τ ), lim
τ→0

S0(x, τ )),

(1.4)

where � = �(p, S).
Due to its fundamental importance in both application and nonlinear PDE theory, the relax-

ation limit problems have been attracting much attention. We survey there some results closely 
related to this paper.
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For the relaxing isothermal compressible Euler equations with damping:

{
�t + ∇ · (�u) = 0,

�ut + �u · ∇u + σ̄ 2∇� + 1
τ
�u = 0,

(1.5)

where σ̄ 2 =Rθ∗ is constant. [1] proved the uniform bounds in the Sobolev space Hs(Rd), s ∈N, 
s > 1 + d

2 , after the time rescaling, the density � converges strongly to the solution of the heat 
equation in C([0, T ], Hs′

(Br)), where 0 < s′ < s, Br is a ball with radius r . The results of [1]
were extended in [2] to more general Sobolev space of fractional order. In [3], (1.5) was studied 
in one dimension with BV large data away from vacuum, and it was proved in [3] that after the 
time rescaling, � converges strongly to the solution of the heat equation in L2(R ×[0, T ]) (global 
in space) by using the stream function.

For the relaxing isentropic compressible Euler equations with damping

{
�t + ∇ · (�u) = 0,

�ut + �u · ∇u + ∇p + 1
τ
�u = 0,

(1.6)

where p(ρ) = Aργ . [4] proved the uniform bounds in the Sobolev space Hs(Rd), s ∈ N, s >

1 + d
2 , after the time rescaling, the density � converges strongly to the solution of the porous 

media equation in C([0, T ], Hs′
(Br)), where 0 < s′ < s. Similar results were obtained in the 

Besov space Bσ
2,1(R

d), σ = 1 + d
2 (see [5]) and in the Chemin–Lerner space (see [6]).

Relaxation limit problem also appears in Euler–Poisson equations, see [7–10] for weak so-
lutions and [11,12] for smooth solutions. It has been proved that the current density, which is 
the product of the electron density and electron velocity, converges weakly to that of the drift-
diffusion model. If the initial data are well-prepared, the current density converges strongly to 
that of the drift-diffusion model (see [13]). If the initial data are ill-prepared, the authors (see 
[14]) proved the difference between the current density of 1D hydrodynamic model and that of 
the drift-diffusion model decays exponentially fast in the large time interval [0, 1

β
log( 1

τλ )] with 
λ ∈ (0, 1), β > 0. The key of the proof in [14] is that the solutions of the relaxing and relaxed 
equations converge to the corresponding stationary solutions exponentially fast while both sta-
tionary solutions are close to each other. As to the relaxation limit of weak solutions (see [15]) 
and classical solutions (see [16–18]) to non-isentropic Euler–Poisson equations, the current den-
sity converges weakly to that of the energy-transportation model or drift-diffusion model.

However, there have been no rigorous analysis of the initial layer and strong convergence of 
the velocity for the ill-prepared data in the above mentioned papers. A main distinction of results 
in this paper is that we give results on the initial layer and strong convergence of the velocity, 
strong convergence rates of all variables. Our main concern is the non-isentropic flow (1.1), but 
our results are valid for the isentropic flow (1.6) and isothermal flow (1.5) (assuming no vacuum). 
We show that for the ill-prepared initial data, the strong convergence of the velocity is not uniform 
near t = 0, there exists an initial layer whose thickness is O(τ 2). Outside the initial layer, the 
velocity of the relaxing equations converge strongly to that of the relaxed equations. Only for the 
well-prepared initial data, there is no initial layer, the strong convergence of the velocity holds in 
[0, T ]. The key of our analysis in this paper is uniform a priori estimates with respect to τ and 
pointwise decay of the quantity u + 1

�
∇p. Moreover, the methods in this paper can be applied to 

the relaxation limit problems for Euler–Poisson equations and Euler–Maxwell equations.
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In this paper, all of our results are stated for the relaxing system (1.1) and the relaxed system 
(1.4). The first result is the following convergence result:

Theorem 1.1. Fix an arbitrary T ∈ (0, +∞), suppose for all τ ≥ 0, the initial data for the 
relaxing Cauchy problem (1.1) satisfy ‖(p0(x, τ) − p̄, U0(x, τ), S0(x, τ) − S̄)‖H 4(R3) ≤ ε0, ε0 is 
sufficiently small, depends on T but not on τ . Then the problem (1.1) admits a unique solution 
(p, u, S, �) in [0, T ] satisfying

∑
0≤�≤2

∥∥(∂�
t (p − p̄), τ∂�

t u, ∂�
t (S − S̄), ∂�

t (� − �̄))
∥∥

L∞([0,T ],H 4−�(R3))

+ ∑
0≤�≤2

∥∥u
∥∥

H�([0,T ],H 4−�(R3))
≤ C(T , ε0), (1.7)

such that as τ → 0,

(p,S,�) → (p̃, S̃, �̃) in C([0, T ],C2+μ1(K) ∩ W 3,μ2(K)),

u ⇀ ũ in ∩0≤�≤2 H�([0, T ],H 4−�(R3)), (1.8)

where μ1 ∈ [0, 12 ), μ2 ∈ [2, 6), K denotes any compact subset of R3, (p̃, ũ, S̃, �̃) is the unique 
classical solution to the relaxed equations (1.4).

Assume ‖(p0(x, τ) − lim
τ→0

p0(x, τ), S0(x, τ) − lim
τ→0

S0(x, τ))‖H 3(R3) ≤ O(τα1), then as 

τ → 0,

‖(p − p̃, S − S̃, � − �̃)‖C([0,T ],C1+μ1 (R3)∩W 2,μ2 (R3)) ≤ O(τmin{1,α1}), (1.9)

where μ1 ∈ [0, 12 ], μ2 ∈ [2, 6].

The main results concerned with the initial layer and strong convergence of the velocity are 
stated in the following theorem:

Theorem 1.2. Let (p, u, S, �) and (p̃, ũ, S̃, �̃) be the solutions obtained in Theorem 1.1. For the 

ill-prepared data, i.e., lim
τ→0

∣∣∣ 1
τ
U0(x, τ ) + 1

�0(x,τ )
∇p0(x, τ )

∣∣∣∞ 
= 0, there exists an initial layer 

[0, t∗] with t∗ = Cτ 2−δ for the velocity u, where C > 0, 0 < δ < 2, such that as τ → 0, 
|u(x, t∗) − ũ(x, 0)|∞ → 0 and

‖u − ũ‖C([t∗,T ], C0+μ1 (R3)∩W 1,μ2 (R3)) ≤ O(τmin{1,α1}), μ1 ∈ [0, 1
2 ], μ2 ∈ [2,6]. (1.10)

If δ = 0, for any constant C > 0, u(x, Cτ 2) does not converge to ũ(x, 0).

For the well-prepared data, i.e., lim
τ→0

∥∥∥ 1
τ
U0(x, τ ) + 1

�0(x,τ )
∇p0(x, τ )

∥∥∥
H 2(R3)

= 0, assuming ∥∥∥ 1
τ
U0(x, τ ) + 1

�0(x,τ )
∇p0(x, τ )

∥∥∥
H 2(R3)

≤ O(τα2), as τ → 0,

‖u − ũ‖C([0,T ],C0+μ1 (R3)∩W 1,μ2 (R3)) ≤ O(τmin{1,α1,α2}), μ1 ∈ [0, 1
2 ], μ2 ∈ [2,6]. (1.11)
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Remark 1.3. (i) In the above theorems, (p, u, S, �) depend on τ , while (p̃, ũ, S̃, �̃) do not. 
Compare (1.8) with (1.9), (1.10), (1.11), the strong convergence with such higher regularities in 
(1.8) must be restricted to arbitrary compact subset K. The strong convergence in (1.9), (1.10), 
(1.11) holds in the whole space R3, their proofs do not need compact embedding.

(ii) In Theorem 1.2 for ill-prepared data, δ 
= 0 implies that the thickness of the initial layer 
is O(τ 2). The strong convergence of u is not uniform near t = 0, u|t=0 
= ũ|t=0, u(x, Ct2) does 
not converge to ũ(x, 0), while u(x, Ct2−δ) converges to ũ(x, 0) when δ > 0. Simply, for any 
fixed small number t∗ > 0, u(x, t) → ũ(x, t) in C([t∗, T ], C0+μ1(R3) ∩W 1,μ2(R3)), μ1 ∈ [0, 12 ], 
μ2 ∈ [2, 6].

(iii) (p, S, �) converge strongly to (p̃, S̃, �̃) in [0, T ], but for ill-prepared data, (pt , St , �t )

may not converge strongly to (p̃t , S̃t , �̃t ) near t = 0, they may have an initial layer (see (5.3)). In 
this paper, we do not have enough regularity of ∇ · (v − ṽ) to prove the initial layer and strong 
convergence of pt , St , �t .

(iv) If one replaces the initial data (p0(x, τ), 1
τ
U0(x, τ), S0(x, τ)) in (1.1) with (p0(x),

1
τ
U0(x), S0(x)), where (p0(x), U0(x), S0(x)) are independent of τ , then for the well-prepared 

data, p0(x) ≡ const and U0(x) ≡ 0 (equilibrium states); while for the ill-prepared data, p0(x) 
=
const or U0(x) 
= 0 (non-equilibrium states).

In the following, we give more comments on Theorem 1.1 and Theorem 1.2. If τ > 0 is fixed, 
the global existence of classical solutions to the equations (1.2) is proved in [19–21]. However, 
for the relaxation limit problem in this paper, τ > 0 is variant and approaches 0, so we need the 
uniform existence of the solutions and uniform bound (1.7) which are different from [19–21]. 
The uniform a priori estimates with respect to τ produce the convergence results. In order to have 
enough regularities to treat the initial layer of the velocity, (p0(x, τ) − p̄, U0(x, τ), S0(x, τ) − S̄)

are required to be in H 4(R3) for all τ ≥ 0.
The uniform a priori estimates for the equations (1.1) imply the uniform bound (1.7). Passing 

to the limit, we have the convergence results (1.8).
Let us give some comments and remarks on the initial layer as follows. The asymptotic ex-

pansions of the solutions to (1.1) give us some indication of the initial layer. We illustrate this as 
follows: assume that the initial data have asymptotic expansion

(p(x,0), u(x,0), S(x,0), �(x,0)) = ∑
m≥0

τ 2m(pm
0 , um

0 , Sm
0 , �m

0 ),

and solutions of the equations (1.1) have the asymptotic expansion

(p(x, t), u(x, t), S(x, t), �(x, t)) = ∑
m≥0

τ 2m(pm(x, t), um(x, t), Sm(x, t), �m(x, t)),

then the leading order profiles satisfy the equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tp
0 + u0 · ∇p0 + γp0∇ · u0 = 0,

u0 + 1
�0

∇p0 = 0,

∂tS
0 + u0 · ∇S0 = 0,

(p0, S0)(x,0) = (p0, S0),

(1.12)
0 0
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if the initial velocity is well-prepared, i.e., u0
0 = − 1

�0
0
∇p0

0, where �0 = �(p0, S0). Note that in 

this case, u0 + 1
�0 ∇p0 = 0 matches u0

0 + 1
�0

0
∇p0

0 = 0.

However, if the initial velocity is ill-prepared, i.e., u0
0 
= − 1

�0
0
∇p0

0, we may assume that the 

velocity has the asymptotic expansion

u(x, t) =
∑
m≥0

τ 2m(um(x, t) + ûm(x, z)), z = t

τ 2
,

then the leading order profile of the initial layer correction û satisfies the equation

⎧⎨
⎩

∂zû
0 + û0 = 0,

û0(x,0) = u0
0 + 1

�0
0
∇p0

0.
(1.13)

Then û(x, z) = (u0
0 + 1

�0
0
∇p0

0)e
−z. Thus, the difference between u0 and − 1

�0 ∇p0 decays expo-

nentially within the initial layer, but it does not equal zero in the layer.
The above arguments of (1.12) and (1.13) indicate the relationship between the existence of 

initial layer and a class of initial data on a formal level. We are not concerned with the asymptotic 
expansions in this paper (as to asymptotic expansion analysis in relaxation limit problem for 
Euler–Poisson equations, see [22–24]; for Euler–Maxwell equations, see [25,26]) and only focus 
on rigorous analysis of the initial layer and relaxation limit of the relaxing equations (1.1).

The relaxation limit is a singular limit, since (p, − 1
�
∇p, S, �) converge strongly to (p̃, ũ,

S̃, �̃), instead of u → ũ. In order to measure the difference between u and − 1
�
∇p, we introduce 

a quantity:

η = u + 1
�
∇p . (1.14)

The pointwise decay of η outside the initial layer is the key to the strong convergence of the 
velocity. η satisfies the following transport equations with damping and forcing terms:

ηt + u · ∇η + 1

τ 2
η = forcing terms, (1.15)

where τ · [forcing terms] is bounded uniformly with respect to τ , the damping effect becomes 
stronger as τ decreases.

Also, η satisfies another equation:

η = τ 2(ut + u · ∇u). (1.16)

Then the equations (1.15) and (1.16) produce the following estimates respectively:

⎧⎪⎪⎨
⎪⎪⎩

|η|2∞ ≤ C‖η‖2
H 2(R3)

≤ C‖η|t=0‖2
H 2(R3)

exp{− t

τ 2 } + Cτ 2,

T∫ ‖ηt‖2
H 1(R3)

dx ≤ Cτ 2.
(1.17)
0
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Therefore, for the well-prepared data, lim
τ→0

η(x, t) = 0 for any t ∈ [0, T ], there is no dis-

crepancy between η(x, t)|t>0 and η(x)|t=0 = u0 + 1
�0

∇p0, thus there is no initial layer, u → ũ

strongly in C([0, T ], C0+μ1(R3) ∩ W 1,μ2(R3)), μ1 ∈ [0, 12 ], μ2 ∈ [2, 6].
While for the ill-prepared data, lim

τ→0
η(x)|t=0 
= 0, while lim

τ→0
η(x, t∗) → 0 pointwisely for any 

fixed small number t∗ > 0, thus the discrepancy between η|t=0 and η|t=t∗ make the initial layer 
of the velocity exist. Within [0, t∗], η must decreases rapidly, 1

�
∇p is uniformly bounded, then u

changes dramatically. In [t∗, T ], η → 0 strongly, u → ũ strongly. Near t = 0, the behavior of η
is not uniform with respect to τ , η(x, Cτ 2) does not converge to 0, while η(x, Cτ 2−δ) converges 
to 0 when δ > 0. Correspondingly, u|t=0 
= ũ|t=0, u(x, Cτ 2) does not converge to ũ(x, 0), while 
u(x, Cτ 2−δ) converges to ũ(x, 0) when δ > 0.

Finally, in order to prove that the thickness of the initial layer is O(τ 2), we have the following 
equation of η(x, z) by rescaling the time variable z = t

τ 2 :

∂zη(x, z) + u(x, z) · ∇η(x, z) + η(x, z) = new forcing terms, (1.18)

where 1
τ
·u(x, z) and 1

τ
· [new forcing terms] are bounded uniformly with respect to τ . (1.18) pro-

duces the estimate ‖η(x, z)‖L2(R3) > 0 when τ is small.
The uniform a priori estimates for the relaxing equations are hard to obtain for the bounded 

domain � with fixed boundary ∂�, due to the characteristic boundary condition u · n|∂� = 0. 
However, our results can be extended without difficulties to the periodic domains T3 due to the 
convenience of periodic boundary conditions. The results are the same except that R3 and K in 
the theorems need to be replaced by T3, there is nothing new in methodology.

The rest of this paper is organized as follows: In Section 2, we reformulate the equations into 
appropriate forms and derive the equations of η. In Section 3, we prove uniform a priori estimates 
for the relaxing equations. In Section 4, we prove the uniqueness of the relaxed equations and 
the relaxation limit of the relaxing equations. In Section 5, we estimate the strong convergence 
rates of the pressure, entropy and density. In Section 6, we study the initial layer and strong con-
vergence of the velocity, and then we prove the thickness of the initial layer for the ill-prepared 
data.

2. Preliminaries

In this section, we will reformulate the equations (1.1) into appropriate forms, define the 
energy functionals and derive the equations of the quantity η.

For the relaxing equations (1.1) together with their initial data (p0, u0, S0, �0) and constants 
p̄, S̄, �̄, we introduce the constants:

k1 =
√

1
γ �̄p̄

, k2 =
√

γ p̄
�̄

,

define the variables:

ξ = p − p̄, v = 1
k1

u, φ = S − S̄, ζ = � − �̄,

where (ξ, v, φ, ζ ) → (0, 0, 0, 0) as |x| → +∞.
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In order to prove the uniform a priori estimates, similar to the symmetrization used in [27,20], 
we symmetrize the equations (1.1) into the following form:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξt + k2∇ · v = −γ k1ξ∇ · v − k1v · ∇ξ,

τ 2vt + k2∇ξ + v = −k1τ
2v · ∇v + 1

k1
( 1
�̄

− 1
�
)∇ξ,

φt = −k1v · ∇φ,

(ξ, v,φ)(x,0) = (p0(x, τ ) − p̄, 1
k1τ

U0(x, τ ), S0(x, τ ) − S̄),

(2.1)

where � = ζ + �̄ = �(ξ + p̄, φ + S̄) and ζ satisfies the equation ζt + k1v · ∇ζ + k1�∇ · v = 0 by 
the equation of gas state.

Let τ = 0 in the relaxing equations (2.1), we formally obtain the following relaxed equations, 
which are equivalent to the relaxed equations (1.4).⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ξt + k2∇ · v = −γ k1ξ∇ · v − k1v · ∇ξ,

k2∇ξ + v = 1
k1

( 1
�̄

− 1
�
)∇ξ,

φt = −k1v · ∇φ,

(ξ,φ)(x,0) = ( lim
τ→0

p0(x, τ ) − p̄, lim
τ→0

S0(x, τ ) − S̄),

(2.2)

where � = ζ + �̄ = �(ξ + p̄, φ + S̄).
In order to use the energy method to derive uniform a priori estimates with respect to τ , 

we define the following generic energy functional E[ξ ](t) and three specific energy functionals 
EX[ξ ](t), E1[ξ ](t), E2[v](t):

Definition 2.1. Define

E[ξ ](t) := ∑
0≤�≤2,0≤�+|α|≤4

‖∂�
t Dαξ(t)‖2

L2(R3)
,

EX[ξ ](t) := ∑
0≤�≤2,0<�+|α|≤4

‖∂�
t Dαξ‖2

L2(R3)
,

E1[ξ ](t) := E[ξ ](t) − ∑
0≤�≤2,�+|α|=4

∫
R3

ξ
p
(∂�

t Dαξ)2 dx,

E2[v](t) := E[v](t) + ∑
0≤�≤2,�+|α|=4

∫
R3

(
�
�̄

− 1)|∂�
t Dαv|2 dx. (2.3)

Moreover, we use the following two notations: E[ξ, v](t) := E[ξ ](t) +E[v](t), E[ξ, v, φ, ζ ](t)
:= E[ξ, v](t) + E[φ](t) + E[ζ ](t).

It is easy to get the following lemma states that E[ξ ](t) and E1[ξ ](t) are equivalent, E[v](t)
and E2[v](t) are equivalent.

Lemma 2.2. For any fixed T ∈ (0, +∞), τ ∈ [0, 1], if
sup E[ξ, τv,φ, ζ ](t) ≤ ε,
0≤t≤T



F. Wu / J. Differential Equations 260 (2016) 5103–5127 5111
where 0 < ε � 1, then there exist c1 > 0, c2 > 0 such that for any t ∈ [0, T ],

c1E[ξ ](t) ≤ E1[ξ ](t) ≤ c2E[ξ ](t), c1E[v](t) ≤ E2[v](t) ≤ c2E[v](t). (2.4)

Remark 2.3. Different from the symmetrization (2.1), there is a straight way to symmetrize (1.1), 
which is ⎧⎪⎪⎨

⎪⎪⎩
ξt + γ k1p∇ · v = −k1v · ∇ξ,

τ 2vt + v + 1
k1�

∇ξ = −τ 2k1v · ∇v,

φt + k1v · ∇φ = 0,

(2.5)

with the weighted energy functionals:

Eξ [ξ ] := ∑
�,α

∫
R3

p̄
p
(∂�

t ∂α
x ξ)2, Ev[v] := ∑

�,α

∫
R3

ρ
ρ̄
(∂�

t ∂α
x v)2.

However, if we use (2.5) to prove uniform a priori estimates, the uniqueness and convergence 
rates, we have to introduce many different weighted energy functionals into this paper. So we 
still use (2.1) because (2.1) makes the proofs in this paper a little easier.

Finally, we define the quantity η precisely and derive its equations. Define

η(x, t) = v(x, t) + 1
k1�(x,t)

∇ξ(x, t). (2.6)

Note that here η = 1
k1

(u + 1
�
∇p), which differs from η introduced in the introduction (see (1.14)) 

up to a constant coefficient 1
k1

. Actually, the coefficient can be any positive number, η defined 
in (2.6) makes our calculation easier, while η introduced in (1.14) is convenient to represent our 
ideas.

Differentiate (2.6) wit respect to t , we have

ηt = vt + 1
k1�

∇ξt − ζt

k1�
2 ∇ξ,

then insert the evolution equations of v, ξ, ζ into the above equation, we get the following trans-
port equation with damping and forcing terms for η:

ηt + k1v · ∇η + 1
τ 2 η = − 1

�
(∇v)∇ξ − γ−1

�
∇ξ∇ · v − γp

�
∇(∇ · v), (2.7)

where (∇v) is a matrix, τ · [R.H.S. of (2.7)] is bounded uniformly with respect to τ , ‘R.H.S.’ is 
the abbreviation for ‘right hand side’.

Besides the equation (2.7), η satisfies another equation:

η = τ 2(vt + k1v · ∇v). (2.8)

In the rest of this paper, we will use the following notations: X � Y denotes the estimate 
X ≤ CY for some implied constant C > 0 which may be different line by line. [A, B] is the 
commutator of A and B .
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3. Uniform a priori estimates for the relaxing equations

In this section, we derive uniform a priori estimates for the relaxing Cauchy problem (2.1). In 
order to discuss the initial layer and strong convergence of the velocity, we need to estimate the 
higher order time derivatives.

The following lemma gives uniform a priori estimate for E1[ξ ](t) + τ 2E2[v](t), which is 
equivalent to E[ξ ](t) + τ 2E[v](t).

Lemma 3.1. For any fixed T ∈ (0, +∞), τ ∈ [0, 1], if

sup
0≤t≤T

E[ξ, τv,φ, ζ ](t) ≤ ε,

where 0 < ε � 1, then there exists a constant C1 > 0 such that for any t ∈ [0, T ],

d

dt
E1[ξ ](t) + τ 2 d

dt
E2[v](t) + 2E2[v](t) ≤ C1

√
ε(EX[ξ ](t) + E[v](t)). (3.1)

Proof. Let ξ · (2.1)1 + v · (2.1)2, integrate in R3, note that 
∫
R3

∇ · (ξv) dx = 0, then we get

d
dt

∫
R3

|ξ |2 + τ 2|v|2 dx + 2
∫
R3

|v|2 dx

= ∫
R3

2γ k1v · ∇(ξ2) − 2k1ξv · ∇ξ − 2k1τ
2v · ∇v · v + 2

k1
( 1
�̄

− 1
�
)∇ξ · v dx

� √
ε‖∇ξ‖L2(R3)‖v‖L2(R3) + √

ε‖v‖2
L2(R3)

� √
ε(EX[ξ ](t) + E[v](t)). (3.2)

Let ∂�
t Dαξ · ∂�

t Dα(2.1)1 + ∂�
t Dαv · ∂�

t Dα(2.1)2, where 0 ≤ � ≤ 2, 1 ≤ � + |α| ≤ 4, integrate 
in R

3, note that 
∫
R3

∇ · (∂�
t Dαξ∂�

t Dαv) dx = 0, then we get

d
dt

∫
R3

|∂�
t Dαξ |2 + τ 2|∂�

t Dαv|2 dx + 2
∫
R3

|∂�
t Dαv|2 dx

= ∫
R3

−2γ k1(∂
�
t Dαξ)∂�

t Dα(ξ∇ · v) − 2k1(∂
�
t Dαξ)∂�

t Dα(v · ∇ξ)

− 2k1τ
2(∂�

t Dαv) · ∂�
t Dα(v · ∇v) + 2

k1
(∂�

t Dαv) · ∂�
t Dα[( 1

�̄
− 1

�
)∇ξ ]dx := I1. (3.3)

When 1 ≤ � + |α| ≤ 3, it is easy to check that I1 � √
ε(EX[ξ ](t) + E[v](t)).

When � + |α| = 4, we estimate the quantity I1 − d
dt

∫
R3

ξ
p
(∂�

t Dαξ)2 dx + τ 2 d
dt

∫
R3

(
�
�̄

−
1)|∂�

t Dαv|2 dx, then

I1 − d
dt

∫
R3

ξ
p
(∂�

t Dαξ)2 dx + τ 2 d
dt

∫
R3

(
�
�̄

− 1)|∂�
t Dαv|2 dx

≤ −2γ k1
∫
R3

(∂�
t Dαξ)ξ∇ · (∂�

t Dαv)dx − 2k1
∫
R3

(∂�
t Dαξ)v · ∇(∂�

t Dαξ)dx

− 2k1τ
2

∫
3

v · ∇(∂�
t Dαv) · (∂�

t Dαv)dx + 2
k1

∫
3

( 1
�̄

− 1
�
)(∂�

t Dαv) · ∇(∂�
t Dαξ)dx
R R
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+ 2τ 2
∫
R3

(
�
�̄

− 1)(∂�
t Dαv) · (∂�

t Dαvt )dx + τ 2
∫
R3

ζt

�̄
|∂�

t Dαv|2 dx

− 2
∫
R3

ξ
p
(∂�

t Dαξ)(∂�
t Dαξt )dx − ∫

R3

∂t (
ξ
p
)(∂�

t Dαξ)2 dx + C
√

ε(EX[ξ ](t) + E[v](t))

� √
ε(EX[ξ ](t) + E[v](t)) − 2

∫
R3

ξ
p
(∂�

t Dαξ)[∂�
t Dαξt + k1γp∇ · (∂�

t Dαv)]dx

+ 2
k1

∫
R3

( 1
�̄

− 1
�
)(∂�

t Dαv) · [∇(∂�
t Dαξ) + k1τ

2�(∂�
t Dαvt )]dx. (3.4)

Apply ∂�
t Dα to (2.1)1, where 0 ≤ � ≤ 2, � + |α| = 4, we get

∂�
t Dαξt + k1γp∇ · (∂�

t Dαv)

= −k1∂
�
t Dα(v · ∇ξ) − k1γ

∑
�1+|α1|>0

∂
�1
t Dα1ξ∇ · (∂�2

t Dα2v). (3.5)

Plug (3.5) into the following integral, we get

∫
R3

ξ
p
(∂�

t Dαξ)(∂�
t Dαξt + k1γp∇ · (∂�

t Dαv))dx

= ∫
R3

ξ
p
(∂�

t Dαξ)[R.H.S. of (3.5)]dx

� √
ε(EX[ξ ](t) + E[v](t)) + k1

2

∫
R3

|∂�
t Dαξ |2∇ · ( ξ

p
v)dx

� √
ε(EX[ξ ](t) + E[v](t)). (3.6)

Apply ∂�
t Dα to k1τ

2vt + k2
1τ 2v · ∇v + k1v + 1

�
∇ξ = 0, where 0 ≤ � ≤ 2, � + |α| = 4, we get

1
�
∇(∂�

t Dαξ) + k1τ
2(∂�

t Dαvt )

= −k1∂
�
t Dαv − k2

1τ 2∂�
t Dα(v · ∇v) − ∑

�1+|α1|>0
∂

�1
t Dα1( 1

�
)∂

�2
t Dα2∇ξ. (3.7)

Plug (3.7) into the following integral, we get

∫
R3

( 1
�̄

− 1
�
)(∂�

t Dαv) · [∇(∂�
t Dαξ) + k1τ

2�∂�
t Dαvt ]dx

= ∫
R3

( 1
�̄

− 1
�
)(∂�

t Dαv) · �[R.H.S. of (3.7)]dx

� k2
1τ

2

∫
R3

|∂�
t Dαv|2∇ · [(�

�̄
− 1)τv]dx + √

ε(EX[ξ ](t) + E[v](t))
� √

ε(EX[ξ ](t) + E[v](t)). (3.8)

Plug (3.6) and (3.8) into (3.4), we get

I1 − d
dt

∫
3

ξ
p
(∂�

t Dαξ)2 dx + τ 2 d
dt

∫
3

(
�
�̄

− 1)|∂�
t Dαv|2 dx � √

ε(EX[ξ ](t) + E[v](t)). (3.9)

R R
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After summing � and α, we have

d
dt

( ∑
0≤�≤2,1≤�+|α|≤4

∫
R3

|∂�
t Dαξ |2 dx − ∑

0≤�≤2,�+|α|=4

∫
R3

ξ
p
(∂�

t Dαξ)2 dx
)

+ τ 2 d
dt

( ∑
0≤�≤2,1≤�+|α|≤4

∫
R3

|∂�
t Dαv|2 dx + ∑

0≤�≤2,�+|α|=4

∫
R3

(
�
�̄

− 1)|∂tDαv|2 dx
)

+ 2
( ∑

0≤�≤2,1≤�+|α|≤4

∫
R3

|∂�
t Dαv|2 dx + ∑

0≤�≤2,�+|α|=4

∫
R3

(
�
�̄

− 1)|∂�
t Dαv|2 dx

)

� √
ε(EX[ξ ](t) + E[v](t)). (3.10)

By (3.2) + (3.10), we proved that there exists a constant C1 > 0 such that

d

dt
E1[ξ ](t) + τ 2 d

dt
E2[v](t) + 2E2[v](t) ≤ C1

√
ε(EX[ξ ](t) + E[v](t)). (3.11)

Thus, Lemma 3.1 is proved. �
The structure of the equations (2.1) implies EX[ξ ](t) can be estimated by E[v](t), as the 

following lemma stated:

Lemma 3.2. For any fixed T ∈ (0, +∞), τ ∈ [0, 1], if

sup
0≤t≤T

E[ξ, τv,φ, ζ ](t) ≤ ε,

where 0 < ε � 1, then there exists a constant c3 > 0 such that for any t ∈ [0, T ],

EX[ξ ](t) ≤ c3E[v](t). (3.12)

Proof. Apply Dα to ∇ξ = −k1τ
2�vt − k2

1τ 2�v · ∇v − k1�v, where 0 ≤ |α| ≤ 3, we get

‖Dα∇ξ‖2
L2(R3)

� τ 4‖Dα(�vt )‖2
L2(R3)

+ τ 4‖Dα(�v · ∇v)‖2
L2(R3)

+ ‖Dα(�v)‖2
L2(R3)

� ‖Dαvt‖2
L2(R3)

+ ‖Dαv‖2
L2(R3)

+ E[ζ ]E[v](t) + E[τv](t)E[v](t)
+ E[τv](t)E[ζ ]E[v](t). (3.13)

Apply Dα to ξt = −k1v · ∇ξ − k1γp∇ · v, where 0 ≤ |α| ≤ 3, we get

‖Dαξt‖2
L2(R3)

� ‖Dα(v · ∇ξ)‖2
L2(R3)

+ ‖Dα(p∇ · v)‖2
L2(R3)

� ‖Dα∇ · v‖2
L2(R3)

+ EX[ξ ]E[v](t). (3.14)

Similar to the above estimate, apply ∂tDα to ξt , where 0 ≤ |α| ≤ 2, we get

‖Dαξtt‖2
2 3 � ‖Dα∇ · vt‖2

2 3 + EX[ξ ]E[v](t). (3.15)

L (R ) L (R )
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By (3.13) + (3.14) + (3.15), we have

EX[ξ ](t) ≤ C2E[v](t) + C2E[ζ ]E[v](t) + C2E[τv](t)E[v](t)
+ C2E[τv](t)E[ζ ]E[v](t) + C2EX[ξ ]E[v](t)

≤ C2EX[ξ ]E[v](t) + C2(1 + 2ε + ε2)E[v](t), (3.16)

for some C2 > 0.
Assume ε is so small that C2E[v](t) ≤ 1

2 . Let c3 = 2C2(1 + 2ε + ε2), we get EX[ξ ](t) ≤
c3E[v](t). Thus, Lemma 3.2 is proved. �

Based on the above a priori estimates, we prove not only the uniform L∞ bound of 

E[ξ, τv](t), but also the uniform bound of 
T∫
0
E[v](s) ds.

Lemma 3.3. For any fixed T ∈ (0, +∞), τ ∈ [0, 1], if

sup
0≤t≤T

E[ξ, τv,φ, ζ ](t) ≤ ε,

where 0 < ε � 1, then there exists a constant c4 > 0 such that for any t ∈ [0, T ],

E[ξ, τv](t) ≤ c4‖(ξ0,U0)‖2
H 4(R3)

,

T∫
0
E[v](s)ds ≤ c4‖(ξ0,U0)‖2

H 4(R3)
. (3.17)

Proof. Since Lemmas 3.1 and 3.2 are proved, plug (3.12) into (3.1), then we get

d
dt
E1[ξ ](t) + τ 2 d

dt
E2[v](t) + 2E2[v](t) ≤ C1(1 + c3)

√
εE[v](t) ≤ C3

√
εE2[v](t), (3.18)

where C3 = C1(1+c3)
c1

> 0.

Since ε is sufficiently small, we assume ε ≤ 1
C2

3
, then

d
dt
E1[ξ ](t) + τ 2 d

dt
E2[v](t) + E2[v](t) ≤ 0. (3.19)

By using Lemma 2.2, it is easy to get

E[ξ, τv](t) +
t∫

0
E[v](s)ds ≤ c4‖(ξ0,U0)‖2

H 4(R3)
, (3.20)

for some c4 > 0. Thus, Lemma 3.3 is proved. �
The following lemma concerns the uniform bound of E[φ](t). Here, the finiteness of T plays 

a key role in the proof.
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Lemma 3.4. For any fixed T ∈ (0, +∞), τ ∈ [0, 1], if

sup
0≤t≤T

E[ξ, τv,φ, ζ ](t) ≤ ε,

where 0 < ε � 1, then there are constants c5 > 0, c6 > 0 such that for any t ∈ [0, T ],

E[φ](t) ≤ c5‖φ0‖2
H 4(R3)

exp{c6T ‖(ξ0,U0)‖2
H 4(R3)

}. (3.21)

Proof. Let ∂�
t Dαφ · ∂�

t Dα(2.1)3, where 0 ≤ � ≤ 2, 0 ≤ � + |α| ≤ 4, we get

(|∂�
t Dαφ|2)t = −v · ∇|∂�

t Dαφ|2 − 2∂�
t Dαφ[∂�

t Dα, v · ∇]φ. (3.22)

Integrate (3.22) in R3, we have

d
dt

∫
R3

|∂�
t Dαφ|2 dx = ∫

R3

|∂�
t Dαφ|2∇ · v dx − 2

∫
R3

∂�
t Dαφ[∂�

t Dα, v · ∇]φ dx := I2. (3.23)

When � + |α| ≤ 4, it is easy to check I2 � E[v](t) 1
2 E[φ](t) by using commutator estimates. 

Sum �, α, we have

d
dt
E[φ](t) ≤ C4E[v](t) 1

2 E[φ](t). (3.24)

Integrate (3.24) in (0, t), where t ∈ [0, T ], we obtain the uniform a priori estimate for E[φ](t)
which is independent of τ .

E[φ](t) ≤ c5‖φ0‖2
H 4(R3)

exp{
t∫

0
C4E[v](s) 1

2 ds}

≤ c5‖φ0‖2
H 4(R3)

exp{C4T
T∫
0
E[v](s)ds}

≤ c5‖φ0‖2
H 4(R3)

exp{c6T ‖(ξ0,U0)‖2
H 4(R3)

}, (3.25)

where c5 > 0, c6 = C4c4 > 0. Thus, Lemma 3.4 is proved. �
Due to ζ = �(ξ + p̄, φ + S̄) − �̄, we can estimate E[ζ ](t) in the following lemma:

Lemma 3.5. For any fixed T ∈ (0, +∞), τ ∈ [0, 1], if

sup
0≤t≤T

E[ξ, τv,φ, ζ ](t) ≤ ε,

where 0 < ε � 1, then there are constants c7 > 0, c8 > 0 such that for any t ∈ [0, T ],

E[ζ ](t) ≤ c7‖φ0‖2
H 4(R3)

exp{c6T ‖(ξ0,U0)‖2
H 4(R3)

} + c8‖(ξ0,U0)‖2
H 4(R3)

. (3.26)
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Proof. Since ζ is expressed in terms of ξ and φ, namely,

ζ = 1
γ√
A

exp{− S̄
γ
}
[
(ξ + p̄)

1
γ exp{− φ

γ
} − p̄

1
γ

]
, (3.27)

it is easy to get the tame estimate of composed functions (see [28]):

E[ζ ](t) ≤ C5E[ξ ](t) + C5E[φ](t)
≤ c7‖φ0‖2

H 4(R3)
exp{c6T ‖(ξ0,U0)‖2

H 4(R3)
} + c8‖(ξ0,U0)‖2

H 4(R3)
, (3.28)

where c7 = c5C5 > 0, c8 = c4C5 > 0. Thus, Lemma 3.5 is proved. �
Lemmas 3.3, 3.4, 3.5 imply that E[ξ, τv, φ, ζ ](t) is bounded by fixed T and the initial data, 

i.e. ‖(ξ0, U0)‖H 4(R3), ‖φ0‖H 4(R3). Thus, as long as ε0, which is the bound of the initial data and 
depends on T , is chosen to be small enough, the a priori assumption sup

0≤t≤T

E[ξ, τv, φ, ζ ](t) ≤ ε

will be valid.

4. Relaxation limit of the relaxing equations

In this section, we study the relaxation limit of the relaxing equations (2.1).
Before we prove the relaxation limit of the relaxing equations (2.1), we need to prove the 

uniqueness of the relaxed equations (2.2), which is necessary for the proof of the relaxation limit 
(namely, Theorem 4.3).

Lemma 4.1. Assume (ξ1, φ1) ∈ C1(R3 × [0, T ]) and (ξ2, φ2) ∈ C1(R3 × [0, T ]) are two solu-
tions of the relaxed equations (2.2) with the same data ( lim

τ→0
p0(x, τ) − p̄, lim

τ→0
S0(x, τ) − S̄), 

then ξ1 = ξ2, φ1 = φ2.

Proof. Set

ξ̂ = ξ1 − ξ2, v̂ = v1 − v2, φ̂ = φ1 − φ2, ζ̂ = ζ 1 − ζ 2,

ˆ̂
ξ = ξ1+ξ2

2 , ˆ̂v = v1+v2

2 ,
ˆ̂
φ = φ1+φ2

2 , ˆ̂� = �1+�2

2 ,

where vi = − 1
k1�

i ∇ξ i , i = 1, 2. Then (ξ̂ , v̂, φ̂, ζ̂ ) satisfy the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξ̂t + k2∇ · v̂ = −γ k1
ˆ̂
ξ∇ · v̂ − γ k1ξ̂∇ · ˆ̂v − k1

ˆ̂v · ∇ ξ̂ − k1v̂ · ∇ ˆ̂
ξ,

k2∇ ξ̂ + v̂ = 1
k1

(
ζ 1

2�1�̄
+ ζ 2

2�2�̄
)∇ ξ̂ + ζ̂

k1�
1�2 ∇ ˆ̂

ξ,

φ̂t = −k1
ˆ̂v · ∇φ̂ − k1v̂ · ∇ ˆ̂

φ,

(ξ̂ , φ̂)(x,0) = (0,0).

(4.1)

Let ξ̂ · (4.1)1 + v̂ · (4.1)2, integrate in R3, note that 
∫
R3

∇ · (ξ̂ v̂) dx = 0, | ˆ̂ξ |∞ � ε, |∇ ˆ̂
ξ |∞ � ε, 

|∇ ˆ̂
φ|∞ � ε, | ˆ̂v|∞ � ε, |∇ · ˆ̂v|∞ � ε, then we get
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d
dt

∫
R3

|ξ̂ |2 dx + 2
∫
R3

|v̂|2 dx

= ∫
R3

2γ k1
ˆ̂
ξ v̂ · ∇ ξ̂ + 2(γ − 1)k1ξ̂ v̂ · ∇ ˆ̂

ξ − (2γ − 1)k1ξ̂ ξ̂∇ · ˆ̂v

+ 1
k1

(
ζ 1

�1�̄
+ ζ 2

�2�̄
)v̂ · ∇ ξ̂ + 2ζ̂

k1�
1�2 v̂ · ∇ ˆ̂

ξ dx

� √
ε(‖v̂‖L2(R3)‖∇ ξ̂‖L2(R3) + ‖v̂‖L2(R3)‖ξ̂‖L2(R3) + ‖ξ̂‖2

L2(R3)

+ ‖v̂‖L2(R3)‖ζ̂‖L2(R3)). (4.2)

Plug ∇ ξ̂ = −k1
ˆ̂�v̂ − k1ζ̂ ˆ̂v into (4.2), apply Young’s inequality, then we get

d
dt

∫
R3

|ξ̂ |2 dx + 2
∫
R3

|v̂|2 dx ≤ ‖v̂‖2
L2(R3)

+ C
√

ε(‖ξ̂‖2
L2(R3)

+ ‖ζ̂‖2
L2(R3)

). (4.3)

Let φ̂ · (4.1)3, we get (|φ̂|2)t = −2k1φ̂ ˆ̂v ·∇φ̂ −2k1φ̂v̂ ·∇ ˆ̂
φ. Integrate in R3 and apply Young’s 

inequality, then we get

d
dt

∫
R3

|φ̂|2 dx = ∫
R3

k1|φ̂|2∇ · ˆ̂v − 2k1φ̂v̂ · ∇ ˆ̂
φ dx

≤ ‖v̂‖2
L2(R3)

+ C
√

ε‖φ̂‖2
L2(R3)

. (4.4)

Sum (4.3) and (4.4), note that ‖ζ̂‖L2(R3) � ‖ξ̂‖L2(R3) + ‖φ̂‖L2(R3), we have

d
dt

( ∫
R3

|ξ̂ |2 dx + ∫
R3

|φ̂|2 dx
) ≤ C6

√
ε(‖ξ̂‖2

L2(R3)
+ ‖φ̂‖2

L2(R3)
), (4.5)

for some constant C6 > 0. Then

‖ξ̂‖2
L2(R3)

+ ‖φ̂‖2
L2(R3)

≤ (‖ξ̂ |t=0‖2
L2(R3)

+ ‖φ̂t=0‖2
L2(R3)

) exp{C6
√

εT } = 0. (4.6)

Since ξ1, φ1, ξ2, φ2 ∈ C1(R3 × [0, T ]), we have ξ1 = ξ2, φ1 = φ2. Thus, Lemma 4.1 is 
proved. �
Remark 4.2. (i) In the compactness argument of the following Theorem 4.3, the solutions of 
the relaxing equations (2.1) have enough uniform regularities to guarantee the limits ξ i, φi ∈
C1(R3 × [0, T ]), i = 1, 2.

(ii) For the relaxed system (2.2), ζ, v are functions of ξ, φ, thus ζ ∈ C1(R3 × [0, T ]), 
v ∈ C0(R3 × [0, T ]) are unique.

In the finite time interval [0, T ], the bounds of E[ξ ](t), E[τv](t), E[φ](t), E[ζ ](t) and 
T∫
0
E[v](s) ds are uniform with respect to τ , thus we have enough compactness to pass to the 

limits in the relaxing equations (2.1). The following theorem states the relaxation limit of the 
relaxing Cauchy problem (2.1).

Theorem 4.3. Suppose the conditions are the same with those of Theorem 1.1, then the problem 
(2.1) admits a unique solution (ξ, v, φ, ζ ) in [0, T ] satisfying
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sup
0≤t≤T

E[ξ, τv,φ, ζ ](t) +
T∫
0
E[v](t)dt ≤ C(T , ε0), (4.7)

such that as τ → 0,

(ξ,φ, ζ ) → (ξ̃ , φ̃, ζ̃ ) in C([0, T ],C2+μ1(K) ∩ W 3,μ2(K)),

v ⇀ ṽ in ∩
0≤�≤2

H�([0, T ],H 4−�(R3)), (4.8)

where μ1 ∈ [0, 12 ), μ2 ∈ [2, 6), K denotes any compact subset of R3, (ξ̃ , ṽ, φ̃, ζ̃ ) is the unique 
classical solution to the relaxed equations (2.2).

Proof. By Lemmas 3.3, 3.4, 3.5, we have the uniform bound (4.7), then the bound of the solution 
of (1.2), i.e., (p̂, û, Ŝ, �̂)(x, t ′) satisfies

sup
0≤t ′≤T/τ

E[p̂ − p̄, û, Ŝ − S̄, �̂ − �̄](t ′) + 1
τ

T /τ∫
0

E[û](t ′)dt ′

= sup
0≤t≤T

E[ξ, k1τv,φ, ζ ](t) + k2
1

T∫
0
E[v](t)dt

� ‖(ξ0,U0)‖2
H 4(R3)

+ ‖φ0‖2
H 4(R3)

exp{CT ‖(ξ0,U0)‖2
H 4(R3)

}. (4.9)

When the initial data are sufficiently small, we have the global existence of classical solutions 
to non-isentropic Euler equations with damping (1.2) (see [20]), then we get classical solutions 
to (1.2) in the time interval [0, T/τ ] for any τ > 0, and then we can construct the unique classical 
solution of the relaxing equations (1.1) in [0, T ] via the time rescaling (1.3).

By Aubin’s Lemma (see [29]), we get the compact embedding:

L∞([0, T ],H 4(R3)) ∩ H 1([0, T ],H 3(R3)) ↪→↪→ C([0, T ],C2+μ1(K) ∩ W 3,μ2(K)), (4.10)

where μ1 ∈ [0, 12 ), μ2 ∈ [2, 6), K is any compact subset of R3. Apply (4.10) to (ξ, φ, ζ ), and note 
that (4.7) implies ξ, φ, ζ ∈ ∩0≤�≤2H

�([0, T ], H 4−�(R3)), then we have a subsequence which 
satisfies (4.8). In fact, (4.8) is the whole sequence convergence, due to the uniqueness of the 
relaxed equations (2.2) proved in Lemma 4.1.

Next, we have enough compactness to pass to the limits in the relaxing equations (2.1), then it 
is standard to prove that the strong limits of (ξ, φ, ζ ), namely (ξ̃ , φ̃, ζ̃ ), and the weak limit of v, 
namely ˜̃v, satisfy the relaxed equations (2.2) in the distributional sense:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∫
0

∫
R3

∂tϕ1ξ̃ + γ k1 ˜̃v · (ξ̃∇ϕ1 + ϕ1∇ ξ̃ ) + γ k1p̄ ˜̃v · ∇ϕ1 − k1ϕ1 ˜̃v · ∇ ξ̃ dxds

= − ∫
R3

lim
τ→0

ξ0(x, τ )ϕ1(·,0)dx,

t∫
0

∫
R3

˜̃v · �ϕ2 + 1
k1�̃

∇ ξ̃ · �ϕ2 dxds = 0,

t∫ ∫
3

φ̃∂tϕ3 − k1 ˜̃v · ∇φ̃ϕ3 dxds = − ∫
3

lim
τ→0

φ0(x, τ )ϕ3(·,0)dx,

(4.11)
0 R R
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where ϕ1, �ϕ2, ϕ3 ∈ C∞
0 (R3 × [0, T )). The proof is very standard, so the details of passing to 

the limits are omitted here. Moreover, p̃ = p̄ + ξ̃ = A(ζ̃ + �̄)γ exp{S̄ + φ̃} = A�̃γ eS̃ holds 
pointwisely due to the strong convergence of (ξ, φ, ζ ). Therefore, (ξ̃ , ˜̃v, φ̃, ζ̃ ) is a distributional 
solution to the relaxed equations (2.2).

Since C1-regularity is the local in spacetime property, it is easy to know that (ξ̃, φ̃) ∈ C1(R3 ×
[0, T ]). By Lemma 4.1, (ξ̃ , φ̃) is the unique classical solution to the relaxed equations (2.2). We 
define ṽ = − 1

k1�̃
∇ ξ̃ , then (ξ̃ , ṽ, φ̃, ζ̃ ) satisfy (2.2) in the classical sense.

However, ṽ and ˜̃v satisfy (4.11)2, they differ up to at most zero measure set (a subset of 
R

3 × {t = 0} for the ill-prepared data and the empty set for the well-prepared data). So ṽ is also 
the weak limit of v, and ˜̃v in (4.11) can be replaced by ṽ. Thus, Theorem 4.3 is proved. �
5. Strong convergence rates of the pressure, entropy and density

In this section, we estimate the strong convergence rates of the pressure, entropy and density, 
for which there is no initial layer.

Letting τ = 0 in the proofs of a priori estimates for the relaxing equations (2.1), we can 
similarly get the regularities for the relaxed equations (2.2):

∂�
t ξ̃ , ∂�

t φ̃, ∂�
t ζ̃ ∈ L∞([0, T ],H 4−�(R3)),0 ≤ � ≤ 2,

ṽ ∈ ∩
0≤�≤2

H�([0, T ],H 4−�(R3)). (5.1)

Note that we do not have ∂�
t ṽ ∈ L∞([0, T ], H 4−�(R3)), 0 ≤ � ≤ 2. Thus, the solution to (2.2)

has enough regularities to estimate the convergence rates.
In order to estimate the convergence rates of the pressure, entropy and density, we need to 

estimate the L∞([0, T ], H 3(R3)) ∩ H 1([0, T ], H 2(R3)) norm of the differences between the 
variables of the relaxing equations and the variables of the relaxed equations. The results are 
stated in the following theorem:

Theorem 5.1. Let (ξ, v, φ, ζ ) and (ξ̃ , ṽ, φ̃, ζ̃ ) are the solutions obtained in Theorem 4.3. Assume 
‖(p0(x, τ) − lim

τ→0
p0(x, τ), S0(x, τ) − lim

τ→0
S0(x, τ))‖H 3(R3) ≤ O(τα1), then as τ → 0,

‖(ξ − ξ̃ , φ − φ̃, ζ − ζ̃ )‖C([0,T ],C1+μ1 (R3)∩W 2,μ2 (R3)) ≤ O(τmin{1,α1}), (5.2)

where μ1 ∈ [0, 12 ], μ2 ∈ [2, 6].

Proof. (ξ, v, φ, ζ ) is the unique classical solution of (2.1), and (ξ̃ , ṽ, φ̃, ζ̃ ) is the unique classical 
solution of (2.2). Denote ρ̃ = �̄ + ζ̃ , set

ξ̂ = ξ − ξ̃ , v̂ = v − ṽ, φ̂ = φ − φ̃, ζ̂ = � − �̃,

ˆ̂
ξ = ξ+ξ̃

2 , ˆ̂v = v+ṽ
2 ,

ˆ̂
φ = φ+φ̃

2 , ˆ̂� = �+ρ̃
2 ,

then (ξ̂ , v̂, φ̂, ζ̂ ) satisfy the following equations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ̂t + k2∇ · v̂ = −γ k1
ˆ̂
ξ∇ · v̂ − γ k1ξ̂∇ · ˆ̂v − k1

ˆ̂v · ∇ ξ̂ − k1v̂ · ∇ ˆ̂
ξ,

k2∇ ξ̂ + v̂ = 1
k1

(
ζ

2��̄
+ ζ̃

2ρ̃�̄
)∇ ξ̂ + ζ̂

k1�ρ̃
∇ ˆ̂

ξ − τ 2vt − k1τ
2v · ∇v,

φ̂t = −k1
ˆ̂v · ∇φ̂ − k1v̂ · ∇ ˆ̂

φ,

(ξ̂ , φ̂)(x,0) = (p0(x, τ ) − lim
τ→0

p0(x, τ ), S0(x, τ ) − lim
τ→0

S0(x, τ )).

(5.3)

Let (5.3)1 · ξ̂ + (5.3)2 · v̂, integrate in R3, note that 
∫
R3

∇ · (ξ̂ v̂) dx = 0, sup
0≤t≤T

E[ξ̂ , φ̂, ζ̂ ](t) ≤ 4ε, 

sup
0≤t≤T

E[ ˆ̂ξ, ˆ̂φ](t) ≤ ε, then we get

d
dt

∫
R3

|ξ̂ |2 dx + 2
∫
R3

|v̂|2 dx

= ∫
R3

2γ k1
ˆ̂
ξ v̂ · ∇ ξ̂ + (2γ − 2)k1ξ̂ v̂ · ∇ ˆ̂

ξ + (2γ − 1)k1ξ̂ ˆ̂v · ∇ ξ̂

+ 1
k1

(
ζ
��̄

+ ζ̃
ρ̃�̄

)∇ ξ̂ · v̂ + 2ζ̂
k1�ρ̃

∇ ˆ̂
ξ · v̂ − 2τ 2vt · v̂ − 2k1τ

2v · ∇v · v̂ dx. (5.4)

Plug ∇ ξ̂ = −k1
ˆ̂�v̂ − k1ζ̂ ˆ̂v − τ 2vt − k1τ

2v · ∇v into (5.4), use ˆ̂v = 1
2 v̂ + ṽ and apply Young’s 

inequality, then we get

d
dt

∫
R3

|ξ̂ |2 dx + 2
∫
R3

|v̂|2 dx ≤ ‖v̂‖2
L2(R3)

+ C
√

ε(‖ξ̂‖2
L2(R3)

+ ‖ζ̂‖2
L2(R3)

)

+ Cτ 2(1 + √
ε)E[v](t). (5.5)

Let φ̂ · (5.3)3, integrate in R3, use ˆ̂v = 1
2 v̂ + ṽ and apply Young’s inequality, then we get

d
dt

∫
R3

|φ̂|2 dx = ∫
R3

k1|φ̂|2∇ · ṽ − k1φ̂v̂ · ∇φ̂ − 2k1φ̂v̂ · ∇ ˆ̂
φ dx

≤ ‖v̂‖2
L2(R3)

+ C
√

ε‖φ̂‖2
L2(R3)

. (5.6)

Sum (5.5) and (5.6), note that ‖ζ̂‖L2(R3) � ‖ξ̂‖L2(R3) + ‖φ̂‖L2(R3), we have

d
dt

( ∫
R3

|ξ̂ |2 dx + ∫
R3

|φ̂|2 dx
)

≤ C7
√

ε(‖ξ̂‖2
L2(R3)

+ ‖φ̂‖2
L2(R3)

) + τ 2C7(1 + √
ε)E[v](t), (5.7)

for some constant C7 > 0. Then

‖ξ̂‖2
L2(R3)

+ ‖φ̂‖2
L2(R3)

≤ (‖ξ̂ |t=0‖2
L2(R3)

+ ‖φ̂t=0‖2
L2(R3)

) exp{C7
√

εt}
+ τ 2C7(1 + √

ε)
t∫

0
exp{C7

√
ε(t − s)}E[v](s)ds

� τ 2 + τ 2α1 . (5.8)
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In order to obtain the higher order a priori estimates, we need to define another energy func-
tional:

F[ξ ](t) := ∑
0≤�≤1,1≤�+|α|≤3

‖∂�
t Dαξ(t)‖2

L2(R3)
.

Let ∂�
t Dαξ̂ · ∂�

t Dα(5.3)1 + ∂�
t Dαv̂ · ∂�

t Dα(5.3)2, where 0 ≤ � ≤ 1, 1 ≤ � + |α| ≤ 3, integrate 
in R3, plug ∇ ξ̂ = −k1

ˆ̂�v̂ − k1ζ̂ ˆ̂v − τ 2vt − k1τ
2v · ∇v into the right hand of the equation, apply 

Young’s inequality, sum � and α, then we get

d
dt
F[ξ̂ ](t) + 2F [v̂](t) ≤ F[v̂](t) + C

√
ε(F[ξ̂ ](t) +F[ζ̂ ](t)) + Cτ 2(1 + √

ε)E[v](t). (5.9)

Let ∂�
t Dαφ̂ · ∂�

t Dα(5.3)3, integrate in R3, apply Young’s inequality, sum � and α, then we get

d
dt
F[φ̂](t) ≤ F[v̂](t) + C

√
εF[φ̂](t). (5.10)

Sum (5.9) and (5.10), note that F[ζ̂ ](t) � F[ξ̂ ](t) +F[φ̂](t), we have

d
dt

(
F[ξ̂ ](t) +F[φ̂](t)) ≤ C8

√
ε
(
F[ξ̂ ](t) +F[φ̂](t)) + τ 2C8(1 + √

ε)E[v](t), (5.11)

for some constant C8 > 0. Then

F[ξ̂ ](t) +F[φ̂](t) ≤ F[ξ̂ ](0) +F[φ̂](0) exp{C8
√

εt}
+ τ 2C8(1 + √

ε)
t∫

0
exp{C8

√
ε(t − s)}E[v](s)ds

� τ 2 + τ 2α1 . (5.12)

Due to the estimates (5.8), (5.12), the fixed T ∈ (0, +∞) and the following embedding:

L∞([0, T ],H 3(R3)) ∩ H 1([0, T ],H 2(R3)) ↪→ C([0, T ],C1+μ1(R3) ∩ W 2,μ2(R3)),

we have ‖(ξ − ξ̃ , φ − φ̃, ζ − ζ̃ )‖C([0,T ],C1+μ1 (R3)∩W 2,μ2 (R3)) ≤ O(τmin{1,α1}).
Thus, Theorem 5.1 is proved. �
However, we can not prove the strong convergence of ξ̂t , φ̂t , ζ̂t in time interval [0, T ] by 

using the equations (5.3), because v̂ = v − ṽ in (5.3) behaves badly in the initial layer for the 
ill-prepared data.

6. Initial layer and strong convergence of the velocity

In this section, we prove the strong convergence of the velocity outside an initial layer for the 
ill-prepared data, then we prove the strong convergence of the velocity in the time interval [0, T ]
for the well-prepared data. The convergence rate of the velocity is also estimated. Finally, we 
prove the thickness of the initial layer is O(τ 2).

The results about initial layer, strong convergence of the velocity and its convergence rate are 
stated in the following theorem:
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Theorem 6.1. Let (ξ, v, φ, ζ ) and (ξ̃ , ṽ, φ̃, ζ̃ ) be the solutions obtained in Theorem 4.3. For 
the ill-prepared data, i.e., lim

τ→0

∣∣∣v0(x, τ ) + 1
k1�0(x,τ )

∇ξ0(x, τ )

∣∣∣∞ 
= 0, there exists an initial layer 

[0, t∗] with t∗ = Cτ 2−δ for v, where C > 0, 0 < δ < 2, such that as τ → 0, |v(x, t∗) −
ṽ(x, 0)|∞ → 0 and

‖v − ṽ‖C([t∗,T ], C0+μ1 (R3)∩W 1,μ2 (R3)) ≤ O(τmin{1,α1}), μ1 ∈ [0, 1
2 ], μ2 ∈ [2,6].

If δ = 0, for any constant C ∈ (0, +∞), v(x, Cτ 2) does not converge to ṽ(x, 0).

For the well-prepared data, i.e., lim
τ→0

∥∥∥v0(x, τ ) + 1
k1�0(x,τ )

∇ξ0(x, τ )

∥∥∥
H 2(R3)

= 0, assuming ∥∥∥v0(x, τ ) + 1
k1�0(x,τ )

∇ξ0(x, τ )

∥∥∥
H 2(R3)

≤ O(τα2), as τ → 0,

‖v − ṽ‖C([0,T ],C0+μ1 (R3)∩W 1,μ2 (R3)) ≤ O(τmin{1,α1,α2}), μ1 ∈ [0, 1
2 ], μ2 ∈ [2,6].

Proof. Let Dαη ·Dα(2.7), where |α| ≤ 2, we have

(|Dαη|2)t + 2
τ 2 |Dαη|2 = 2Dαη ·Dα[− 1

�
(∇v)∇ξ − γ−1

�
∇ξ∇ · v − γp

�
∇(∇ · v)]

− 2k1
∑

Dα1v · ∇Dα2η ·Dαη. (6.1)

After integrating (6.1) in R3, we have

d
dt

∫
R3

|Dαη|2 dx + 2
τ 2

∫
R3

|Dαη|2 dx

= 2
∫
R3

Dαη ·Dα[− 1
�
(∇v)∇ξ − γ−1

�
∇ξ∇ · v − γp

�
∇(∇ · v)]dx

− k1
∫
R3

v · ∇|Dαη|2 dx − 2k1
∑

α1>0

∫
R3

Dα1v · ∇Dα2η ·Dαη dx

≤ 1
2τ 2

∫
R3

|Dαη|2 dx + 2τ 2‖Dα[− 1
�
(∇v)∇ξ − γ−1

�
∇ξ∇ · v − γp

�
∇(∇ · v)]‖2

L2(R3)

+ k1
∫
R3

∇ · v|Dαη|2 dx − 2k1
∑

α1>0

∫
R3

Dα1v · ∇Dα2η ·Dαη dx

≤ 1
2τ 2

∫
R3

|Dαη|2 dx + C‖∇( 1
�
)‖2

H 1(R3)
+ C‖Dα∇ξ‖2

L2(R3)
+ C‖τDα(∇v)‖2

L2(R3)

+ C‖τDα(∇ · v)‖2
L2(R3)

+ C|τ∇(∇ · v)|2∞‖∇(
p
�
)‖2

H 1(R3)

+ C
∣∣p
�

∣∣2
∞‖τDα∇(∇ · v)‖2

L2(R3)
+ 1

4τ 2

∫
R3

|Dαη|2 dx · 4k1τ |τ∇ · v|∞
+ 2k1

∑
α1>0

4τ |τDα1v|∞ 1
4τ 2

∫
R3

|∇Dα2η|2 dx

≤ 1
τ 2

∫
R3

|Dαη|2 dx + C9E[ξ, τv,φ, ζ ](t), (6.2)

where 0 < τ < min{1, τ0} is small enough such that

4k1τ |τ∇ · v|∞ + 8k1
∑

τ |τDα1v|∞ ≤ CτE[τv](t) 1
2 ≤ Cτ0

√
ε ≤ 1.
α1>0
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Thus, it follows from (6.2) that

d
dt

∫
R3

|Dαη|2 dx + 1
τ 2

∫
R3

|Dαη|2 dx ≤ C9E[ξ, τv,φ, ζ ](t),
d
dt

(
exp{ t

τ 2 } ∫
R3

|Dαη|2 dx
) ≤ C9 exp{ t

τ 2 }E[ξ, τv,φ, ζ ](t). (6.3)

After integrating from 0 to t , we get

∫
R3

|Dαη|2 dx ≤ exp{− t

τ 2 } ∫
R3

|Dαη0|2 dx + C9

t∫
0

exp{− t−s

τ 2 }E[ξ, τv,φ, ζ ](s)ds

≤ exp{− t

τ 2 } ∫
R3

|Dαη0|2 dx + C9ε
t∫

0
exp{− t−s

τ 2 }ds

≤ exp{− t

τ 2 } ∫
R3

|Dαη0|2 dx + C9ετ
2. (6.4)

When t ≥ t∗ = Cτ 2−δ , exp{− t

τ 2 } ≤ exp{− t∗
τ 2 } = exp{− C

τδ } � τ 2, we have

∫
R3

|Dαη(t)|2 dx ≤ exp{− t∗
τ 2 } ∫

R3

|Dαη0|2 dx + C9ετ
2 � τ 2. (6.5)

Sum α, then we get

‖η‖2
L∞([t∗,T ],H 2(R3))

�
∑

|α|≤2
sup

t∈[t∗,T ]
∫
R3

|Dαη|2 dx � τ 2. (6.6)

It follows from (2.8) that for any t ∈ [0, T ],
T∫
0

‖ηt‖2
H 1(R3)

ds � τ 4
T∫
0

‖vtt‖2
H 1(R3)

ds + τ 2|τvt |2∞
T∫
0

‖∇v‖2
H 1(R3)

ds

+ τ 2|τv|2∞
T∫
0

‖∇vt‖2
H 1(R3)

ds

� τ 4
T∫
0

‖vtt‖2
H 1(R3)

ds + τ 2E[τv](t)
T∫
0

‖∇v‖2
H 1(R3)

ds

+ τ 2E[τv](t)
T∫
0

‖∇vt‖2
H 1(R3)

ds � τ 2. (6.7)

By using the following embedding:

L∞([t∗, T ],H 2(R3)) ∩ H 1([t∗, T ],H 1(R3)) ↪→ C([t∗, T ],C0+μ1(R3) ∩ W 1,μ2(R3)),

we have

‖η‖C([t∗,T ],C0+μ1 (R3)∩W 1,μ2 (R3)) � τ. (6.8)

Since − 1
k1�

∇ξ → − 1
k1�̃

∇ ξ̃ = ṽ in C([0, T ], C0+μ1(R3) ∩ W 1,μ2(R3)), we get the following 
convergence rate of the velocity outside the initial layer:
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‖v − ṽ‖C([t∗,T ],C0+μ1 (R3)∩W 1,μ2 (R3)) ≤ ‖η‖C([t∗,T ],C0+μ1 (R3)∩W 1,μ2 (R3))

+ ‖ 1
k1�

∇ξ − 1
k1�̃

∇ ξ̃‖C([0,T ],C0+μ1 (R3)∩W 1,μ2 (R3)) � τmin{1,α1}. (6.9)

Especially, we know the asymptotic behavior of the velocity near t = 0, i.e., v(x, t∗) converges 
to ṽ(x, 0) pointwisely, as τ → 0.

While, for the initial data are well-prepared, i.e., ‖η(x, 0)‖H 2(R2) = O(τα2), it follows from 
(6.4) that ∫

R3

|Dαη|2 dx ≤ exp{− t

τ 2 } ∫
R3

|Dαη0|2 dx + C9ετ
2

≤ ∫
R3

|Dαη0|2 dx + C9ετ
2 � τ 2α2 + τ 2. (6.10)

Sum α, we have that in [0, T ],

‖η‖2
L∞([0,T ],H 2(R3))

�
∑
|α|≤2

∫
R3

|Dαη|2 dx � τ 2α2 + τ 2. (6.11)

By (6.7) and (6.11), we have

‖η‖C([0,T ],C0+μ1 (R3)∩W 1,μ2 (R3)) � τmin{1,α2}. (6.12)

So we get the strong convergence of v in [0, T ] for the well-prepared data:

v → ṽ in C([0, T ],C0+μ1(R3) ∩ W 1,μ2(R3)). (6.13)

Similar to (6.9), we have ‖v − ṽ‖C([0,T ],C0+μ1 (R3)∩W 1,μ2 (R3)) � τmin{1,α1,α2}.
Thus, Theorem 6.1 is proved. �
In Theorem 6.1, we show that v → ṽ strongly outside the initial layer [0, t∗] when t∗ =

Cτ 2−δ, 0 < δ < 2. While the following theorem shows that the thickness of the initial layer is 
O(τ 2). It suffices to prove that for any constant C ∈ (0, +∞), ‖η(x, Cτ 2)‖L2(R3) is away from 
zero, then v(x, Cτ 2) � ṽ(x, 0) as τ → 0.

Theorem 6.2. Assume the ill-prepared data satisfy lim
τ→0

‖η|t=0‖L2(R3) = B > 0, then for any 

constant C ∈ (0, +∞), there exists τ1 > 0 such that ‖η(x, Cτ 2)‖L2(R3) is away from zero when 
τ ∈ [0, τ1].

Proof. Due to the continuity of η|t=0, we can simply assume ‖η|t=0‖L2(R3) ≥ B
2 for τ ∈ [0, τ1]. 

Set z = t

τ 2 , then v(x, t) = V (x,z)

τ 2 . Let η̂(x, z) = η(x, t), we get the equation of η̂:

∂zη̂ + k1V · ∇η̂ + η̂ = − 1
�
(∇V )∇ξ − γ−1

�
∇ξ∇ · V − γp

�
∇(∇ · V ). (6.14)

Let (6.14) · η̂, integrate in R3, apply Young’s inequality, then we have

d
dz

∫
3

|η̂|2 dx + 2
∫

3

|η̂|2 dx ≥ − ∫
3

|η̂|2 dx − τ 2C10E[ξ,
V (x,z)

τ
, φ, ζ ](t). (6.15)
R R R
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Thus,

d
dz

(
exp{3z} ∫

R3

|η̂|2 dx
) ≥ −τ 2C10ε exp{3z}. (6.16)

After integrating from 0 to z, we get

‖η̂(x, z)‖2
L2(R3)

≥ exp{−3z}‖η̂|z=0‖2
L2(R3)

− τ 2C10ε
z∫

0
exp{3(s − z)}ds

≥ B2

4 exp{−3z} − τ 2C10ε
3 (1 − exp{−3z})

≥ B2

8 exp{−3z} 
= 0, (6.17)

where z ∈ (0, +∞) and we choose τ1 =
√

3B2

8C10ε(exp{3z}−1)
> 0.

Then for any constant C > 0, ‖η(x, Cτ 2)‖L2(R3) = ‖η̂(x, C)‖L2(R3) is away from zero when 
τ ∈ [0, τ1]. Thus, Theorem 6.2 is proved. �
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