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Abstract

We prove the time-global existence of solutions of the degenerate Keller–Segel system in higher dimen-
sions, under the assumption that the mass of the first component is below a certain critical value. What 
we deal with is the full parabolic–parabolic system rather than the simplified parabolic–elliptic system. 
Our approach is to formulate the problem as a gradient flow on the Wasserstein space. We first consider a 
time-discretized problem, in which the values of the solution are determined iteratively by solving a certain 
minimizing problem at each time step. Here we use a new minimizing scheme at each time level, which 
gives the time-discretized solutions favorable regularity properties. As a consequence, it becomes relatively 
easy to prove that the time-discretized solutions converge to a weak solution of the original system as the 
time step size tends to zero.
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1. Introduction

1.1. Description of the problem

We consider the following degenerate parabolic system:

⎧⎪⎨
⎪⎩

∂tu = ∇ · (∇um − χu∇v), x ∈ �, t > 0,

ε∂tv = �v − γ v + αu, x ∈ �, t > 0,

u(x,0) = u0(x), εv(x,0) = εv0(x), x ∈ �,

(1.1)

where α, χ, γ, ε, m are constants satisfying α, χ, ε > 0, γ ≥ 0, m ≥ 2 − 2/d, d > 2 and � is a 
bounded domain in Rd with smooth boundary. We impose the following boundary conditions:

∂um

∂ν
− χu

∂v

∂ν
= v = 0, x ∈ ∂�, t > 0, (1.2)

where ν is the outward unit normal to �. Notice that (1.1) preserves the mass 
´
�

u dx.
The aim of this paper is to prove the time-global existence of solutions of the system (1.1)

under the assumption that the initial mass 
´
�

u0 dx is below a certain critical mass and for an 
arbitrary v0 ≥ 0. Our approach is to formulate (1.1) as a gradient flow on a certain metric space, 
then to apply the variational method to prove the time-global existence. Note that the system 
(1.1) does not have a gradient flow structure in standard function spaces such as L2 because of 
the presence of the drift term ∇ · (χu∇v). This is where the Wasserstein distance comes in, as 
we will explain later.

Recall that (1.1) is a version of the celebrated Keller–Segel chemotaxis model featuring a 
nonlinear diffusion. The Keller–Segel model was proposed by Keller and Segel [1] in 1970 to 
describe an aggregation phenomenon of certain microorganisms called “slime molds”, which 
have a characteristic property called chemotaxis. Chemotaxis is a motion toward higher con-
centration of a chemical substance. This kind of microorganism, when put in a nutrition-poor 
environment, produces a chemical substance that attracts other individuals within the same pop-
ulation. This leads to formation of an aggregate, which produces spores. In this way, the slime 
molds propagate the next generation. In equations (1.1), u stands for the density of slime molds 
and v stands for the concentration of the chemical substance, hence we are interested in non-
negative solutions of (1.1). From a mathematical point of view, the aggregation phenomenon can 
be interpreted as a blow-up phenomenon of the solution of (1.1), that is, the density of slime 
molds singularly concentrates at some point.

The case ε = 0 is the so-called “parabolic–elliptic system”, while the case ε > 0 is the so-
called “parabolic–parabolic system”. In both cases, the exponent m = 2 − 2/d , d ≥ 2 has been 
identified as a critical exponent separating two different behaviors described below.

(i) sub-critical case m > 2 − 2/d

All solutions exist global in time [2–6]. We can find related results for a system with non-
degenerate diffusion [7].

(ii) super-critical case m < 2 − 2/d

There are global solutions starting from suitably small initial data [8,9,4–6], while, if ε = 0, 
there are solutions that blow up in finite time [10,11,4]. The latter phenomenon is expected 
to take place also when ε > 0 but is not yet proved. However, the existence of blow-up 
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solutions has been shown for a related system which includes a non-degenerate diffusion 
term ∇ · (A(u)∇u) with A(u) ≤ um (u ≥ 1) instead of �um [12].

(iii) critical case m = 2 − 2/d

It is expected that there is a critical mass Mc of the L1-norm ‖u0‖L1 such that
(iii-a) all solutions exist global in time if ‖u0‖L1 < Mc

(iii-b) for any M > Mc , there exists a solution with ‖u0‖L1 = M that blows up in finite 
time.

When ε = 0, result (iii) is known to be true for d ≥ 2 [13–16]. For ε > 0, the global existence 
assertion (iii-a) is known only for d = 2 [17–19]. (See also the “Note after submission” at the 
end of this section.) As for d > 2 and ε > 0, the recent work of Ishida and Yokota [9] proves the 
time-global existence under the assumption that both u0 and �v0 are relatively small – a condi-
tion that is restrictive compared with (iii-a). When ε > 0, the assertion (iii-b) is not yet proved 
except for some partial results. More precisely, Herrero and Velàzquez [20] construct an example 
of radially symmetric solution that blows up in finite time with a mass larger than 8π/αχ when 
� is a disc domain. On the other hand, Horstmann and Wang [21] prove that when � is a smooth 
bounded domain in R2, for any mass M larger than 4π/αχ and not equal to an integer multiple 
of 4π/αχ , unbounded solutions with mass M exist. However, this result does not clarify whether 
the existence interval is finite or infinite.

The present paper gives a proof of (i) and (iii-a) when ε > 0 and d > 2. We first find a candi-
date M∗ > 0 of the threshold mass in (iii) by investigating variational properties of the Lyapunov 
functional associated with (1.1). Then we prove the time-global existence of solutions of (1.1)
under the assumption that ‖u0‖L1 < M∗. In particular, we have M∗ = +∞ if m > 2 − 2/d and 
M∗ < +∞ if m = 2 −2/d . We thus obtain the results (i) and (iii-a). The main difference between 
our results and the earlier results by Ishida–Yokota [2,9] is that our variational approach makes it 
possible to obtain global existence more directly from the Lyapunov functional, which is known 
to play a fundamental role in determining the sharp threshold mass for the parabolic–elliptic 
system. More precisely, our results show the time-global existence of solutions of (1.1) under a 
rather mild condition ‖u0‖L1 < M∗ (and for an arbitrary v0 ∈ H 1

0 (�)), where M∗ is the threshold 
mass for the Lyapunov functional to be bounded from below. We expect that M∗ is the threshold 
value in (iii) for our parabolic–parabolic system with m = 2 − 2/d, d > 2.

As mentioned earlier, our approach is to formulate (1.1) as a gradient flow in a certain metric 
space. One of the advantages of this approach is that it gives us a better understanding of the 
relation between the time-global existence of solutions of (1.1) and the variational properties 
of the Lyapunov functional φm, which is to be defined in Section 1.3. More precisely, our ap-
proach shows that the lower boundedness of the Lyapunov functional guarantees the time-global 
existence of the solution of (1.1). Our approach is similar in spirit to that of Blanchet, Calvez 
and Carrillo [22] and Blanchet, Carlen and Carrillo [23], who interpreted the parabolic–elliptic 
Keller–Segel system (where one sets m = 1 and ε = γ = 0 in (1.1)) as a gradient flow in the 
Wasserstein space. However, in the present case, where ε > 0, one cannot reduce (1.1) to a single 
non-local equation and hence cannot interpret system (1.1) as a gradient flow in the Wasserstein 
space. Nonetheless, we can still formulate it partly in the framework of the Wasserstein space, as 
we will show later. The applications of the Wasserstein distance to the present type of evolution 
PDE’s has been developed in the pioneering work of Otto [24,25], Jordan, Kinderlehrer and Otto 
[26], and other related works [27–32].

A common strategy in the above-mentioned works [27,28,22,23,26,29,30,24] is first to ap-
proximate the evolution equation by a time-discrete problem, which consists of solving a certain 
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minimization problem at each time step. One then proves the convergence of the approximate 
solution to a weak solution of the original evolution equation as the time step size tends to 0. 
In proving the convergence, one needs some compactness properties of the time-discretized 
solutions, but the minimizing nature of the time-discretization significantly simplifies the com-
pactness argument.

There are two approaches for proving that the limit of the discretized solutions is indeed a 
weak solution of the original equation. One is to use the Euler–Lagrange equation associated with 
the minimization problem at each time step. This Euler–Lagrange equation is written explicitly 
in the form of a backward Euler difference scheme for the original evolution equation with some 
penalty term. The other approach, found in [28,29], uses the concept of “curves of maximal 
slope”, which is formulated in the framework of abstract metric spaces. The former approach 
based on the Euler–Lagrange equation is more direct and simpler than the latter, while the latter 
approach based on the notion of curves of maximal slope gives a framework to deal with the 
problem systematically. The present paper adopts the former approach to prove the existence of 
the solution of (1.1). We also employ some techniques of the latter approach to establish the 
energy dissipative inequality, which confirms that our Lyapunov functional φm indeed decreases 
along the weak solution.

Note that, in this latter approach, the subdifferentials of the functional play a crucial role. 
In [28], existence of subdifferentials having certain good properties is shown for what are called 
“regular” functionals. However, in our present problem, it is not clear if our Lyapunov func-
tional is regular, therefore the known results cannot be applied directly. Neither is the former 
approach so straightforward. In order to make this approach work, we need to show that the time-
discretized solution possesses adequate regularity properties as otherwise the Euler–Lagrange 
equation would not make sense, and this is one of the main difficulties to overcome in the former 
approach.

In order to solve this regularity issue in the Euler–Lagrange approach, we make the following 
crucial modification in the time-discretization. Rather than solving for u and v simultaneously, 
we alternate between solving for u and v. More precisely, we use a two-step time-discretization 
scheme, in which the solution of the next time level is given by solving a minimization problem 
for u (in the Wasserstein space) and one for v (in L2) alternately rather than simultaneously. 
With this new scheme it becomes relatively easier to obtain sufficient regularity of the time-
discretized solutions for deriving the Euler–Lagrange equations rigorously, thus establishing the 
convergence of time-discretized solutions to a solution of (1.1).

Let us comment briefly the boundary conditions. One can find many papers that consider 
Keller–Segel system on whole space Rd [13,22,23,14,15,10,8,2,9,11,4–6] or that on a bounded 
domain of Rd with homogeneous Neumann boundary conditions for both u and v [12,17,20,
21,3,18,33,7]. On the other hand, there are also some papers that deal with boundary conditions 
similar to ours, namely, the no-flux boundary condition for u and the homogeneous Dirichlet 
boundary condition for v [34–36,33]. One of the advantages of our boundary conditions is that 
we can systematically deal with the problem on the whole space Rd and that on a bounded 
domain of R

d . More precisely, under the boundary conditions (1.2), our critical mass M∗ is 
independent of the choice of � and coincides with the critical mass for Rd (see Remark 4.1 and 
Proposition 4.2).

Uniqueness results are obtained by Bedrossian, Rodríguez and Bertozzi [13], and Sugiyama 
and Yahagi [37] for parabolic–elliptic system with m = 2 − 2/d , and by Kowalczyk and Szy-
mańska [3] for parabolic–parabolic system with m > 3 − 4/d . However, we do not know if 
uniqueness holds for our case. This is partly due to the fact that our weak solutions do not 
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have adequate regularity and that our Lyapunov functional φm is not λ-convex in the sense of 
[28, §2.4] (see also [28, §4] for uniqueness results).

This paper is constructed as follows. In the rest of this section we present our main results 
and give a list of symbols that will be used later. In section 2, we explain the basic concept 
of the Wasserstein distance. In section 3, we reformulate our problem in the framework of the 
Wasserstein space and define time-discretized solutions, which are given by solving a certain 
minimizing problem at each time level. Section 4 is devoted to variational analysis. Among other 
things, we prove basic properties of the threshold M∗ and show that our M∗ coincides with the 
threshold mass Mc introduced in [14], despite the apparent difference in the two definitions. We 
also prove that the minimizing problem associated with the time-discretization of (1.1) is solv-
able, which guarantees the existence of time-global discrete solution for each time step size τ . 
In section 5, we prove that the time-discretized solution converges to a weak solution of (1.1)
as τ → 0, which establishes Theorem 1.4. Finally, in section 6, we prove the energy dissipative 
inequality (Theorem 1.5).

Note added after submission: After submitting this paper, the author was informed of the 
following article that had been announced in arXiv three months prior to the submission of the 
present paper:

Blanchet and Laurençot, The parabolic–parabolic Keller–Segel system with critical diffusion 
as a gradient flow in Rd , d ≥ 3, arXiv:1203.3573v1 [math.AP], 15 Mar 2012.

This paper deals with the same problem as ours for m = 2 − 2/d , d > 2, on Rd . Furthermore, it 
interprets (1.1) as a gradient flow in the Wasserstein space and proves the time-global existence 
of solutions of (1.1) under the assumption that ‖u0‖L1 < Mc, Mc being the threshold mass for 
the parabolic–elliptic case introduced in [14]. As we will show in section 4, this constant Mc

coincides with our threshold mass M∗, therefore their result is quite similar to our Theorem 1.4. 
The main difference between the two papers lies in the method of time-discretization. As a result, 
the two papers take different approaches for proving the regularity of time-discretized solutions, 
which is a cornerstone property for proving convergence of the discretized solution to a weak 
solution of the original system. More precisely, in the preprint of Blanchet and Laurençot, an 
elaborate technique developed by [30] combined with an ingenious choice of a certain auxiliary 
functional is used to obtain the regularity of the time-discretized solution. On the other hand, 
the present paper uses a different discretization scheme (3.7) (which we may call the splitting 
scheme) that allows us to obtain regularity without sophisticated techniques. Incidentally, the 
present paper proves the energy dissipative inequality for weak solutions (see section 6), which 
may be of independent interest. The author would like to thank the anonymous referee for point-
ing out the above paper to him.

1.2. Main results

Now we state our main results. The following functional φm is known as a Lyapunov func-
tional associated with the Keller–Segel system (1.1):

φm(u, v) := 1

m − 1

ˆ
um dx − χ

ˆ
uv dx + χ

2α

ˆ
|∇v|2 + γ v2 dx, (1.3)
� � �
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where � is a bounded domain in Rd, d > 2, with smooth boundary. We consider the functional 
φm in the space

XM(�) :=
{
(u, v) ∈

(
L1(�) ∩ Lm(�)

)
× H 1

0 (�) ; ‖u‖L1 = M,u ≥ 0, v ≥ 0
}
.

We define μM(�) and M∗ by

μM(�) := inf
(u,v)∈XM(�)

φm(u, v),

M∗(�) := sup{M ≥ 0 ; μM(�) > −∞}. (1.4)

We have the following theorem on the properties of M∗. The first theorem, which is concerned 
with the critical case m = 2 − 2/d , shows that M∗ is indeed a threshold mass for the lower 
boundedness of φm.

Theorem 1.1 (Properties of M∗ for m = 2 − 2/d). Let m = 2 − 2/d . Then:

(i) 0 < M∗(�) < +∞;
(ii) μM(�) ≥ 0 for 0 < M ≤ M∗(�), while μM(�) = −∞ for M > M∗(�).

Furthermore, M∗(�) depends only on α, χ, d and is independent of γ and the choice of �, and 
it holds that

M∗(α,χ, d) = (αχ)−
d
2 M∗(1,1, d).

According to Theorem 1.1, we write just M∗ without the dependence upon � hereafter. The 
next theorem is concerned with the case m > 2 − 2/d :

Theorem 1.2 (Properties of M∗ for m > 2 − 2/d). Let m > 2 − 2/d . Then: M∗ = +∞. In other 
words, μM(�) > −∞ for every M > 0.

Remark 1.1. The case m > 2 − 2/d is often called the ‘sub-critical’ case. The justification of 
this meaning for case ε = 0 can be found in [4].

Next, we state the definition of weak solutions and the time-global existence of solutions of 
the system (1.1).

Definition 1.3 (Weak solutions). We say that a pair (u, v) of non-negative functions is a weak 
solution of (1.1) on the time interval [0, T ] if

(i) (u, v) ∈ L∞(0, T ; L1(�) ∩ Lm(�)) × L∞(0, T ; H 1
0 (�)) and ‖u(·, t)‖L1 = ‖u0‖L1 .

(ii) u ∈ L2p(0, T ; L2(�)) for p = 2m/(d(2 − m)) ≥ m and um ∈ L2(0, T ; W 1,1(�)), v ∈
L2(0, T ; W 2,2(�)).

(iii) lim
t↓0

dW (u(t), u0) = 0 and lim
t↓0

‖v(t) −v0‖L2 = 0, where dW denotes the Wasserstein distance 

to be introduced in §2.
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(iv) (u, v) has the following additional regularities:

T̂

0

ˆ

�

|∇um − χu∇v|2
u

dxdt < +∞,

T̂

0

ˆ

�

|�v − γ v + αu|2 dxdt < +∞.

(v) (u, v) satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ˆ

�

(u(b) − u(a))ϕ dx +
bˆ

a

ˆ

�

〈∇um − χu∇v,∇ϕ〉dxdt = 0,

ε

ˆ

�

(v(b) − v(a))ψ dx =
bˆ

a

ˆ

�

(�v − γ v + αu)ψ dxdt,

(1.5)

for any a, b ∈ [0, T ] and for all ϕ ∈ C∞
c (Rd) and for all ψ ∈ C∞

c (�).

Remark 1.2 (Weak formulation of boundary conditions). Since the test function ϕ in (1.5) be-
longs to C∞

c (Rd) rather than C∞
c (�), the identities (1.5) imply the following natural boundary 

condition in the weak sense:

∂um

∂ν
− χu

∂v

∂ν
= 0 on ∂� × (0, T ).

In view of this and the fact that v ∈ H 1
0 (�), one sees that the boundary conditions (1.2) are 

automatically satisfied by our weak solution (u, v).

Theorem 1.4 (Time-global existence). Let m ≥ 2 − 2/d . For any u0 ∈ L2(�) ∩ Lm(�) and v0 ∈
H 1

0 (�) with u0, v0 ≥ 0, there exists a weak solution (u, v) of (1.1) with this initial data that exists 
globally for all t ≥ 0, provided that u0 satisfies

ˆ

�

u0 dx < M∗.

Recall that M∗ = +∞ if m > 2 − 2/d . Thus, in this case, a time-global weak solution exists 
for any u0 ∈ L2(�) ∩ Lm(�), v0 ∈ H 1

0 (�) with u0, v0 ≥ 0. As a matter of fact, as for the case 
m > 2 − 2/d , Theorem 1.4 has already been known in a slightly different setting. In fact Ishida 
and Yokota [2] obtained the same result for � =R

d , except that their definition of weak solutions 
is slightly different from ours. The main novelty of the present paper is the result for the case m =
2 − 2/d . As we mentioned earlier, the constant M∗ coincides with the threshold mass obtained 
in Blanchet et al. [14] for ε = γ = 0.
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Theorem 1.4 will be proved by constructing time-discretized solutions as defined in subsec-
tion 3.2 and showing that this discretized solution converges to a weak solution of (1.1) as the 
time step size tends to 0. As we see below, any weak solution constructed in this way satisfies 
the energy dissipative inequality:

Theorem 1.5 (Energy dissipative inequality). Let (u, v) be a weak solution of (1.1) that is given 
by a limit function of discrete solutions to be defined in Definition 3.2. Then

φm(u(a), v(a)) − φm(u(b), v(b))

≥
bˆ

a

ˆ

�

|∇um − χu∇v|2
u

dxdt + χ

αε

bˆ

a

ˆ

�

|�v − γ v + αu|2 dxdt (1.6)

holds for every b ∈ [0, +∞) and a ∈ [0, b)\N , N being an L 1-negligible subset of (0, +∞).

Here, the meaning of the first term in the right-hand side of (1.6) is that the integrand is equal 

to |∇um−χu∇v|2
u

on the subset of � where u is positive and zero otherwise. The above theorem 
implies, in particular, that φm is indeed a Lyapunov functional for (1.1) even for weak solutions. 
A similar inequality has been known for the parabolic–elliptic systems (see [13,14]), but as far 
as the author knows it is new in the case of parabolic–parabolic system.

1.3. Notation

L d d-dimensional Lebesgue measure

t#μ push-forward of the measure μ through the map t

tν
μ optimal transport map from a measure μ to a measure ν

dW Wasserstein distance

D(φ) effective domain of functional φ

|∂φ|(v) metric slope of functional φ at v

P2(�) probability measures on � with finite second moment

Lp(�) p-summable functions on � ⊂R
d with respect to L d

L2
u(�;Rd) R

d -valued 2-summable functions on � with respect to uL d

‖ · ‖L2(u) the norm in L2
u(�;Rd) i.e. ‖ξ‖L2(u) = ‖ξ√

u‖L2(�) with u ≥ 0

C∞
c (�) compactly supported smooth functions on �

Cb(�) continuous and bounded functions on �

Wk,p(�) Sobolev space over �

H 1
0 (�) the closure of C∞

c (�) in W 1,2(�)

Ḣ 1(�) the closure of C∞
c (�) in the seminorm ‖∇ · ‖L2

2. Preliminaries

In this section, we collect some results on the Wasserstein distance. We refer to the books 
[28,31,32] and the handbook [38].
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P(�) denotes the space of probability measures on �. For any μ ∈ P(�), we identify μ with 
a measure on Rd by setting μ(Rd \ �) = 0. Thus we have P(�) ⊂ P(Rd). In what follows we 
will mainly work on P(Rd). We endow P(Rd) with the following topology:

Definition 2.1 (Narrow convergence [28, §5.1]). We say that a sequence (μn) ⊂ P(Rd) is nar-
rowly convergent to μ ∈ P(Rd) as n → ∞ if

lim
n→∞

ˆ

Rd

f (x) dμn(x) =
ˆ

Rd

f (x) dμ(x)

for every function f ∈ Cb(R
d), the space of continuous and bounded real functions defined 

on R
d .

We define the subset P2(R
d) of P(Rd) by

P2(R
d) :=

⎧⎪⎨
⎪⎩μ ∈ P(Rd) :

ˆ

Rd

|x|2 dμ(x) < ∞

⎫⎪⎬
⎪⎭ .

For � ⊂R
d , we identify P2(�) with the set of measures μ∈P2(R

d) such that μ(Rd \�) =0. 
If � is bounded, then P2(�) coincides with P(�).

Definition 2.2 (Push-forward [28, §5.2]). Let μ, ν ∈ P(Rd). If, for a μ-measurable map t :
R

d →R
d and for every f ∈ Cb(R

d), it holds that

ˆ

Rd

f (y) dν(y) =
ˆ

Rd

f (t(x)) dμ(x),

then we say that ν is a push-forward of μ through t and denote it by ν = t#μ.

Remark 2.1. Note that, in the special case where μ, ν possess density functions dμ(x) :=
u(x) dx, dν(y) := v(y) dy, and if t is a diffeomorphism, then we have

v(t(x))det (Dt(x)) = u(x).

Hence,

t#(u(x)dx) = u(t−1(x))det (Dt−1(x)) dx.

Definition 2.3 (Wasserstein distance [28, §7.1], [31, Def. 6.1]). The Wasserstein distance dW is 
defined by

d2
W(μ,ν) = inf

p∈�(μ,ν)

ˆ

d d

|x − y|2 dp(x, y)
R ×R
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where the set �(μ, ν) of transport plans between μ and ν is defined by

�(μ,ν) := {
p ∈ P(Rd ×R

d) : (π1)#p = μ and (π2)#p = ν
}

with π1(x, y) = x and π2(x, y) = y, that is,

ˆ

Rd×Rd

f (x) dp =
ˆ

Rd

f (x) dμ,

ˆ

Rd×Rd

f (y) dp =
ˆ

Rd

f (y) dν

for every f ∈ Cb(R
d), where P(Rd ×R

d) denotes the set of probability measures on Rd ×R
d .

The space (P2(R
d), dW ) is a complete metric space and is called the “Wasserstein space” 

(see [28, Prop. 7.15], [31, Def. 6.4, Thm. 6.18]). We say that a set S ⊂ P(Rd) is “tight” if for 
any ε > 0, there exists a compact set Kε ⊂R

d such that

μ(Rd \ Kε) ≤ ε for all μ ∈ S.

It is known that if S is tight, then S is relatively compact in P(Rd) with respect to the narrow 
topology (Prokhorov’s compactness theorem; see for instance [39, III-59]). If � is a bounded 
domain in Rd and if S ⊂ P(�) (⊂ P(Rd)), then it is clear that S is tight.

Proposition 2.4 (Lower semicontinuity of dW , [28, Lem. 7.1.4]). Let (μn), (νn) ⊂ P2(R
d) be 

two tight sequences narrowly converging to μ, ν in P(Rd). Then

dW (μ, ν) ≤ lim inf
n→∞ dW (μn, νn).

Proposition 2.5 (Brenier’s theorem [38, Thm. 2.3], [32, Thm. 2.12]). Let μ, ν ∈ P2(R
d). If μ

is absolutely continuous with respect to the Lebesgue measure L d , then there exist the optimal 
transport plan p0 and the optimal transport map tνμ such that p0 = (id × tν

μ)#μ and

d2
W(μ,ν) =

ˆ

Rd×Rd

|x − y|2 dp0(x, y)

=
ˆ

Rd

|x − tν
μ(x)|2 dμ(x)

= inf{t :ν=t#μ}

ˆ

Rd

|x − t(x)|2 dμ(x).

Moreover, the map tνμ coincides μ-a.e. with the gradient of a convex function ϕ0.

In the rest of the this paper, we identify the probability measure μ = uL d with its density u
and write u instead of uL d .
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3. Reformulation of the problem

In this section we reformulate the system (1.1) as a gradient flow in the Wasserstein space and 
define a time-discretization scheme for this new system.

3.1. Gradient flows in the Wasserstein space

Since the pioneering work of Jordan, Kinderlehrer and Otto [26], there have been many works 
that interpret the following type of evolution equation as a gradient flow on the Wasserstein 
space:

∂tu = ∇ ·
(

u∇
(

δφ

δu

))
in R

d × (0,∞), (3.1)

where δφ/δu denotes the first variation of a functional φ and ∇ denotes differentiation with 
respect to the space variable x. Since (3.1) conserves the mass 

´
Rd u dx, by normalization one 

can assume

ˆ

Rd

u dx = 1;

hence u can be regarded as a probability measure, and thus there is room for interpreting (3.1) as 
an evolution equation on the space of probability measures – more specifically the Wasserstein 
space. However, it is not easy to directly interpret (3.1) as a gradient flow, as the Wasserstein 
space does not possess adequate differential structure. Given such difficulty, a usual strategy is 
first to consider time-discretization of (3.1) based on the following steepest descent scheme: Let 
τ > 0 be the time step size and u0

τ be the initial data. One then recursively defines uk
τ by

uk
τ ∈ argmin

u∈P2(R
d )

{
φ(u) + 1

2τ
d2
W(u,uk−1

τ )

}
for k = 1,2,3, . . . , (3.2)

where “argmin” denotes the set of minimizers. In order for this minimizing problem to be solv-
able, one assumes that φ(u) is coercive and lower semicontinuous, and possesses some sort of 
compactness properties. One then considers the limit of (uk

τ )k∈N as τ → 0, which clearly exists 
for some sequence τn → 0 because of the compactness. The central issue is how to prove that 
the limit function is a weak solution of (3.1).

There are two different approaches for this last step. One approach, found in [27,22,23,26,
30,24,25], is to use the Euler–Lagrange equation associated with (3.2). We will explain more 
about this approach below. The other approach, found in [28,29], uses the concept of “curves of 
maximal slope” on abstract metric spaces and proves first that the limit of (uk

τ )k∈N is indeed a 
curve of maximal slope in the Wasserstein space. Then, characterization of curves of maximal 
slope in terms of subdifferentials shows that this limit function satisfies (3.1) in the weak sense. 
Both approaches have their advantages, but we will adopt the former one in the present paper.

Now let us explain more about this former approach. For each k ∈ N, let Ik(u) denote the 
functional on the right-hand side of (3.2). Then, for each ζ ∈ C∞

c (Rd), h ∈ R, we consider a 
perturbation of u ∈ P2(R

d) in the form of the push-forward (id + h∇ζ )#u. Here |h| is chosen 
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sufficiently small (say, |h| ≤ δ0) so that (id + h∇ζ ) is a diffeomorphism on Rd . Then, since 
(id + h∇ζ )#u ∈ P2(R

d), by the minimality (3.2) we have

Ik(u
k
τ ) = min|h|≤δ0

Ik((id + h∇ζ )#u
k
τ ).

Differentiating the functional Ik on the right-hand side with respect to h and setting h = 0, 
we obtain, at least formally, the following identity (cf. Lemmas 5.5 and 5.8):

ˆ

�

uk
τ − uk−1

τ

τ
ζ dx +

ˆ

�

〈
∇
(

δφ

δu

)
,∇ζ

〉
uk

τ dx = o(1).

This is the Euler–Lagrange equation. From its form it is clear that this equation converges for-
mally to a weak form of (3.1) as h → 0. As (uk

τ )k∈N is defined by a steepest descent scheme, this 
gives an (indirect) interpretation of (3.1) as a gradient flow.

Now let us come back to our problem (1.1). As is easily seen, (1.1) is formally written as 
follows: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tu = ∇ ·

(
u∇

(
δφm

δu

))
,

ε∂tv = −α

χ

(
δφm

δv

)
.

(3.3)

By an analogy with (3.1), this expression suggests that (1.1) may be interpreted (at least formally) 
as a gradient flow in the product space of the Wasserstein space and L2-space. We will see that 
this interpretation can be justified rigorously.

3.2. Construction of time-discretized solutions

In this subsection, we construct a time-discretized solution associated with the system (1.1). 
We begin by normalizing u. We make the change of variables

ũ = u

M
, t̃ = Mm−1t, where M :=

ˆ

�

udx,

along with the new parameters:

χ̃ = χ

Mm−1
, ε̃ = Mm−1ε, α̃ = αM. (3.4)

Then (ũ, v) satisfies the same equations as (1.1) with the above new parameters and the new time 
variable t̃ ; furthermore, we have 

´
�

ũdx = 1. Therefore, in what follows it suffices to consider 
only the solution of (1.1) that satisfies

ˆ

�

u0 dx = 1. (3.5)
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Remark 3.1. When m = 2 − 2/d , by Theorem 1.1, we have

M∗(α̃, χ̃ , d) = (α̃χ̃)−
d
2 M∗(1,1, d) = M∗(α,χ, d)

M
(3.6)

Therefore, whether or not the mass M is below the threshold value M∗ in the original parameters 
is equivalent to whether or not M∗(α̃, χ̃ , d) > 1 in the new parameters. In the rest of this subsec-
tion, the new parameters α̃, χ̃ , ̃ε, ũ0, ũ will be denoted by α, χ, ε, u0, u for notational simplicity.

Now, we divide the time interval [0, ∞) into sub-intervals with length τ > 0. Let (u0
τ , v

0
τ ) =

(u0, v0) be initial data and we recursively define (uk
τ , v

k
τ ) for k = 1, 2, 3, . . . by

vk
τ ∈ argmin

v∈H 1
0 (�)

{
φm(uk−1

τ , v) + εχ

2ατ
‖v − vk−1

τ ‖2
L2(�)

}
,

uk
τ ∈ argmin

u∈P2(�)

{
φm(u, vk

τ ) + 1

2τ
d2
W(u,uk−1

τ )

}
,

(3.7)

that is, vk
τ minimizes

v �→ φm(uk−1
τ , v) + εχ

2ατ
‖v − vk−1

τ ‖2
L2(�)

in H 1
0 (�)

and uk
τ minimizes

u �→ φm(u, vk
τ ) + 1

2τ
d2
W(u,uk−1

τ ) in P2(�).

Thus the recursive procedure (uk−1
τ , vk−1

τ ) �→ (uk
τ , v

k
τ ) at each time step consists of minimizing 

v and u alternately instead of minimizing them at once. We may therefore call (3.7) a “splitting 
scheme”. The reason for adopting this splitting scheme is that it makes each minimizing proce-
dure easier to handle as we only need to consider minimization in one variable rather than two.

Proposition 3.1. Let u0 ∈ L2(�) ∩ Lm(�) with u0 ≥ 0 and v0 ∈ H 1
0 (�) with v0 ≥ 0. As-

sume (3.5). Then uk
τ and vk

τ are uniquely defined and non-negative for all k ∈ N. Moreover, 
if M∗ = M∗(α, χ, m, d) > 1, then there exists a constant C0 := C0(α, χ, m, d, u0, v0) such that

‖uk
τ‖Lm(�) + ‖∇vk

τ‖L2(�) ≤ C0 for all k ∈ N. (3.8)

Definition 3.2 (Discrete solutions). Given a solution (uk
τ , v

k
τ )k∈N of (3.7), we define the piecewise 

constant interpolation

{
uτ (t) := uk

τ for t ∈ ((k − 1)τ , kτ ],
vτ (t) := vk

τ for t ∈ ((k − 1)τ , kτ ].

We call (uτ , vτ ) a discrete solution.
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Theorem 1.4 and Theorem 1.5 are consequences of the following theorem:

Theorem 3.3 (Lyapunov solution). Let u0 ∈ L2(�) ∩ Lm(�) with u0 ≥ 0 and v0 ∈ H 1
0 (�) with 

v0 ≥ 0. Assume (3.5) and M∗ = M∗(α, χ, m, d) > 1. Then there exists a sequence τn with τn ↓ 0
and a limit function (u, v) such that

uτn(t) ⇀ u(t) weakly in Lm(�), ∀t ≥ 0,

vτn(t) ⇀ v(t) weakly in H 1
0 (�), ∀t ≥ 0.

The limit function (u, v) is a time-global weak solution of (1.1) and satisfies the energy dissipative 
inequality (1.6) in Theorem 1.5.

Remark 3.2. Note that the uniqueness of the solution of (1.1) (for each given initial data) is not 
known.

We prove Proposition 3.1 in §4 and Theorem 3.3 in §5 except the energy dissipative inequal-
ity (1.6), which will be proved in §6.

4. Variational analysis

In this section, we give a proof of Theorem 1.1, Theorem 1.2 and Proposition 3.1. Here and 
throughout the rest of the paper, the symbol ‖ ·‖Lp stands for the norm ‖ ·‖Lp(�), unless otherwise 
stated. We begin with some preliminary estimates.

By the Hölder inequality, the Sobolev inequality, and the interpolation inequality, we have

∣∣∣∣∣∣
ˆ

�

uv dx

∣∣∣∣∣∣≤ ‖u‖
L

2d
d+2

‖v‖
L

2d
d−2

≤ Cs‖u‖
L

2d
d+2

‖∇v‖L2

≤ Cs‖u‖1−θ

L1 ‖u‖θ
Lm‖∇v‖L2 .

(4.1)

Here we have θ = m(d−2)
2d(m−1)

∈ (0, 1) since d > 2 implies 1 < 2d
d+2 <

2(d−1)
d

≤ m. The constant Cs

denotes the best Sobolev constant for the embedding Ḣ 1(�) ↪→ L
2d

d−2 (�). We define Cm and C∗
by

Cm :=

⎧⎪⎪⎨
⎪⎪⎩

Cs if m > 2 − 2
d
,

C∗ := sup
(u,v)∈Y(�)

u,v �=0

‖uv‖L1

‖u‖1/d

L1 ‖u‖m/2
Lm ‖∇v‖L2

if m = 2 − 2
d
, (4.2)

where Y(�) := {(u, v) ∈ (
L1(�) ∩ Lm(�)

) × Ḣ 1(�)}. Note that θ = m
2 when m = 2 − 2/d

and that Ḣ 1(�) coincides with H 1
0 (�) if � is bounded. It is obvious that C∗ ≤ Cs from the 

inequality (4.1). Using this constant Cm and Young’s inequality, for any β > 0 we have
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ˆ

�

uv dx ≤ Cm‖u‖1−θ

L1 ‖u‖θ
Lm‖∇v‖L2

≤ βC2
m

2
‖u‖2(1−θ)

L1 ‖u‖2θ
Lm + 1

2β
‖∇v‖2

L2 .

Hence, it holds that

φm(u, v) ≥ 1

m − 1
‖u‖m

Lm − βχC2
m

2
‖u‖2(1−θ)

L1 ‖u‖2θ
Lm + χ

2

(
1

α
− 1

β

)
‖∇v‖2

L2 . (4.3)

Particularly, if m = 2 − 2/d , then letting β = α + δ with δ ≥ 0, (4.3) reduces to

φm(u, v) ≥ αχC2∗
2

(
M

2/d

1 − α + δ

α
‖u‖2/d

L1

)
‖u‖m

Lm + δχ

2α(α + δ)
‖∇v‖2

L2, (4.4)

where M1 is the constant defined by

M1 :=
(

2

αχ(m − 1)C2∗

)d/2

. (4.5)

Now we are ready to prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.2. The condition m > 2 − 2/d implies 2θ < m in (4.3). Consequently, the 
sum of the first term and the second term in the right-hand side of (4.3) is estimated from below 
by 1

2(m−1)
‖u‖m

Lm −C if the constant C > 0 is chosen sufficiently large. Therefore, letting β = 2α

in (4.3), we have

φm(u, v) ≥ 1

2(m − 1)
‖u‖m

Lm + χ

4α
‖∇v‖2

L2 − C > −∞ (4.6)

on XM(�) for any M = ‖u‖L1 . This implies M∗ = +∞ in this case. �
Next, we consider the case of m = 2 − 2/d .

Proof of Theorem 1.1. From the estimate (4.4) with δ = 0, it is clear that φm is bounded from 
below as long as ‖u‖L1 ≤ M1. Thus we have M∗ ≥ M1.

Next we show that M1 ≥ M∗. Without loss of generality, we can assume that � contains the 
origin. We define the operator Tλ1,λ2 : (u, v) ∈ XM(�) �→ (U, V ) ∈ XM(Rd) by

U(x) :=
{

λd
1u(λ1x) if λ1x ∈ �,

0 if λ1x ∈R
d \ �,

V (x) :=
{

λd−2
2 v(λ1x) if λ1x ∈ �,

0 if λ1x ∈R
d \ �,

for λ1, λ2 > 0. We identify (u, v) ∈ XM(�) with T1,1(u, v) ∈ XM(Rd). Then we can express φm

as
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φm(u, v;α,χ,γ ) := 1

m − 1

ˆ

Rd

um dx − χ

ˆ

Rd

uv dx + χ

2α

ˆ

Rd

|∇v|2 + γ v2 dx.

One can easily check that for (U, V ) = Tκ,1(u, v) and κ > 0,

φm(U,V ;ακ,χκ, γκ) = κd−2φm(u, v;α,χ,γ ) and ‖U‖L1(Rd ) = ‖u‖L1(�)

where ακ = α

κd−2
, χκ = κd−2χ, γκ = κ2γ.

(4.7)

That is, the lower boundedness of φm(u, v; α, χ, γ ) is equivalent to that of φm(U, V ; ακ, χκ, γκ)

for fixed κ .
We now investigate the lower boundedness of φm(U, V ; ακ, χκ, γκ). From the definition of 

the constant C∗, for any δ > 0, there exists a pair (uδ, vδ) ∈ XM(�) such that

‖uδvδ‖L1 ≥ (C∗ − δ)‖uδ‖1/d

L1 ‖uδ‖m/2
Lm ‖∇vδ‖L2 .

Then the pair (Uδ, Vδ) := Tκ,1(uδ, vδ) ∈ XM(Rd) also satisfies

‖UδVδ‖L1(Rd ) ≥ (C∗ − δ)‖Uδ‖1/d

L1(Rd )
‖Uδ‖m/2

Lm(Rd )
‖∇Vδ‖L2(Rd ).

Let us assume that M := ‖uδ‖L1(�) = ‖Uδ‖L1(Rd ) > M1 and we choose δ such that

M
2/d

1 − (C∗ − δ)2

C2∗
M2/d < 0.

Let

κd−2 =
⎛
⎝α(C∗ − δ)‖Uδ‖1/d

L1(Rd )
‖Uδ‖m/2

Lm(Rd )

‖∇Vδ‖L2(Rd )

⎞
⎠

or equivalently ακ = ‖∇Vδ‖L2(Rd )

(C∗ − δ)‖Uδ‖1/d

L1(Rd )
‖Uδ‖m/2

Lm(Rd )

.

Then we have

‖UδVδ‖L1(Rd ) ≥ (C∗ − δ)‖Uδ‖1/d

L1(Rd )
‖Uδ‖m/2

Lm(Rd )
‖∇Vδ‖L2(Rd )

=
ακ(C∗ − δ)2‖Uδ‖2/d

L1(Rd )
‖Uδ‖m

Lm(Rd )

2
+ 1

2ακ

‖∇Vδ‖2
L2(Rd )

.

Consequently, it holds that
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φm(Uδ,Vδ;ακ,χκ, γκ) − χκγκ

2ακ

ˆ

Rd

V 2
δ dx

≤ ακχκC2∗
2

(
M

2/d

1 − (C∗ − δ)2

C2∗
M2/d

)
‖Uδ‖m

Lm(Rd )
.

Letting (Ũ(λ), Ṽ (λ)) := Tλ,λ(Uδ, Vδ), we have

φm(Ũ(λ), Ṽ (λ)) = λd−2

⎛
⎜⎝φm(Uδ,Vδ) − χκγκ

2ακ

ˆ

Rd

V 2
δ dx

⎞
⎟⎠+ χκγκ

2ακ

ˆ

Rd

Ṽ 2(λ) dx

≤ λd−2 ακχκC2∗
2

(
M

2/d

1 − (C∗ − δ)2

C2∗
M2/d

)
‖Uδ‖m

Lm(Rd )
+ λd−4 χκγκ

2ακ

‖Vδ‖2
L2(Rd )

→ −∞, (λ → +∞).

Therefore, we obtain M1 ≥ M∗ and hence

M∗ = M1 =
(

2

αχ(m − 1)C2∗

)d/2

. (4.8)

Finally, we show that M∗ is independent of the choice of �. For that purpose, we denote the 
value C∗ in (4.2) by C∗(�), in order to clarify its dependence on the domain. Then, from (1.4), 
it suffices to prove that C∗(�) is independent of the choice of �. We denote by BR an open 
ball in Rd with center at 0 and radius R. We can choose R1, R2 > 0 such that BR1 ⊂ � ⊂ BR2

since � is bounded and contains the origin. It is obvious that C∗(BR1) ≤ C∗(�) ≤ C∗(BR2) by 
zero-extensions. Define

J (u, v) := ‖uv‖L1(Rd )

‖u‖1/d

L1(Rd )
‖u‖m/2

Lm(Rd )
‖∇v‖L2(Rd )

.

From the definition of C∗(BR2), for any δ > 0, there exists a pair (uδ, vδ) ∈ Y(BR2) such that

J (uδ, vδ) ≥ C∗(BR2) − δ.

Taking into account that J (u, v) is invariant under the operator Tλ,λ and that Tλ,λ(uδ, vδ) ∈
Y(BR1) if λ > R2/R1, we have

C∗(BR1) ≥ J (Tλ,λ(uδ, vδ)) = J (uδ, vδ) ≥ C∗(BR2) − δ for λ > R2/R1.

This implies that C∗(BR1) ≥ C∗(BR2) and thus we have C∗(BR1) = C∗(BR2) = C∗(�). There-
fore, M∗ is independent of the choice of �. �
Proposition 4.1. It holds that C∗(�) = C∗(Rd) for any bounded domain � ⊂R

d .
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Proof. C∗(�) ≤ C∗(Rd) is trivial by definition. We show the opposite relation. By definition, 
for any ε > 0 there exists a pair (Uε, Vε) ∈ (L1 ∩ Lm)(Rd) × Ḣ (Rd) such that Uε �≡ 0, Vε �≡ 0
and

J (Uε,Vε) + ε

2
> C∗(Rd).

On the other hand, since C∞
c (Rd) is dense in (L1 ∩ Lm)(Rd) and in Ḣ 1(Rd), there exists a 

sequence {(un, vn)} ⊂ C∞
c (Rd) × C∞

c (Rd) such that

un → Uδ in (L1 ∩ Lm)(Rd) and ∇vn → ∇Vδ in L2(Rd).

Then if n is sufficiently large we have

|J (Uδ,Vδ) − J (un, vn)| < ε

2
.

In fact, by using the estimate (4.1),

∣∣∣∣∣∣∣
ˆ

Rd

UεVε dx −
ˆ

Rd

unvn dx

∣∣∣∣∣∣∣≤
ˆ

Rd

(|Uε − un||Vε| + |Un||Vε − vn|) dx

≤ Cs

(
‖Uε − un‖1/d

L1 ‖Uε − un‖m/2
Lm ‖∇Vε‖L2 + ‖Un‖1/d

L1 ‖un‖m/2
Lm ‖∇Vε − ∇vn‖L2

)
and we can deduce that the numerator of J (un, vn) converges to that of J (Uδ, Vδ). It is clear 
that the denominator of J (un, vn) converges to that of J (Uδ, Vδ). Hence J (un, vn) converges to 
J (Uδ, Vδ). Since the support of un is bounded we already seen that

C∗(�) ≥ J (un, vn)

for any bounded domain � ⊂R
d . Thus we have

C∗(�) ≥ J (un, vn) ≥ C∗(Rd) − ε,

which implies that C∗(�) ≥ C∗(Rd). �
The next proposition implies that M∗ is equal to the sharp critical mass Mc for the parabolic–

elliptic case (see Blanchet et al. [14]).

Proposition 4.2 (Alternative definitions of C∗). Let K be the fundamental solution of −� in R
d , 

d > 2, that is,

K(x) := cd

1

|x|d−2
with cd := �

(
d
2

)
2(d − 2)πd/2

.

Then it holds that
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C2∗ = sup
u∈(L1(Rd )∩Lm(Rd ))\{0}

⎧⎪⎨
⎪⎩

¨

Rd×Rd

⎛
⎝ K(x − y)u(x)u(y)

‖u‖2/d

L1(Rd )
‖u‖m

Lm(Rd )

⎞
⎠ dxdy

⎫⎪⎬
⎪⎭ . (4.9)

Proof. Throughout this proof, the norm ‖ · ‖Lp stands for ‖ · ‖Lp(Rd ). From Remark 4.1, we can 
redefine C∗ by

C2∗ := sup
(u,v)∈Y(Rd )

u,v �=0

´
Rd uv dx

‖u‖2/d

L1 ‖u‖m
Lm‖∇v‖2

L2

,

where

Y(Rd) :=
{
(u, v) ∈

(
L1(Rd) ∩ Lm(Rd)

)
× Ḣ 1(Rd);u ≥ 0, v ≥ 0

}
.

We define the functional Au(v) by Au(v) := ‖∇v‖2
L2/(

´
Rd uv dx)2. Then

C2∗ = sup
(u,v)∈Y(Rd )

u,v �=0

(
´
Rd uv dx)2

‖u‖2/d

L1 ‖u‖m
Lm‖∇v‖2

L2

= sup
u∈(L1(Rd )∩Lm(Rd ))\{0}

{
1

‖u‖2/d

L1 ‖u‖m
Lm

sup
v∈Ḣ 1(Rd )\{0}

(
1

Au(v)

)}

= sup
u∈(L1(Rd )∩Lm(Rd ))\{0}

⎛
⎜⎝ 1

‖u‖2/d

L1 ‖u‖m
Lm inf

v∈Ḣ 1(Rd )\{0}
Au(v)

⎞
⎟⎠ .

Here one can characterize the function v which attains inf
v

Au(v) by the Euler–Lagrange equa-

tion. Let (vj ) ⊂ Ḣ 1(Rd) be a minimizing sequence of Au(v). Then (Vj ) := (vj /‖∇vj‖L2) is 
also a minimizing sequence of Au(v) since Au(Vj ) = Au(vj ). So ‖∇Vj‖L2 = 1, there exists a 
subsequence, still denoted by Vj and V , such that

∇Vj ⇀ ∇V weakly in L2(Rd), Vj ⇀ V weakly in L
2d

d−2 (Rd).

It is clear that ‖∇V ‖L2 ≤ lim infj→∞ ‖∇Vj‖L2 . By the interpolation inequality, u ∈ L1(Rd) ∩
Lm(Rd) belongs to L

2d
d+2 (Rd), the dual space of L

2d
d−2 (Rd). Therefore, we obtain

lim
j→∞

ˆ

Rd

uVj dx =
ˆ

Rd

uV dx

and hence Au(V ) ≤ lim infj→∞ Au(Vj ). This implies the existence of a minimizer of Au(v). 
Thanks to the calculus of variation, the function v∗ which attains minAu(v) is given by
v
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−�v∗ =
⎛
⎜⎝ˆ

Rd

uv∗ dx

⎞
⎟⎠Au(v∗)u.

By using the fundamental solution K of the Laplace operator −�, we can write

v∗ =
⎛
⎜⎝ˆ

Rd

uv∗ dx

⎞
⎟⎠Au(v∗)K ∗ u.

Multiplying both sides by u and integrating on Rd , we see that

1

inf
v

Au(v)
=

ˆ

Rd×Rd

K(x − y)u(x)u(y) dxdy.

As a consequence, (4.9) holds. �
Proof of Proposition 3.1. In what follows, all the parameters are understood to be normalized 
ones as in Subsection 3.2. In particular, (3.5) holds. First, we show that vk

τ is solvable under the 
assumption that uk−1

τ and vk−1
τ are solvable. Let (vj ) be a minimizing sequence of

v �→ φm(uk−1
τ , v) + εχ

2ατ
‖v − vk−1

τ ‖2
L2,

and Ik be the infimum of the right-hand side. Choosing β to be α < β in (4.3), we see 
that ‖∇vj‖L2 is bounded and that Ik has a finite value. Therefore, there exist a subsequence 
of (vj ), still denoted by (vj ), and a function v∞ ∈ H 1

0 (�) such that (vj ) converges to v∞
weakly in H 1

0 (�) and hence in L
2d

d−2 (�). Taking into account that 
´
�

uk−1
τ vj dx converges to ´

�
uk−1

τ v∞ dx since uk−1
τ ∈ (L1(�) ∩ Lm(�)) ⊂ L

2d
d+2 (�), one sees that

φm(uk−1
τ , v∞) + εχ

2ατ
‖v∞ − vk−1

τ ‖2
L2 ≤ Ik.

Since the opposite inequality is obvious, we have

Ik = φm(uk−1
τ , v∞) + εχ

2ατ
‖v∞ − vk−1

τ ‖2
L2 .

Therefore, one can define vk
τ by v∞.

Next, we show that uk
τ is solvable by a similar argument. Let uj be a minimizing sequence of

u �→ φm(u, vk
τ ) + 1

2τ
d2
W(u,uk−1

τ ),

and Jk be the infimum of the right-hand side. If m > 2 − 2/d , it is clear from (4.6) that 
‖uj‖Lm is bounded and Jk has a finite value. In the case m = 2 − 2/d , choosing β to be 
β < 2/(χ(m − 1)C2∗‖u‖2/d

1 ) in (4.3), we see that ‖uj‖Lm is bounded and that Jk has a finite 

L
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value. Therefore, there exist a subsequence, still denoted by (uj ), and a function u∞ ∈ Lm(�)

such that (uj ) converges to u∞ weakly in Lm(�). Taking into account the lower semicontinuity 
of the Wasserstein distance with respect to the narrow convergence (Proposition 2.4) which is 
weaker than the weak convergence in Lm(�), we see that u∞ is indeed a minimizer of the above 
functional. Thus, one can define uk

τ by u∞.
In the case m > 2 − 2/d , the estimate (3.8) is clear from (4.6). In the case m = 2 − 2/d , 

from (4.4), we see that (3.8) holds if M∗ := M1 > 1.
The uniqueness of uk

τ and vk
τ follows from the strict convexity of v �→ φm(uk−1

τ , v), v �→
‖v − vk−1

τ ‖2
L2 and u �→ φm(u, vk

τ ), and the convexity of u �→ d2
W(u, uk−1

τ ) (see for instance [24, 
Prop. A.1]).

Finally, we prove that for any τ > 0 and k ∈N, the functions uk
τ and vk

τ are non-negative. The 
non-negativity of uk

τ is clear because uk
τ belongs to P2(�). Consequently, it holds that

φm(uk−1
τ , vk

τ ) ≥ φm(uk−1
τ , |vk

τ |). (4.10)

We prove vk
τ ≥ 0 by induction in k. For k = 0, we have v0

τ = v0 ≥ 0 by the assumption. By the 
triangle inequality, 

∣∣|vk
τ | − |vk−1

τ |∣∣≤ |vk
τ − vk−1

τ |. Therefore, if vk−1
τ ≥ 0, then we have

∥∥|vk
τ | − vk−1

τ

∥∥
L2 ≤ ‖vk

τ − vk−1
τ ‖L2 . (4.11)

Combining (4.10) and (4.11), we obtain

φm(uk−1
τ , vk

τ ) + εχ

2ατ
‖vk

τ − vk−1
τ ‖2

L2 ≥ φm(uk−1
τ , |vk

τ |) + εχ

2ατ

∥∥|vk
τ | − vk−1

τ

∥∥2
L2 .

Since vk
τ is the unique minimizer of the functional

v �→ φm(uk−1
τ , v) + εχ

2ατ
‖v − vk−1

τ ‖2
L2,

we have |vk
τ | = vk

τ . Therefore, if the initial data v0 is non-negative, then vk
τ is also non-negative 

for any τ > 0 and k ∈ N. �
5. Time-discretization method

We saw in the previous section that the discrete solutions (uτ , vτ ) defined in (3.2) exist for 
any τ > 0. In this section, we prove that there exists a sequence (τn) with τn ↓ 0 such that the 
sequence (uτn, vτn) of discrete solutions converges to a time-global solution of (1.1), provided 
that M∗ > 1.

Here and in what follows the parameters α, χ, ε and u, u0, t are understood to be normalized 
as in Subsection 3.2. Thus, throughout the rest of the paper, we assume that (3.5) and M∗ > 1. By 
Theorem 1.1, Theorem 1.2 and Proposition 3.1, these assumptions induce the lower boundedness 
of φm and the estimate (3.8).
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5.1. Some fundamental estimates for discrete solutions

In this subsection, we establish fundamental estimates for the discrete solutions and show 
that the discrete solution (uτ , vτ ) converges weakly in Lm(�) × H 1

0 (�) for some sequence τ =
τn ↓ 0.

Let us recall the definition of the metric slope. The metric slope is the equivalent of the normed 
value of a gradient of a functional in Hilbert space.

Definition 5.1 (Metric slopes [28, Def. 1.2.4]). Define the distances d1 and d2 by

d1(u1, u2) := dW (u1, u2) for u1, u2 ∈ P2(�) ⊂ P2(R
d),

d2(v1, v2) :=
√

εχ

α
‖v1 − v2‖L2 for v1, v2 ∈ L2(�).

The metric slopes |∂1φm|(u, v) and |∂2φm|(u, v) of φm at (u, v) ∈ D(φm) is defined by

|∂1φm|(u, v) := lim sup
ũ→u

(
φm(u, v) − φm(ũ, v)

)+
d1(u, ũ)

,

|∂2φm|(u, v) := lim sup
ṽ→v

(
φm(u, v) − φm(u, ṽ)

)+
d2(v, ṽ)

,

where D(φm) denotes the effective domain of φm, that is,

D(φm) := {(u, v) ; φm(u, v) < +∞}.

We also define D(|∂1φm|) and D(|∂2φm|) likewise.

Lemma 5.2 (Fundamental estimates [28, Lem. 3.1.3, Lem. 3.2.2], [32, §8.4.1]). Our recursive 
scheme (3.7) yields the following estimates:

(i) Slope estimate: for k = 1, 2, 3, . . .

⎧⎪⎪⎨
⎪⎪⎩

|∂1φm|(uk
τ , v

k
τ ) ≤ d1(u

k
τ , u

k−1
τ )

τ
,

|∂2φm|(uk−1
τ , vk

τ ) ≤ d2(v
k
τ , v

k−1
τ )

τ
.

(5.1)

(ii) Energy estimate:

sup
k≥0

φm(uk
τ , v

k
τ ) ≤ φm(u0, v0).
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(iii) Total square distance estimate: for any N ∈ N,

N∑
k=1

[
d2

1 (uk
τ , u

k−1
τ ) + d2

2 (vk
τ , v

k−1
τ )

]
≤ 2τ(φm(u0, v0) − infφm).

(iv) Gradient energy estimate: for any T > 0,

T̂

0

|∂1φm|2(uτ (t), vτ (t)) dt +
T̂

0

|∂2φm|2(uτ (t), vτ (t)) dt

≤ 2(φm(u0, v0) − φm(uτ (T ), vτ (T ))),

where (uτ , vτ ) is a discrete solution defined in Definition 3.2 and uτ (t) := uk−1
τ for t ∈

((k − 1)τ, kτ ], i.e., uτ (t) = uτ (t − τ).

Proof. We first show the estimate (i). Let (u∗, v∗) ∈ D(φm) be given. If uτ ∈ argmin
u∈P2(�)

{
φm(u, v∗)

+ 1

2τ
d2

1 (u, u∗)
}

, then it follows that

φm(uτ , v∗) + 1

2τ
d2

1 (uτ , u∗) ≤ φm(u, v∗) + 1

2τ
d2

1 (u,u∗)

for all u ∈ P2(�), and then

φm(uτ , v∗) − φm(u, v∗) ≤ 1

2τ
d2

1 (u,u∗) − 1

2τ
d2

1 (uτ , u∗)

= 1

2τ

(
d1(u,u∗) − d1(uτ , u∗)

)(
d1(u,u∗) + d1(uτ , u∗)

)
≤ 1

2τ
d1(uτ , u)

(
d1(u,u∗) + d1(uτ , u∗)

)
.

Hence we have

|∂1φm|(uτ , v∗) = lim sup
u→uτ

(
φm(uτ , v∗) − φm(u, v∗)

)+
d1(uτ , u)

≤ lim sup
u→uτ

1

2τ

(
d1(u,u∗) + d1(uτ , u∗)

)= d1(uτ , u∗)
τ

.

(5.2)

Similarly, for vτ ∈ argmin
v∈H 1

0 (�)

{
φm(u∗, v) + 1

2τ
d2

2 (v, v∗)
}

, we obtain

|∂2φm|(u∗, vτ ) ≤ d2(vτ , v∗)
τ

. (5.3)

Therefore, by the definitions of uk
τ and vk

τ , the estimates (5.1) hold.



JID:YJDEQ AID:8759 /FLA [m1+; v1.253; Prn:21/03/2017; 16:42] P.24 (1-45)

24 Y. Mimura / J. Differential Equations ••• (••••) •••–•••
Next, from the definition of uk
τ and vk

τ , it is obvious that

⎧⎪⎪⎨
⎪⎪⎩

φm(uk
τ , v

k
τ ) + 1

2τ
d2

1 (uk
τ , u

k−1
τ ) ≤ φm(uk−1

τ , vk
τ ),

φm(uk−1
τ , vk

τ ) + 1

2τ
d2

2 (vk
τ , v

k−1
τ ) ≤ φm(uk−1

τ , vk−1
τ ).

Combining both inequalities, we obtain

φm(uk
τ , v

k
τ ) + 1

2τ

[
d2

1 (uk
τ , u

k−1
τ ) + d2

2 (vk
τ , v

k−1
τ )

]
≤ φm(uk−1

τ , vk−1
τ ).

The statements (ii) and (iii) follow from this inequality.
Finally, from (i) and (iii), we have

T̂

0

|∂1φm|2(uτ , vτ ) dt+
T̂

0

|∂2φm|2(uτ , vτ ) dt

≤ τ

N∑
k=1

(
|∂1φm|2(uk

τ , v
k
τ ) + |∂2φm|2(uk−1

τ , vk
τ )
)

≤ 1

τ

N∑
k=1

(
d2

1 (uk
τ , u

k−1
τ ) + d2

2 (vk
τ , v

k−1
τ )

)

≤ 2(φm(u0, v0) − φm(uτ (T ), vτ (T ))). �
Lemma 5.3 (Convergence of discrete solutions [28, Prop. 3.3.1], [32, §8.4.1]). There exist a 
sequence (uτn, vτn) of discrete solutions with τn ↓ 0 and a function (u, v) ∈ Lm(�) × H 1

0 (�)

such that

uτn(t) ⇀ u(t) weakly in Lm(�), ∀t ≥ 0,

vτn(t) ⇀ v(t) weakly in H 1
0 (�), ∀t ≥ 0.

(5.4)

Proof. Let wτ := (uτ , vτ ) and define the distance d by d2 := d2
1 + d2

2 . First, we show that 
d(wτ (t), wτ (s)) ≤ C

√|t − s|. Without loss of generality, we can assume s < t . There exist 
�1, �2 ∈N such that

(�1 − 1)τ < s ≤ �1τ, (�2 − 1)τ < t ≤ �2τ.

By the triangle inequality, the Cauchy–Schwarz inequality and Lemma 5.2-(iii), we have

d(wτ (t),wτ (s)) ≤
�2∑

k=�1+1

d(wk
τ ,w

k−1
τ ) ≤ √

t − s

⎛
⎝ �2∑

�1+1

d2(wk
τ ,w

k−1
τ )

τ

⎞
⎠

1/2

≤√
2(φ (u , v ) − infφ )(t − s).

(5.5)
m 0 0 m
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From the estimate (3.8), for each fixed t , {wτ (t)}τ>0 is relatively weakly compact in Lm(�) ×
H 1

0 (�). Hence by [28, Prop. 3.3.1], our assertion holds true. �
5.2. Regularity of discrete solutions

The aim of this subsection is to derive the Euler–Lagrange equations satisfied by discrete 
solutions at each time step. By our minimizing scheme (3.7), the discrete solutions possess a 
certain regularity, which enables us to derive the Euler–Lagrange equations.

First, given ξ ∈ C∞
c (Rd ; Rd), we calculate the derivative of φm with respect to the perturba-

tion (id + tξ)#u as t → 0. Similar perturbations can be found in [26] and [28, §10.4.1]. Since 
the range of (id + tξ) lies on Rd rather than �, this perturbation requires the extension of the 
domain of the functions u and v. Therefore, we extend the domain of u and v from � to Rd . 
More precisely, we extend u by setting u = 0 outside �. As for v, we use a standard extension 
operator from W 2,2(�) to W 2,2(Rd) (see for instance [40, Thm. 4.26]).

Lemma 5.4. Let 1 ≤ p < ∞ and ξ ∈ C∞
c (Rd ; Rd). If vn converges to v in Lp(Rd), then for 

δ > 0 small enough and for every t ∈ [0, δ], vn(id + tξ) converges to v(id + tξ) in Lp(Rd). In 
addition, it holds that

‖vn(id + tξ) − v(id + tξ)‖Lp(Rd ) ≤ Cδ‖vn − v‖Lp(Rd ) t ∈ [0, δ],

where Cδ is a positive constant depending on δ and ξ .

Proof. Let r t (x) := x + tξ(x). Note that for t small enough, r t is a C1 diffeomorphism and 
detDr t > 0 since ξ ∈ C∞

c (Rd ; Rd). By the change of variables y = r t (x), we have

ˆ

Rd

|vn(r t (x)) − v(r t (x))|p dx =
ˆ

Rd

|vn(y) − v(y)|p det(Dr−1
t (y)) dy

≤ sup
(y,t)∈Rd×[0,δ]

(
det (Dr−1

t (y))
)
‖vn − v‖p

Lp(Rd )
. �

Lemma 5.5 (Gâteaux derivatives). If (u, v) ∈ D(|∂1φm|) and v ∈ W 2,2(�), then ∇um ∈ L1(�)

and for any ξ ∈ C∞
c (Rd ; Rd) the function t �→ φm((id + tξ)#u, v) is differentiable at t = 0 with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dt

[
φm((id + tξ)#u,v)

] ∣∣∣
t=0

=
ˆ

�

〈∇um − χu∇v, ξ 〉dx,

ˆ

�

|∇um − χu∇v|2
u

dx ≤ |∂1φm|2(u, v).

(5.6)

On the other hand, if (u, v) ∈ D(|∂2φm|) and u ∈ L2(�), then �v ∈ L2(�) and for any η ∈
C∞

c (�) the function t �→ φm(u, v + tη) is differentiable at t = 0 with



JID:YJDEQ AID:8759 /FLA [m1+; v1.253; Prn:21/03/2017; 16:42] P.26 (1-45)

26 Y. Mimura / J. Differential Equations ••• (••••) •••–•••

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dt

[
φm(u, v + tη)

] ∣∣∣
t=0

= χ

α

ˆ

�

(−�v + γ v − αu)η dx,

χ

αε

ˆ

�

|�v − γ v + αu|2 dx ≤ |∂2φm|2(u, v).

(5.7)

Remark 5.1. The inequality in (5.6) means

ˆ

�

|g1|2udx ≤ |∂1φm|2(u, v)

with

g1 = ∇um − χu∇v

u
on the set {x ∈ � : u > 0}.

Proof of Lemma 5.5. Let us suppose (u, v) ∈D(|∂1φm|) and v ∈ W 2,2(�). Define

F[u] := 1

m − 1

ˆ

�

um dx, I (u, v) := −χ

ˆ

�

uv dx.

Let ξ ∈ C∞
c (Rd ; Rd) and ut := (id + tξ)#u. By the definition of the push-forward and the change 

of variables, one easily obtains the relation:

ut (x + tξ(x))det(id + tDξ(x)) = u(x).

Using this relation and taking into account that (det (id + tDξ(x)) − 1)/t uniformly converges 
to div ξ in �, we have

lim
t→0

F[ut ] −F[u]
t

= lim
t→0

1

(m − 1)t

ˆ

�

(
1

(det(id + tDξ(x)))m−1
− 1

)
um(x)dx

= −
ˆ

�

um(x)div ξ dx.

Next we calculate

lim
t→0

I (ut , v) − I (u, v)

t
.

Recall that v ∈ W 2,2(�) ↪→ W 2,2(Rd) by the extension operator (see for instance [40, 
Thm. 4.26]). Let (vn)n∈N ⊂ C∞

c (Rd) be a sequence converging to v in W 2,2(Rd). We define 
the following two functions:

I (t) := −χ

ˆ
v(x + tξ(x))u(x) dx, In(t) := −χ

ˆ
vn(x + tξ(x))u(x) dx.
� �
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By Lemma 5.4, In(t) converges to I (t) uniformly in [0, δ] and I ′
n(t) converges to

Ĩ ′(t) := −χ

ˆ

�

〈∇v(x + tξ(x)), ξ (x)〉u(x)dx uniformly in [0, δ].

Here, note that Ĩ ′(t) is not defined if (u, v) is only assumed to be in the effective domain of φm, 
that is, u ∈ Lm(�) and v ∈ H 1(�) and this is the reason for requiring more regularity. Therefore, 
I (t) is differentiable in (0, δ) and it holds that

lim
t→0

I (ut , v) − I (u, v)

t
= I ′(0) = −χ

ˆ

�

〈∇v(x), ξ 〉u(x)dx.

On the other hand, since ut = (id + tξ)#u, Brenier’s theorem (Proposition 2.5) gives

d2
1 (u,ut ) := inf{t :ut=t#u}

ˆ

Rd

|x − t(x)|2udx ≤ t2
ˆ

Rd

|ξ |2 udx,

and hence

lim sup
t→0

d1(u,ut )

t
≤ ‖ξ‖L2(u).

Combining all the relations above and recalling Definition 5.1, we obtain

ˆ

�

um div ξ + χ〈∇v, ξ 〉udx = lim
t→0

φm(u, v) − φm(ut , v)

t

≤ lim sup
t→0

(φm(u, v) − φm(ut , v))+

d1(u,ut )

d1(u,ut )

t

≤ |∂1φm|(u, v)‖ξ‖L2(u)

≤ |∂1φm|(u, v)‖ξ‖L∞ .

Since u ∈ (L1(�) ∩ Lm(�)) ⊂ L
2d

d+2 (�) and v ∈ W 2,2(�), the Sobolev embedding theorem 
ensures that u|∇v| ∈ L1(�). This and the above estimate imply

ˆ

�

um div ξ dx ≤ (|∂1φm|(u, v) + χ‖u∇v‖L1

)‖ξ‖L∞ .

Hence, by the Riesz representation theorem, there exists an Rd -valued measure μ∗ = (μ∗
1, μ

∗
2,

. . . , μ∗
d) such that

ˆ
um div ξ dx = −

d∑
j=1

ˆ
ξj dμ∗

j , (5.8)
� �
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where ξ = (ξ1, ξ2, . . . , ξd). Thus the above estimate can be rewritten as

−
d∑

j=1

ˆ

�

ξj dμ∗
j + χ

ˆ

�

〈∇v, ξ 〉udx ≤ |∂1φm|(u, v)‖ξ‖L2(u).

Again, by applying the Riesz representation theorem, there exists an Rd -valued function g1 ∈
L2

u(�, Rd) such that ‖g1‖L2(u) ≤ |∂1φm|(u, v) and that

−
d∑

j=1

ˆ

�

ξj dμ∗
j + χ

ˆ

�

〈∇v, ξ 〉udx = −
ˆ

�

〈g1, ξ 〉udx. (5.9)

Combining (5.8) and (5.9) yields

ˆ

�

um div ξ dx = −
d∑

j=1

ˆ

�

ξj dμ∗
j =

ˆ

�

〈−ug1 − χu∇v, ξ 〉dx.

Here we note that ug1 + χu∇v ∈ L1(�). Indeed, since ‖g1‖L2(u) ≤ |∂1φm|(u, v), one has

‖ug1‖L1 ≤ ‖u‖1/2
L1 ‖g1‖L2(u) ≤ |∂1φm|(u, v) < +∞,

and we have already seen that u|∇v| ∈ L1(�), which shows ug1 + χu∇v ∈ L1(�). Thus the 
above identity implies

ug1 = ∇um − χu∇v

in the sense of distributions, which gives (5.6).
Next we prove (5.7). Let η ∈ C∞

c (�) and vt := v + tη. Then, by the definitions of d2 and the 
metric slope |∂2φm| (see Definition 5.1),

χ

α

ˆ

�

(αu − γ v)η − 〈∇v,∇η〉dx = lim
t→0

φm(u, v) − φm(u, vt )

t

≤ lim sup
t→0

(φm(u, v) − φm(u, vt ))
+

d2(v, vt )

d2(v, vt )

t

≤
√

εχ

α
|∂2φm|(u, v)‖η‖L2 .

As we are assuming (u, v) ∈ D(|∂2φm|), we have |∂2φm|(u, v) < ∞. Furthermore, since u ∈
L2(�), the above inequality yields

ˆ
〈∇v,∇η〉dx ≤ C‖η‖L2
�
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for some constant C > 0, which implies �v ∈ L2(�). Consequently, we can rewrite the above 
inequality as follows:

χ

α
〈−�v + γ v − αu,η〉L2 ≤

√
εχ

α
|∂2φm|(u, v)‖η‖L2 ,

from which we obtain √
χ

αε
‖�v − γ v + αu‖L2 ≤ |∂2φm|(u, v).

The lemma is proved. �
Lemma 5.6. If (u, v) ∈ D(|∂1φm|) and v ∈ W 2,2(�), then u belongs to L2(�). Conversely, if 
(u, v) ∈ D(|∂2φm|) and u ∈ L2(�), then v belongs to W 2,2(�).

Proof. By Lemma 5.5 and the Cauchy–Schwarz inequality, we have

ˆ

�

|∇um − χu∇v|dx ≤
⎛
⎝ˆ

�

|∇um − χu∇v|2
u

dx

⎞
⎠

1/2 ⎛
⎝ˆ

�

u(x)dx

⎞
⎠

1/2

≤ |∂1φm|(u, v).

Since v ∈ W 2,2(�) ensures u|∇v| ∈ L1(�), we have

‖∇um‖L1 ≤ |∂1φm|(u, v) + χ‖u∇v‖L1 . (5.10)

On the other hand, by the interpolation inequality, for θ = d
2 (2 − m) ∈ [0, 1] and p = m

θ
> 1, it 

holds that

‖u‖p

L2 ≤
(

‖u‖1−θ
Lm ‖u‖θ

L
md
d−1

)p

= ‖u‖p−m
Lm ‖um‖

L
d

d−1
.

Moreover, by the Sobolev inequality, there exists a constant C1 depending only on d and � such 
that

‖um‖
L

d
d−1

≤ C1
(‖um‖L1 + ‖∇um‖L1

)
.

Therefore we have u ∈ L2(�) and

‖u‖p

L2 ≤ C1‖u‖p−m
Lm

(‖u‖m
Lm + |∂1φm|(u, v) + χ‖u∇v‖L1

)
. (5.11)

The second assertion follows from the estimate (5.7) and the L2-estimate ‖v‖W 2,2 ≤ C‖�v‖L2

for v ∈ W 2,2(�) ∩ H 1
0 (�). �



JID:YJDEQ AID:8759 /FLA [m1+; v1.253; Prn:21/03/2017; 16:42] P.30 (1-45)

30 Y. Mimura / J. Differential Equations ••• (••••) •••–•••
Corollary 5.7 (Regularity of discrete solutions). If u0 ∈ L2(�) and (u0, v0) ∈ D(φm), then it 
holds that

uτ (t) ∈ L2(�) ∀t > 0,

vτ (t) ∈ W 2,2(�) ∀t > 0.

Proof. From Lemma 5.2-(i), (u0, v1
τ ) ∈ D(|∂2φm|). From the assumption u0 ∈ L2(�) and 

Lemma 5.6, v1
τ ∈ W 2,2(�). Again, by Lemma 5.2-(i) and Lemma 5.6, (u1

τ , v
1
τ ) ∈ D(|∂1φm|)

and u1
τ ∈ L2(�). Repeating this argument, we obtain uτ (t) ∈ L2(�) and vτ (t) ∈ W 2,2(�) for 

every t > 0. �
The following lemma is fundamental in the minimizing scheme with the Wasserstein distance. 

One can find the proof in the section 5 of [26].

Lemma 5.8 (Gâteaux derivative of the Wasserstein distance). Let μ := uL d ∈ P2(�) and 
μ∗ := u∗L d ∈ P2(�). Then for any ξ ∈ C∞

c (Rd ; Rd), the function t �→ d2
1 ((id + tξ)#u, u∗)

is differentiable at t = 0 and

d

dt
d2

1 ((id + tξ)#u,u∗)
∣∣∣
t=0

=
ˆ

Rd×Rd

〈x − y, ξ(y)〉dp∗(x, y)

where p∗ is an optimal transport map from u to u∗.

Lemma 5.9 (Euler–Lagrange equations). Let {(uk
τ , v

k
τ )}∞k=0 be a solution of the variational 

scheme (3.7). Then for all ϕ ∈ C∞
c (Rd) and ψ ∈ C∞

c (�), the function (uk
τ , v

k
τ ) satisfies the 

following relations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ˆ

�

(uk
τ − uk−1

τ )ϕ dx + τ

ˆ

�

〈∇(uk
τ )

m − χuk
τ∇vk

τ ,∇ϕ〉dx

= O(d2
W(uk

τ , u
k−1
τ )),

ε

ˆ

�

(vk
τ − vk−1

τ )ψ dx − τ

ˆ

�

(�vk
τ − γ vk

τ + αuk−1
τ )ψ dx = 0.

(5.12)

Proof. Let ξ ∈ C∞
c (�; Rd) and define Ut := (id + tξ)#u

k
τ . Since uk

τ is a minimizer of

u ∈ P2(�) �→
{
φm(u, vk

τ ) + 1

2τ
d2

1 (u,uk−1
τ )

}
,

we have

φm(Ut , v
k
τ ) − φm(uk

τ , v
k
τ ) + 1

2τ

(
d2

1 (Ut , u
k−1
τ ) − d2

1 (uk
τ , v

k
τ )
)

≥ 0. (5.13)

Dividing both sides by t > 0 and passing to the limit as t ↓ 0, we obtain
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d

dt

[
φm(Ut , v

k
τ )
] ∣∣∣

t=0
+ 1

2τ

(
lim sup

t↓0

d2
1 (Ut , u

k−1
τ ) − d2

1 (uk
τ , v

k
τ )

t

)
≥ 0.

Consequently, we deduce from (5.6) in Lemma 5.5 (with u = uk
τ , v = vk

τ ) and Lemma 5.8 (with 
u = uk

τ , u∗ = uk−1
τ ) that

ˆ

Rd×Rd

〈y − x, ξ(y)〉dpk(x, y) + τ

ˆ

�

〈∇(uk
τ )

m − χuk
τ∇vk

τ , ξ〉dx ≥ 0.

Similarly, dividing (5.13) by t < 0 and passing to the limit as t ↑ 0, we obtain the opposite 
inequality, hence

ˆ

Rd×Rd

〈y − x, ξ(y)〉dpk(x, y) + τ

ˆ

�

〈∇(uk
τ )

m − χuk
τ∇vk

τ , ξ 〉dx = 0 (5.14)

for ξ ∈ C∞
c (�; Rd). By Brenier’s theorem, there exists the optimal map tk :Rd → R

d such that

¨

Rd×Rd

〈y − x, ξ(y)〉dpk(x, y) =
ˆ

Rd

〈y − tk(y), ξ (y)〉uk
τ (y) dy.

Therefore, the relation (5.14) leads to

(id − tk)

τ
uk

τ + ∇(uk
τ )

m − uk
τ∇vk

τ = 0 a.e. on �.

Taking the inner product of both sides with ∇ϕ, ϕ ∈ C∞
c (Rd), and integrating over �, one sees 

that
ˆ

�

〈x − tk(x),∇ϕ(x)〉uk
τ (x) dx + τ

ˆ

�

〈∇(uk
τ )

m − χuk
τ∇vk

τ ,∇ϕ〉dx = 0.

Here, by Taylor’s expansion ϕ(tk(x)) − ϕ(x) = 〈∇ϕ, tk − x〉 + O(|tk(x) − x|2),
ˆ

�

〈x − tk(x),∇ϕ〉uk
τ (x) dx

=
ˆ

�

(ϕ(x) − ϕ(tk(x))uk
τ (x) dx +

ˆ

�

O(|x − tk(x)|2)uk
τ dx

=
ˆ

�

(uk
τ − uk−1

τ )ϕ dx + O(d2
W(uk

τ , u
k−1
τ )).

Therefore, we obtain the first assertion of (5.12).
Considering the perturbation vk

τ + tψ and the minimality of vk
τ , the second assertion of (5.12)

easily follows from (5.7). �
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5.3. Convergence to a solution of (1.1)

In this subsection, we prove the convergence result of Theorem 3.3. What we will show is 
that the limit function (u, v) in (5.4) is a weak solution of (1.1). Furthermore, we prove that 
convergence in (5.4) takes place in a stronger topology. We start by establishing the following 
uniform estimate.

Lemma 5.10 (Uniform estimates). For p = 2m/(d(2 − m)) and any T > 0,

sup
τ>0

T̂

0

‖uτ (t)‖2p

L2 dt < +∞ (5.15)

holds. In addition,

sup
τ>0

T̂

0

‖∇um
τ ‖2

L1 dt < +∞, sup
τ>0

T̂

0

‖�vτ‖2
L2 dt < +∞

hold.

Proof. From the estimate (5.11) and Corollary 5.7, we have

‖uτ‖p

L2 ≤ C1‖u‖p−m
Lm

(‖uτ‖m
Lm + |∂1φm|(uτ , vτ ) + χ‖∇vτ‖L2‖uτ‖L2

)
,

where p = 2m/(d(2 − m)) ≥ m. Since p > 1, by Young’s inequality,

C1‖u‖p−m
Lm χ‖∇vτ‖L2‖uτ‖L2 ≤ 1

p
‖uτ‖p

L2 + p − 1

p
(C1χ‖u‖p−m

Lm ‖∇vτ‖L2)
p/(p−1),

and we deduce that

‖uτ‖p

L2 ≤ C1p‖u‖p−m
Lm

p − 1

(‖uτ‖m
Lm + |∂1φm|(uτ , vτ )

)+ (C1χ‖u‖p−m
Lm ‖∇vτ‖L2)

p/(p−1). (5.16)

Since

‖uτ‖Lm, ‖∇vτ‖L2 ,

T̂

0

|∂1φm|2(uτ (t), vτ (t)) dt

are uniformly bounded from (3.8) and Lemma 5.2-(iv), integrating the square of (5.16)
over (0, T ), one obtains (5.15). Consequently, considering the estimates (5.10), (5.7) and 
Lemma 5.2-(iv), the second and the third assertions hold. �
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Recall that there exists a sequence τn with τn ↓ 0 such that, for every t > 0, the sequence 
of discrete solutions (uτn(t), vτn(t)) converges to some (u(t), v(t)) weakly in Lm(�) × H 1

0 (�)

(Lemma 5.3).
Now, we define

�τ (t) := |∂1φm|2(uτ (t), vτ (t)) + |∂2φm|2(uτ (t), vτ (t))

+ ‖uτ (t)‖2p

L2 + ‖∇um
τ (t)‖2

L1 + ‖�vτ (t)‖2
L2

+ ‖uτ (t)‖Lm + ‖∇vτ (t)‖L2

and

Sτ (L) := {t > 0 | �τ (t) > L}. (5.17)

Then from Proposition 3.1, Lemma 5.2-(iv) and Lemma 5.10, we have

∞̂

0

�τ (t) dt < +∞.

Consequently, for any τ > 0 we have

|Sτ (L)| < 1

L

∞̂

0

�τ (t) dt → 0 (L → ∞). (5.18)

First, we show that the following pointwise convergence holds at t0 ∈ [0, ∞) \
∞⋃

n=1
Sτn(L).

Lemma 5.11 (Pointwise convergence). Let (uτn, vτn) and (u, v) be as above. Assume that 
supn �τn(t0) < ∞. Then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
n→∞

ˆ

�

〈∇um
τn

(t0) − χuτn(t0)∇vτn(t0), ξ 〉dx

=
ˆ

�

〈∇um(t0) − χu(t0)∇v(t0), ξ 〉dx,

lim
n→∞

ˆ

�

(�vτn(t0) − γ vτn(t0) + αuτn
(t0))ψ dx

=
ˆ

�

(�v(t0) − γ v(t0) + αu(t0))ψ dx,

holds for all ξ ∈ C∞
c (Rd ; Rd) and ψ ∈ C∞

c (�).
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Proof. By assumption we have

sup
n

|∂1φm|(uτn(t0), vτn(t0)) < +∞, sup
n

|∂2φm|(uτn
(t0), vτn(t0)) < +∞,

sup
n

‖uτn(t0)‖L2 < +∞, sup
n

‖∇um
τn

(t0)‖L1 < +∞, sup
n

‖vτn(t0)‖W 2,2 < +∞.

We drop t0 for notational simplicity. The boundedness of ‖uτn‖Lm and ‖∇um
τn

‖L1 imply that the 
sequence (um

τn
)n is bounded in W 1,1(�), hence in BV(�), functions of bounded variation. By 

the compactness theorem for functions of bounded variation (see [41, Thm. 3.23]), a bounded 
sequence in BV(�) has a subsequence that is weakly* convergent in BV(�), thus strongly con-
vergent in L1(�). On the other hand, since uτn ⇀ u weakly in Lm(�), we deduce that um

τn
⇀ um

weakly* in BV(�) without extracting a subsequence. That is,

um
τn

→ um in L1(�) (5.19)

and there exists an Rd -valued measure μ∗ = (μ1, μ2, . . . , μd) such that

ˆ

�

〈∇um
τn

, ξ〉dx →
d∑

j=1

ˆ

�

ξj dμ∗
j = −

ˆ

�

um div ξ dx (5.20)

for every ξ = (ξ1, ξ2, . . . , ξd) ∈ C∞
c (Rd ; Rd).

On the other hand,

∣∣∣∣∣∣
ˆ

�

〈∇v, ξ〉udx −
ˆ

�

〈∇vτn, ξ 〉uτn dx

∣∣∣∣∣∣
≤
∣∣∣∣∣∣
ˆ

�

〈∇v, ξ〉(u − uτn) dx

∣∣∣∣∣∣+
ˆ

�

|〈∇v − ∇vτn, ξ 〉|uτn dx.

(5.21)

By the inequality ‖v‖W 2,2 ≤ lim inf
n→∞ ‖vτn‖W 2,2 < +∞ and the Sobolev embedding theorem, 

|〈∇v, ξ 〉| ∈ L
2d

d−2 (�), which also belongs to the dual space of Lm(�). Because of this, the first 
term of the right-hand side in (5.21) tends to 0 as n → ∞. The second term of the right-hand 
side in (5.21) is estimated by

‖ξ‖L∞
(

sup
n

‖uτn‖L2

)
‖∇v − ∇vτn‖L2 .

From the boundedness of ‖vτn‖W 2,2 and Rellich’s compactness theorem, we see that the third 
factor tends to 0 as n → ∞. We thus have

ˆ
〈∇vτn, ξ〉uτn dx →

ˆ
〈∇v, ξ 〉udx.
� �
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In view of this and (5.20), one obtains

ˆ

�

〈∇um
τn

− χuτn∇vτn, ξ 〉dx →
d∑

j=1

ˆ

�

ξj dμ∗
j − χ

ˆ

�

〈∇v, ξ 〉udx.

This and (5.6) imply

d∑
j=1

ˆ

�

ξj dμ∗
j − χ

ˆ

�

〈∇v, ξ〉udx ≤ lim inf
n→∞ |∂1φm|(uτn, vτn)‖ξ‖L2(uτn )

= lim inf
n→∞ |∂1φm|(uτn, vτn)‖ξ‖L2(u).

By the Riesz representation theorem, there exists g1 ∈ L2
u(�; Rd) such that

‖g1‖L2 ≤ lim inf
n→∞ |∂1φm|(uτn, vτn)

and

d∑
j=1

ˆ

�

ξj dμ∗
j − χ

ˆ

�

〈∇v, ξ〉udx =
ˆ

�

〈g1, ξ 〉udx.

Therefore, we have

d∑
j=1

ˆ

�

ξj dμ∗
j =

ˆ

�

〈ug1 + χu∇v, ξ 〉dx = −
ˆ

�

um div ξ dx.

Taking into account that ug1 + χu∇v ∈ L1(�), we have

ug1 + χu∇v = ∇um.

Combining all relations above, we obtain

lim
n→∞

ˆ

�

〈∇um
τn

− χuτn∇vτn, ξ 〉dx =
ˆ

�

〈∇um − χu∇v, ξ 〉dx

and

⎛
⎝ˆ

�

|∇um − χu∇v|2
u

dx

⎞
⎠

1/2

≤ lim inf
n→∞ |∂1φm|(uτn, vτn). (5.22)
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Next, from the boundedness of ‖uτn
‖L2 and ‖vτn‖W 2,2 , we deduce that

�vτn − γ vτn + αuτn
⇀ �v − γ v + αu weakly in L2(�), (5.23)

which implies the second assertion. �
Lemma 5.12 (L1-convergence). Let (τn) be the sequence in Lemma 5.11. Then

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

lim
n→∞

bˆ

a

ˆ

�

〈∇um
τn

− χuτn∇vτn, ξ 〉dxdt =
bˆ

a

ˆ

�

〈∇um − χu∇v, ξ 〉dxdt,

lim
n→∞

bˆ

a

ˆ

�

(�vτn − γ vτn + αuτn)ψ dxdt =
bˆ

a

ˆ

�

(�v − γ v + αu)ψ dxdt,

for any a, b ∈ [0, ∞) and for all ξ ∈ C∞(Rd; Rd) and ψ ∈ C∞
c (�).

Proof. Let

ρτn(t) :=
∣∣∣∣∣∣
ˆ

�

〈∇um
τn

− χuτn∇vτn, ξ 〉dx −
ˆ

�

〈∇um − χu∇v, ξ 〉dx

∣∣∣∣∣∣
and let

ρ̃τn,L(t) :=
⎧⎨
⎩

ρτn(t), t ∈ [0,∞) \ Sτn(L),

0, t ∈ Sτn(L),

where Sτn(L) is the set defined in (5.17).
For arbitrary L > 0 and t0 ∈ [0, ∞) if there exists a subsequence (τ ′

n) such that t0 /∈⋃∞
n=1 Sτ ′

n
(L), then we deduce from Lemma 5.11 that ρ̃τ ′

n,L(t0) → 0 (n → ∞). Consequently, 
for arbitrary L > 0 and t ∈ [0, ∞), we obtain ρ̃τn,L(t) → 0 (n → ∞). Therefore the Lebesgue 
dominated convergence theorem yields

lim
n→∞

bˆ

a

ρ̃τn,L

1 + ρ̃τn,L

dt = 0

for any a, b ∈ [0, ∞).
On the other hand, by (5.6) and the Cauchy–Schwarz inequality, together with the fact that ´
uτn dx = 1, we have
�
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⎛
⎝ˆ

�

|∇um
τn

− χuτn∇vτn |dx

⎞
⎠

2

≤
⎛
⎝ˆ

�

|∇um
τn

− χuτn∇vτn |2
uτn

dx

⎞
⎠
⎛
⎝ˆ

�

uτn dx

⎞
⎠

≤ |∂1φm|2(uτn, vτn) ≤ �τn.

(5.24)

Next, we prove

⎛
⎝ˆ

�

|∇um(t) − χu(t)∇v(t)|dx

⎞
⎠

2

≤ lim inf
n→∞ �τn(t) (5.25)

for L 1-a.e. t ∈ [0, ∞). Since Fatou’s lemma leads to

∞̂

0

lim inf
n→∞ �τn(t) dt ≤ lim inf

n→∞

∞̂

0

�τn(t) dt < +∞,

we obtain

lim inf
n→∞ �τn(t) < +∞ for L 1-a.e. t ∈ [0,∞).

Consequently, for L 1-a.e. t ∈ [0, ∞), there exists a subsequence (τ ′
n) depending on t such that

lim
n→∞�τ ′

n
(t) = lim inf

n→∞ �τn(t) < +∞.

Then (uτ ′
n
(t), vτ ′

n
(t)) satisfies the assumption of Theorem 5.11. Therefore, by the same derivation 

as (5.22) we obtain

⎛
⎝ˆ

�

|∇um(t) − χu(t)∇v(t)|dx

⎞
⎠

2

≤ lim inf
n→∞ |∂1φm|2(uτ ′

n
(t), vτ ′

n
(t))

≤ lim
n→∞�τ ′

n
(t) = lim inf

n→∞ �τn(t).

Combining (5.24) with (5.25) and using Fatou’s lemma, we have

bˆ

a

ρ2
τn

dt ≤ 2‖∇ϕ‖2
L∞

bˆ

a

(
�τn + lim inf

n→∞ �τn

)
dt

≤ 2‖∇ϕ‖2
L∞

⎛
⎝ bˆ

a

�τn dt + lim inf
n→∞

bˆ

a

�τn dt

⎞
⎠< +∞,

hence we also obtain
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sup
n

bˆ

a

ρ̃2
τn,L(t) dt < +∞.

Therefore, for arbitrary L > 0, we have

bˆ

a

ρ̃τn,L dt =
bˆ

a

(
ρ̃τn,L

1 + ρ̃τn,L

)1/2 (
ρ̃τn,L(1 + ρ̃τn,L)

)1/2
dt

≤
⎛
⎝ bˆ

a

ρ̃τn,L

1 + ρ̃τn,L

dt

⎞
⎠

1/2 ⎛
⎝ bˆ

a

ρ̃τn,L + ρ̃2
τn,L dt

⎞
⎠

1/2

→ 0 (n → ∞).

Consequently, Cauchy–Schwarz inequality leads to

bˆ

a

ρτn dt =
ˆ

Sτn (L)

ρτn dt +
ˆ

[a,b]\Sτn (L)

ρτn dt

≤
(

sup
n

|Sτn(L)|
)1/2

⎛
⎝sup

n

bˆ

a

ρ2
τn

dt

⎞
⎠

1/2

+
bˆ

a

ρ̃τn,L dt.

Here, the estimate (5.18) implies that the first term of the right-hand side becomes arbitrary small 
if L > 0 large enough. The second term of the right-hand side tends to 0 as n → ∞. This implies 
the first assertion. The second assertion can be shown by a similar argument. �
Proof of the convergence result of Theorem 3.3. Fix a, b ≥ 0 arbitrarily. For any τ > 0, there 
exist �a

τ ∈ N and �b
τ ∈N such that

(�a
τ − 1)τ < a ≤ �a

τ τ, lim
τ↓0

�a
τ τ = a,

(�b
τ − 1)τ < b ≤ �b

τ τ, lim
τ↓0

�b
τ τ = b.

(5.26)

Summing up (5.12) from k = �a
τ to �b

τ , we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ˆ

�

(uτ (b) − uτ (a))ϕ dx +
�b
τ τˆ

�a
τ τ

ˆ

�

〈∇um
τ − χuτ∇vτ ,∇ϕ〉dxdt = R(τ),

ε

ˆ

�

(vτ (b) − vτ (a))ψ dx −
�b
τ τˆ

a

ˆ

�

(�vτ − γ vτ + αuτ )ψ dxdt = 0,
�τ τ
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where R(τ) = O(
∑

k∈N d2
1 (uk

τ , u
k−1
τ )) = O(τ). By Lemma 5.3, we can extract a sequence τn

such that for every t ≥ 0, the discrete solution (uτn(t), vτn(t)) converges to some function 
(u(t), v(t)) as n → ∞ weakly in Lm(�) × H 1

0 (�). Thus by Lemma 5.12, we see that this func-
tion (u, v) satisfies (1.5).

Finally, we check the regularity of the limit function (u, v). The property (i) in Defini-
tion 1.3 follows from (3.8). From Lemma 5.10, we see that u ∈ Lp(0, T ; L2(�)) for p = 2m/

(d(2 − m)) ≥ m and every T > 0. Consequently, we have um ∈ L2(0, T ; W 1,1(�)) and v ∈
L2(0, T ; W 2,2(�)) by the same argument as in the proof of Lemma 5.10. This confirms the 
property (ii) in Definition 1.3. The proof of Lemma 5.3 implies that the limit function (u, v)

is continuous with respect to the topology of P2(�) × L2(�) endowed with the distance 

d =
√

d2
1 + d2

2 . From this, the property (iii) in Definition 1.3 follows. It remains to check the 
property (iv). Revisiting the proof of Lemma 5.11 and Lemma 5.12, one sees that the two lemmas
hold true for ξ ∈ C∞

c (Rd × [0,∞);Rd) and ψ ∈ C∞
c (Rd × [0, ∞)) instead of ξ ∈ C∞

c (Rd ; Rd)

and ψ ∈ C∞
c (Rd), respectively. Therefore, we have

bˆ

a

ˆ

�

〈∇um − χu∇v, ξ 〉dxdt = lim
n→∞

bˆ

a

ˆ

�

〈∇um
τn

− χuτn∇vτn, ξ 〉dxdt

≤ lim inf
n→∞

⎧⎪⎨
⎪⎩
⎛
⎝ bˆ

a

ˆ

�

|�vτn − γ vτn + αuτn
|2 dxdt

⎞
⎠

1/2 ⎛
⎝ bˆ

a

ˆ

�

|ξ |2uτn dxdt

⎞
⎠

1/2
⎫⎪⎬
⎪⎭

= lim inf
n→∞

⎛
⎝ bˆ

a

ˆ

�

|�vτn − γ vτn + αuτn
|2 dxdt

⎞
⎠

1/2 ⎛
⎝ bˆ

a

ˆ

�

|ξ |2udxdt

⎞
⎠

1/2

.

Consequently, by duality and the inequality (5.6), we obtain

bˆ

a

ˆ

�

|∇um − χu∇v|2
u

dxdt ≤ lim inf
n→∞

bˆ

a

ˆ

�

|uτn − χuτn∇vτn |2
uτn

dxdt

≤ lim inf
n→∞

bˆ

a

|∂1φm|2(uτn, vτn) dt.

(5.27)

The right-hand side has a finite value by Lemma 5.2-(iv). Similarly,

bˆ

a

ˆ

�

|�v − γ v + αu|2 dxdt ≤ lim inf
n→∞

bˆ

a

ˆ

�

|�vτn − γ vτn + αuτn
|2 dxdt

≤ lim inf
n→∞

bˆ
|∂2φm|2(uτn

, vτn) dt.

(5.28)
a



JID:YJDEQ AID:8759 /FLA [m1+; v1.253; Prn:21/03/2017; 16:42] P.40 (1-45)

40 Y. Mimura / J. Differential Equations ••• (••••) •••–•••
These prove the property (iv) in Definition 1.3. Therefore, the limit function (u, v) is a weak 
solution of (1.1) that exists globally in time. �
6. Energy dissipative inequality

In this final section, we prove Theorem 1.5. For that purpose, we need a certain continuity 
property of φm with respect to the weak topology and Rellich’s theorem plays a key role in that 
argument. This is a reason why we are mainly focusing on the case where � is a bounded domain 
in Rd .

Lemma 6.1 (Lower semicontinuity of φm). Let un ⇀ u weakly in Lm(�) and vn ⇀ v weakly 
in H 1

0 (�). Then we have

φm(u, v) ≤ lim inf
n→∞ φm(un, vn).

Proof. It suffices to show that 
´
�

uv dx is continuous with respect to the weak topology in 
Lm(�) × H 1

0 (�), because it is well known that φm(u, v) + χ
´
�

uv dx is lower semicontinuous 
with respect to this weak topology. By Rellich’s compactness theorem, we can extract a subse-
quence, still denoted by vn, such that vn → v strongly in Lm′

(�), where m′ := m
m−1 ≤ 2d−2

d−2 . 
Therefore, by Hölder’s inequality we have

∣∣∣∣∣∣
ˆ

�

(unvn − uv)dx

∣∣∣∣∣∣≤ ‖un‖Lm‖vn − v‖
Lm′ +

∣∣∣∣∣∣
ˆ

�

(un − u)v dx

∣∣∣∣∣∣→ 0 (n → ∞). �

Remark 6.1. Lemma 6.1 still holds in the case � =R
d , under the condition sup

n

´
Rd |x|2un(x) dx

< +∞.

Lemma 6.2 (Continuity of φm). Let (uτn, vτn) be a sequence of discrete solutions converging to a 
weak solution (u, v) of (1.1). Then, for L 1-a.e. t ∈ [0, ∞) there exists a subsequence (uτ ′

n
, vτ ′

n
)

such that

lim
n→∞φm(uτ ′

n
(t), vτ ′

n
(t)) = φm(u(t), v(t)).

Proof. The lemma is clear when t = 0. By Fatou’s lemma, we have

∞̂

0

lim inf
n→∞ �τn(t) dt ≤ lim inf

n→∞

∞̂

0

�τn(t) dt < +∞.

Hence

lim inf
n→∞ �τn(t) < +∞ L 1-a.e. t ∈ [0,∞).

Consequently, for L 1-a.e. t0 ∈ [0, ∞), there exists a subsequence (τ ′
n) such that
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lim
n→∞�τ ′

n
(t0) = lim inf

n→∞ �τn(t0) < +∞.

Since (uτ ′
n
, vτ ′

n
) and t0 satisfy the assumption of Theorem 5.11, from (5.19), it follows that

uτ ′
n
(t0) → u(t0) in Lm(�)

On the other hand, we deduce from he boundedness of ‖vτ ′
n
(t0)‖W 2,2 and Rellich’s compactness 

theorem that vτ ′
n
(t0) → v(t0) strongly in H 1

0 (�). Consequently,

lim
n→∞φm(uτ ′

n
(t0), vτ ′

n
(t)0) = φm(u(t0), v(t0)). �

The gradient energy estimate listed in Lemma 5.2-(iv) leads to the following rough energy 
estimate:

2(φm(u(a), v(a)) − φm(u(b), v(b)))

≥
bˆ

a

ˆ

�

|∇um − χu∇v|2
u

dxdt + χ

αε

bˆ

a

ˆ

�

|�v − γ v + αu|2 dxdt (6.1)

for every b ∈ [0, +∞) and a ∈ [0, b)\N , N being a L 1-negligible subset of (0, +∞).
In fact, letting τ = τ ′

n and passing to the limit as n → ∞ in Lemma 5.2-(iv), and considering 
the inequalities (5.27) and (5.28) with Lemmas 6.1 and 6.2, we obtain (6.1).

We now improve the estimate (6.1) by using the Moreau–Yosida Approximation.

Proof of Theorem 1.5. By applying the derivative of Moreaux–Yosida approximation [28, 
Thm. 3.1.4] to our minimizing problem (3.7), it holds for k = 1, 2, . . . that

d2
2 (vk

τ , v
k−1
τ )

2τ 2
+

τˆ

0

d2
2 (V k

σ , vk−1
τ )

2σ 2
dσ = φm(uk−1

τ , vk−1
τ ) − φm(uk−1

τ , vk
τ ),

d2
1 (uk

τ , u
k−1
τ )

2τ 2
+

τˆ

0

d2
1 (Uk

σ ,uk−1
τ )

2σ 2
dσ = φm(uk−1

τ , vk
τ ) − φm(uk

τ , v
k
τ ),

(6.2)

where

V k
σ ∈ argmin

H 1
0 (�)

{
φm(uk−1

τ , v) + 1

2σ
d2

2 (v, vk−1
τ )

}
,

Uk
σ ∈ argmin

P2(�)

{
φm(u, vk

τ ) + 1

2σ
d2

1 (u,uk−1
τ )

}
.

Note that for any σ ∈ (0, τ) and k ∈ N, V k
σ and Uk

σ are uniquely defined by an argument similar 
to the proof of Proposition 3.1. Moreover, by the slope estimates (5.2) and (5.3), it follows that
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⎧⎪⎪⎨
⎪⎪⎩

|∂2φm|(uk−1
τ ,V k

σ ) ≤ d2(V
k
σ , vk−1

τ )

σ
,

|∂1φm|(Uk
σ , vk

τ ) ≤ d1(U
k
σ ,uk−1

τ )

σ
.

(6.3)

We now define the De Giorgi variational interpolations by

{
Ũτ (t) := Uk

σ if t = (k − 1)τ + σ,

Ṽτ (t) := V k
σ if t = (k − 1)τ + σ.

Note that Ũτ and Ṽτ have the same limits as uτ and vτ , respectively. Indeed,

φm(Uk
σ ,vk

τ ) + 1

2σ
d2

1 (Uk
σ ,uk−1

τ ) ≤ φm(uk
τ , v

k
τ ) + 1

2σ
d2

1 (uk
τ , u

k−1
τ )

=
{
φm(uk

τ , v
k
τ ) + 1

2τ
d2

1 (uk
τ , u

k−1
τ )

}
+ 1

2

(
1

σ
− 1

τ

)
d2

1 (uk
τ , u

k−1
τ )

≤ φm(Uk
σ ,uk

τ ) + 1

2τ
d2

1 (Uk
σ ,uk−1

τ ) + 1

2

(
1

σ
− 1

τ

)
d2

1 (uk
τ , u

k−1
τ )

from which we obtain d1(U
k
σ , uk−1

τ ) ≤ d1(u
k
τ , u

k−1
τ ). Hence for t ∈ ((k − 1)τ, kτ ],

d2
1 (Ũτ (t), uτ (t)) ≤ d2

1 (Uk
σ ,uk

τ )

≤ (
d1(U

k
σ ,uk−1

τ ) + d1(u
k
τ , u

k−1
τ )

)2

≤ 4d2
1 (uk

τ , u
k−1
τ ) ≤ 8τ(φm(u0, v0) − infφm).

This implies that Ũτ has the same limit as uτ . By a similar argument, Ṽτ has the same limit as vτ . 
Thus

(Ũτn(t), Ṽτn(t)) ⇀ (u(t), v(t)) weakly in Lm(�) × H 1
0 (�) for all t > 0.

Considering (6.2), (6.3) and Lemma 5.2-(i), we deduce that

φm(uτ (a), vτ (a)) − φm(uτ (b), vτ (b))

≥ 1

2

�b
τ τˆ

(�a
τ −1)τ

|∂1φm|2(uτ , vτ ) + |∂2φm|2(uτ , vτ ) dt

+ 1

2

�b
τ τˆ

a

|∂1φm|2(Ũτ , vτ ) + |∂2φm|2(uτ , Ṽτ ) dt (6.4)
(�τ −1)τ
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≥ 1

2

bˆ

a

|∂1φm|2(uτ , vτ ) + |∂2φm|2(uτ , vτ ) dt

+ 1

2

bˆ

a

|∂1φm|2(Ũτ , vτ ) + |∂2φm|2(uτ , Ṽτ ) dt,

where �a
τ and �b

τ are the integers defined in (5.26). By Lemma 5.6, we see that Ũτ (t) ∈ L2(�)

and Ṽτ (t) ∈ W 2,2(�) for any t > 0. Therefore, Lemma 5.10 and holds true if we replace uτ and 
vτ by Ũτ and Ṽτ , respectively. Hence revisiting the proof of Lemmas 5.11 and 5.12, we see that 
(5.27) remains true if uτn on the right-hand side is replaced by Ũτn , and (5.28) remains true if vτn

is replaced by Ṽτn . Consequently,

bˆ

a

ˆ

�

|∇um − χu∇v|2
u

dxdt ≤ lim inf
n→∞

bˆ

a

|∂1φm|2(Ũτn , vτn) dt,

χ

αε

bˆ

a

ˆ

�

|�v − γ v + αu|2 dxdt ≤ lim inf
n→∞

bˆ

a

|∂2φm|2(uτn
, Ṽτn) dt.

(6.5)

Thus, setting τ = τ ′
n in (6.4) and passing to the limit as n → ∞, and applying Lemmas 6.1

and 6.2, we obtain the energy dissipative inequality (1.6). �
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