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Abstract

We employ a variational approach to study the Neumann boundary value problem for the p-Laplacian 
on bounded smooth-enough domains in the metric setting, and show that solutions exist and are bounded. 
The boundary data considered are Borel measurable bounded functions. We also study boundary continuity 
properties of the solutions. One of the key tools utilized is the trace theorem for Newton–Sobolev functions, 
and another is an analog of the De Giorgi inequality adapted to the Neumann problem.
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1. Overview

Amongst the two types of boundary value problems in PDEs, Dirichlet and Neumann prob-
lems, the Dirichlet problem is currently the most well-studied. In the Euclidean setting, much 
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of the research on Neumann boundary value problem focused on the zero boundary value prob-
lem, the so-called natural boundary value. The general Neumann boundary value problem for the 
p-Laplacian is the following: find u in the appropriate Sobolev class such that{

−�p u = 0 in �,

−|∇u|p−2∂ηu = f on ∂�,
(1.1)

which, in its weak formulation, would mean finding u in the Sobolev class W 1,p(�) such that 
whenever ϕ ∈ W 1,p(�),

ˆ

�

|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx +
ˆ

∂�

|∇u(ζ )|p−2ϕ(ζ )∂ηu(ζ )dHn−1(ζ ) = 0,

that is,

ˆ

�

|∇u(x)|p−2∇u(x) · ∇ϕ(x)dx −
ˆ

∂�

ϕ(ζ )f (ζ ) dHn−1(ζ ) = 0,

where ∂ηu(ζ ) is the directional derivative of u in the direction of the outer normal to ∂� at ζ . Its 
variational formulation is to find u that minimizes the functional

I (u) =
ˆ

�

|∇u|p dx +
ˆ

∂�

uf dP�,

where |∇u| will be replaced by the (minimal p-weak) upper gradient of u in the metric setting.
In [30] issues of existence and stability of solutions to the general Neumann boundary value 

problem for a class of p-Laplace-type operators were considered. The paper [47] gave a compu-
tational scheme for constructing solutions to the general Neumann boundary value problem for 
the Laplacian in three-dimensional Euclidean domains with piecewise smooth boundary. The pa-
per [15] of Cianchi and Maz’ya studied regularity of solutions to the Neumann boundary value 
problem, for Lipschitz domains, related to the p-Laplace and more general operators, but the 
Neumann data they consider is the natural boundary condition, i.e., constant zero data. The work 
of Agmon, Douglis and Nirenberg [1,2], M. Taylor [50], Cranny [16], and the recent work of 
Kenig, Lin, and Shen [32], Milakis and Silvestre [44], studied regularity of solutions to the gen-
eral Neumann problem for homogeneous and rapidly oscillating elliptic PDEs for C1,α-domains 
in Euclidean setting. The work of Dancer, Daners and Hauer [17] explored the behavior of solu-
tions to the zero (natural) Neumann boundary value problem for the p-Laplacian on Euclidean 
domains whose complement is a compact set, showing that solutions that have a certain decay 
property at ∞ (decay to zero) have to vanish identically on the domain.

The study of the Neumann problem in non-smooth settings is currently sparse. In the more 
general setting of Carnot groups, Nhieu [46] studied the existence and uniqueness of solutions to 
the Neumann boundary value problem for the sub-Laplacian operator (corresponding to p = 2) 
on bounded Lipschitz domains. More explicit computations, in terms of Green’s functions, were 
given by Dubey, Kumar, and Misra in [18]. Mixed boundary problems and homogenization for 
domains in Heisenberg groups were considered by Tchou [51], Biroli, Tchou, and Zhikov [9]. 
In the non-smooth metric setting, an analog of the Dirichlet problem for the p-Laplacian was 
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initiated in [36] and is currently an active area of research (see for example [11]). In this paper, 
we propose an analog of the Neumann boundary value problem adapted to the non-smooth setting 
by using the tools of calculus of variation and ideas due to De Giorgi, Giaquinta, and Giusti.

The challenge in our situation is three-fold. First, unlike [1,2,50,32,46,18,51,9], our prob-
lem is non-linear even in the Euclidean setting (p-Laplacian with 1 < p < ∞); second, lack of 
smoothness structure, especially at the boundary, and so we have no notion of C1-domain in the 
metric setting; third, unlike in [46,18,51,9], lack of the Euler–Lagrange (PDE) equation corre-
sponding to the energy minimization problem, since the upper gradient structure on the metric 
space might not come from an inner product structure. We therefore do not have access to tools 
such as the Euler–Lagrange equation nor layer potentials as used for example in the work of 
Maz’ya and Poborchi [43]. Thus the results obtained in this paper are, not surprisingly, weaker 
than those of [1,2,50,32], but on the other hand, they are applicable to a wider class of oper-
ators than linear elliptic operators and are applicable to a wider range of domains even in the 
Euclidean setting (such as Lipschitz domains that might perhaps not be C1-domains). We show 
that solutions exist (Theorem 4.3) and are bounded at the boundary of the domain (Theorem 5.2). 
As mentioned above, the key step is to identify an analog of the De Giorgi inequality adapted 
to the problem, see Theorem 5.3. Furthermore, we apply this version of De Giorgi inequality to 
prove continuity of solutions for certain values of p at a.e. boundary point as well as at every 
boundary point in whose neighborhood the Neumann data does not change its sign (Theorem 7.2
and Theorem 7.12).

The paper [20] by García-Azorero, Manfredi, Peral and Rossi studied the Neumann boundary 
value problem for the p-Laplace operator in the Euclidean setting and showed for smooth do-
mains with continuous boundary data that the solutions for a given data are unique up to additive 
constants. Their proof used the Euler–Lagrange formulation of the problem, an approach that is 
not available to us in the non-smooth setting. We obtain a weaker uniqueness property, namely 
that the minimal p-weak upper gradients of the solutions are all equal, see Lemma 4.5. However, 
if the metric measure space X has a Cheeger-type differential structure (that is, a first order Tay-
lor theorem is satisfied for Lipschitz functions with respect to a vector bundle on X) such that 
the minimal p-weak upper gradient of u ∈ N1,p(X) is equal to the norm of its Cheeger deriva-
tive, then we can conclude from Lemma 4.5 that solution is, in fact, unique (up to an additive 
constant), taking into consideration also that the set of solutions form a convex set. Metric spaces 
endowed with such a differential structure are said to be infinitesimally Hilbertian, see [6] and 
[21]. Even in some weighted Euclidean setting, we do not have this Hilbertian property, see [37]. 
In infinitesimally Hilbertian spaces, one has also access to the corresponding Euler–Lagrange 
equation, which enables obtaining the uniqueness of solutions (up to an additive constant) via 
PDE methods, see [22]. With the PDE structure developed in [22], the tools from [38] would 
give better control in terms of obtaining Hölder continuity up to the boundary provided that the 
Sobolev class N1,2(X) is a Hilbert space. In our more general setting, we do not have access 
to these tools, and hence we obtain only the weaker conclusion that for small p the solution 
is continuous up to the parts of the boundary where the boundary datum does not switch sign. 
Surprisingly, we obtain the full strength of the local “boundedness of the solution at the bound-
ary” result without needing this additional structure. Hence, much of what we do in this paper 
is applicable even in metric measure spaces that are neither almost Hilbertian nor infinitesimally 
strictly convex (note that at least one of these two properties is needed to apply the theory devel-
oped in [22]). For instance, the results we obtain hold also for the non-Hilbertian example given 
in [37].
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There is also much interest in studying potential theory in weighted metric space setting, 
see [8]. It was shown in [8] that under some natural conditions, the two possible natural exten-
sions of Sobolev spaces N1,p(X) to the setting where the measure μ is modified via a weight 
ρ ∈ L1

loc(X) agree. Namely, the space N1,p(X, ρ dμ) obtained by looking at the weighted space 

as a metric measure space in its own right, and the space N1,p
ρ (X) consisting of functions in 

N
1,1
loc (X) that belong to Lp(X, ρ dμ) with an upper gradient in Lp(X, ρ dμ) agree. The tradi-

tional approach in the weighted Euclidean setting uses the space N1,p
ρ (X), see [28]. The natural 

conditions assumed in [8] are that the weighted metric measure space is doubling, supports a 
1-Poincaré inequality for Lipschitz functions (and hence for all functions, thanks to the results 
of Keith [31]), and ρ satisfies the asymptotic condition

lim inf
n→∞

1

np

⎛⎝ˆ

X

ρn dμ

⎞⎠1/n ⎛⎝ˆ

X

ρ−n dμ

⎞⎠1/n

< ∞.

Therefore our results hold true in the weighted setting studied in [8] as well, even without the 
asymptotic condition above, as we do not need the perspective of weighted Sobolev spaces taken 
by [28].

The rest of this paper is organized as follows. We give the needed definitions in Section 2. In 
Section 3 we describe the Neumann problem in the metric setting using the language of calculus 
of variation, and discuss the needed tool of boundary trace of Sobolev functions. Existence of 
solutions for bounded boundary data is studied in Section 4, with Theorem 4.3 declaring the 
existence of solutions. A weak analog of uniqueness of solutions is given in Lemma 4.5 in this 
section as well. The focus of Section 5 is to prove that the solutions are necessarily bounded, 
see Theorem 5.2. The key inequality that is an analog of the De Giorgi inequality is also given 
in this section, in Theorem 5.3. In Section 6 we discuss regularity of solutions at the boundary, 
and show that at boundary points where the boundary data is non-negative the solution must 
necessarily be a subminimizer and hence is upper semicontinuous there. For metric spaces with 
measure μ that have a strong regularity, known as Ahlfors regularity, we show in the final section 
of this paper that the solutions are continuous at boundary points where the boundary data does 
not change sign (Theorem 7.2) and that the solutions are continuous at Hausdorff co-dimension 
1-almost every boundary point (Theorem 7.12).

2. Preliminaries

The triplet (X, d, μ) denotes a metric measure space. We say that μ is doubling if there is a 
constant CD such that for each x ∈ X and r > 0,

0 < μ(B(z,2r)) ≤ CD μ(B(z, r)) < ∞.

Lemma 2.1 (See e.g. [11, Lemma 3.3]). There is s > 0 such that

μ(B(x, r))

μ(B(y,R))
≥ C

(
r

R

)s

(2.2)

for all 0 < r ≤ R, y ∈ X, and x ∈ B(y, R).
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Note that we can always take s to be as large as we wish. Therefore from now onwards we 
assume that s > 1. We also say that μ is Ahlfors s-regular at scale r0 > 0 if there is a constant 
C > 0 such that whenever x ∈ X and 0 < r < r0, we have

1

C
rs ≤ μ(B(x, r)) ≤ C rs.

In what follows, the space L1
loc(X) consists of functions on X that are integrable on bounded

subsets of X.
A Borel function g : X → [0, ∞] is an upper gradient of u : X → R ∪ {±∞} if the following 

inequality holds for all (rectifiable) curves γ : [a, b] → X, (denoting x = γ (a) and y = γ (b)),

|u(y) − u(x)| ≤
ˆ

γ

g ds

whenever u(x) and u(y) are both finite, and 
´
γ

g ds = ∞ otherwise. The notion of upper gradi-
ents, first formulated in [27] (with the terminology “very weak gradients”), plays the role of |∇u|
in the metric setting where no natural distributional derivative structure exists.

Definition 2.3 (cf. [48]). The Newtonian space N1,p(X) is defined by

N1,p(X) =
{
u ∈ Lp(X) : ‖u‖N1,p(X) := ‖u‖Lp(X) + inf

g
‖g‖Lp(X) < ∞

}
,

where the infimum is taken over all upper gradients g of u.

Let us point out that we assume that functions are defined everywhere, and not just up to 
equivalence classes μ-almost everywhere. This is essential for the notion of upper gradients 
since they are defined by a pointwise inequality.

Definition 2.4. Given a ball B = B(x, r) ⊂ X and a set E ⊂ B , the relative p-capacity of E with 
respect to 2B = B(x, 2r) is given by

capp(E,2B) := inf
u

ˆ

2B

g
p
u dμ,

where the infimum is over all functions u ∈ N1,p(X) for which u ≥ 1 on E and u = 0 on X \ 2B .

It follows from [11, Proposition 6.16] that

μ(E)

C rp
≤ capp(E,2B) ≤ C

μ(B)

rp
. (2.5)

Definition 2.6 (cf. [3]). A metric space X supports a p-Poincaré inequality with p ∈ [1, ∞) if 
there exist positive constants λ and C such that for all balls B ⊂ X and all u ∈ L1 (X),
loc
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B

|u − uB |dμ ≤ C rad(B)

( 
λB

gp dμ

)1/p

. (2.7)

Here and in the rest of the paper, fA denotes the integral mean of a function f ∈ L0(X) over 
a measurable set A ⊂ X of finite positive measure, defined as

fA =
 

A

f dμ = 1

μ(A)

ˆ

A

f dμ

whenever the integral on the right-hand side exists, not necessarily finite though. Furthermore, 
given a ball B = B(x, r) ⊂ X and λ > 0, the symbol λB denotes the inflated ball B(x, λr). For a 
detailed treatise on analysis in metric spaces and the Newtonian approach in particular, we refer 
the interested reader to [26,48,11,29].

We next give an analog of the notion of sets of finite perimeter, as formulated in [45], see [19,
5,52] for the Euclidean setting.

Definition 2.8. A Borel set E ⊂ X is said to be of finite perimeter if there is a sequence (uk)k∈N
from N1,1(X) such that uk → χE in L1(X) and

lim inf
k→∞

ˆ

X

guk
dμ < ∞.

The perimeter PE(X) of E is the infimum of the above limit infima over all such sequences (uk)k
as above. Given an open set U ⊂ X, the perimeter of E in U is

PE(U) = inf

{
lim inf
k→∞

ˆ

U

guk
dμ : (uk)k∈N ⊂ N1,1(U),uk → χE∩U in L1(U)

}
.

An analogous notion (using Lipschitz functions rather than functions in N1,1(X)) was pro-
posed in [45], but the notion given there agrees with ours when the measure on X is doubling and 
X supports a 1-Poincaré inequality. A direct translation of the proof given in [45] shows that the 
Carathéodory extension of PE to subsets of X is a finite Radon measure on X. In [3], Ambrosio 
demonstrated that if the measure on X is doubling and supports a 1-Poincaré inequality, then 
the Radon measure PE is equivalent to the co-dimension 1 Hausdorff measure restricted to the 
measure-theoretic boundary ∂mE of E. Here, x ∈ ∂mE if and only if x ∈ X and

lim sup
r→0+

μ(B(x, r) ∩ E)

μ(B(x, r))
> 0 and lim sup

r→0+

μ(B(x, r) \ E)

μ(B(x, r))
> 0.

Given A ⊂ X, we define its co-dimension 1 Hausdorff measure H(A) by

H(A) = lim
δ→0+ inf

{∑ μ(Bi)

rad(Bi)
: Bi balls in X, rad(Bi) < δ,A ⊂

⋃
Bi

}
. (2.9)
i i
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Thus, the results of [3] show that there is a constant C ≥ 1 such that whenever E ⊂ X is of 
finite perimeter and K ⊂ X is a Borel set, we must have

1

C
H(K ∩ ∂mE) ≤ PE(K) ≤ CH(K ∩ ∂mE).

See [45,3,7,5] for more on sets of finite perimeter and associated functions of bounded vari-
ation in the metric setting. The paper [4] studies connections between the relaxation of the 
co-dimension 1 Minkowski content of the boundary and the perimeter measure.

3. Statement of the problem and standing assumptions

In this paper, 1 < p < ∞ and X is a complete metric space equipped with a doubling measure 
μ supporting a p-Poincaré inequality.

Definition 3.1. Let � be a bounded domain (non-empty, connected open set) in X with X \ �

of positive measure such that � is also of finite perimeter with perimeter measure P�. Let f :
∂� → R be a bounded P�-measurable function with 

´
∂�

f dP� = 0. We say that a function 
u : � → R is a p-harmonic solution to the Neumann boundary value problem with boundary 
data f if u ∈ N1,p(�) and

I (u) :=
ˆ

�

g
p
u dμ +

ˆ

∂�

T uf dP� ≤
ˆ

�

gp
v dμ +

ˆ

∂�

T v f dP� = I (v) (3.2)

for every v ∈ N1,p(�). Here gu and gv are the minimal p-weak upper gradients of u and v in �, 
respectively, and T u and T v denote the traces of u and v on ∂�, respectively.

When considering the original Neumann boundary value problem (1.1), we see that adding 
a constant to a solution gives us another solution. Thus, the Neumann boundary data f has to 
satisfy the compatibility condition

ˆ

∂�

f dP� = 0

so that the value of the functional I as defined in (3.2) is invariant with respect to adding a 
constant to a solution.

Definition 3.3 (Assumptions on �). We will assume in this paper that here is a constant C ≥ 1
such that for all x ∈ ∂�, z ∈ �, and 0 < r ≤ diam(�), we have

μ(B(z, r) ∩ �) ≥ C−1μ(B(z, r)), (3.4)

and

C−1 μ(B(x, r)) ≤ P�(B(x, r)) ≤ C
μ(B(x, r))

. (3.5)

r r
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We also assume that (�, d|�, μ
�) admits a p-Poincaré inequality with dilation factor λ = 1, 
where p ∈ (1, ∞) is equal to the exponent in (3.2).

Under the above assumptions, we also have a Sobolev-type inequality for �,

‖u − u�‖Lp(�) ≤ C‖gu‖Lp(�), (3.6)

where C = C(�, CD, p, . . .). This Sobolev-type embedding follows from classical embedding 
results of [25].

The property of satisfying (3.5) will be called Ahlfors codimension 1 regularity of P�.
The condition (3.4) together with condition (3.5) implies that μ(∂�) = 0, and that � is of fi-

nite perimeter. It follows by the results of Ambrosio [3] that if X supports a 1-Poincaré inequality, 
then P� ≈ H|∂�; thus the above condition (3.5) remains valid (with a different constant C per-
haps) if P� is replaced with H. Examples of domains satisfying the above conditions include 
domains with quasiminimal boundary surfaces as studied in [33].

Domains that are sets of finite perimeter are the natural class of domains for which the Neu-
mann boundary value problem makes sense, as this is the largest class of domains for which, at 
least in the Euclidean setting, a form of Gauss–Green theorem holds true, see the work [14] of 
Chen, Torres and Ziemer (for metric space analogs see [42]).

The assumption that λ = 1 in the p-Poincaré inequality supported by � is satisfied for exam-
ple if � is a geodesic domain, that is, for each x, y ∈ � there is a curve γ ⊂ � with end points 
x, y such that the length of γ is equal to d(x, y). It then follows from the results of [25] that 
the factor λ in the p-Poincaré inequality can be chosen to equal 1 (perhaps at the expense of a 
larger constant C). The assumption that λ = 1 is a mere technicality here, assumed for the sake of 
simplifying the computations; they get more complicated when λ > 1, but the results still remain 
true as an interested reader can verify.

Definition 3.7 (Traces of Sobolev functions on ∂�). Under the standing assumptions on � given 
above in Definition 3.3, there is a bounded linear trace operator

T : N1,p(�) → Lp̃(∂�)

for every p̃ < p∗, where p∗ = p(s − 1)/(s − p) if p < s, and p∗ = ∞ if p ≥ s. This trace 
operator is given as follows. For u ∈ N1,p(�), H-almost every x ∈ ∂�, there exists T u(x) ∈ R

such that

lim
r→0+

 

B(x,r)∩�

|u − T u(x)|dμ = 0.

Here, s is the lower mass bound exponent from (2.2). If p > s, then we can allow for p̃ = ∞ as 
well, though this is not of importance to us in this paper.

Existence of such a trace operator follows from [40, Theorem 3.4], see also [24,39]. The 
following trace theorem is a specific case of the trace theorem found in [41].

Proposition 3.8 (cf. [41, Proposition 4.21]). Assume that � is a length space and that the dilation 
factor λ = 1 in the Poincaré inequality (2.7). Suppose that p < s. Let p̃ ∈ (p, p∗). Then, the trace 
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operator T : N1,p(�) → Lp̃(∂�) is linear and bounded. Moreover, there is C > 0 such that T
satisfies

‖T u‖Lp̃(∂�∩B) ≤ C

(
r
(s−1)( 1

p̃
− 1

p∗ )‖gu‖Lp(�∩B) + P�(∂� ∩ B)1/p̃

μ(� ∩ B)
‖u‖L1(�∩B)

)
= C

(
r

1− 1
p̃

−ℵ‖gu‖Lp(�∩B) + P�(∂� ∩ B)1/p̃

μ(� ∩ B)
‖u‖L1(�∩B)

)
for every ball B = B(z, r) with z ∈ ∂�, where ℵ = s( 1

p
− 1

p̃
).

Remark 3.9. The requirement that λ = 1 is not restrictive, since length spaces supporting a 
p-Poincaré inequality will support such an inequality with λ = 1 (perhaps at the expense of a 
larger constant C), see for example [25,11].

From now on, for ease of notation, the trace T u of u will also be denoted by u.
Throughout the paper C represents various constants that depend solely on the doubling con-

stant, constants related to the Poincaré inequality, and the constants related to (3.4) and (3.5). 
The precise value of C is not of interest to us at this time, and its value may differ in each oc-
currence. Given expressions a and b, we say that a ≈ b if there is a constant C ≥ 1 such that 
C−1a ≤ b ≤ Ca.

4. Existence of a minimizer

The natural space to look for a minimizer of I would be W 1,p(�) if we worked in the Eu-
clidean setting. In the metric setting, we will make use of the Newtonian space N1,p(�) as a 
suitable counterpart of the Sobolev space.

Since we aim to obtain a unique representative of a solution and adding a constant to a solution 
yields another solution, we will make use of the following normalization

N
1,p∗ (�) =

{
u ∈ N1,p(�) :

ˆ

�

udx = 0

}
.

Observe that u ≡ 0 is a candidate for the infimum in the definition of I (u), (3.2). Therefore,

inf
u∈N

1,p∗ (�)

I (u) ≤ 0.

To show existence of a minimizer, we need to prove that I (u) is bounded below for u ∈ N
1,p∗ (�)

and that the functional is sequentially lower semi-continuous. Based on the relation between 
p ∈ (1, ∞) and the “upper measure dimension” s given by (2.2), we will a priori distinguish two 
possible integrability conditions of the Neumann boundary data.

Proposition 4.1. Let u ∈ N
1,p∗ (�) and f ∈ Lq(∂�), where q = 1 if p > s, and p(s−1)

s(p−1)
< q ≤ ∞

if p ≤ s. Then,

I (u) ≥ ‖gu‖p

Lp(�) − C‖gu‖Lp(�)‖f ‖Lq(∂�) .
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Proof. The Hölder inequality yields that

I (u) ≥
ˆ

�

|gu|p dμ −
ˆ

∂�

|uf |dP� ≥ ‖gu‖p

Lp(�) − ‖u‖
Lq′

(∂�)
‖f ‖Lq(∂�) .

It follows from the (proof of the) trace theorem for N1,p functions in p-Poincaré spaces [41, 
Corollary 4.14] that ‖u‖

Lq′
(∂�)

≤ C‖gu‖Lp(�) provided that 
´
�

u dμ = 0. Thus,

I (u) ≥ ‖gu‖Lp(�)

(‖gu‖p−1
Lp(�) − C‖f ‖Lq(∂�)

)
. �

Note that functions that are bounded and P�-measurable on ∂� are automatically in Lq(∂�).

Corollary 4.2. There is a constant C > 0, depending on p, q , and on the norm of the trace 
operator T : N1,p(�) → Lq ′

(∂�) such that

I (u) ≥ −C‖f ‖p′
Lq(∂�)

for every u ∈ N
1,p∗ (�).

Proof. The estimate can be shown by finding the absolute minimum of the function t �→ tp −
Ct‖f ‖Lq(∂�), where t ≥ 0. �
Theorem 4.3. There is u ∈ N

1,p∗ (�) such that I = I (u).

Proof. Let I = inf
u∈N

1,p∗ (�)
I (u) and let {uk}∞k=1 ⊂ N

1,p∗ (�) be a minimizing sequence, i.e., 
I = limk→∞ I (uk). Let gk denote the p-weak minimal upper gradients of uk , k = 1, 2, . . .. Using 
Proposition 4.1, we see that I (v) ≤ 0 requires that ‖gv‖Lp(�) ≤ C1/(p−1)‖f ‖1/(p−1)

Lq(∂�) . Hence, the 
sequence {gk}∞k=1 is bounded in Lp(�). Using (3.6), we obtain that {uk}∞k=1 is also bounded in 

Lp(�) since (uk)� = 0 by definition of N1,p∗ (�). The reflexivity of Lp(�) yields that there are 
subsequences (which will also be denoted by {uk}∞k=1 and {gk}∞k=1) and u, g ∈ Lp(�) such that 
uk ⇀ u and gk ⇀ g as k → ∞.

By Mazur’s lemma, there are convex combinations

ũk =
N(k)∑
i=k

αk,iui and g̃k =
N(k)∑
i=k

αk,igi, k = 1,2, . . . ,

such that ̃uk → u and ̃gk → g in Lp(�). Observe that ̃gk are p-weak upper gradients of ̃uk (not 
necessarily minimal, though). By [11, Proposition 2.3], we can modify u on a set of measure 
zero to obtain a good representative such that g is its p-weak upper gradient. In what follows, 
we will consider u to be such a good representative and hence u ∈ N1,p(�). Applying [11, 
Proposition 2.3 and Corollary 6.3] and passing to a subsequence if necessary, we obtain that

ˆ
g

p
u dμ ≤ lim inf

k→∞

ˆ
g

p
ũk

dμ,
� �
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where gu and gũk
are the minimal p-weak upper gradients of u and ̃uk , respectively.

Since 
´
�

uk = 0 for every k = 1, 2, . . . and uk ⇀ u, we have that 
´
�

u = 0. Hence, u ∈
N

1,p∗ (�).
Considering that the trace operator T : N1,p(�) → Lq ′

(∂�) is linear and the energy func-
tional v �→ ´

�
g

p
v dμ is convex, we see that

I ≤ I (̃uk) = I

(N(k)∑
i=k

αk,iui

)
≤

N(k)∑
i=k

αk,iI (ui) → I as k → ∞.

The continuity of the trace operator yields that

I ≤ I (u) =
ˆ

�

g
p
u dμ +

ˆ

∂�

uf dP�

≤ lim inf
k→∞

(ˆ
�

g
p
ũk

dμ +
ˆ

∂�

ũkf dP�

)
= lim inf

k→∞ I (̃uk) = I. �

Lemma 4.4. The set MI = {u ∈ N
1,p∗ (�) : I (u) = I } of minimizers of I (·) is norm-closed and 

convex.

Proof. Let λ ∈ (0, 1) and let u, v ∈ MI , then w = λu + (1 − λ)v satisfies

I (w) = I (λu + (1 − λ)v) ≤ λI (u) + (1 − λ)I (v) = I

due to convexity of the functional I (·). Therefore, w ∈ MI .
The set MI is closed due to sequential lower semi-continuity of I (·). �

Lemma 4.5. Suppose that u, v ∈ MI . Then 
´
∂�

uf dP� = ´
∂�

vf dP� and gu = gv a.e. in �. 
Furthermore, if u, v ∈ MI then the functions w+, w− given by

w+ := max{u,v} −
 

�

max{u,v}dμ

and

w− := min{u,v} −
 

�

min{u,v}dμ

also belong to MI .

Proof. For any u and v as in the hypothesis, set w = u+v
2 . Then gw ≤ 1

2 [gu + gv].
By the uniform convexity of t �→ tp on [0, ∞), we know that for each δ > 0 there exists a 

positive constant ε = δp(2−1 − 2−p) such that
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(
a + b

2

)p

≤ ap + bp

2
− ε

whenever a, b ∈ [0, ∞) with |a − b| ≥ δ.
Suppose that {x ∈ � : gv(x) �= gu(x)} has positive measure. Then there is some δ > 0 such 

that the measure of the set

Aδ := {x ∈ � : |gv(x) − gu(x)| > δ}

is positive. Then

I (u) = I (v) ≤ I (w) ≤
ˆ

�

(
gu + gv

2

)p

dμ +
ˆ

∂�

wf dP�

≤
ˆ

Aδ

[
g

p
u + g

p
v

2
− ε

]
dμ +

ˆ

�\Aδ

g
p
u + g

p
v

2
dμ +

ˆ

∂�

wf dP�

=
ˆ

�

g
p
u + g

p
v

2
dμ +

ˆ

∂�

u + v

2
f dP� − ε μ(Aδ)

≤ I (u) − ε μ(Aδ),

which is not possible. Therefore gu = gv μ-a.e. in �, and hence it also follows from I (u) = I (v)

that 
´
∂�

uf dP� = ´
∂�

vf dP�.
To prove the last part of the lemma, it suffices to show that w0+ = max{u, v} and w0− =

min{u, v} are minimizers of the functional I corresponding to f . Note that gw0− ≤ guχ{u<v} +
gvχ{u≥v} = gu and similarly gw0+ ≤ gu. Therefore

I (w0±) ≤
ˆ

�

g
p
u dμ +

ˆ

∂�

w0± f dP�.

Note that

ˆ

∂�

[w0+ + w0−]f dP� =
ˆ

∂�

[u + v]f dP� = 2
ˆ

∂�

uf dP�.

It follows that if 
´
∂�

w0+f dP� >
´
∂�

uf dP�, then 
´
∂�

w0−f dP� <
´
∂�

uf dP�, which would 
violate the minimality of I (u). Therefore we must have 

´
∂�

w0+f dP� ≤ ´
∂�

uf dP� and simi-
larly, 

´
∂�

w0−f dP� ≤ ´
∂�

uf dP�, which in turn implies that I (w0±) ≤ I (u), as desired. �
Observe that in infinitesimally Hilbertian spaces, the above uniqueness of the minimal p-weak 

upper gradient together with convexity of the set MI imply that the solution of the Neumann 
problem is in fact unique (up to an additive constant).
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5. Boundedness of solutions, at the boundary

We will use the De Giorgi method to prove that the minimizers are bounded near the boundary 
of �. Local boundedness inside � follows from previously known results on p-energy minimiz-
ers in the metric setting [36].

Let u ∈ N1,p(�) be a minimizer of

I (u) =
ˆ

�

g
p
u dμ +

ˆ

∂�

f udP�, (5.1)

where f ∈ L∞(∂�) is a Borel function. The main goal of this section is to prove that solutions 
are bounded whenever the boundary data f is bounded.

Theorem 5.2. Let � be a bounded domain in X satisfying the assumptions given in Defini-
tion 3.3, and let f and u be as above. Fix R0 ∈ (0, diam�). Then for each x ∈ ∂� and 0 < R <

R0/4 we have that |u| ≤ CR on �∩B(x, R), where CR depends on the doubling and Poincaré in-
equality constants, p, R, ‖u‖L1(B(x,R)∩∂�), ‖u‖Lp(B(x,R)∩�), and on ‖f ‖L∞(∂�∩B(x,2R)) alone.

To prove the above theorem we make use of the technique developed by De Giorgi [23]. To 
do so we first derive a De Giorgi type inequality associated with the Neumann type problem 
considered here.

Theorem 5.3. There is a constant C ≥ 1 such that given a minimizer u as above on the bounded 
domain � ⊂ X, x ∈ ∂�, 0 < r < R ≤ R0 < diam(�)/10, and k ∈ R, we have

ˆ

�∩B(x,r)

g
p

(u−k)+ dμ ≤ C

(R − r)p

ˆ

�∩B(x,R)

(u − k)
p
+ dμ (5.4)

+ C

ˆ

∂�∩B(x,R)

|f | · (u − k)+ dP�.

The constant C depends solely on the doubling constant of μ, the Poincaré inequality constants, 
and p.

Proof. Let x, r, R be as in the statement of the theorem, and let

ηr,R(y) = η(y) = (
1 − dist(y,B(x, r))/(R − r)

)
+ (5.5)

be a Lipschitz cut-off function. For k ∈ R and ρ > 0, define

A(k,ρ) = {y ∈ B(x,ρ) ∩ � : u(y) > k} ∪ {y ∈ B(x,ρ) ∩ ∂� : T (u)(y) > k}.

Note that by our standing assumptions on ∂�, we automatically have μ(∂�) = 0, and so inte-
grating over A(k, ρ) ∩ � with respect to μ is the same as integrating over A(k, ρ) with respect 
to μ. For the function
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v = u − η · (u − k)+ =
{

(1 − η)(u − k) + k in A(k,R),

u otherwise,

by the properties of upper gradient (see [11]) such as the Leibniz rule, we have

gv ≤
{

(1 − η)gu + u−k
R−r

χB(x,R)\B(x,r) in A(k,R),

gu otherwise.
(5.6)

Since v is a candidate for the minimizer of I , we have I (u) ≤ I (v). Thus,

ˆ

�∩B(x,R)

g
p
u dμ +

ˆ

∂�∩B(x,R)

f udP� ≤
ˆ

�∩B(x,R)

gp
v dμ +

ˆ

∂�∩B(x,R)

f v dP�.

Subtracting ́
�∩B(x,R)\A(k,R)

g
p
u dμ +´

∂�∩B(x,R)
f u dP� from both sides of the inequality yields 

that
ˆ

A(k,R)

g
p
u dμ ≤

ˆ

A(k,R)

gp
v dμ −

ˆ

∂�∩A(k,R)

f η · (u − k) dP�. (5.7)

From (5.6), we obtain the almost everywhere pointwise estimate

gp
v ≤ 2p

(
g

p
u (1 − χA(k,r)) + (u − k)p

(R − r)p

)
on A(k,R).

Plugging in this estimate into (5.7) and making the integration domain on the left-hand side 
smaller, we have

ˆ

A(k,r)

g
p
u dμ ≤ 2p

ˆ

A(k,R)\A(k,r)

g
p
u dμ

+ 2p

(R − r)p

ˆ

A(k,R)

(u − k)p dμ −
ˆ

∂�∩A(k,R)

f η · (u − k) dP�.

Adding 2p
´
A(k,r)

g
p
u dμ, and then dividing by (1 + 2p) leads to

ˆ

A(k,r)

g
p
u dμ ≤ θ

ˆ

A(k,R)

g
p
u dμ

+ θ

(R − r)p

ˆ

A(k,R)

(u − k)p dμ − 1

C

ˆ

∂�∩A(k,R)

f η · (u − k) dP�, (5.8)

where θ = 2p/(1 + 2p) ∈ (0, 1) and C = 1 + 2p ≥ 1.
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Now, we can apply [23, Lemma 6.1] with (5.8) as the starting inequality to obtain

ˆ

A(k,r)

g
p
u dμ ≤ C

(R − r)p

ˆ

A(k,R)

(u − k)p dμ + C

ˆ

∂�∩A(k,R)

|f | · (u − k) dP�.

This verifies (5.4) and completes the proof of the theorem. �
Remark 5.9. If f > 0 on B(x, R0), then the inequality (5.8) can be made simpler by omitting 
the last term, viz.,

ˆ

A(k,r)

g
p
u dμ ≤ θ

ˆ

A(k,R)

g
p
u dμ + 1

(R − r)p

ˆ

A(k,R)

(u − k)p dμ.

In such a case [23, Lemma 6.1] provides us with an estimate

ˆ

A(k,r)

g
p
u dμ ≤ C

(R − r)p

ˆ

A(k,R)

(u − k)p dμ,

which holds for every 0 < r < R < R0.

Lemma 5.10. Let x ∈ ∂� and 0 < r < R < R0 as above, and let Cf = ‖f ‖1/p

L∞(∂�∩B(x,R0))
,

u(k, r) =
(  

�∩B(x,r)

(u − k)
p
+ dμ

)1/p

,

and

ψ(k,R) =
 

∂�∩B(x,R)

(u − k)+ dP�.

If N1,p

loc (�) ⊂ L
κp

loc(�) and the trace operator T : N1,p(�) → Lκ̃p(∂�) is bounded for some 
κ, ̃κ > 1 and 0 < ℵ < 1, then for all real numbers h, k with h < k, all positive R, r with R/2 ≤
r < R < R0, setting α := 1 − 1

κ
, and β := 1 − 1

κ̃p
yields that

u(k, r) ≤ C

(
u(h,R)

k − h

)α(
R

R − r
u(h,R) + Cf R1−1/pψ(h,R)1/p

)
, and

ψ(k, r) ≤ C

(
ψ(h,R)

k − h

)β(
R1−ℵ

R − r
u(h,R) + Cf R1−1/p−ℵψ(h,R)1/p

)
. (5.11)

If in addition μ is Ahlfors s-regular at scale r0 > 0, then we also have

ψ(k, r) ≤ C

(
ψ(h,R)

k − h

)β[
R

R − r
u(h,R) + Cf R1−1/pψ(h,R)1/p

]
. (5.12)
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We can always chose such κ, ̃κ , for instance, by choosing 1 < κ < s/(s − p) and 1 < κ̃ <

(s − 1)/(s − p) as in Proposition 3.8. If p is close to s then κ and ̃κ can be chosen to be as large 
as we like.

Proof. Due to self-improvement of (1, p)-Poincaré inequality, there is κ > 1 such that � sup-
ports a (κp, p)-Poincaré inequality, see for example [25,11]. Here any choice of 1 < κ ≤
s/(s − p) works, where s is the upper mass bound exponent of the doubling measure μ as 
in (2.2).

Let η̃ be the cut-off function ηr,(r+R)/2 as in (5.5). Then, the Hölder inequality and the 
(κp, p)-Poincaré inequality for functions in N1,p(X) vanishing on X \ B(x, (r + R)/2) yield

 

�∩B(x,r)

(u − k)
p
+ dμ ≤

(
μ(A(k, r))

μ(B(x, r))

)1−1/κ(  

�∩B(x,r)

(u − k)
κp
+ dμ

)1/κ

≤ C

(
μ(A(k, r))

μ(B(x, r))

)1−1/κ(  

�∩B(x,(r+R)/2)

(̃
η(u − k)+

)κp
dμ

)1/κ

≤ C

(
μ(A(k, r))

μ(B(x, r))

)1−1/κ

Rp

 

�∩B(x,(r+R)/2)

g
p

η̃(u−k)+ dμ

≤ C

(
μ(A(k, r))

μ(B(x, r))

)1−1/κ

Rp

 

�∩B(x,(r+R)/2)

g
p

(u−k)+ + (u − k)
p
+

(R − r)p
dμ,

where the product rule (Leibniz rule) for (p-weak) upper gradients was used in the last step. 
Estimating the integral of gp

(u−k)+ via (5.4) gives

 

�∩B(x,r)

(u − k)
p
+ dμ ≤ C

(
μ(A(k, r))

μ(B(x, r))

)1−1/κ[
Rp

(R − r)p

 

�∩B(x,R)

(u − k)
p
+ dμ

+Rp−1
 

∂�∩B(x,R)

|f |(u − k)+ dP�

]
.

It follows that

u(k, r) ≤ C

(
μ(A(k, r))

μ(B(x, r))

) κ−1
κp

(
R

R − r
u(k,R) + Cf R1−1/pψ(k,R)1/p

)
(5.13)

We will now show that 
(
μ(A(k, r))/μ(B(x, r))

)1/p
< Cu(h, R)/(k − h) whenever h < k. Since 

u ≥ k on A(k, R), we have

(k − h)pμ(A(k, r)) ≤
ˆ

(u − h)p dμ ≤
ˆ

(u − h)p dμ
A(k,r) A(h,r)
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= μ(B(x, r))u(h, r)p ≤ Cμ(B(x, r))u(h,R)p

as desired.
Using this estimate as well as the inequalities u(k, R) ≤ u(h, R) and ψ(k, R) ≤ ψ(h, R) in 

(5.13) yields that

u(k, r) ≤ C

(
u(h,R)

k − h

) κ−1
κ

(
R

R − r
u(h,R) + Cf R1−1/pψ(h,R)1/p

)
. (5.14)

Thus we have verified the first of the two inequalities claimed in the lemma.
Let us now establish an analogous inequality for ψ(k, r). Let κ̃ > 1 be such that κ̃p = p̃, 

where p̃ is an admissible target exponent for the trace operator, see Proposition 3.8. It follows 
from the Hölder inequality that

ψ(k, r) =
 

∂�∩B(x,r)

(u − k)+ dP�

≤
(  

∂�∩B(x,r)

(u − k)̃
κp
+ dP�

)1/̃κp

·
(

P�(A(k, r) ∩ ∂�)

P�(B(x, r) ∩ ∂�)

)1−1/̃κp

.

Then, Proposition 3.8 yields that( ˆ

∂�∩B(x,r)

(u − k)̃
κp
+ dP�

)1/̃κp

≤ Cr1−1/̃κp−ℵ
( ˆ

�∩B(x,r)

g
p

(u−k)+ dμ

)1/p

+ CP�(∂� ∩ B(x, r))1/̃κp

 

�∩B(x,r)

(u − k)+ dμ.

Combining these two inequalities together with the assumption of co-dimension 1 Ahlfors regu-
larity of P� results in

ψ(k, r) ≤ C

(
P�(A(k, r) ∩ ∂�)

P�(B(x, r) ∩ ∂�)

)1−1/̃κp

(5.15)

·
(

r1−ℵμ(B(x, r))
κ̃−1
κ̃p

(  

�∩B(x,r)

g
p

(u−k)+ dμ

)1/p

+ u(k, r)

)
.

For an arbitrary h < k, we have

(k − h)P�(A(k, r) ∩ ∂�) ≤
ˆ

A(k,r)∩∂�

(u − h)dP�

≤
ˆ

A(h,r)∩∂�

(u − h)dP� ≤ P�(B(x, r) ∩ ∂�)ψ(h, r).
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Applying this inequality together with (5.4) to (5.15) yields that

ψ(k, r)

≤ C

(
ψ(h, r)

k − h

) κ̃p−1
κ̃p

(
r1−ℵμ(B(x, r))

κ̃−1
κ̃p

(  

�∩B(x,r)

g
p

(u−k)+ dμ

)1/p

+ u(k, r)

)

≤ C

(
ψ(h,R)

k − h

) κ̃p−1
κ̃p

[
r1−ℵμ(B(x, r))

κ̃−1
κ̃p

(
u(k,R)

R − r
+ (Cf ψ(k,R))1/p

R1/p

)
+ u(k,R)

]

≤ C

(
ψ(h,R)

k − h

) κ̃p−1
κ̃p

[(
1 + R1−ℵ

R − r

)
u(h,R) + Cf R1−1/p−ℵψ(h,R)1/p

]
,

where the crude estimate μ(B(x, r)) ≤ μ(�) was used in the last line. Since R − r ≤ R/2 ≤
R0/2, and since 0 < 1 − ℵ < 1, the desired inequality for ψ follows.

If μ happens to be Ahlfors s-regular at scale r0 > 0, then a finer estimate μ(B(x, r)) ≤ Crs

is to be used above. Since ℵ = s( 1
p

− 1
p̃
) and p̃ = κ̃p, we have

r−ℵμ(B(x, r))
κ̃−1
κ̃p ≤ Cr

s( 1
κ̃p

− 1
p

)
r
s κ̃−1

κ̃p = C .

Then, it follows from the penultimate line of the estimate of ψ(k, r) above that

ψ(k, r) ≤ C

(
ψ(h,R)

k − h

) κ̃p−1
κ̃p

[
r

(
u(k,R)

R − r
+ (Cf ψ(k,R))1/p

R1/p

)
+ u(k,R)

]

≤ C

(
ψ(h,R)

k − h

) κ̃p−1
κ̃p

[(
1 + R

R − r

)
u(h,R) + Cf R1−1/pψ(h,R)1/p

]
.

Again noting that R − r ≤ R/2, we obtain the inequality (5.12). �
We are now ready to prove the main theorem of this section. Recall that the minimizer u

necessarily belongs to L1(�) and its trace belongs to L1(∂�, P�). The boundedness estimates 
we obtain in the proof indicate that the bound on u is determined by its trace’s average value 
on the boundary of � with respect to the measure P� as well as on the average of u on the 
ball, and on the bound on f on the boundary of �. This is in contrast to the local boundedness 
estimates of [36] for p-energy minimizers in the interior of �, where the bound is determined by 
the average value of u alone.

Proof of Theorem 5.2. In order to prove that u is bounded from above near the boundary, it 
suffices to show that for a fixed R > 0 with R < R0/4 and k0 ∈ R we can find d ≥ 0 such that 
u(k0 + d, R/2) = 0, where u(k, r) is as in Lemma 5.10.

If u(k0, R) = 0, then we immediately obtain the upper bound that u ≤ k0 in B(x, R). In what 
follows, suppose that u(k0, R) > 0.

Let rn = (1 + 2−n) · R/2 and kn = k0 + d(1 − 2−n), where the precise value of d > 0 will be 
determined later. Setting h = kn, k = kn+1, ρ = rn, and r = rn+1 in (5.11) yields that
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u(kn+1, rn+1) ≤ C

(
u(kn, rn)

2−n−1d

)α(
1 + 2−n

2−n−1 u(kn, rn) + Cf r
1−1/p
n ψ(kn, rn)

1/p

)
≤ Cf,R

2n(α+1)

dα

(
u(kn, rn)

1+α + u(kn, rn)
αψ(kn, rn)

1/p
)

(5.16)

and analogously

ψ(kn+1, rn+1) ≤ Cf,R

2n(β+1)

dβ

(
u(kn, rn)ψ(kn, rn)

β + ψ(kn, rn)
β+1/p

)
, (5.17)

where Cf,R = C · (1 + Cf R1−1/p + R−ℵ + Cf R1−1/p−ℵ). By induction, we will show that

u(kn, rn) ≤ 2−σnu(k0,R) and ψ(kn, rn) ≤ 2−τnψ(k0,R) (5.18)

for a suitable choice of positive constants σ , τ , and d . In such a case, we will have u(k0 +
d, R/2) = limn→∞ u(kn, rn) = 0. Observe that both inequalities in (5.18) are satisfied for n = 0.

If ψ(k0, R) = 0, then the second inequality in (5.18) is vacuously satisfied. If ψ(k0, R) �= 0, 
then (5.17) together with (5.18) lead to

ψ(kn+1, rn+1) ≤ ψ(k0,R)

2τ(n+1)
· 2τ(n+1)

ψ(k0,R)

· Cf,R

2n(β+1)

dβ

[
u(k0,R)

2σn

(
ψ(k0,R)

2τn

)β

+
(

ψ(k0,R)

2τn

)β+1/p]
≤ ψ(k0,R)

2τ(n+1)
· Cf,R

dβψ(k0,R)1−β
2τ+n(τ+β+1−τβ)

(
u(k0,R)

2σn
+ ψ(k0,R)1/p

2τn/p

)
.

Thus, if (5.18) is to be satisfied when ψ(k0, R) �= 0, we need

τ + β + 1 − τβ − σ ≤ 0 and τ + β + 1 − τβ − τ

p
≤ 0 (5.19)

as well as

d ≥
(

Cf,R2τ
(
u(k0,R) + ψ(k0,R)1/p

)
ψ(k0,R)1−β

)1/β

. (5.20)

Analogously, inequalities (5.16) and (5.18) provide us with the estimate

u(kn+1, rn+1) ≤ u(k0,R)

2σ(n+1)

· Cf,R

dαu(k0,R)1−α
2σ+n(σ+α+1−σα)

(
u(k0,R)

2σn
+ ψ(k0,R)1/p

2τn/p

)
.

Therefore, we need

α + 1 − σα ≤ 0 and σ + α + 1 − σα − τ ≤ 0 (5.21)

p
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as well as

d ≥
(

Cf,R2σ
(
u(k0,R) + ψ(k0,R)1/p

)
u(k0,R)1−α

)1/α

. (5.22)

Simplifying (5.19) and (5.21) yields

max

{
1 + 1

α
, τ(1 − β) + 1 + β

}
≤ σ ≤

τ
p

− (1 + α)

1 − α
and τ ≥ β + 1

β + 1
p

− 1
.

Recall that α = 1 − 1
κ

and β = 1 − 1
κ̃p

, where κ > 1 is chosen such that N1,p(�) ⊂ Lκp(�)

while ̃κ > 1 is chosen such that the trace operator maps N1,p(�) into Lκ̃p(∂�). Choosing

τ ≥ max

{
2̃κp − 1

κ̃ − 1
,p(κ − 1),

2p + 2κ − 1 − 1/̃κ

κ − 1/̃κ

}
will allow us to find σ so that both (5.19) and (5.21) are fulfilled, which will then enable us to 
use (5.20) and (5.22) to find a sufficiently big value of d .

For such a constant d , we have

0 = u
(
k0 + d,

R

2

)
=

(  

�∩B(x,R/2)

(u − k0 − d)
p
+ dμ

)1/p

,

which shows that u ≤ k0 + d μ-a.e. in B(x, R/2). Analogously, we have the trace T u ≤ k0 + d

P�-a.e. in ∂� ∩ B(x, R/2). Running the argument once more with u and f replaced by −u

and −f , respectively, we obtain that u ∈ L∞(�R) and T u ∈ L∞(∂�), where �R = {z ∈ � :
dist(z, ∂�) < R/2}.

Letting k0 = 0 yields the desired conclusion. �
6. Further boundary regularity

In PDE literature, the part of the boundary where the Neumann data f vanishes is called the 
natural boundary. If x ∈ ∂� and r > 0 such that f = 0 on ∂� ∩ B(x, r), then

ˆ

�∩B(x,r)

g
p
u dμ ≤

ˆ

�∩B(x,r)

g
p
u+ϕ dμ

for every ϕ ∈ N1,p(X) with compact support in B(x, r), i.e., u is p-harmonic in � ∪ (∂� ∩
B(x, r)). Thus, given our standing assumptions on �, the results of [36] apply to u on B(x, r) ∩
�, to yield that u is locally Hölder continuous in B(x, r) ∩�. We have so far no boundary Hölder 
continuity of u at other parts of ∂�. In the Euclidean setting, we know from the work of [1,2,
32,50] that if � is a bounded Euclidean domain of class C1, and the boundary data f is Hölder 
continuous, then u is Hölder continuous at ∂�. On the other hand, we obtain partial regularity 
results for u near sets of positivity of f (and correspondingly, sets of negativity of f ) in this 
section using the results from [34,35,11] on nonlinear potential theory on metric measure spaces. 
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These will allow us to prove continuity of u up to the boundary on open subsets of positivity (or 
negativity) of f for values of p close to 1 or close to s in Section 7.

Definition 6.1. Let (Y, dY , μY ) be a metric measure space. A function v on an open set A ⊂ Y is 
a p-subminimizer if

ˆ

A

gp
v dμY ≤

ˆ

A

g
p
v+ϕ dμY

for every non-positive ϕ ∈ N1,p(Y ) that is compactly supported in A.

The notion of subminimizers in the metric setting is extensively studied; a non-exhaustive 
listing of papers about subminimizers in the metric setting is [49,34,35,10,13,12]. The book [11]
contains a nice discussion of nonlinear potential theory in metric setting.

It is known that if μY is doubling, Y is complete, and supports a p-Poincaré inequality, then 
subminimizers are p-finely continuous in A (see [13] or [11, Theorem 11.38]) and are upper 
semicontinuous in A (see [34] or [11, Theorem 8.22]). Recall that a function is p-finely contin-
uous at z ∈ A if it is continuous with respect to the p-fine topology on Y . Here, a set U ⊂ Y is 
p-finely open if Y \ U is p-finely thin at each x ∈ U , that is,

1ˆ

0

(
capp(B(x,ρ) \ U,B(x,2ρ))

capp(B(x,ρ),B(x,2ρ))

)1/(p−1)
dρ

ρ
< ∞. (6.2)

Here, for E ⊂ B(x, ρ), the quantity capp(E, B(x, 2ρ)) is the relative variational p-capacity of 
E with respect to B(x, 2ρ) as given in Definition 2.4; see [11, Section 11.6].

Proposition 6.3. Let x ∈ ∂� and r > 0 such that f ≥ 0 on B(x, r) ∩ ∂�. Then u is a 
p-subminimizer on B(x, r) ∩ �, and hence is upper semicontinuous at x, that is,

u(x) ≥ lim sup
B(x,r)∩��y→x

u(y),

and u is p-finely continuous in B(x, r) ∩ �.

Proof. From our standing hypothesis that � supports a p-Poincaré inequality and that the re-
striction of μ to � satisfies (3.4), we know that �, equipped with the inherited metric and the 
restriction of μ to � is doubling and supports a p-Poincaré inequality. Hence the results regard-
ing p-subharmonic functions mentioned above would yield the desired conclusions regarding u
provided we demonstrate that u is a p-subminimizer on B(x, r) ∩ �.

To this end, let ϕ ∈ N1,p(�) be a non-positive function such that ϕ = 0 on � \ B(x, r). With 
u + ϕ as a competitor, we know that I (u) ≤ I (u + ϕ), that is,

ˆ
g

p
u dμ +

ˆ
uf dP� ≤

ˆ
g

p
u+ϕ dμ +

ˆ
(u + ϕ)f dP�.
� ∂� � ∂�
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It follows from gu = gu+ϕ μ-a.e. in � \ B(x, r) and from μ(∂�) = 0 that

ˆ

B(x,r)∩�

g
p
u dμ ≤

ˆ

B(x,r)∩�

g
p
u+ϕ dμ +

ˆ

∂�∩B(x,r)

ϕf dP�.

Because f ≥ 0 on ∂� ∩ B(x, r) and ϕ ≤ 0 there, it follows that

ˆ

B(x,r)∩�

g
p
u dμ ≤

ˆ

B(x,r)∩�

g
p
u+ϕ dμ

as desired. �
We next show that if u is constant in a neighborhood of a point in the boundary, then that point 

belongs to the natural boundary (that is, f vanishes in a relative neighborhood of that point).

Proposition 6.4. Let u be a p-harmonic solution to the Neumann boundary value problem on �
with continuous boundary data f , and if x ∈ ∂� and r > 0 such that u is constant on B(x, r) ∩�, 
then f = 0 on B(x, r/2).

Proof. It suffices to show that for each such x and r > 0 we have f (x) = 0. Suppose that 
f (x) > 0 (by replacing f with −f and u with −u if necessary). Then for sufficiently small 
r > 0 we have in addition to u being constant on B(x, r) ∩ � that f > 0 on B(x, r) ∩ ∂�.

Let the constant value of u on B(x, r) ∩ � be M . For k ∈ R with k < M , with the choice of 
v = u − ηr/2,r (u − k)+ as in (5.6) that

M

ˆ

∂�∩B(x,r)

f dP� =
ˆ

�∩B(x,r)

g
p
u dμ +

ˆ

∂�∩B(x,r)

uf dμ

≤
ˆ

�∩B(x,r)

gp
v dμ +

ˆ

∂�∩B(x,r)

vf dP�.

Since gv ≤ (1 − η)gu−k + 2
r
(u − k)+ = 2

r
(u − k)+ on B(x, r) \ B(x, r/2) μ-a.e., it follows 

that

ˆ

∂�∩B(x,r)

M f dP� ≤ 2p

rp
(M − k)pμ(B(x, r) \ B(x, r/2)) +

ˆ

∂�∩B(x,r)

vf dP�.

Thus

ˆ

∂�∩B(x,r)

(M − v)f dP� ≤ 2p(M − k)p

rp
μ([B(x, r) \ B(x, r/2)] ∩ �)

≤ 2p

rp
μ(B(x, r))(M − k)p.
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Since v ≤ M , and as limk→M− M−v
M−k

= 1 on B(x, r/2) ∩ ∂�, we have

ˆ

∂�∩B(x,r/2)

M − v

M − k
f dP� ≤ 2p(M − k)p−1

rp
μ([B(x, r) \ B(x, r/2)] ∩ �)

≤ 2p

rp
μ(B(x, r))(M − k)p−1,

and letting k → M− we obtain

0 ≤
ˆ

∂�∩B(x,r/2)

f dP� ≤ 0.

Here, we used the fact that p > 1. �
As a consequence of the above proposition, we know that if the boundary data f is not con-

stant (equivalently, not the zero function), then u is not constant on �. This agrees with our 
intuitive understanding of the boundary data f controlling the “outer normal derivative” of u at 
∂� — if the derivative cannot vanish on the boundary, then the function cannot be constant. This 
is in spite of the fact that we do not have analogous differential equation in the metric setting.

7. Boundary continuity for p close to 1 or the natural dimension s when μ is Ahlfors 
s-regular at small scales

In this section we need the strong version (5.12). We therefore assume from now on that μ is 
Ahlfors s-regular at scale r0 > 0.

Recall that the exponents α and β used in Section 5 to prove boundedness of the solution u
depend on p and the exponent s from (2.2). When p is close to either 1 or s, then it is possible 
to find values of α and β such that

α + 1

p
− 1 > 0 and β + 1

p
− 1 > 0. (7.1)

The above conditions are satisfied whenever p2 − sp + s > 0. In particular, they allow for all 
p > 1 if the dimension s < 4. In this section we will show that when p satisfies (7.1), the function 
u is continuous up to the boundary of �.

Theorem 7.2. Suppose that μ is Ahlfors s-regular at scale r0 > 0. Under the standard assump-
tions on � and μ, if f : ∂� → R is a bounded Borel measurable function on ∂�, x ∈ ∂�, and 
r0 > 0 such that f ≥ 0 on B(x, r0) ∩ ∂� or f ≤ 0 on B(x, r0) ∩ ∂�, then u is continuous at x
relative to �.

Proof. Without loss of generality we may assume that f ≤ 0 on ∂� ∩ B(x, r0), for if f ≥ 0 at 
each point in ∂� ∩ B(x, r0) then we apply the following analysis to −u, which is a solution for 
the boundary data −f .
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Suppose that u is not continuous at x. For R > 0 we set

M(R) := sup
y∈B(x,R)∩�

u(y) and m(R) := inf
y∈B(x,R)∩�

u(y).

Then by assumption we have that limR→0+ M(R) =: M > limR→0+ m(r) =: m.
For 0 < R < min{1, r0}, k0 ∈ R with k0 < M(R), and for n ∈ N we set rn = (1 + 2−n)R/2

and kn = k0 + d(1 − 2−n), where we want to choose d > 0 such that we have u ≤ k0 + d on 
B(x, R/2) ∩�. In other words, we repeat the proof of boundedness of u, but now we modify the 
choice of d by modifying (5.18). As in Lemma 5.10, we set

u(k, r) =
(  

�∩B(x,r)

(u − k)
p
+ dμ

)1/p

and ψ(k,R) =
 

∂�∩B(x,R)

(u − k)+ dP�.

Suppose that k0 ∈R such that

μ(A(k0,R))

μ(B(x,R) ∩ �)
≤ 1

(4D)p
,

then we wish to show that there exist σ, τ > 0 such that for each n ∈N,

u(kn, rn) ≤ 2−σn(M(R) − k0)

4D
and ψ(kn, rn) ≤ 2−τn(M(R) − k0). (7.3)

Here in the above, we just replaced 4C[1 +Cf ] with C, and we remind the reader that we are not 
particularly concerned with the precise value of the constants C as long as they are independent 
of R. This holds when n = 0. Suppose we know that the above holds for some non-negative 
integer n. Observe that by Theorem 5.2 we have |M(R)| < ∞ and |m(R)| < ∞. By (5.11) of 
Lemma 5.10 we have

u(kn+1, rn+1) ≤ C

[
u(kn, rn)

kn+1 − kn

]α [
rn

rn − rn+1
u(kn, rn) + r

1−1/p
n ψ(kn, rn)

1/p

]

≤ C

[
2−n(σ−1)(M(R) − k0)

4Dd

]α [
(M(R) − k0)

4D 2n(σ−1)
+ R1−1/p(M(R) − k0)

1/p

2τn/p

]

and by (5.12),

ψ(kn+1, rn+1) ≤ C

[
ψ(kn, rn)

kn+1 − kn

]β [
rn

rn − rn+1
u(kn, rn) + r

1−1/p
n ψ(kn, rn)

1/p

]

≤ C

[
2−n(τ−1)(M(R) − k0)

d

]β [
(M(R) − k0)

4D 2n(σ−1)
+ R1−1/p(M(R) − k0)

1/p

2τn/p

]
.

Therefore (7.3) would hold for n + 1 if we can ensure that
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C

[
2−n(σ−1)(M(R) − k0)

4Dd

]α [
(M(R) − k0)

4D 2n(σ−1)
+ R1−1/p(M(R) − k0)

1/p

2τn/p

]

≤ 2−σ(n+1)(M(R) − k0)

4D
,

and

C

[
2−n(τ−1)(M(R) − k0)

d

]β [
(M(R) − k0)

4D 2n(σ−1)
+ R1−1/p(M(R) − k0)

1/p

2τn/p

]
≤ 2−τ(n+1)(M(R) − k0).

The above two inequalities are satisfied if we can guarantee that

σ ≥ α + 1

α
,

τ ≥ p[σ(1 − α) + α],

τ ≥ β

β + 1
p

− 1
,

τ ≤ σ − (1 + β)

1 − β
,

d ≥ max{C1/α,C1/β} (M(R) − k0)

4D
, (7.4)

d ≥ C1/α
[
(M(R) − k0)

α+ 1
p

−1
R1−1/p(4D)1−α

]1/α

,

d ≥ C1/β
[
(M(R) − k0)

β+ 1
p

−1
R1−1/p

]1/β

.

In the above, we choose D > 1 such that

D ≥ max{C1/α,C1/β}.

Given the assumptions (7.1) on p, the above are guaranteed by the choices of σ , τ , and d such 
that

max

{
α + 1

α
,1 + β + β(1 − β)

β + 1
p

− 1
,

1 + β

1 − p(1 − α)(1 − β)

}
= σ,

max

{
β

β + 1
p

− 1
,p[σ − (σ − 1)α]

}
≤ τ ≤ σ − (1 + β)

1 − β
, (7.5)

and it suffices to choose d as follows:
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max

{
(M(R) − k0)

4
,C

[
R1−1/p(M(R) − k0)

α+ 1
p
−1

]1/α

,

C
[
R1−1/p(M(R) − k0)

β+ 1
p

−1
]1/β

}
= d. (7.6)

The above choice of τ is possible because of the assumptions (7.1) on p. Thus given k0 < M(R)

we have the above choice of d , σ , and τ such that, by letting n → ∞ in (7.3), we can conclude 
that u ≤ k0 + d on B(x, R/2) ∩ �.

We only consider 0 < R < max{1, r0} for which

0 < M − m ≤ M(R) − m(R) ≤ 2(M − m).

Finally, for ν ∈ N set κν = M(R) − 2−ν−1(M(R) − m(R)). By Proposition 6.3, u is lower 
semicontinuous at x, and so m = T u(x). Furthermore, by this proposition we have that u
is finely continuous at x, and so by (6.2) together with [11, Proposition 6.16] (see (2.5)), 
limR→0+ μ(A(κν,R))

μ(B(x,R)∩�)
= 0 for sufficiently large ν. Fix such ν ≥ 3 and we further restrict R for 

which

μ(A(κν, r))

μ(B(x, r) ∩ �)
≤ 1

(4D)p

whenever 0 < r ≤ R. Then by the above, with κν playing the role of k0, we have M(R) − κν =
2−(ν+1)(M(R) − m(R)), and so

M(R/2) − m(R/2) ≤ κν − m(R/2) + d ≤ κν − m(R) + d

= [1 − 2−(ν+1)](M(R) − m(R)) + d.

We further restrict R so that

λ1 := 1 − 2−(ν+1) + CR(1−1/p)/α2−(ν+1)̂α

(M − m)1−α̂
< 1 (7.7)

and

λ2 := 1 − 2−(ν+1) + CR(1−1/p)/β2−(ν+1)β̂

(M − m)1−β̂
< 1. (7.8)

Here,

α̂ =
[
α + 1

p
− 1

]
/α < 1, β̂ =

[
β + 1

p
− 1

]
/β < 1.

If d = 1
4 (M(R) − κν), then we see by the choice of ν ≥ 3 as outlined above that

M(R/2) − m(R/2) ≤ [1 − 2−(ν+1)](M(R) − m(R)) + 2−(ν+1)

4
(M(R) − m(R))

≤ [1 − 2−(ν+2)](M(R) − m(R)). (7.9)
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If d = C
[
R1−1/p(M(R) − k0)

α+ 1
p

−1
]1/α

, then by the restriction (7.7) we have from M(R) −
m(R) ≈ M − m that

M(R/2) − m(R/2) ≤ [1 − 2−(ν+1)](M(R) − m(R))

+ CR(1−1/p)/α2−(ν+1)̂α

(M − m)1−α̂
(M(R) − m(R))

≤ λ1(M(R) − m(R)). (7.10)

If d = C
[
R1−1/p(M(R) − k0)

β+ 1
p

−1
]1/β

, then similarly we obtain

M(R/2) − m(R/2) ≤ λ2(M(R) − m(R)). (7.11)

Combining (7.9), (7.10), and (7.11), setting

λ = max{1 − 2−(ν+2), λ1, λ2},

and noting that 0 < λ < 1, we obtain in all three cases that for all small R > 0,

M(R/2) − m(R/2) ≤ λ(M(R) − m(R)).

An iterated application of the above tells us that

M(r) − m(r) ≤ 21+θ0
( r

R

)θ0 [M − m]

for all 0 < r < R, where θ0 = log2(1/λ). It follows that u must have θ0-Hölder continuous decay 
to T u(x) at x, which contradicts our assumption that u is not continuous at x.

Thus we conclude that u must be continuous at x from �, that is,

lim
��y→x

u(y) = T u(x).

This holds for each x ∈ ∂� ∩ B(y, r) on which f does not change sign. Since T u is the trace of 
u on ∂�, it follows that u is continuous at x relative to �. �

Note that the above proof does not permit us to conclude that u must be Hölder continuous 
at the boundary point x. From the work of [16,32] we know that in the Euclidean setting, with 
� a bounded smooth domain, u is Hölder continuous at the boundary. As far as we know, this 
remains open in the metric setting.

The above proof does not permit us to draw any conclusions at boundary points where f
changes sign. On the other hand, an analysis of the proof above shows that if there is some 
ξ ∈ [m(R), M(R)] for which

lim
r→0+

 
|u − ξ |dμ = 0,
B(x,r)∩�
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then when limr→0+ M(r) = M > m = limr→0+ m(r), we must have either

lim
r→0+

μ({u > (m + M)/2} ∩ B(x, r) ∩ �)

μ(B(x, r) ∩ �)
= 0

or

lim
r→0+

μ({u < (m + M)/2} ∩ B(x, r) ∩ �)

μ(B(x, r) ∩ �)
= 0.

By considering u in the first case and −u in the second case, for sufficiently large ν, with κν =
M(R) − 2−(ν+1)[M(R) − m(R)] we have

lim
r→0+

μ(A(κν, r))

μ(B(x, r) ∩ �)
= 0,

and so the proof of Theorem 7.2 will show that u has to be continuous at x. Note that here we 
will obtain that ξ = T u(x). By the definition of the trace function T u, we have

lim
r→0+

 

B(x,r)∩�

|u − T u(x)|dμ = 0 for H-a.e. x ∈ ∂�.

Thus, we have the following theorem.

Theorem 7.12. Under the standard assumptions on � and μ, if f : ∂� → R is a bounded Borel 
measurable function on ∂�, then for H-almost every x ∈ ∂�, u is continuous at x relative to �.
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