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Abstract

In this paper, we investigate the large time behavior of the solutions to the inflow problem for the
one-dimensional Navier—Stokes/Allen—Cahn system in the half space. First, we assume that the space-
asymptotic states (o4, u+, x+) and the boundary data (pp, up, xp) satisfy some conditions so that the
time-asymptotic state of solutions for the inflow problem is a nonlinear wave which is the superposition
of a stationary solution and a rarefaction wave. Then, we show the existence of the stationary solution by
the center manifold theorem. Finally, we prove that the nonlinear wave is asymptotically stable when the
initial data is a small perturbation of the nonlinear wave. The proof is mainly based on the energy method
by taking into account the effect of the concentration y and the complexity of nonlinear wave.
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1. Introduction

In the paper, we study the Navier—Stokes/Allen—Cahn system, a combination of the compress-
ible Navier—Stokes system with an Allen—Cahn phase field description. Under some suitable
assumptions, mathematically, the model in Ry := (0, oco) takes the following form in the Eule-
rian coordinates:

3 p + 0x(pu) =0,
8
0 (pu) + 0 (pu®) + 0 P(p) = vl — -0 (3 1),
PO X + pudyx =—u,
1)
pi=—=89x + S0 = 0,

(1.1)

for (x,¢t) € (0, 400) x (0, +00). Here p(x, ) > 0 denotes the total density, u(x, t) represents the
mean velocity of the fluid mixture, x (x, ¢) is the concentration difference of the two components,
u(x,t) denotes the chemical potential, the viscous coefficient v > 0, the constant § > 0 and \/S
represents the thickness of the interfacial region. The pressure P (p) is given by

P(p) =ap”,

where a > 0 is a positive constant and y > 1 is the adiabatic exponent.

The Navier—Stokes/Allen—Cahn system describes two-phase patterns in a flowing liquid in-
cluding phase transformations. A phase field variable x is introduced and a mixing energy is
defined in terms of x and its spatial gradient. As pointed out in [1], the model should be viewed
as a first step toward incorporating transport mechanism into the description of phase-formation
process. For the detailed derivation of Navier—Stokes/Allen—Cahn system (1.1), please refer to
[1,7] and references therein. So far, some important progress has been made for the Navier—
Stokes/Allen—Cahn system. Let us recall some known results about the Navier—Stokes/Allen—
Cahn system. Feireisl et al. [11] proved the existence of global-in-time weak solutions in R3
without any restriction on the size of initial data for y > 6. Recently, Chen et al. [5] extended
Feireisl’s result to y > 2. Gal and Grasselli [12] showed the existence of the trajectory attractor
for both incompressible Navier—Stokes/Allen—Cahn and Navier—Stokes/Cahn—Hilliard systems
and also obtained a convergence rate estimate in the phase-space metric. Xu et al. [42] dis-
cussed the global regularity of axisymmetric solutions in both large viscosity and small initial
data cases in R3. Kotschote [24] proved the existence and uniqueness of local strong solutions
for the Navier—Stokes/Allen—Cahn system with arbitrary initial data. Zhao et al. [44] investigated
the vanishing viscosity limit and proved that the solutions of the Navier—Stokes/Allen—Cahn sys-
tem converged to that of the Euler/Allen—Cahn system in a proper small time interval. Ding et
al. [7] proved the existence and uniqueness of global classical solution, the existence of weak so-
lutions and the existence of unique strong solution of the Navier—Stokes/Allen—Cahn system in
R for initial data without vacuum states. Chen and Guo [4] established the global existence and
uniqueness of strong and classical solutions of Navier—Stokes/Allen—Cahn system in R with ini-
tial vacuum. Kotschote [25] investigated the stability of traveling wave solutions to the so-called
Navier—Stokes/Allen—Cahn system. Luo et al. [28] proved the stability of rarefaction wave to
Navier—Stokes/Allen—Cahn system. Moreover, for numerical simulations, such as jet pinching-
off and drop formation, we referred the readers to [2,43,27]. We also emphasized for a different
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two-phase model. Evje et al. obtained a series results in [8—10] and references therein. However,
to our knowledge, there are few results about the large-time behavior of solutions to an initial
boundary value problem for the Navier—Stokes/Allen—Cahn system (1.1). Here, we will partly
give a positive answer for this important problem.

Initial data for system (1.1) is given by

(o, u, x)(x,0) = (po, uo, x0)(x), inf po(x) > 0. (1.2)
X€R+
We assume that the initial data at the far field x = +o0 is constant, namely
lim_ (oo, 1o, x0)(x) = (04, U+, X+), (1.3)
X— 400
and the boundary data for p, u, x at x =0 is given by

(o, u, x)0,1) = (pp, up, xp), YVt =0, (1.4)

where p, > 0, up > 0 and yx; are constants and the following compatibility conditions hold

p0(0)=p0p >0, up(0)=up>0, xo(0)=yxp. (L.5)

The situation u;, > 0 means that the gas blows into the region through the boundary x = 0 with
the velocity uy, and hence the problem (1.1)—(1.5) is called as inflow problem. We note that for
the case u;, < 0, the situation is different and we have an outflow problem. For the well-posedness
of outflow problem, one cannot impose the boundary condition on p at x = 0, and the boundary
condition turn out to be

u©,1) =up, x0,1) = xp

with u;, < 0. Such an outflow problem is also interesting and will be studied in the future.

Now we turn back to our inflow problem. The aim of this paper is to present the large time
behavior of solutions to the inflow problem (1.1)—(1.5). To construct a classical solution of the
Navier—Stokes/Allen—Cahn system (1.1)3 and (1.1)y, it is necessary to require x4 = 1. We also
assume that the left and right constant states are different, namely, p4 # pp, U4+ # up and x4+ #
Xb- It is expected that as ¢t — oo, the solution (p, u, x)(x, ) to the inflow problem (1.1)—(1.5) is
asymptotically described by the superposition of a transonic stationary solution and a rarefaction
wave, which can be determined by the space-asymptotic states (o4, u+, x+), and the boundary
data pp, up and xp under some suitable assumptions.

Notice that the Navier—Stokes/Allen—Cahn system is a combination of the compressible
Navier—Stokes system with an Allen—Cahn phase field description. To our knowledge, there have
been a huge numbers of paper in the literature about the large-time behavior of the solutions to
Cauchy problem of the compressible Navier—Stokes equations toward the viscous version of the
three basic wave patterns, namely, shock wave, rarefaction wave, contact discontinuity and even
their compositions. In 1985, Matsumura—Nishihara [31] firstly proved the asymptotic stability of
the viscous shock wave to the one-dimensional isentropic compressible Navier—Stokes equations.
Since then, many authors had been attracted to study the asymptotic stability of the viscous wave
patterns and much progress has been made. For example, we can refer to [13,15,18,26,32,33] and
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some references therein for details. All these results show that the large-time behavior of the so-
lutions to Cauchy problem for the compressible Navier—Stokes equations are basically governed
by the Riemann problem of the corresponding Euler equations. However, in the case of the initial
boundary value problem of the compressible Navier—Stokes equations, not only basic wave pat-
terns but also a stationary solution, which is also called the boundary layer solution, may appear
due to the boundary effect. Thus the large-time behavior of the solutions to the initial boundary
value problem is much more complicated than that of the Cauchy problem. In 1999, Matsumura
at Hong Kong [29] gave the complete classification of the large-time behavior of the solutions
in terms of the far field state and the boundary data. After then, the impermeable wall problem,
the inflow problem and the outflow problem for the compressible Navier—Stokes equations have
been extensively studied and improved by many authors in lots of the literatures. We refer to [14,
30,34] for the impermeable wall problem, to [17,20,22,23,37,19,38] for the outflow problem, and
to [16,35,36,39,40] for the inflow problem. In this paper, motivated by [16,39], we will consider
the stability of the nonlinear wave for an inflow problem to the initial boundary value problem of
the Navier—Stokes/Allen—Cahn system (1.1)—(1.5).

First, when x is a nontrivial concentration for the large time behavior, we construct a station-
ary solution (p, , x)(x) to (1.1) independent of a time variable ¢ as follows:

3, (pit) =0,
N . s
02 (Pit%) + 0u(ap”) = Vit — S0 (0 X)°.
e (1.6)
PUI X = —[L,
. Y R
pii=—83%+ G2 — %),

8

with conditions
inf o(x) >0, lim (p,u, x)(x) = (0« s, 1), 6(0)=pp >0, i&(0) =up >0, x(0) = xp.
xeRy x——+00
(1.7)

Here, constants (o, u,) satisfy
Pblp = Pslhs, Usx =C(P4), (1.8)

—1
where c¢(p) =/ P'(p) = ./ay,oyT is sound speed.
Next, when y = x4 = 1 is a trivial concentration and the dissipation effects are neglected for
the large time behavior, we use the following Euler equation

{atp+8x(p“) =0, (1.9)

3 (pu) + 3y (pu*) + 3, P(p) =0

with

(ox,uy), x <0,
(p,u)(x,0) = (1.10)
(o4 ug), x>0
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to construct a 2-rarefaction wave (,oRZ, uRZ)G). Here (px, ux) and (p4, uy) satisfy

o+ 5
u+:u*+/,/ (zs)ds, (1.11)
S
Px

and

(o4, us) €{(p,u):u>c(p), p>0, u>0}. (1.12)

Once we have the rarefaction wave (p®2, uRZ)(ﬁ) and the stationary solution (p, i, x)(x), we
can define the composite wave (p, u)(x, t) as follows:

(p, w)(x, 1) = (B, W)(xX) + (P, u)(x, 1) = (s, ), (1.13)

where (p"2,u"2)(x, ) is a suitably smoothed function of (p*2, uR2)(§), and will be stated in
Subsection 2.2.
Now we state main results of this paper in the following theorem.

Theorem 1.1. Assume that the given constants pp > px >0, 0 <up <uy, <uy, xp > 1, 0 <
O < p+ satisfy (1.8), (1.11) and (1.12). Suppose further that the initial data satisfy

p0(x) — p(x,0), up(x) —it(x,0) € H'(Ry), xo(x) — 1 (x) € H*(Ry), Jinf po(x) >0,
(1.14)

and that

§+e+1po(x) = px, 0l g1 + lluo(x) — i (x, 0l 1 + [ x0&x) = X (Xl g2 < g0, (1.15)

where € is given in (2.24), 8 =1|pp — psl + lup — us| + |xp — 1| and the positive constant &
are small enough. Then the inflow problem (1.1)—(1.5) has a unique global classical solution
(p,u, x)(x,t) satisfying

p(x, 1) = p(x,1), u(x, 1) —i(x,1) € C([0,00); H'(R4)),

X(x, 1) = X (x,1) € C([0, 00); H*(Ry)),

dep(x, 1) = 05 p(x, 1) € L2([0, 00); L*(R4)),

uu(x, 1) = Byt (x, 1), ey (x, 1) — 8 X (x, 1) € L*([0, 00); H'(R4)),

where p(x,t),u(x,t) are defined by (1.13). Moreover, it holds that

lim sup |o(x,0) = 5(x) — p2 (3) + p.| =0, (1.16)
[_>+°°xeR+ t

. - Ry { _
t_l)lglooxselﬁg- w(x, 1) —i(x) —u (t) fu.l=0, (1.17)
lim  sup |x(x,7) — 5 (x)| =0. (1.18)

t—+00 xeRy
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The outline of Theorem 1.1 is as follows. First, we assume that the space-asymptotic states
(p+,u+, x+) and the boundary data (pp, up, xp) satisfy some suitable conditions so that the
time-asymptotic state of solution for the inflow problem (1.1)—(1.5) is a nonlinear wave which
is the superposition of a stationary solution and a rarefaction wave. On the one hand, notice that
when x is a trivial concentration in the large time, the Navier—Stokes/Allen—Cahn system can
reduce to the isentropic Navier—Stokes system and thus we can establish smoothly approximate
rarefaction wave by the idea of [32] and [33]. On the other hand, we can show the existence of
the stationary solution by the center manifold theory in [3] and one can see the detailed proof
in Subsection 2.1. Next, using the arguments and ideas of [35], we can obtain the asymptotic
stability of the nonlinear wave by the energy method when the initial data is a small perturbation
of the nonlinear wave. Since the complexity of nonlinear wave has been investigated carefully
in [35], we only need to focus on the effect of the concentration y. Compared with the classical
Navier—Stokes system, the concentration y in this model (1.1) brings both benefit and trouble.
The benefit lies in the fact that the term § 8)% X in equation (1.1)4 is a viscous dissipation term
which provides extra regularity of d x, while the trouble is brought by the term %8X (0xx)? in
equation (1.1), which increases the nonlinearity of the system. It is also this term that requires
105 ¢ || Lo to be small when we deal with the high order nonlinear term J3; in Lemma 4.3, which
just demands the initial perturbation to be small and also requires the smallness of || || ;2 to close
the a priori assumption (3.11).

Remark 1.1. Theorem 1.1 shows that the superposition of the stationary solution and the rar-
efaction wave is stable when the strength of the stationary solution is necessarily weak, but the
strength of the rarefaction wave is not necessarily weak. Here, we are not concerned with the
large initial perturbation.

Remark 1.2. Here, we should point out that we can not directly use the results of the stationary
solution (second-order ODE system) for Navier—Stokes system in [35,36] since the third-order
ODE system (2.5) should be our focus in the analysis of the existence of the stationary solution.

Remark 1.3. Here we only consider inflow problem to one-dimensional compressible Navier—
Stokes/Allen—Cahn system. However, we should mention that the corresponding outflow prob-
lem is surely more interesting since we don’t know how to deal with the boundary term
&%(Bxg )2(0, 1) in (4.7), thus more difficult. These are left to the forthcoming paper in the fu-
ture.

The rest of the paper is organized as follows. In Section 2, we construct the nonlinear wave. We
first show the existence of stationary solutions by the center manifold theorem in Subsection 2.1.
Then in Subsection 2.2, we shall go over some results obtained in some other references, on
smooth approximations of the rarefaction wave. Next, we reformulate the original problem in
terms of the perturbed variables in Section 3. Section 4 is the key, in which we establish the
a priori estimate. Finally, we complete the proof of our main theorem in Section 5.

Notations. Throughout this paper, C denotes some positive constant (generally large) and ¢ de-
notes some positive constant (generally small), where both C and ¢ may take different values
in different places. For a nonnegative integer k, H*(R..) denotes the standard Hilbert spaces of
order k. L? = LP(R4) (1 < p < 400) denotes the usual Lebesgue space on R with its norm
I~ llzr, and when p =2, +o0, we write | - [ .2g,) = I - [l and || - [z @®y) = I - loo-
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2. The nonlinear wave

In this section, we mainly present a nonlinear wave which is superposition of the stationary
solution and rarefaction wave. We first show the existence of the stationary solutions from the
center manifold theorem in Subsection 2.1. Then, we present the existence and smooth approxi-
mation of the rarefaction wave in Subsection 2.2.

2.1. The existence of stationary solutions

In this subsection, let us construct stationary solutions of (1.1). That is, we consider the sta-
tionary equation:

ax(pu) =0
3x(PE®) + By (ap” ) = vO7ii — —ax<axx)2
. - 2.1
PUd X = —[L,
o~ . P . -
pit==807% + (X = %),
and the corresponding boundary conditions:
(0,0, %) = (px, s, 1) as x — o0,
A (2.2)
(0, u, X)|x=0 = (P, Ubs Xb)
with pp > 0 and uj > 0.
From (2.2) and (2.1)3, one can derive
n—0 as x— oo. (2.3)
From the fact that p(x) > 0, pp > 0, up > 0 and (2.1)1, we have
- Pxls .
Poltp = Pshse, PX) = "——, u(x) >0, u,>0. (2.4)
u(x)
From (2.1) and (2.2), we have
Pl = Pylly,
~ [
X =-— K
PxUsx

- - - 5
prtts (il — 1) +a(p? — pl) = voyii — 5 ZMZ
2pzu

and

8

P =

_ P . .
Ox i + 3()(3 - X).

PscU

Then the boundary value problem (2.1) and (2.2) can be reduced to
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PU = Pyl
~ o Pxlsx o~ ac~y _ Y
axlfi— ] (u u*);’ (p Py )+ 2vp2u2M s 2.5)
Bxu—p*a*pu LB (X — X
ax)z - _p*]u* [’L’
with
{(15312 Xa )_)(p*au*alo) as x — o0, (26)

Concerning (2.5) and (2.6), we have

Lemma 2.1. Ifthe glven constants pp > 0, up > 0, xp, px > 0, uy > 0 satisfy psusx = ppitp

and u, = Ja ,0* (i.e., it is located at the transonic curve.). If up < uy, xp > 1 and § =
lop — x| + |up — us| + | xp — 1| is small enough, then there exists a solution (p, u, x, 1)(x) to
the stationary problem (2.5) and (2.6), such that 9,1 > 0, 0,0 <0, 9, x <0 and

. C~k+l
[0y (0(X) = s, u(X) — Uy, X (x) — D] < m 2.7
. Sk+2
KX < —s——, (2.8)
18 )] (1 4 8x)k+2
fork=0,1,2,---.
Proof of Lemma 2.1. We first introduce
U=u—uy, L=p—0, x=x-—1. 2.9)
Then from (2.5) and (2.6), and using p = p*u#, we have
d u u F
—|a|=ala]+|r]. (2.10)
X X 0
and
(u, i, x)(x) —> (0,0,0) as x - +o0, @211
(@, X)(X)x=0 = (up — s, xp — 1). '
Here
p*(uﬁ—aypf_]) 0 0
Vit 2 2
A= 0 :0*8“* 2"(3*2'4*
0 _p*lu* 0
and
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Y Y 14
a _ é _ a u u
=2 2y O g (B )y (o)
YU+ uy) 2vpzuz v U+ Uy U+ Uy
2 2 2.2
u 2p5u u
Fr=— L5 jgy O g P g2(7.43),

- u -
S t+un T 2@t un) " 823+ uy)

To prove the existence of the stationary solution (p, i, x, it), it is sufficient to show the ex-
istence of the solutions (u, i, x) to the boundary value problem (2.10) and (2.11). For this,
we dlagonahze the system (2.10). After a simple calculation of |/ — A| =0 and recalling

u,=./a p* , we know that the matrix A has the following three eigenvalues:

=0, A= piu* — piu% + 84 <0. A3 P*M* + i‘i‘ 8 0%
- o 28 o 23

>0,

and the corresponding eigenvectors:

ri1=(1,0,0)",

N el LI

r2:<03p*u*_ p* *+8p*’_ ) 5
Px U

/ 28 \!

PscU 5

Define the matrix P = (ry, rp, r3). Notice that det P = ,/p* ‘ 2 1 8p4 # 0 which shows
that P! exists. Furthermore, we employ new unknown functlon defined by

Vi u
wvl=pP'| i (2.12)
V3 X
We also define the corresponding boundary data
Vib Up — Uy
Vaip | =P~ (2.13)
V3p xp—1
with 1, = f2(0), and nonlinear term by
G Fi
Gy |=pP7'"| B,
G3 0
Using these, we have
d Vi A O 0 Vi G
T Vo ]l=10 X O Wi+ Gy |, 2.14)
X V3 0 0 X3 V3 G3
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Aim (Vi, V2, V3)(0) — (0,0,0), (Vi, V2, V3) (D) k=0 = Vi, Vap. Vap). (2.15)
Namely,
Vix = F1,

Vo, = _ Piux—/ piuz+8ps Ll*—\//)*u*-‘rgp* Vs —
v/ 8
V3x — P*M*'f‘ §§M*+ P V +

2/pdu 3+8p* (2.16)
/ 2+8p

from which we assert that there exist local center manifold V, = hf(Vl) and V3 = hg(Vl ), and
local stable manifold Vi = A{(V2) and V3 = A% (V2). In order to show the existence of the solu-
tion, we have to examine dynamics on the center manifold. To this end, we employ a solution
z=2z(x) to (2.16) restricted on the center manifold satisfying the equation

zx = Fi(z, h§(2), h5(2)). (2.17)

By virtue of the center manifold theory in [3], there exists a solution z to (2.17) such that the
solution V = (V1, Va, V3) of (2.14)—(2.15) is given by

Vi =2z(x) + 0(§e™),
Vo = h§(z(x)) + O (3e™%), (2.18)
= h5(z(x)) + O(Se™c%).

Therefore, to obtain the solution (Vi, V;, V3) to (2.14)—(2.15), it suffices to show the existence
of the solution to (2.17) satisfying z(x) — 0 as x — 400, we see that the nonlinear terms F; and
F, satisfy

ay(y + Dol

F =
2vu?

VE+ O(VIP + V2> + V31 + [VaVa)),

*

and

Fa= 0(Val? + V3P + IViVa| + Vo + V3% + V1 V3| + V2 V3)).

Substituting them into (2.17) and using 4 (z) = 0(z%), h5(z) = O(z%), we deduce (2.17) to

Lot Dol
T 2vu?

*

24+ 0(z)), (2.19)

which yields that z(x) is monotonically increasing for sufficiently small z(x). Thus, to satisfy
z(x) — 0 as x — oo, the boundary data z(0) should be negative. Namely, for the existence of the
solution (V7, V2, V3), the boundary data (Vyp, Vap, V3p) should be located in the left region from
the local stable manifold, that is, (Vip, Vap, Vap) should satisfy the condition

Please cite this article in press as: H. Yin, C. Zhu, Asymptotic stability of superposition of stationary solutions and
rarefaction waves for 1D Navier—Stokes/Allen—Cahn system, J. Differential Equations (2018),
https://doi.org/10.1016/j.jde.2018.11.034




YJDEQ:9657
H. Yin, C. Zhu/ J. Differential Equations eee (eeee) eee—eee 11
Vib <hi(Vap), Vap < h5(Vap),

which can be arrived by choosing enough small § and free ji;,. Moreover, since i is free, we
can choose V; satisfying

Vox + V3x > 0,

which together with (2.12) and (2.9) implies d, x < O.
From (2.18) and (2.19), we have

_ay(y + ol
2vu?

*

Vix 24+ 0z} + 0@Ge ), (2.20)

which together with (2.12) and (2.9) implies d,uz > 0 if z(x) and § are sufficiently small.

Since d,u > 0, we rapidly get uj; < u,. Moreover, from (2.19), (2.18), (2.13) and the fact that
up < us, we also see that the solution z satisfies
N Sk+1

Cs ' Cé
< — < —z(x) < —, |0jz(x)| < ————fork=0,1,2,---. (2.21)
1+ dx 14 4x (1 4 8x)k+1

Combining (2.18) and (2.21) with using h{(z) = 0(z%), h5(z) = 0(z?), we have the decay prop-
erty of (Vq, Va2, V3):

k cir! -
X = e
|ax(V]9 Va, V3)|Sm+&3e for k=0,1,2, s

which together with (2.9) and (2.12) yields (2.7). Then (2.8) was immediately obtained from
(2.5)4and (2.7). O

2.2. The rarefaction wave

To study the rarefaction wave, we consider the Riemann problem (1.9)—(1.10). One can see
that system (1.9) has two characteristics (cf. [6,41])

{M(p, u) =u—c(p),
Ao, u) =u+c(p),

which are genuinely nonlinear and give rise to the rarefaction wave curves

P
P'(s)
Ri[ps, us] = [p,u]€R+XR‘u=u*— S—zds, P <Py, U> Uy,
P

and

Please cite this article in press as: H. Yin, C. Zhu, Asymptotic stability of superposition of stationary solutions and
rarefaction waves for 1D Navier—Stokes/Allen—Cahn system, J. Differential Equations (2018),
https://doi.org/10.1016/j.jde.2018.11.034




YJDEQ:9657

12 H. Yin, C. Zhu/ J. Differential Equations eee (eeee) eee—eee
o
P'(s)
Rolpx,ux]=[p,ul e Ry xR ju=ux+ 2 ds, p> psx, U> Uy,
O«

respectively.

From (1.11), we see (p+,uy) € Ra[p4, us]. Hence, we consider 2-rarefaction wave here.
Since the 2-rarefaction wave [pRZ, uRZ] (f) is a weak solution, we shall construct a smooth ap-
proximation for the 2-rarefaction wave in the following. Firstly, consider the Riemann problem
for Burger’s equation:

orw + wd,w =0,

w(x, 0) = wo(x) = { w-, x<0, (2.22)

w4, x>0,

where w_ < w4. Then it is well known that (2.22) has a continuous weak solution wk (%) whose
explicit form is given by
w_, x<w-_t,
R(X X
w (—) =12 wir<x<wyr, (2.23)

t
Wy, X > Wyl

Moreover, w® ( %) can be approximated by the smooth function w(x, t) which is a solution to

ow+ wd,w =0,
w_, x <0,
€X

w(x,0) =wo(x) = w_+CqS/yqe_ydy, x>0,
0

(2.24)

where § := w4 —w- >0, g > 10 is a constant, C; is a constant such that C, fooo yie Vdy =1,
and € < 1 is a positive constant to be determined later. Then we have the following lemma.

Lemma 2.2. Let § = w4 — w_ be the wave strength of the 2-rarefaction wave. Then the problem
(2.24) has a unique smooth solution w(x, t) which satisfies the following properties:

@ w_ <wx,t) <wg, oxyw > 0forx e Randt > 0.

(ii) For any p (1 < p < +00), there exists a constant Cp, 4 such that for t > 0

-1 -1
”aXIZ)”L’) SCp,q min{SEl /”BP[ P
ol 1
32w|» < Cp o min e P, 8de
X p.q
(iii) When x < w_t, ® —w_ = 9, W = 92w = 0.

() t_ljgrnooilelglw(x, n—wk(¥)|=

Then the smooth approximate rarefaction wave [p’z, u’Z] (x, 1) which corresponds to the rar-
efaction wave [p®2, u®2] (%) can be defined as follows:
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u? +c(p?)=wx, 1 +1), w_ =ux+c(px) >0, wy =uq +c(py) >0,
Iz pV2 P/(S) (225)
u2=u*—|—fp* 2ods, Uy >y, Pt > P,

- . . . —1)Jay r=3 .
where w(x, ) is given in (2.24). Since y > 1, we have ¢’(p) = w,o 2 > 0, which shows
that c(p) is a monotonically increasing function about p. Hence, from this and the fact u > u,,
O+ > px, we can derive w_ < w.. Moreover, it is easy to obtain [p"2, u2](x, t) satisfies

{ 0o+ dx(pu) =0, (2.26)

posu + pudyu + 0, P(p) =0.
Here we restrict [p"2, u"2](x, t) in the half space {x > 0}. Then one has

Lemma 2.3. Let 8, = |p+ — ps«| + U+ — uy| be the wave strength of the 2-rarefaction wave.
Then the smooth approximate 2-rarefaction wave [p"2, u"](x, t) constructed in (2.25) has the
following properties:

(@) 0xu? >0, ppe < P2(x,1) < P4, Uy < u2(x,t) <uy, Ou’? ~|0,p"?| for x € Ry and
t>0.

(ii) For any p (1 < p < +00), there exists a constant C), 4 such that for t > 0,

I .l
19:L0"2, | Lo,y < Cpqgmin{sye' 7,87 (1 +0)7"F7),
1 L 1,1 1
182102, u]|| Lo,y < Cpgmin{s,e” 7,88 ' v a1 417y,
(iii) [0, u"1(0, 1) = [P, ). o
e ﬁ o
Gy lim_sup [l u)Gr.0) = [, u%] (3)] =0.

3. Reformulation of the problem

In this section, we reformulate the original problem (1.1)—(1.5) in terms of the perturbated
variables. To begin with, let us recall the nonlinear wave (p, ), which is defined in Section 1.
That is,

(P, w)(x, 1) = (B, 1) + (P, u") = (P, ). (3.1

(p, u, x) is the stationary solution which connects the two states (op, up, xp) and (o4, ux, 1) and
satisfies for any x > O that

3)((/3’2)207

~~2 ~ _ ,a2~ _ 8 =\2
0x(pu”) + 0x p(p) = vz — 50x(9x X)°, (32)
pudcx =—H, '

piv=—802% + L3~ ).

with the boundary condition (p, i1, X)|x=0 = (0», Us, x»)- On the other hand, (p"2, u™)(x, ) is
the smooth rarefaction ware satisfying
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9 p" + 9x (p"?u"?) =0, (33)
P"2(Qpu" +u"9xu") + 9, p(p"?) =0. '
Thus, from (3.2) and (3.3), we see (o, u, x) satisfies
3 p + dx(pit) = f,
p(drit + idit) + 9y p(p) = vdZit — 53, (3 1) + 3, 3.4)
pUdy X = —[1, '
PR =—832% +5(X° = %),
where f and g are defined by
[ =000 = i) (i — us) + (U — ) (5 — pa)],
and
g =(p" — p)idyii + pl(i — uy)dcu" + (U — u,)d, ]+ [p'(P) — p'(p")]0x p"
_ R
+Ip'(0) — P (P — = =P (") p" — vazu".
From (3.1), (2.25) and (3.2), it is easy to know
| FI+18 +va7u™| < C{axii(u™ — us) + 9" (s — i)},
r 2~ ~\2 r ~ r 2 1 \2 (3.5)
[0 fl=C {(Iaxul + (0xu)") ("> — uy) + Oy udyu’ + [d5u"2[ + (9xu'?) } ;
where we have used the fact 9,z > 0, 9,u"2 > 0 and
up <t <uy <u? <uy, (3.6)

which can be derived from Lemma 2.1 and Lemma 2.3 (§). Similarly, from the fact 9,0 < 0 and
Ox < p"2(x,t) < py, we have

0<px=<p=<pp+ps— Ps 3.7
Now we define the new unknowns
(p(xﬂt):p(xvt)_ﬁ(xvt)7 w(xvt):u(xst)_ﬁ(-xvt)v
Cx,t)=x(x, 1) = x(x,1), (x,1)=plx,t)—plx,1).

Then from (1.1) and (3.4), it is easy to check that the perturbated variable (¢, ¥, ¢, w)(x,t)
satisfies
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O +udrp + poxy = f,
P@Y + uds ) + p'(0)3xe = vA7Y — §0x(8:0)% — 80x (3:C B X) + 25 9x ()70 + %18)

P3¢ +udkl) +w=—0x[p¥ +up +u(p"? — ps) + p(u"? — uy)l,
po =235 + 507X (0" — px) = 803¢ + 5 [p83 + 3% 05 + BX* — Dp¢],

where the functions f and g are given by

f=—F =it — Y.,
P&

_ _Q 1Y _ _
g =—pdity —vdgi— + [tP’(p) - P/(p)} p — —.
o Le o
And the boundary and initial conditions turn out to be

9(x,0)=po(x) —p(x,0), ¥(x,0)=uo(x) —u(x,0), ¢(x,0)=yxox)—xx),
9(0,1) = pp — p(0,1) = px — p"2(0,1) =0,

Y(0,t) =up —u(0,1) =u, —u"2(0,1) =0,

£(0,1) = xp» — x(0) =0.

(3.9)

Therefore, we can now restate our main results in terms of the perturbated variable
(@, ¥, )(x, t) as follows.

Theorem 3.1. Under the assumptions of Theorem 1.1, there exists a unique global solution
(¢, ¥, &) (x, 1) to the problem (3.8) and (3.9), satisfying

@@, 1), ¥(x,0) € C([0,00); H'(R4)), ¢(x,1) € C([0,00); H*(R4)),
dep(x,1) € L2((0, 00); L*(R1)), 85 (x,1), 85¢(x, 1) € L*((0, 00); H' (RT)),

and

sup (@, ¥, &)(x, )| >0 as t— +oo. (3.10)

xeR+t

To prove this theorem, we employ the standard continuation argument based on a local exist
result and a priori estimates stated in the following

Proposition 3.1. Assume that all the conditions in Theorem 1.1 hold true. Let [@, ¥, ] be a
smooth solution to the initial boundary value problem (3.8) and (3.9) on 0 <t <T for T > Q.
There are constants g > 0, C > 0 such that if

Sup (I, Y1l g1 + 1E D)1l 2) + 8 + € < e, (3.11)
<t<

then one has the solutions [@, V¥, ¢] satisfy
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T
U (||[<p, Y15 + ||;<r)||§{2) + f (l0x@l* + 10x [y, £ 117,)d1
<t<

- 0

< Clligo. Yoll%1 + Clicoll%y + €35 + Ce. (3.12)

It is easy to get

lle, ¥, £1lloo < V280, 1922 loo < V220, (3.13)

where the following Sobolev inequality

(O < V2012 85k11V2 for h(x) € H' (Ry) (3.14)
is used.

The complexity of nonlinear wave leads to many complicated terms in the course of estab-
lishing the a priori estimates, however those terms are of two basic types and can be evaluated
suitably by using the decay (in both time and space variables) estimates of each component of
nonlinear wave. Hence for later use and clear reference, in Lemma 3.1, we will give the follow-
ing important inequalities which deal with the low order dissipation terms and the complex terms
mentioned above before the energy estimates.

Lemma 3.1. (i) For any function h and (k + 1)j > 2, there is a positive constant C such that,
[ 185 ol nPax < €542 [520.0 + 1 h o] (3.15)
Ry

(ii) For any functions f, h and 2(k + 1) j > 3, there is a positive constant C such that,

/ 0@ — wl 1hs fldx < 81 £ 02 + CEETI2 5120, + 108 O12] - 516

Ry
(iii) For any 6 € [0, 1], we have
19:L0"™ = par ™ = ]l oo < Ce? (1 4 1)~ 170, (3.17)
(iv) Since p"2(0,1) = px and u" (0, t) = uy, we have
P (x,1) = P < x[10x 0" |00, (3.18)
and

u(x, 1) — s < x[|05u"? | 0o- (3.19)
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(v) For any 6 € [0, 1], g > 10, we have

_ 5 ~
- 2 6 —(1-6
f<|f|+|g+v3xur2|)dx§Cl+gt+Ce 141 ( )ln(1+8t) (3.20)
Ry
and
/ 19 Fldx < C8(1+ 07"+ C? (1 4+ 17079 4 Cet (141717, (3.21)
Ry
(vi) For g > 10, we have
- 142 —242 3 -
f|g|2dx <Ce i+ T+ Co1 4+, (3.22)
Ry
and
— — ~ ~ 2 2
/ (1P + 1o, fPdx < C5(1+ 072 + C8 T (1417240, (3.23)

Ry
Proof. (i) Using (2.7) and the following Poincaré type inequalities
e, 0] < 1O, D]+ x7 [k D, (3.24)

for (k 4+ 1)j > 2, we have

[ 19k ot P
R4

52] 05— wol (H2(0,0) + x|k (O] dx
Ry

5k+1)j 5k
< Ch*(0,1) f — _dx+Clah)]? / — dx
(1 + 8x)k+DJ (1 + Sx)k+1)J
R, R,

< €30I [520, 1) + 18:h0)]1].

(it) By the Young inequality and Lemma 3.1 (i), for 2(k + 1) j > 3, we have

f 105 — )V o, fldx
Ry
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520+1)j-1

8119 yC| —=———h
<los @i+ [ TSNy

Ry

< 810 £ O + €373 [§820,0) + 10, k)12
(iii) From Lemma 2.3 (ii), we have

185[0" — ps, "™ — ]lloo < C minfe, (1 +1)7'}.

Thus we have
18:L0™ = pas ™ = uallloo < Ce?(1 4 1)~ 170

Here we have used the fact that if 0 < C < A and 0 < C < B, then C < A’ B!~ for any 0 <6
<1I1.
(iv) Notice that

X
) =10 = [ updy < x1da” .
0

Since u2(0, t) = u,, we complete the proof of (3.19). Similarly, we have (3.18).
(v) Using (2.7), (3.5), Lemma 2.3 (ii), Lemma 3.1 (iii) and (iv), we have
f(m + 12+ vodu™]) dx
Ry

<c f (e — 1) + e (s — iD)}dx
Ry

=C / O [(W™? —uy) (@ — uy)]dx +2C / 2 (uy — i)dx

Ry R,
! 400
:2C/8xur2(u*—ﬂ)dx+2c / Ou"?(uy — )dx
0 1
t - - +0oo
<l [ Zdnr oo [ o
, 1+6x 146t J

< §
< Cl19xu" || oo In(1 + 81) + C——= |9 u" || 11
146t

< $
<c?A+0)" "D+ 8+ C——,
1+ 6t
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where we have used u’2(0, 1) = u, and it — u, as x — +o00.
Similarly, we can obtain that

f |9y fldx
Ry

<€ [ 0831+ @D )+ By + 8307+ @2 da
Ry

< Cll0xu"™ oo / x(|03i] + @) *)dx + Cll0u" oo | 0xill 1 + Cllogu" || 1 + Cllo,u” |1

Ry
<Ca+nT"+Cf U+ 4 cen (1407

(vi) Noticing (3.5) and Lemma 3.1 (iv), and applying Lemma 2.3, (2.25), (3.2); and (2.7), we
obtain that

/ g°dx < C /{|a§u’2|2 1002 [(U" — i) 1P 4 180" [ (use — i7)|*Ydx

sC||83u’2||2+cnaxu’2||§of|axﬁ|2x2dx+cnaxur2||§of|(u*—ﬁ)|2dx
Ry R,

2 2 ~
<ceti e s +072, (3.25)

and

f (fPP+18: f1Pdx < C / [@xi1)? + (321" — uy)?dx + C / (3:0) (B, u™) dx
Ry Ry Ry

+C / [(@xu")? + (32u™)?1(i — us)*dx
Ry

< Clla,u"|% f [@yi)? 4 (82i0)*1dx + C|,u"||% / (30 *dx
R, Ry

+C||3x[ur2,3xur2]||§o/(ft—M*)zdx
Ry

~ ~ 2 2
<Cs(1+n 2+ CéTi+n"Te. o
4. The energy estimates

Lemma 4.1. Assume the conditions in Proposition 3.1 hold, then we have the following energy
estimate for t € [0, T],
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0

t t t
||[go,w,c,ax;]u2+/(||axw||2+||w||2)dz+/||\/axﬁ[¢,w, ax;]||2dr+f||¢|ax>2|z||2dr
0 0

~2 1 ~1 1
< C lllgo. Y0, C0, dxZolll* + C (53 +€W)/ loxLe, ¢11*dT 4 C89 + CeTo. 4.1

Proof. Multiply (3.8); and (3.8), by W and v, respectively. Direct calculations and then
summing up two resulting equations give rise to

o [p9(5.0)+ ng]
)
+ 0y {pucb + 204 (o) = PP = vy + S (0.5 + aaxcaxw}

+ V(@) + it [ p(p) = p(B) — P (D) + oY

92i ") - _ B F)
==y - p7 f— 23y + 300 (0000 +0LOIIV + 50U ()
4.2)
where

[ p()— p(5)

_ s)—p(p
@(p,p):/%ds. 4.3)

)
It is easy to see that ®(p, p) is equivalent to |<p|2, i.e

clpl* < (B, p) < Clol?, (4.4)

since there exist positive constants ¢ and C such that p and p satisfying

O<c=<p,p=C,

which can be derived from (3.7) and (3.11).
Next, multiplying (3.8)3 by w and together with the help of (1.1); and (3.8)4, we obtain

P& o 3)227_12) s 2, 0.0
Bz[8<4+x§+ > ¢ +2(8x§)+[38xx<p§

4 372 -1 P b
+ o, [”—” <§— +x03+ 22 ;2> - —”(axc)2 - 8&;@:] + 20,i1(9,:0)2 + w*
) 4 2 2
8 ac 2 25 8
=—;8xx(p 2 — 05)(0:C +udyl) — —8 Y(0x0)"+ = 3 XC0r@ — Ta Xu@oy

+ p(s—uax)?(ﬁ3 +330%) = 0K [pY +iip + @™ — p) + p(u” — uy)]o. 4.5
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Using (3.8); and (3.8); together with (4.5), one has

4 3(32 — 5
a{g(%ﬂz%Mz +c)+ (3,0) +3 xw(}

pu (& 33% -1 2)__“ 2_ 8, - 2, 2
+ 0y |:3 <4 + C + ) e 2(8x§) 80x¢0:¢ +28xu(ax§) +w

) B 5 ~ B )
= %aﬁx(p” —p) {0+ p¥ +ig+i(p™ — po) + p U —u)de i} — Eaxw(axoz

S 5. _ _ _ b))
- ;32)( (udxg + pdxyr + dyitp + oY + f) ¢ — —82xu<p8 ¢+ —axx@ +35%¢%)
— 0 KoY +iip + (0" — pi) + p U — u)]w. (4.6)

Taking the summation of (4.2) and (4.6), integrating the resulting equation with respect to x
over R4, and using boundary condition (3.9) and uj; > 0, we arrive at

§-4

dt 4

Ry

~.3 3(x% — D, 8
pP(p, p)+ = 1/f + +x¢ +7§ +07 )+ 5 (8 £)? + Rxet|d

+%(ax;)2(o,t)+/ [v(axw2+w2]dx+/3%”(_8)‘2)&%

Ry Ry

I}
+ / Ayt [p(p) —p(p) — P (D) + p¥? + z(axoz} dx

Ry
1= _ _ 8212 1) ~
= [ L0 fax— [ Lawax—v [ Eloax+ [ Zovapiax
p 2 p 26
Ry Ry R+ Ry

8 o. - L
+ / %afx(p’z — o) {0+ X oy +itp +ia(p" — p) + p U —u,)]} dx

Ry

N 5 . _ _ .
S/axgaxxaxwdx—/gafx (udc + pOx Y + Oyitg + dxpY + f) {dx
R: R+

§ . 3 L
—/;@%meax{dx—/axx[pw+u<p+u(p’2—p*)+p(u’2—u*)]wdx

puL, 1.3 5 2
+ [ Bai[e 436 - 06 dx

10
=3 4.7)
=1

where J; (1 <[ < 10) denote the corresponding terms on the left hand side of (4.7).
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We use Bxﬁ = 0yl + 0,u"? > 0 to derive 0 < up < u < u4, which together with (3.11), and
imply 0 < %2 < u < 2u,. Combining this with 3, ¥ < 0, we have the following estimates:

3 —~
/ WUy 0y = el eI,

Ry

8
/ Oxit [p(/)) —p(®) — P (D)o +pY’ + 5(%@)1 dx > c|ly/d,iilp, ¥, 9, ¢111%.

Ry

Before our estimates, we take ¢ = 10 and # = ; in Lemma 3.1, Lemma 2.3 in the following
for brevity. By applying Sobolev inequality (3. 14) Cauchy inequality, and using Lemma 3.1,
Lemma 2.3, boundary condition (3.9), (2.7) as well as (3.11), it is direct to obtain the following

estimates:

Ji < Clollosoll Fll

i i § 0 —(1-6) <
<Clol2lloxell? | —=+e (1+1) In(1 + 81)
1+ 6t

W
s

<CE3 +em) a2+ C———— + CeB (1 4+ 1
3

5t
(1+61)

Ool

J2 < ClY ol
< CllYlloollg +vd2u"ll 11 + CllY lloo VOZu™|l

5
<Clly )28, wnz[ 5 +e? 4170 9>1n<1+3r>]+cw||w||2||a S
~10
<2 L 59 2 _13 1 _6
<C@3+e)|[aY|? +C———5 +CeT5(1+1) 2 +Ce0(141)75
(1+481)3
~10
~2 L 89 1 _13
<CE5+e)|[aey|? +C——— +Cen(1+1)" 12
(1+61)3

h< c/qa,%m 1026 ) (¢ + ¥)dx
Ry

< C8)13x[e, W11 + Clilg, N2 1926l

- 1 141
< C8llaxlg, w1I* + Cev [llg, Ylllld:Le, w111+ 1)~ T4
< C8)10c[@. Y112 + CeT0 [ac[g, Y12 + CeT0 (1 +1)75,

Ty < C8%||o,le, v1I1%,
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1 . - -
Js < ol +C / @722+ Y2)dx + C / (O 0)? + (221w — un)dx
R, R,

1 ~ - -
< annz + C8) 3y, w11 + cnaxu”uio/ﬁuaxxﬁ +182%1%)dx
R4

1 5 N -
< Z ol + C8a:lo. w1 +C5(1+ )72,
Jo < C8l1a:1¢, w112,

J7scf|a§>2||;||ax[¢,m|dx+cf|83>2||¢c||axﬁ|dx+6f|afx||w;||axﬁ|dx
R4 Ry R4

+c/|8§;Z||<p;||axu”|dx+6/|af>z||w¢||axp’2|dx+c/|a§>2||cf|dx

< CE+8)cle, ¥, L11* + CE 4+ 81921 + ClIc ool Fll 1

=

< C8llasle, v, C1IP +C(3

2 L 2 2 -
T+ e0)|8:5 )2+ C——rg + CeB (1L +0)7 12,
3

(14 57)

+ | on

Jg < C818. 1>+ €839 0]|%,
1 N -
Jy < ol +C / @ 720> + ¥D)dx + C / 02w — uy)dx
R, R,

1 < N
< anuz + C8 || dxlo, w11 + cuaxu’zniofx%axxﬁdx
Ry

lwll* + C821ax[e, 11> + C8(1 +1)72,

=

E,

J10 < ClE oo IV18: X1E 12 + ClLE — Uloo v/ 18: X1 112
< C(eo+&IVI0: K¢

Therefore, (4.1) follows by plugging the above estimations into (4.7), integrating the resulting
inequality with respect to 7 and applying (4.4), (2.8) and Cauchy inequality, where we recall that
&0, € and § can be small enough. This completes the proof of Lemma 4.1. O

Lemma 4.2. Assume the conditions in Proposition 3.1 hold, then we have the following energy
estimate for t € [0, T],
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t
™ +/ l,el2de
0

t
< C(IYoll* + lgo. Zoll3,) + CG + 80)/ loxg. 9:¢117dT (4.8)
0

L

t
~1
+ (Ceg + n)/ 124 |1°dt 4 C§5 + CeT0,
0

Proof. We first differentiate (3.8); with respect to x to obtain

305 + yudyp + ud g + 9, pdx Y + PIZY + 32itg + dpikdep + dx POV
+ 025y + 0, f =0. 4.9)

Then multiplying (3.8), and (4.9) by BXT“’ and v a;—f , respectively, and integrating the resulting
equalities over R, one has

P (p) 2
0y oxpdx + | udyYoxpdx + T(8X¢) dx
R, Ry R,
9 82— /(= ’
=/va§1/f x‘”dx—/Ux_f‘waxwdx—/axawaxwdwr/[p 0 _ p(p)i|8x,68x¢dx
o pp o o
8 2 0@ - 8 -2
- —0x(0x8) 0xpdx — | §——0x(0x X 0x¢)dx + =000y (x ) dx
2p p 2pp
—/§_8X¢dx,
o
Ry

and

9 3y p)? 3y d?2
v/x—fat8xgodx+\)/8xu( x‘i) dx—i—v/u x(pzx(pdx
P P P

9 9, 0)?
+v/x_;paxp8x1ﬁdx+v/3xﬁ( "f) dx
p P
Ry Ry
3 3 3
:_v/afx/f x‘pdx—v/af:z(px—fdx—v/axﬁaxw"—fdx
p P p
+ + +
3 5
—vfafﬁw xfdx—v/axf"—fdx.
p p
Ry Ry
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Using integration by parts, boundary condition (3.9), (1.1); and the summation of the equali-
ties above further implies

d v "(p)
5 (va0+ 55607 ) dx+ [ 2P 0020
dt 2p 0
Ry Ry
up 2 8)(” 2
=v3 3 @000 = [ dvdpds +v [ 25 @) dx = [ udsydpds
B 82t B
—v/;—faxpamdx—v/ P (p‘l+5—1)¢ax<pdx—v/axﬁaxw;—fdx
Ry Ry Ry
a (= /
_V/af,aw x;pdx—/axin/fﬁx(pdx—i-/ [p(_p) = p(p)i|8x,58x(pdx
P P P
Ry Ry Ry
8 a - Ox U
— / o (0:0)?0pdx — / 52 5, (0.: 70,0 )dx — v f —5 (0x9)°dx
P o P
R, R4 Ry
s ~\2 g z0x ¢
+ | 5—=90x93x(dx x)dx — =0xpdx —v axf—zdx
2pp 12 2

= Z J, (4.10)

where J; (11 <[ <26) denote the corresponding terms on the left hand side of (4.10).
Before our estimates for J; (12 <[ < 26), we first deal with boundary term Jq;. From (3.8);
together with boundary condition (1.4) and (3.9), we have

upde (0, 1) + ppdx ¥ (0, 1) = — £(0,1).

Then using the Sobolev inequality and Cauchy—Schwarz’s inequality with 0 < n < 1, and using
(3.23) with g = 10, we have

(3x9)*(0,1) < C(3,:¥)*(0.1) + C f7(0.1)
<Clo % +CIFI%
<Clacyllogyll + ClIFI* + Cliac £11?
< nll2Y 12 + Cyllaxy |2 + C5 (1 +1)75. (4.11)
We now turn to estimate J; (12 <[ < 26) term by term. By applying Holder inequality,
Cauchy—Schwarz’s inequality with 0 < n < 1, (3.8)1, (3.11), (3.13), (3.23), (2.7), Lemma 3.1,

Lemma 2.3, Sobolev inequality (3.14) and integration by parts, it is direct to derive the following
estimates:
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I =— / 0¥ dypdx

Ry
=/axwaxwpaxx/f+axﬁ¢+axﬁw+f)dx
Ry
< llor@ 1> + (C + CIYII* + 8105 v 1> + Colla. [, w11
+ Cllou” ool [, YOI + CILA 11
< nlldcll® + (C + CPIYII> + 8110w 1> + CSllax . w111
+ Cllau” 1 N, w2 + C3(1+1)73
< 0ll9 1> + (C + CPIYII* + 8105 1> + Colla. [, w11
£ C¥(1+0)20-0 L 51 +1)73
< nllde@ll® + (C + CPl Y 1> + 8110w 1> + CSllox g, w117
FCei(1+0) 5 +Co(1+1)3,
Ji3 4 T3 < C([10: ¥ lloo + 105t lloo) 19501
<CE+ ool + CUacy ] + 1979 DIl pll®
<CE+e+e0)depll® + Ceoll 0711,
Jia < nlldell® + Cylldxy |,
| x‘/’|

115+J17<v/’ Ox 0O Y

dx+vf|axp||axw|

< Cl13xplloolldc @Il w1l + Cllax ¥ oo |50l
<CE+e)Icpll* + 10w 1?) + CUd Il + 197w Dl dxe
<CG+e+e0) (10l + 19:¥11*) + CeolldF v |12,

Ji6 + T1g < 8l10xpll* + C8 ax L. W1I* + Cll7u" ool . w111 0x g0
< CE + el + C8 oo, WP + CeHi (1 + 172
< CG + ) 10011 + C8 1L, wI2 + Ce 5 (1 +)7F,

J1o + J20 < 8l1dcpll* + C8llc Lo, Y1I* + Cllaxu" |lsolle. Y11 1050
< CE+e0)0xpl® + C8l|0xy||* + Ce¥ (1 4 1) 72070
< CG+ €013l + ClI3cyI> + Cet (1 +1)77,
D1 < Cllax llo(l13xl* + 1852 11%)
< CUa:gl + 1a7¢IDUdsel® + 18717
< Ceol|d: . 02111,
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Ja < C8|13:lp, ¢, 8:211%,
Joa < 8l13,0l2 + C8lldco 2,
Jos < nlldcell* + Cyllgl?

1 ~
20 L8402

2
<nllocgl® + Cpe' e (1 +1)
2 ¢ -2 3 -2
<nlloxell”+Cpes(I+1)"5 + Cpd(1 +1)"7,

= < _9
Ja6 < nlldxgl® + Cylldx F11? < nlldvel® + C5(1 +1)75.
Inserting the above estimations for J; (11 </ < 26) into (4.10) and then choosing &, €, $ and
n so small, and integrating (4.10) over [0, T'] and using (4.1), Cauchy—Schwarz’s inequality with
0 <n <1, we get (4.8). This completes the proof of Lemma 4.2. O

Lemma 4.3. Assume the conditions in Proposition 3.1 hold, then we have the following energy
estimate for t € [0, T],

t t
||zw||2+/ 07w |I*dT < Cll[go. ¥o. S0l +C(S+so>/ lox[¢, dc¢11%dT
0 0

ol—
3l-

+C89 + Ce (4.12)
a2
Proof. Multiplying (3.8), by —dxpw and then integrating the resulting equation over Ry, we
arrive at
1d v
35 [ 0evrars [ Zadnias
R4 Ry
2 o5y / SR 2 -
= | ud Yo dx + ) doxep’ (p)dx + vﬁwé)xt//dx—l— Yo Yoyudx
Ry R4 Rt Ry

+/<”(‘” _ pEﬁ))axﬁafwdwfiaﬁwax(axozdwffaiwax(axzaxodx
p 12 2p o

R, R, Ry
Y RS o2 842
) — @0y Yoy (3x X)) dx + — 0y ydx
pp P
R, R,

35
— Z Ji, (4.13)

1=27

where we have used boundary condition (3.9) and J; (27 <1 < 35) denote the corresponding
terms on the left hand side of (4.13).
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We now turn to estimate J; (27 <[ < 35) term by term. By applying Cauchy—Schwarz’s
inequality with 0 < n < 1, Sobolev inequality (3.14), (3.22), Lemma 2.3, (2.7), (3.11) and (3.13),
it is direct to derive the following estimates:

Jo7 4 Jag < Cla W 1929 | + Clldcpll 192
<2y I + Cyllldx[e, w1112,
a2 2 33 2 2.1 2
Jag < 811829 |12 + CE3 18,0 )1> + Cll82u" | ol 1182 |

< CE+ e 0202 + C8 ol + CEFi (1 +7 2T
< CG+ e 02V + C8 0,0l + CeF (1 +1)7%,
T30 + J31 810791 + Colloxlp. w1l + Clloxu”™ ol e, w1l 87
< CE+ )02y 1? + C8lla:[p, 11> + Ce? (1 + 172170
< CE+ 0212 + C3l1a.lg, w112 + Ced (1+1)7 3,
T32 < Cllox oo 102 11921 < Ceo (1022112 + 192 117).
J33 < C810x[¢. 0., 05117,
J34 < C8||dc[o, 31117,
T35 < nllajy ) + Cyllgl°

2 _2(1=1 ~
<nla2y )2+ Cpe' i+ 07 1 051 +1)7?
2012 § -2 3 )

<oy lI”+ Ches(1+1)75 +Cpd(1 +1)"".

Inserting the above estimations for J; (27 <[ < 35) into (4.13) and then choosing o, €, § and
n so small, and integrating (4.13) over [0, T'], using (4.1) and (4.8), we get (4.12). O

Lemma 4.4. Assume the conditions in Proposition 3.1 hold, then we have the following energy
estimate for t € [0, T],

t
~1 1
lax1I* + /(Haxcu2 + 193¢ 1%dx < Clllgo. Yo. 20llI3,1 + €85 + CeTo. (4.14)
0

Proof. Let us rewrite (3.8)5 and (3.8), as follows:
- - - 8.5
P20 ¢ + pPudss =— pdc X[p¥ +iig +@(p"™ — pi) + p (U — uy)] — Eafxw
2 1 3 =52 =2 8 0o
+803¢ — 5 [p¢7 430287 + B3> — ot | - SRR~ p). @19)

Then, multiplying (4.15) by —83{, noticing u; > 0, using boundary condition (3.9), and inte-
grating the resulting equation over R, we arrive at
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1d 2y 2
Sar p*(8:¢)%dx + ””waoz(o, N+ / f(axr;ﬂdx + / 8(32¢)%dx
Ry Ry Ry

3
) / ppdn L cdx — 2 / pudep (3o — / P0,u(d:0)2dx
Ry Ry Ry

- - - 3.5
+ f plpY +iip +ii(p" = pi) + p(u” — u)1d: 705 ¢ dx + f E3fx¢3fcdx

Ry R
1 3 3 5 3 -
-2 / dopcictd / pE 0 Vdx / Dk pEasdx — / Foxpt 0ncdx

6 [ . s 6 [ .. . 1 "
——/Xpé(axs“) dx—gfxf?xXﬂéaxédx—g/GX — 1)oyploxtdx

d
R. Ry R,
3 g 8.0
—S/puz— 1><axc>2dx+/ 5 R(0" = pu)dLdx
Ry Ry
49
=> (4.16)
=36

We now turn to estimate J; (36 <! < 49) term by term. By applying Cauchy—Schwarz’s
inequality with 0 < n < 1, Sobolev inequality (3.14), Lemma 2.1, Lemma 3.1, (3.11), (3.13),
(2.5)4 and (3.8)3, it is direct to derive the following estimates:

J36 = 2/ Ay pOxC{w + pudy & + 0 X oY +iip +u(p™ — ps) + p(u'? —us)l}dx
Ry

_ 2/ BepdcL{w + pudel + KLY + g+ (0" — o) + p(u’ — u)l}dx

+2/ A pdr{w + pudc s + A X [pY + it + i (p™ — pi) + p(u"? — uy)}dx
Ry

<CE+ el + 10:02. 91 + C8[l0x [, w1l + Clloxt lloolldc @l (leoll + 122 1)

+C / (B 7)™ — uy)?dx
Ry

<CE+ el + 18:0¢, 0, w1IH) + Ceo(lldx@ll> + llwll* + 18:¢11%)
+C||axu’2||§o/x2|ax;z|2dx
Ry

< C@+e+e0) 130, 0, I + ol + C8(1 +1)72,
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J37 < Cl10xpllooll 2 117 + CllAx llooll 85 @ 11922 |
<CE+ 01> + Ceolldrell* + 119:2 117,
J3g < Clloyitlloo |35 I + Cll0cE ool ¥ 1182
<CE+ )01 + Caollacyl* + 10:2 1),

J30 + Jag < G+ 192212 + Clldc [, w1I* + Cy / [0 7% + (B270)* 1™ — uy)dx
Ry

< G+ mIZc* + C8llacle, YI* + Cylldcu™ 1% f L@ %)+ 027) 1dx
Ry
< G+mIZCI* + Colloxle. Y1I> + Cp8(1+ 172,
Jao < 81102¢11* + C8 19012,

Jar + Jaz + Jag + Jae + Ja7
< Ceollaxle, L1 + 8119 11> + C819:[¢, 911> + Clldx o oo IZ 1182

< C(eo+ 8)[10c[g. 1% + 811052 11> + Ce2 (1 + 1) 200
g 3 1 _7
< C(eo+ O)19e, 11> +8119:¢ 1> + Ced (14174,
Juz + Jas + Jag < Ceo + ) 105 11

Inserting the above estimations for J; (36 </ <49) into (4.16) and then choosing ¢y, €, § and
n so small, and integrating (4.16) over [0, T'], using (4.1), (4.8) and (4.12), we get (4.14). O

Lemma 4.5. Assume the conditions in Proposition 3.1 hold, then we have the following energy
estimate fort € [0, T],

t
~1 1
19,1 + /(Hatznz + 1052117t < Clilgo. Yol 31 + Clidoll3,. + C89 + CeTo.  (4.17)
0

Proof. Differentiating (4.15) with respect to ¢, we deduce that
P2O7E + 3 (pH3 ¢ + 3 (2 u)dx L + p7udesl
= =00 X [pV + i + i (p"™ — ps) + p(U™? — us)] 4+ 801

i o 5 .
— PO KN LPY +iip + A" — pi) + P — )] — gafxatw

1 . - 8.5
— 50 [p87 + 30787+ GX7 — g | - SR (4.18)

Then, multiplying (4.18) by 9;¢ and using boundary condition (3.9), and integrating the resulting
equation over R and using integrating by parts, we arrive at
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2
P2 (3¢)dx + / 2 @0 dx + / 5(3y:0)2dx
R. R, R+

2dt

1
=— / PP (38 dx + 5 / A (p2u)(3,8)dx — / 3 (p*u)d ¢ Ldx

R, Ry Ry

- / dplpy +ip +i(p™ — pi) + p (" — uy)]0y X8, dx
Ry

- - - 8.,
—fp8t[ptlf+w+u(p’2—p*)+p(u’2—u*)]axxazidx—/Eazxazwazidx
R, R,

1 3 3 ~ 6 -
-2 / oy g~ / pe (30— / Ropdx — 3 / 00 (3,00 2dx

R, R, R, R,

1 3 3 . 8 n
— 5/(3%— 1)3;p¢ 3 ¢dx — gf(x2— 1)p<atc)2dx—/58§xa,p 29, ¢dx
Ry Ry R4

=3 (4.19)

We now turn to estimate J; (50 <! < 62) term by term. By applying Holder inequal-
ity, Cauchy—Schwarz’s inequality with 0 < n < 1, Sobolev inequality (3.14), Lemma 2.1,
Lemma 3.1, (3.11), (3.13), (3.25), (3.23), (4.15), (1.1)1, (3.8);, (3.8), and (3.3), it is direct to
derive the following estimates:

1 3
Jso+ Jsi =5 / dy ppu(8:¢)*dx + 3 / pdy (pu)(3:¢)*dx
Ry Ry

1 B 1
=3 / axppu<a,f;>2dx+§ / dxppu(d,)*dx

R, R,

3 _ _
+3 / 0@y pu + udsg + pd ¥ + pdyit) (3¢ )2dx

R
< Cl13xlp. iWllloolldZ 1> + ClIC lloolldx . W13, I
<CE+ I+ CUBL N+ 19x 2 IDN0c Lo, YN |
<CE+ONEI? + Caollld 1> + 1852 I17).
J52 = Cll9xE lloo 13 113 [, I + Cllax B, illloo 18 118 | + CllaxE oo 13 1824
+ Cllle. ¥lloolldc 5. wllloo 12 119x2 1l + ClOxE I3 132 1133 |
+ Cll0x K oo 185 oo 182 1187 | + CHOZF lloo 12 lloo 12 111922 I
+ Cll0Zitlloo 1 £ 11852 | + Cll9x & lloo 192 % llow 1 lloo 13, 1132 1
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< CUaxg I+ 182 IDN3: ¢ Lo, w1l + CGE + )12 1> + 19x¢ 117
+CE+Oeold L1 + 10 I1P) + C(ed + e0) 19,2 17 + 197 112 + 182y 1)
+ Ceo (19,11 + 1072117
<CGE+e+e0)10217+ 101 + 105217 + 97w 1),
T53 < Clll@. ¥ lloollOx X lloo 13,2 1L, Y11 + Cllox % lloo 186 110 [, Y111
+ Clla K N2 119:¢ 11 + C8*[10x@l1* + Clloxu” 1%, . w1I* + CIL F11?
+n||azc||2+cn||axur2||§o/(amz(u’z — uy)*dx
Ry
< C(e08 + &) (19,2 17 + 13x . Y1) + (C8* + )13, ¢ |I* + C82[| ol
+ Cylla u™ ||, / X0, 3)2dx + CeX (1417207 L C5(1 +1)73
Ry
< C(e08 +8) (19,211 + N[, Y117 + (C8* + ) [19,¢ |1?
+ Ol + CpE(1+ 1) + Ce3 (14077 + C5(1+1)73,
54 < Cl10x X llooll B 113x L@, w1l + Clldx X lloo I13:¢ oo 1 1372 1| + ClIEN* + CL F11?
+(CE+n+CONdL|* + Collx[¢. 3L, W1 + C8*ldc Lo, w11
< 831> + 19311 + N1x Lo, WIP) + (C8 + 0+ COd|I* + C81|9,[¢, Bcg. Ay ]Il
FCE T+ 072D £ 8 +0) 2+ C3Xi (1 41 2T
< C3(19:¢ 1> + 11922117 + 1050, Y1I%) + (C8 + 0+ Ce 3,2 |I> + CB10,[2, 0L, D511
+CTTA 0TI +CE0+072
155sc/|ai>2|(|axﬁw|+|axw|+|axw|+|¢||axﬁ|+|f|>|atc|dx
Ry
<CE+ed)19:¢ 17+ lacle. w1IH + CI A1
< CE+ DU + Noxle, WD) + C3(1+1)73,
Js6 + Jsg + Jeo
sc/an+|c|2+|¢|3><|ax/31/f|+|ax¢| + 10| + l@ll0xit] + | F1 4 [0cu"])],¢ |dx
Ry
< Ceo(I13,2 11 + 13x[g, Y112 + Ceod2l1axle, w11 + CUI FI> + nlld: ¢ |12
+ Cylldu 201112
< Ceo(19: 12 + 10, Y117 + Ceod2llac L, Y117+ C5(1 + 175 +ylla,¢ 1)
+Cpe?? (1 4 1)720=0
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~ ~ 9
< Ceo(18:2 12 + 19c [0, ¥1I1%) + Ceo82[10x[e, w1112 + C8(1 +1)75
08I+ Cper (14177,

Js7+ Jso + Je1 < Cleo +8) 19, 1%,

Joo < nlld 11 + Cylldcu™ 1% /(af;azdx <nlldgI* +Cpd(1+1)72
Ry

From (4.15), we notice that 9, (x, 0) satisfies

P3¢ (x,0) + pgugd ¢ (x, 0)

- - - 3.5
= —pod X [poVo + iigo + i (p™ (x,0) — pu) + po(u" (x, 0) — u,)] — Eafxwo

2 _ l 3 ~ .2 ~2 _ é 2= 1 _
0030, 0) = 5 | p0gg + 30063 + B = Dpodo | = S0TX (0 (x,0) = po).
(4.20)
Inserting the above estimations for J; (50 </ < 62) into (4.19) and then choosing ¢, S, € and

n so small, and integrating (4.19) over [0, T'], using (4.1), (4.8), (4.12), (4.14), (4.20) and (2.7),
we get (4.17). O

Proof of Proposition 3.1. Combinations of the estimates (4.1), (4.8), (4.12), (4.14), (4.17) and

taking &g, 8, € and 5 sufficiently small, we can obtain

0<t<T

T
sp_ (Il ¥ 1013 + 13,517 +f(||ax<p||2 10T ST, + 19:¢ 113
0

L

~1
< Clllgo. ¥o. 113, + Cllzoll},2 + €89 + Ce. (4.21)

From (4.15) and using Lemma 3.1, Lemma 2.3, we have

107211 < CAL I+ 15150 + e, ¥1IP) + C / [@x3)* + @O 021" — uy)*dx
Ry

< CURLI?+ 1121 + e, Y117 + Clldu™ 112, / L0 )* + (07 %)*1dx
Ry
< CULIP+ 12171 + e, Y% + C8(1 + 1) 72 (4.22)

Then from (4.22) and (4.21), we can get the desired estimate (3.12). Thus the proof of Proposi-
tion 3.1 is completed. O
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5. Global existence and large time behavior
We are now in a position to complete the following.

Proof of Theorem 1.1. This section is concerned with the proof of our main theorem. In order
to prove Theorem 1.1, we employ the standard continuation argument based on a local existence
theorem and the a priori estimates. Similar to [21], we can prove the local existence theorem, so
we omit the details. On the other hand, the a priori estimates have been given in Proposition 3.1.
Therefore, to complete the proof of Theorem 1.1, we need only to investigate the large-time
behavior of the solution (p, u, x)(x, t) to the problem (1.1)—(1.5) as time tends to infinity. Using
the energy estimates, we first prove that

sup |(,0—,5,u—12,)(—)2)(x,t)|—>0, (51)
xeRy
namely,
sup [(¢, ¥, &) (x, 1) = 0, (5.2)
XER+

as t — oo. For the large time behavior in (5.2), one can verify that
. 2
Aim 18, ¥, £l = 0. (5.3)

To prove (5.3), we get from (4.9), (4.13), (4.11), (4.17) and (3.23) that

+0o0 J
—\o.lo, ¥, 11| dt
f ‘dt loxLo. v 11
0
+00 +00) +00 J
:2/ /8,8x<p8x¢dx dt+2/ /8,8X§8X§dx dt + / ‘E”Z)X'(/IHZ di
0 R 0 R 0
+o00
<c+ic / 10, [0, . £. 8.1, £1]]1%dt < +o0. (5.4)
0

Consequently, (5.4) together with (3.12) gives (5.3). Then (5.2) follows from (5.3) and sobolev’s
inequality.

Finally, by the construction of the smooth approximation function of the rarefaction wave,
and in terms of (iv) in Lemma 2.3, we have

x
tim _sup [pCx,0)— 500 — o (3) + p.| =0,
t_>+°°xeR+ t
lim sup |u(x,t) —u(x)— ul (f) +u,| =0,
l*)+00x€R+ t
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lim sup [x(x,1) — x(x)|=0.

t—>+400 eRy
This ends the proof of Theorem 1.1. O
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