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Abstract

In the present study an asymptotic model for wave propagation in shallow water with the effect of the 
Coriolis force is derived from the governing equation in two dimensional flows. The transport equation 
theory is then applied to investigate the local well-posedness and wave breaking phenomena for this model. 
The nonexistence of the Camassa-Holm-type peaked solution and classification of various traveling-wave 
solutions to the new system are also established. Moreover it is shown that all the symmetric waves to this 
model are traveling waves.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

The study of water waves has been a source of intriguing – and often difficult – mathematical 
subject due to the familiar phenomena and various mathematical models [46]. The water wave 
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problem for gravity waves is described by Euler’s equations, which is the result of applying New-
ton’s second law to an inviscid fluid [32]. Their complexity led physicists and mathematicians to 
derive simpler set of equations likely to describe the dynamics of the water-waves equations in 
some specific physical regimes.

To simplify matters, attention is restricted to model equations with only two unknowns here 
instead of the governing equations for two dimensional flows with four unknowns: the horizon-
tal velocity, the vertical velocity, the pressure and the free surface. Inspired by Constantin and 
Ivanov’s modeling approach in [13], it enables us to derive a new system with the Coriolis effects 
from the rotation-Green-Naghdi equations by using the asymptotic expansion in the Camassa-
Holm (CH) scaling, i.e. μ � 1, ε = O(

√
μ) (here ε and μ are the amplitude parameter and the 

shallowness (long wavelength) parameter respectively), namely,

{
ηt + ((1 + η)u)x = 0, t > 0, x ∈R,

ut − utxx + uux + 4uxuxx + uuxxx + ηx + 2�ηt = 0, t > 0, x ∈ R,
(1.1)

where u is connected with the average of horizontal velocity, η is related to free surface eleva-
tion from equilibrium with the boundary condition u → 0 and η → 0 when |x| → ∞, � is a 
dimensionless parameter describing the strength of the Coriolis effect (� > 0).

Such equations are derived by adopting the technique involving the construction of asymptotic 
expansions with respect to two dimensionless parameters ε and μ. The significance of introduc-
ing the dimensionless parameters is that it is often possible to deduce from their values some 
insight on the behavior of the flow. It is worth introducing some terminology at this point [36]:

1) Small/large amplitude regimes. It is said that the flow under consideration is in a small am-
plitude regime if ε � 1. If no smallness assumption is made on ε (i.e. if ε = O(1)), then the 
flow is said to be in a large amplitude regime.

2) Shallow/deep water regime. The shallow water regime corresponds to μ � 1. If this con-
dition is not satisfied, then the situation is in deep water (the situation μ ≈ 1 is sometimes 
referred to as intermediate depth).

Throughout this paper, we consider only shallow water waves, i.e. μ � 1. Then, simpler 
models under additional assumptions on ε can be derived. That is, one may find shallow water 
waves in particular asymptotic regimes by relating ε and μ.

Before we commence our motivation to study the new model of shallow water waves, we shall 
focus on three specific physical regimes by connecting ε and μ. First of all, consider the shallow 
water wave with small-amplitude, i.e. long wave regime.

μ � 1, ε = O(μ). (1.2)

The most well-known model within this regime is the Korteweg-de Vries (KdV) equation [10,35]

ηt + ηx + 2

3
εηηx + 1

6
μηxxx = 0,

where η is related to the free surface as well as the horizontal component of the velocity. That’s 
why this regime is also called KdV regime. The KdV equation describes the propagation of 
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unidirectional, one-dimensional waves on the surface of water over a flat bottom. It is a represen-
tative as an integrable equation which provides an explanation of the phenomenon observed by 
Russell possessing smooth solitary waves that such waves can propagate in a liquid medium with 
out change of form. Actually, the derivation of the KdV equation allows great flexibility and the 
approach naturally allows the various alternatives. Indeed, it can be derived from the following 
Boussinesq’s equations [2,3,15] within the same regime by specializing to a wave moving to the 
right.

{
ηt + [(1 + εη)w]x − 1

6μwxxx = 0,

wt + εwwx + ηx − 1
2μwxxt = 0,

where η is related to the free surface and w is connected to the horizontal velocity. Moreover, 
the KdV equation belongs to a wider class of equations – the Benjamin-Bona-Mahoney (BBM) 
equations [4,6]

ηt + ηx + 3

2
εηηx + μ(β + 1

6
)ηxxx + μβηxxt = 0, (1.3)

where β ≤ 0. As mentioned by Whitham [46] that the nonlinear shallow water equations which 
neglect dispersive altogether lead to breaking of the typical hyperbolic kind, with the develop-
ment of a vertical slope and a multivalued profile. Notice that among these models (such as 
KdV) the balance between the nonlinear effects and the dispersive effects under the scaling (1.2)
is provided and the wave breaking phenomena (i.e. the solution remains bounded while its slope 
becomes unbounded in finite time) is not captured even though they provide good asymptotic 
approximations to the full water wave problem [1,34]. So in order to investigate shallow water 
waves with wave breaking phenomena, one may consider new models, whose behavior is more 
nonlinear than dispersive. Then a possible method to derive such equations directly from the 
governing equation is to adjust the relation between ε and μ.

In light of the foregoing discuss, we now introduce the shallow water wave equation with 
moderate amplitude, characterized by large values of ε, i.e.

μ � 1, ε = O(
√

μ). (1.4)

Unlike the case of the BBM equations (including KdV) in the regime (1.2), in the present setting 
(1.2) with the formal asymptotic procedures, the correct generalization of the BBM equations 
(1.3) under the scaling (1.4) is provided in the following class of equations [14]:

ut + ux + 3

2
εuux + μ(αuxxx + βuxxt ) = εμ(γ uuxxx + δuxuxx),

where u is related to the horizontal velocity uθ (θ ∈ [0, 1]) evaluated at the level line θ of the 
fluid domain, α, γ, δ and β < 0 are constants in terms of two parameters. As shown in [14], this 
two-parameter family of equations is consistent with the Green-Naghdi equation, which implies 
that it is a good approximation to the governing equations for water waves. Moreover, with proper 
conditions on α, β, γ, δ and transformations on u, one recovers two prominent equations which 
are completely integrable. One is the Camassa-Holm (CH) equation [7]
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ut + κux + 3uux − utxx = 2uxuxx + uuxxx. (1.5)

The CH equation was first obtained by Fokas and Fuchssteiner [22] as a bi-Hamiltonian gen-
eralization of the KdV equation. It also arises in the study of a certain non-Newtonian fluids 
[5] and models finite length, small amplitude radial deformation waves in cylindrical hyper-
elastic rods [16]. The novelty of Camassa and Holm’s work was the physical derivation and 
the discovery that the solitary wave solutions to this equation are soliton. Another one is the 
Degasperis-Procesi (DP) equation [18],

ut + κux + 4uux − utxx = 3uxuxx + uuxxx. (1.6)

Much attention is intrigued by the equation (1.5) and (1.6) in more than two decades because 
they inherit some properties of KdV equation [33,35,37,42] but not limit to the smooth solitary 
wave, which exactly answered the question raised by Whitham [46]. A breakthrough of the CH 
equation and DP equation is that, when κ = 0, they admit peaked solitary waves [7,8,17,38]. 
The wave profile of so-called “peakon” is shaped like u(t, x) = ce−|x−ct |, c ∈ R, which has 
largest amplitude c and speed c. The first derivative ux is smooth except at the peak, where it 
has a jump discontinuity. Another important feature is that the CH equation and DP equation 
accommodate wave breaking phenomena [7,12,14,41], i.e. the solution remains bounded while 
its slope becomes unbounded in finite time, due to the capture of stronger nonlinear effects than 
the classical nonlinear dispersive BBM and KdV equations.

In addition, the shallow water wave equation with large amplitude gives another physical 
regime

μ � 1, ε = O(1). (1.7)

The standard asymptotic procedure gives the classical Green-Naghdi (GN) equations [28] (also 
known as the Serre [44] or Su-Gardner equations [45])

⎧⎨
⎩

ηt + [(1 + εη)]x = 0,

ut + ηx + εuux = μ
3

1
1+εη

[
(1 + εη)3(uxt + εuuxx − εu2

x)
]
x
,

(1.8)

which takes into account the dispersive effects neglected by the shallow-water equations. These 
equations coupled the free surface elevation η, to the vertically averaged horizontal component 
of the velocity u. A rigorous justification of the GN model can be found in [40] for the 1D water 
waves with a flat bottom; the general case was handled in [1,19] based on a well-posedness 
theory.

Following discovering of these models mentioned above, we are motivated to search some 
models for shallow water wave equations with moderate amplitude exhibiting the Coriolis effect. 
One of our purposes in the present paper is to derive this kind of model equation (1.1) with 
the Coriolis effect under the CH regime and understand how the Coriolis forcing due to the 
Earth rotation affects the wave propagation, wave breaking mechanics as well as formulation 
of those peaked traveling-wave solutions. It is noted that in the process of the derivation of the 
asymptotic model equation in the present paper, the rotation parameter � is considered as a 
fixed O(1) constant relevant to the amplitude parameter ε and the shallowness parameter μ. The 
motivation with such a fixed � in the asymptotic expansion is that such a model could retain more 
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mixed terms of the free surface component and horizontal velocity component in the asymptotic 
system of equations so that we can perform the analytical study, with an emphasis of investigating 
whether or not these rotation can defer or enhance the formation of singularity or phenomena of 
wave breaking by interaction between those two components free surface and horizontal velocity. 
Of course, it is interesting to know how the interaction of those two components caused by the 
rotation parameter will affect symmetry property of traveling waves, existence or non-existence 
of certain solitary waves or surface waves, and stability or instability of those waves, for example. 
Moreover, a small parameter � is introduced in [23], where the Coriolis parameter � and the 
amplitude parameter ε are of the same order of magnitude. For some other models including the 
Coriolis force in the shallow-water wave propagation regime, we refer the reader to recent work 
in [21,30,31].

It is found that the consideration of the Coriolis effect gives rise to −[(1 + η)u]x or ηt into 
the second equation of system in (1.1). For the model in question, we first concern with its local 
well-posedness in suitably function space. The two equations for u and η possess the transport 
structure. Due to transport equation theory applied in [24], the local well-posedness for system 
(1.1) will be established. Moreover, the asymptotic expansion in the Camassa-Holm regime gives 
the fluid convection between nonlinear steeping and amplification, which has interesting impli-
cations for the fluid motion, particular in the relation to the wave breaking phenomena and the 
permanent waves. On the other hand, using Moser-type estimates and Littlewood-Paley analysis 
for the transport equation, we obtain the blow-up criterion. Our approach is to trace the dynamics 
of the solution and its gradient along the characteristics. Then the dynamics of the wave-breaking 
quantity is established by a refined analysis on evolution of the solution u and η.

Another interesting issue investigated here is the traveling-wave solutions of (1.1) in the form 
of (u(t, x), η(t, x)) = (ϕσ (x − σ t), ψσ (x − σ t)), σ ∈ R for the function ϕσ , ψσ : R → R such 
that ϕσ → 0, ψσ → 0 as |x| → ∞. It is known that the traveling-wave solution of the classical 
CH equation appears to be a weakly peaked soliton [7], which is one of the interesting features 
for the CH-type equation. It was also found that the mCH equation, as the dual equation of the 
mKdV equation, admits peaked solitons [27]. As one can see that the system (1.1) has the same 
nonlinear terms in u with the CH equation except for the coefficients. A natural question remains 
that how the Coriolis forcing and the convection between nonlinear steeping and amplification 
affects the propagation of the traveling waves, in particular, the peaked solitons. To this end, it 
is of interest to study and classify the traveling-wave solutions of (1.1) and the existence of the 
CH-type peakon solution. Actually, we use a suitable framework for weak solutions to classify 
all weak traveling waves of equation (1.1) as [38,39]. It is unclear whether the system (1.1)
with the weak Coriolis effect supports traveling waves with singularities. Using a natural weak 
formulation of (1.1), we can define exactly in what sense the peaked and cusped traveling waves 
are solutions. In fact, it turns out that the equation for ϕ takes the form ϕ2

x = F(ϕ), where F is 
no longer a rational function comparing with the CH equation. A standard phase-plane analysis 
determines the behavior of solution near the zeros and poles of F . In fact, peaked traveling waves 
exist when F has a removable pole and cusped traveling waves exists correspond to when F has a 
non-removable pole. Due to the added Earth rotation term, the numerator of F is a combination 
of polynomial and nature logarithmic function whose root are not explicit. By analyzing each 
possible case carefully, we show here only cusped and smooth traveling waves exist for (1.1), 
and the CH-type peakon does not exist.

From the classification of the traveling waves for system (1.1), it admits both cusped and 
smooth traveling solutions. Both of these two solutions are symmetric around the crest. Con-
versely, this raises the interesting question whether symmetry is a priori guaranteed for traveling 
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waves. Adopting the idea in [20], we are able to give an affirmative answer to the case of system 
(1.1).

The remainder of this paper is organized as follows. The derivation of the new model and the 
Green-Naghdi equations with Coriolis force are presented in Section 2. The local well-posedness 
of the new model and the wave-breaking criteria for solutions to (1.1) by using transport equation 
theory are contained in Section 3. Section 4 is devoted to the investigation of existence and 
nonexistence of Camassa-Holm-type peaked solution and classification of the traveling-wave 
solution of the model. Moreover, it is demonstrated that all the horizontal symmetric waves 
should be traveling waves.

Notation. Throughout this paper, we denote the norm of the Lebesgue space Lp(R) by ‖·‖Lp , 
1 ≤ p ≤ ∞ and the norm in Sobolev space Hs(R), s ∈ R by ‖·‖Hs . The spatial convolution on 
R is denoted by ‘∗’.

2. Derivation of the model

It is observed that in certain ranges of scales in the geophysical water waves fluid dynamics 
is primarily influenced by the interaction of gravity and the Earth’s rotation. Consider now that 
water flows are incompressible and inviscid with a constant density ρ and no surface tension, 
and the interface between the air and the water is a free surface. Then such a motion of water 
flow occupying a dynamic domain Dt in R3 under the influence of the gravity g and the Coriolis 
force due to the Earth’s rotation can be described by the Euler-Coriolis equations [29], namely,

⎧⎪⎪⎨
⎪⎪⎩

�ut + (�u · ∇) �u + 2 �� × �u = − 1
ρ
∇P + �g, x ∈ Dt , t > 0,

∇ · �u = 0, x ∈ Dt , t > 0,

�u|t=0 = �u0, x ∈D0,

(2.1)

where �u = (u, v, w)T is the fluid velocity, P(t, x, y, z) is the pressure in the fluid, �g =
(0, 0, −g)T with g ≈ 9.8 m/s2 the constant gravitational acceleration at the Earth’s surface, and 
�� = (0, �0 cosφ, �0 sinφ)T , with the rotational frequency �0 ≈ 73 · 10−6 rad/s and the local 
latitude φ, is the angular velocity vector which is directed along the axis of rotation of the ro-
tating reference frame. We adopt a rotating framework with the origin located at a point on the 
Earth’s surface, with the x-axis chosen horizontally due east, the y-axis horizontally due north 
and the z-axis upward. We now focus on two-dimensional flows, moving in the zonal direc-
tion along the equator independent of the y-coordinate, in other words, v ≡ 0 throughout the 
flow. In 2D case, consider here waves at the surface of water with a flat bed, and assume that 
Dt = {(x, z) : 0 < z < h0 + η(t, x)}, where h0 is the typical depth of the water and η(t, x) mea-
sures the deviation from the average level. Under the f -plane approximation (sinφ ≈ 0, φ � 1), 
the motion of inviscid irrotational fluid near the Equator in the region Dt with a constant density 
ρ is described by the Euler’s equations in two dimensions [11,29],

{
ut + uux + wuz + 2�0w = − 1

ρ
Px,

wt + uwx + wwz − 2�0u = − 1
ρ
Pz − g,

(2.2)

the incompressibility of the fluid,
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ux + wz = 0, (2.3)

and the irrotational condition,

uz − wx = 0. (2.4)

The pressure is written as

P(t, x, z) = Pa + ρg(h0 − z) + p(t, x, z),

where Pa is the constant atmosphere pressure, and p is a pressure variable measuring the hydro-
static pressure distribution.

The dynamic condition posed on the surface �t = {(x, z) : z = h0 + η(t, x)} yields P = Pa . 
Then there appears that

p(t, x,h0 + η(t, x)) = ρgη(t, x). (2.5)

Meanwhile, the kinematic condition on the surface is given by

w = ηt + uηx, when z = h0 + η(t, x). (2.6)

Finally, we pose “no-flow” condition at the flat bottom {z = 0}, that is,

w|z=0 = 0. (2.7)

There are many shallow water models as appropriate approximations to the full Euler dynam-
ics when the water depth is small compared to the horizontal wavelength scale [1,14]. We denote 
the amplitude parameter ε and the shallowness parameter μ respectively by

ε = a/h0, μ = h2
0/λ

2, (2.8)

where a is the typical amplitude of the wave and λ is the typical wavelength. According to the 
magnitude of the physical quantities, we introduce dimensionless quantities as follows

x → λx, z → h0z, η → aη, t → λ√
gh0

t,

and

u → √
gh0u, w → √

μgh0w, p → ρgh0p.

And under the influence of the Earth rotation, we introduce

� = √
h0/g �0. (2.9)

Furthermore, considering whenever ε → 0,
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u → 0, w → 0, p → 0,

that is, u, w and p are proportional to the wave amplitude. In this case, we choose a scaling

u → εu, w → εw, p → εp. (2.10)

Therefore the governing equations become

ut + ε(uux + wuz) + 2�w = −px in 0 < z < 1 + εη(t, x), (2.11a)

μ(wt + ε(uwx + wwz)) − 2�u = −pz in 0 < z < 1 + εη(t, x), (2.11b)

ux + wz = 0 in 0 < z < 1 + εη(t, x), (2.11c)

uz − μwx = 0 in 0 < z < 1 + εη(t, x), (2.11d)

p = η on z = 1 + εη(t, x), (2.11e)

w = ηt + εuηx on z = 1 + εη(t, x), (2.11f)

w = 0 on z = 0. (2.11g)

It is our purpose here to establish new model with the effect of the Earth rotation in shallow 
water wave with moderate amplitude. Similar to the classical Green-Naghdi (GN) equations [28]. 
Let ū be the average horizontal velocity,

ū(t, x)
def= 1

h

h∫
0

u(t, x, z) dz, (2.12)

where h = h(t, x) = 1 + εη(t, x). We multiply (2.12) by h and differentiate it with respect to x
to find

(hū)x =
h∫

0

ux dz + εηxuh,

where uh = u(t, x, z)|z=h. Then the above equation combining with (2.11c), (2.11f) and (2.11g)
gives rise to the first equation of the Green-Naghdi equations

ηt + (hū)x = 0. (2.13)

To derive the second equation of the Green-Naghdi equations, let

u(t, x, z) = u0(t, x, z) + μu1(t, x, z) + O(μ2). (2.14)

For the linear problem (μ → 0), the expression in (2.11d) implies u0,z = 0. Hence, u0 is a func-
tion independent of z, i.e. u0 = u0(x, t). From (2.11c) and (2.11d), we have

μuxx + uzz = 0,
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which implies

μ0 : u0,zz = 0,

μ1 : u0,xx = −u1,zz.
(2.15)

Considering u0 = u0(t, x), the equation of order μ1 implies

u1 = −z2

2
u0,xx + z�(t, x),

where �(t, x) is an arbitrary function. Therefore,

u = u0 − μ
z2

2
u0,xx + μz�(t, x) + O(μ2). (2.16)

Taking advantage of the governing equations, one has

w = −zu0,x + μ
z3

6
u0,xxx − μ

z2

2
�x(t, x) + O(μ2), (2.17)

and

p = η − μ

2
(h2 − z2)(u0,xt + εu0u0,xx − εu2

0,x) − 2�(h − z)u0

+ μ

3
�(h3 − z3)u0,xx − μ�(h2 − z2)� + O(μ2).

Then differentiating the expression of p with respect to x, combining with the expressions of 
u, w and integrating with respect to z from 0 to h give rise to the equation related to u0 and h
only, namely,

u0,t + μ
h

2
�t + εu0u0,x + εμ

h

2
u0�x + ηx = μ

2
h2(u0,xt + εu0u0,xx − εu2

0,x)x

+ μhhx(u0,xt + εu0u0,xx − εu2
0,x) + 2�(hxu0 + hu0,x) − μ�h2hxu0,xx

− μ

3
�h3u0,xxx + 2μ�hhx� + μ�h2�x + O(μ2). (2.18)

Notice that the relation between ū and u0 is

ū = u0 − μ
h2

6
u0,xx + μ

h

2
� + O(μ2), (2.19)

which can be obtained by using the function u’s expression (2.16) in the definition of ū (2.12). 
Finally, the following system called the rotation-Green-Naghdi (R-GN) equations are revealed 
by the relation between u0 and ū, which performs as
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{
ηt + ((1 + εη)ū)x = 0,

ūt + ηx + εūūx + 2�ηt = μ
3(1+εη)

(
(1 + εη)3(ūxt + εūūxx − εū2

x)
)
x

+ O(μ2).
(2.20)

The detailed derivation of the R-GN equations can be found in [26]. It is noted that the R-GN 
model in (2.20) (for the solution (η, ū)) is locally well-posed in the Sobolev space Hs(R) ×
Hs+1(R) with s > 3

2 [9], while the case of without the Coliolis effect was studied in [40].
We now consider the rotation parameter � as a fixed O(1) constant relevant to the amplitude 

parameter ε and the shallowness parameter μ. As is pointed out in the introduction, it is our 
purpose with a fixed � in the asymptotic expansion to investigate how symmetry, existence and 
non-existence of traveling waves, and stability issues of those solitary waves can be affected by 
interaction between free surface and velocity components in the asymptotic system.

The model equations in (1.1) could be derived from the R-CH equations with moderate am-
plitude. For simplicity, ū is replaced by u in (2.20). Let us start with the linear terms in (2.20) in 
terms of ε and μ given by

{
ηt + ux = O(ε,μ),

ut + ηx + 2�ηt = O(ε,μ).
(2.21)

This formula then yields

{
ηtt − ηxx − 2�ηxt = O(ε,μ),

utt − uxx − 2�uxt = O(ε,μ).
(2.22)

Solving the second order linear partial differential equation mentioned above, we obtain

⎧⎪⎨
⎪⎩

u = u1

(
x − (

√
�2 + 1 − �)t

)
+ u2

(
x + (

√
�2 + 1 + �)t

)
+ O(ε,μ),

η = η1

(
x − (

√
�2 + 1 − �)t

)
+ η2

(
x + (

√
�2 + 1 + �)t

)
+ O(ε,μ).

(2.23)

For the simplicity, we only consider the waves move towards to the right side, i.e.

{
u = u(x − ct) + O(ε,μ),

η = η(x − ct) + O(ε,μ),
(2.24)

where c = √
�2 + 1 − �, and � is a dimensionless parameter describing the strength of the 

Coriolis effect, which implies

{
ut = −cux + O(ε,μ),

ηt = −cηx + O(ε,μ).
(2.25)

Hence, it is deduced that



3242 T. Luo et al. / J. Differential Equations 267 (2019) 3232–3270
ηt + ux = O(ε,μ), (2.26)

ηx + 1

c2 ut = O(ε,μ), (2.27)

η − 1

c
u = O(ε,μ). (2.28)

The equation (2.28) and the expansion of equation (2.20) with a remain term of order O(ε2μ, μ2)

thus imply the following system

⎧⎪⎨
⎪⎩

ηt + [(1 + εη)u]x = 0,

(u − μ

3
uxx)t + εuux + ηx + 2�ηt = −εμ

3

(
uuxx + 3

2
u2

x

)
x

+ O(ε2μ,μ2).
(2.29)

Applying the transformation u(t, x) = εu(
√

μt, 
√

μx), η(t, x) = εη(
√

μt, 
√

μx) the above 
equation (2.29) and ignoring terms of order O(ε2μ, μ2) yield the following system

{
ηt + ((1 + η)u)x = 0,

ut − utxx + uux + 4uxuxx + uuxxx + ηx + 2�ηt = 0.
(2.30)

3. Local well-posedness and wave-breaking criteria

In this section, we consider local well-posedness of the Cauchy problem to the system (1.1)
and present the wave-breaking criteria for solutions to (1.1) by using transport equation theory.

Now we are in a position to state the local well-posedness result of the following Cauchy 
problem, which may be similarly obtained as in [25] (up to a slight modification).

Theorem 3.1. Given any X0 =
(

u0
η0

)
∈ Hs(R) × Hs−1(R), s > 3

2 , there exist a maximal T =

T (�, ‖X0‖Hs(R)×Hs−1(R)) > 0, and a unique solution X =
(

u

η

)
to (1.1) such that

X = X(·,X0) ∈ C([0, T );Hs(R) × Hs−1(R)) ∩ C1([0, T );Hs−1(R) × Hs−2(R)).

Moreover, the solution depends continuously on the initial data, i.e., the mapping X0 �→
X(·, X0) : Hs(R) × Hs−1(R) → C([0, T ); Hs(R) × Hs−1(R)) ∩ C1([0, T ); Hs−1(R) ×
Hs−2(R)) is continuous and the maximal existence time T can be chosen independently of 
the Sobolev order s.

Lemma 3.1. Let X0 =
(

u0
η0

)
∈ Hs(R) ×Hs−1(R), s ≥ 3/2, and let T be the maximal existence 

time of the solution X =
(

u

η

)
to (1.1) with initial data X0. Then we have for all t ∈ [0, T ),

∫
R

u2(t, x) + u2
x(t, x) + η2(t, x)dx ≤ e2(�+1)

∫ t
0 ‖ux‖L∞dτ

(∫
R

u2
0(x) + u2

0,x(x) + η2
0(x)dx

)
.
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A direct computation combining with the Gronwall’s inequality gives rise to the above lemma, 
so the detailed proof is omitted.

To consider the wave-breaking criteria, we first recall the following propositions.

Proposition 3.1. [24] (1-D Moser-type estimates). The following estimates hold:

(i) For s ≥ 0,

‖fg‖Hs(R) ≤ C(‖f ‖L∞(R)‖g‖Hs(R) + ‖f ‖Hs(R)‖g‖L∞(R)). (3.1)

(ii) For s > 0,

‖f ∂xg‖Hs(R) ≤ C(‖f ‖L∞(R)‖∂xg‖Hs(R) + ‖f ‖Hs+1(R)‖g‖L∞(R)). (3.2)

(iii) For s1 ≤ 1
2 , s2 > 1

2 and s1 + s2 > 0,

‖fg‖Hs1 (R) ≤ C‖f ‖Hs1 (R)‖g‖Hs2 (R), (3.3)

where C’s are constants independent of f and g.

Proposition 3.2. [24] Suppose that s > − d
2 . Let v be a vector field such that ∇v belongs to 

L1([0, T ]; Hs−1) if s > 1 + d
2 or to L1([0, T ]; H d

2 ∩L∞) otherwise. Suppose also that f0 ∈ Hs , 
F ∈ L1([0, T ]; Hs) and that f ∈ L∞([0, T ]; Hs) ∩C([0, T ]; S′) solves the d-dimensional linear 
transport equations

(T )

{
∂tf + v · ∇f = F,

f |t=0 = f0.

Then f ∈ C([0, T ]; Hs). More precisely, there exists a constant C depending only on s, p and d
such that the following statements hold:

(1) If s �= 1 + d
2 ,

‖f ‖Hs ≤ ‖f0‖Hs +
t∫

0

‖F(τ)‖Hs dτ + C

t∫
0

V ′(τ )‖f (τ)‖Hs dτ, (3.4)

or,

‖f ‖Hs ≤ eCV (t)
(
‖f0‖Hs +

t∫
0

e−CV (τ)‖F(τ)‖Hs dτ
)
, (3.5)

with V (t) = ∫ t

0 ‖∇v(τ)‖
H

d
2 ∩L∞dτ if s < 1 + d

2 and V (t) = ∫ t

0 ‖∇v(τ)‖Hs−1dτ . Else,

(2) If f = v, then for all s > 0, the estimates (3.4) and (3.5) hold with V (t) = ∫ t

0 ‖∂xu(τ)‖L∞dτ .
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Proposition 3.3. [24] Let 0 < s < 1. Suppose that f0 ∈ Hs , g ∈ L1([0, T ]; Hs), v, ∂xv ∈
L1([0, T ]; L∞) and that f ∈ L∞([0, T ]; Hs) ∩ C([0, T ]; S′) solves the 1-dimensional linear 
transport equation

(T )

{
∂tf + v · ∂xf = g,

f |t=0 = f0.

Then f ∈ C([0, T ]; Hs). More precisely, there exists a constant C depending only on s such that 
the following statements hold:

‖f ‖Hs ≤ ‖f0‖Hs + C

t∫
0

‖g(τ)‖Hs dτ + C

t∫
0

‖f (τ)‖Hs V ′(τ )dτ, (3.6)

or,

‖f ‖Hs ≤ eCV (t)
(
‖f0‖Hs + C

t∫
0

‖g(τ)‖Hs dτ
)
, (3.7)

with V (t) = ∫ t

0 (‖v(τ)‖L∞ + ‖∂xv(τ )‖L∞)dτ .

The above proposition was proved in [43] using Littlewood-Paley analysis for the transport 
equation and Moser-type estimates. Using this result and performing the same argument, we can 
obtain the following blow-up criterion.

Theorem 3.2. Let X0 =
(

u0
η0

)
∈ Hs(R) × Hs−1(R) with s > 3/2, and X =

(
u

η

)
be the cor-

responding solution to (1.1). Assume T > 0 is the maximal time of existence. Then

T < ∞ =⇒
T∫

0

‖∂xu(τ)‖L∞dτ = ∞. (3.8)

Proof. We shall prove this theorem by an inductive argument with respect to the index s. To this 
end, let us first give a control on ‖η(t)‖L∞ and ‖u(t)‖L∞ .

In fact, applying the maximal principle to the transport equation about ρ := η + 1,

ρt + uρx + ρux = 0, (3.9)

we have

‖ρ(t)‖L∞ ≤ ‖ρ0‖L∞ + C

t∫
0

‖∂xu‖L∞‖ρ‖L∞dτ.

A simple application of Gronwall’s inequality implies
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‖ρ(t)‖L∞ ≤ ‖ρ0‖L∞eC
∫ t

0 ‖∂xu‖L∞dτ , (3.10)

which gives rise to

‖η(t)‖L∞ ≤ ‖ρ(t)‖L∞ + 1 ≤ 1 + (1 + ‖η0‖L∞)eC
∫ t

0 ‖∂xu‖L∞dτ . (3.11)

Now let us concentrate our attention to the proof of Theorem 3.2. This can be achieved as follows.

Step 1. For 3
2 < s < 3, applying Proposition 3.2 to the transport equation with respect to η,

ηt + uηx + ηux + ux = 0, (3.12)

we have (for every 1 < s < 2, indeed)

‖η(t)‖Hs−1 ≤ ‖η0‖Hs−1 + C

t∫
0

‖η∂xu + ∂xu‖Hs−1dτ + C

t∫
0

‖η‖Hs−1(‖u‖L∞ + ‖∂xu‖L∞)dτ.

Using (3.1), one has

‖η∂xu + ∂xu‖Hs−1 ≤ ‖∂xu‖Hs−1 + C(‖η‖Hs−1‖∂xu‖L∞ + ‖∂xu‖Hs−1‖η‖L∞). (3.13)

Therefore, we have

‖η(t)‖Hs−1 ≤ ‖η0‖Hs−1 + C

t∫
0

‖∂xu(τ)‖Hs−1(1 + ‖η(τ)‖L∞)dτ

+ C

t∫
0

‖η(τ)‖Hs−1(‖u‖L∞ + ‖∂xu‖L∞)dτ. (3.14)

On the other hand, Proposition 3.1 applied to the equation about u,

ut − uux + ∂xp ∗
(
u2 + 1

2
u2

x + η − 2�((1 + η)u)
)

= 0,

implies (for every s > 1, indeed)

‖u(t)‖Hs ≤ ‖u0‖Hs + C

t∫
0

∥∥∥∂xp ∗
(
u2 + 1

2
u2

x + η − 2�((1 + η)u)
)
(τ )

∥∥∥
Hs

dτ

+ C

t∫
0

‖u(τ)‖Hs ‖∂xu(τ)‖L∞dτ.

Thanks to the Moser-type estimate (3.1) and Proposition 2.3 in [24], one has
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∥∥∥∂xp ∗
(
u2 + 1

2
u2

x + η − 2�((1 + η)u)
)∥∥∥

Hs

≤ C

∥∥∥u2 + 1

2
u2

x + η − 2�((1 + η)u)

∥∥∥
Hs−1

≤ C
(‖u‖Hs−1‖u‖L∞ + ‖∂xu‖Hs−1‖∂xu‖L∞

+‖η‖Hs−1 + ‖u‖Hs−1 + ‖u‖Hs−1‖η‖L∞ + ‖η‖Hs−1‖u‖L∞
)

From this, we obtain

‖u(t)‖Hs ≤ ‖u0‖Hs + C

t∫
0

‖u(τ)‖Hs (‖u(τ)‖L∞ + ‖∂xu(τ)‖L∞ + ‖η(τ)‖L∞ + 1)dτ

+ C

t∫
0

‖η(τ)‖Hs−1(‖η(τ)‖L∞ + ‖u(τ)‖L∞ + 1)dτ, (3.15)

which together with (3.14) ensures that

‖u(t)‖Hs + ‖η(t)‖Hs−1 ≤ ‖u0‖Hs + ‖η0‖Hs−1 + C

t∫
0

(
‖u(τ)‖Hs + ‖η(τ)‖Hs−1

)

·
(
‖u(τ)‖L∞ + ‖∂xu(τ)‖L∞ + ‖η(τ)‖L∞ + 1

)
dτ. (3.16)

Using the Gronwall inequality yields

‖u(t)‖Hs + ‖η(t)‖Hs−1 ≤ (‖u0‖Hs + ‖η0‖Hs−1

)
eC

∫ t
0 (‖u(τ)‖L∞+‖∂xu(τ)‖L∞+‖η(τ)‖L∞+1)dτ .

(3.17)

In view of the Sobolev embedding theorem Hs ↪→ L∞ (for s > 1/2), it is then found from 
Lemma 3.1 that

‖u(t)‖L∞ ≤ C‖u‖H 1 ≤ C
(∫
R

u2 + u2
x + η2dx

) 1
2

≤ e(�+1)
∫ t

0 ‖ux‖L∞dτ
(∫
R

u2
0(x) + u2

0,x(x) + η2
0(x)dx

) 1
2

≤ e(�+1)
∫ t

0 ‖ux‖L∞dτ
(
‖u0‖H 1 + ‖η0‖L2

)
, (3.18)

which together with (3.11) and (3.17) implies that

‖u(t)‖Hs + ‖η(t)‖Hs−1

≤ (‖u0‖Hs + ‖η0‖Hs−1

)
eC

∫ t
0 ‖∂xu(τ)‖L∞dτ+C1(t+1) exp{(�+1+C)

∫ t
0 ‖∂xu(τ)‖L∞dτ }, (3.19)
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where C1 = C1(‖u0‖H 1, ‖η0‖L2, ‖η0‖L∞). Therefore, if the maximal existence time T < ∞
satisfies 

∫ t

0 ‖∂xu(τ)‖L∞dτ < ∞, we get from (3.19) that

lim sup
t→T

(‖u(t)‖Hs + ‖η(t)‖Hs−1) < ∞ (3.20)

contradicts the assumption on the maximal existence time T < ∞. This completes the proof of 
Theorem 3.2 for s ∈ ( 3

2 , 2).

Step 2. For s ∈ [2, 52 ), applying Proposition 3.1 to the transport equation (3.12), we have

‖η(t)‖Hs−1 ≤ ‖η0‖Hs−1 + C

t∫
0

‖(η∂xu + ∂xu)(τ )‖Hs−1dτ + C

t∫
0

‖η‖Hs−1‖∂xu‖
L∞∩H

1
2
dτ.

(3.13) applied implies that

‖η(t)‖Hs−1 ≤ ‖η0‖Hs−1 + C

t∫
0

‖∂xu‖Hs−1(1 + ‖η‖L∞)dτ + C

t∫
0

‖η‖Hs−1‖∂xu‖
L∞∩H

1
2
dτ,

which together with (3.15) yields

‖u(t)‖Hs + ‖η(t)‖Hs−1 ≤‖u0‖Hs + ‖η0‖Hs−1

+ C

t∫
0

(‖u(τ)‖Hs + ‖η(τ)‖Hs−1

)(‖u‖
H

3
2 +ε0

+ ‖η(τ)‖L∞ + 1
)
dτ,

with 0 < ε0 < 1
2 , where we used the fact H

1
2 +ε0 ↪→ L∞ ∩ H

1
2 . Applying Gronwall’s inequality 

gives

‖u(t)‖Hs + ‖η(t)‖Hs−1 ≤ (‖u0‖Hs + ‖η0‖Hs−1 + K
)
e
C

∫ t
0 (‖u‖

H
3
2 +ε0

+‖η(τ)‖L∞+1)dτ
.

(3.21)

Therefore, using the uniqueness of the solution in Theorem 3.1, (2.24) and (3.20), we get that: if 
the maximal existence time T < ∞ satisfies 

∫ T

0 ‖∂xu(τ)‖L∞dτ < ∞, then (3.21) implies that

lim sup
t→T

(‖u(t)‖Hs + ‖η(t)‖Hs−1) < ∞ (3.22)

which contradicts the assumption on the maximal existence time T < ∞. This completes the 
proof of Theorem 3.2 for s ∈ [2, 52 ).

Step 3. For 2 < s < 3, by differentiating once (3.12) with respect to x, we get

∂tηx + u∂x(ηx) + 2uxηx + ηuxx + uxx = 0. (3.23)
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Proposition 3.3 applied to (3.23) implies that

‖ηx(t)‖Hs−2 ≤ ‖η0,x‖Hs−2 + C

t∫
0

‖(2ηxux + ηuxx + uxx)(τ )‖Hs−2dτ

+ C

t∫
0

‖ηx(τ )‖Hs−2(‖u‖L∞ + ‖∂xu‖L∞)dτ

≤ ‖η0,x‖Hs−2 + C

t∫
0

(
‖u(τ)‖Hs + ‖η(τ)‖Hs−1

)

·
(
‖u(τ)‖L∞ + ‖∂xu(τ)‖L∞ + ‖η(τ)‖L∞ + 1

)
dτ, (3.24)

where we used the following estimates from (3.2):

‖ηxux‖Hs−2 ≤ C
(‖∂xu‖Hs−1‖η‖L∞ + ‖∂xη‖Hs−2‖ux‖L∞

)
and

‖ηuxx‖Hs−2 ≤ C
(‖η‖Hs−1‖∂xu‖L∞ + ‖uxx‖Hs−2‖η‖L∞

)
.

The estimate (3.24) together with (3.14) and (3.15) (where s −1 is replaced by s −2), thus imply 
that

‖u(t)‖Hs + ‖η(t)‖Hs−1 ≤ ‖u0‖Hs + ‖η0‖Hs−1 + C

t∫
0

(
‖u(τ)‖Hs + ‖η(τ)‖Hs−1

)

·
(
‖u(τ)‖L∞ + ‖∂xu(τ)‖L∞ + ‖η(τ)‖L∞ + 1

)
dτ. (3.25)

Again, applying Gronwall’s inequality gives (3.17). Therefore, using arguments as in Step 1, it 
completes the proof of Theorem 3.2 for s ∈ (2, 3).

Step 4. For s = k ∈N , k ≥ 3, by differentiating (3.12) k − 2 times with respect to x, we have

∂t ∂
k−2
x η + u∂x(∂

k−2
x η) +

∑
l1+l2=k−3, l1, l2≥0

Cl1,l2∂
l1+1
x u∂l2+1

x η + η∂x(∂
k−2
x u) + ∂k−1

x u = 0.

(3.26)

Applying Proposition 3.2 to the transport equation (3.26), we have

‖∂k−2
x η(t)‖H 1

≤ ‖∂k−2
x η0‖H 1 + C

t∫
‖∂k−2

x η(τ )‖H 1‖∂xu(τ)‖
L∞∩H

1
2
dτ
0
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+ C

t∫
0

∥∥∥( ∑
l1+l2=k−3, l1, l2≥0

Cl1,l2∂
l1+1
x u∂l2+1

x η + η∂x(∂
k−2
x u) + ∂k−1

x u
)
(τ )

∥∥∥
H 1

dτ.

Since H 1 is an algebra, we have

‖η∂x(∂
k−2
x u)‖H 1 ≤ C‖η‖H 1‖∂k−1

x u‖H 1 ≤ C‖η‖H 1‖u‖Hs

and

∥∥∥ ∑
l1+l2=k−3, l1, l2≥0

Cl1,l2∂
l1+1
x u∂l2+1

x η

∥∥∥
H 1

≤ C
∑

l1+l2=k−3, l1, l2≥0

Cl1,l2‖∂l1+1
x u‖H 1‖∂l2+1

x η‖H 1 ≤ C‖u‖Hs−1‖η‖Hs−1 .

Therefore,

‖∂k−2
x η(t)‖H 1

≤ ‖∂k−2
x η0‖H 1 + C

t∫
0

(‖u‖Hs + ‖η‖Hs−1

)(‖u‖Hs−1 + ‖η‖H 1 + 1
)
dτ. (3.27)

(3.27), together with (3.14) and (3.15) (where s − 1 is replaced by 1), implies that

‖u(t)‖Hs + ‖η(t)‖Hs−1 ≤ ‖u0‖Hs + ‖η0‖Hs−1

+ C

t∫
0

(‖u(τ)‖Hs + ‖η(τ)‖Hs−1

)(‖u(τ)‖Hs−1 + ‖η(τ)‖H 1 + 1
)
dτ.

Applying Gronwall’s inequality yields

‖u(t)‖Hs + ‖η(t)‖Hs−1 ≤ (‖u0‖Hs + ‖η0‖Hs−1

)
eC

∫ t
0 (‖u‖

Hs−1 +‖η‖
H1 +1)dτ . (3.28)

Therefore, if the maximal existence time T < ∞ satisfies 
∫ T

0 ‖∂xu(τ)‖L∞dτ < ∞, using the 
uniqueness of the solution in Theorem 3.1, we get that

‖u(t)‖Hs−1 + ‖ρ(t)‖H 1

is uniformly bounded by the induction assumption, which together with (3.28) implies

lim sup
t→T

(‖u(t)‖Hs + ‖ρ(t)‖Hs−1) < ∞.

This leads to a contradiction.
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Step 5. For k < s < k + 1 with k ∈N , k ≥ 3, by differentiating (3.12) k − 1 times with respect 
to x, we have

∂t ∂
k−1
x η + u∂x(∂

k−1
x η) +

∑
l1+l2=k−2, l1, l2≥0

Cl1,l2∂
l1+1
x u∂l2+1

x η + η∂x(∂
k−1
x u) + ∂k

xu = 0.

(3.29)

Proposition 3.3 applied again implies that

‖∂k−1
x η(t)‖Hs−k

≤ ‖∂k−1
x η0‖Hs−k + C

t∫
0

‖∂k−1
x η(τ )‖Hs−k

(‖u(τ)‖L∞ + ‖∂xu(τ)‖L∞
)
dτ

+ C

t∫
0

∥∥∥( ∑
l1+l2=k−2, l1, l2≥0

Cl1,l2∂
l1+1
x u∂l2+1

x η + η∂x(∂
k−1
x u + ∂k

xu)
)
(τ )

∥∥∥
Hs−k

dτ.

Using (3.2) and the Sobolev embedding inequality, we have ∀ε0 ∈ (0, 12 )

‖η∂x(∂
k−1
x u)‖Hs−k ≤ C

(‖η‖L∞‖∂k
xu‖Hs−k + ‖η‖Hs−k+1‖∂k−1

x u‖L∞
)

≤ C
(‖η‖L∞‖u‖Hs + ‖η‖Hs−k+1‖u‖

H
k− 1

2 +ε0

)
and ∥∥∥ ∑

l1+l2=k−2, l1, l2≥0

Cl1,l2∂
l1+1
x u∂l2+1

x ρ

∥∥∥
Hs−k

≤ C
∑

l1+l2=k−2, l1, l2≥0

Cl1,l2

(‖∂l1+1
x u‖L∞‖∂l2+1

x η‖Hs−k + ‖∂l2
x η‖L∞‖∂l1+1

x u‖Hs−k+1

)

≤ C
(‖u‖

H
k− 1

2 +ε0
‖η‖Hs−1 + ‖ρ‖

H
k− 3

2 +ε0
‖u‖Hs

)
.

Hence,

‖∂k−1
x η(t)‖Hs−k ≤‖∂k−1

x η0‖Hs−k + C

t∫
0

(‖u(τ)‖Hs + ‖η(τ)‖Hs−1)

· (‖u‖
H

k− 1
2 +ε0

+ ‖η‖
H

k− 3
2 +ε0

+ 1)dτ. (3.30)

(3.30), together with (3.15) and (3.14) (where s − 1 is replaced by s − k), implies that

‖u(t)‖Hs + ‖η(t)‖Hs−1 ≤‖u0‖Hs + ‖η0‖Hs−1 + C

t∫ (‖u(τ)‖Hs + ‖η(τ)‖Hs−1)
0
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· (‖u‖
H

k− 1
2 +ε0

+ ‖η‖
H

k− 3
2 +ε0

+ 1
)
dτ.

Again applying Gronwall’s inequality gives

‖u(t)‖Hs + ‖ρ(t)‖Hs−1 ≤ (‖u0‖Hs + ‖η0‖Hs−1

)
e
C

∫ t
0 (‖u‖

H
k− 1

2 +ε0
+‖η‖

H
k− 3

2 +ε0
+1)dτ

.

(3.31)

In consequence, if the maximal existence time T < ∞ satisfies 
∫ T

0 ‖∂xu(τ)‖L∞dτ < ∞, using 
the uniqueness of the solution in Theorem 3.1, we get that

‖u(t)‖
H

k− 1
2 +ε0

+ ‖η(t)‖
H

k− 3
2 +ε0

is uniformly bounded by the induction assumption, which implies

lim sup
t→T

(‖u(t)‖Hs + ‖ρ(t)‖Hs−1) < ∞.

This leads to a contradiction. Therefore, in view of Step 1 to Step 5, this completes the proof of 
Theorem 3.2. �
4. Traveling waves

In this section, we consider the traveling-wave solutions of (1.1), i.e. solutions of the form

(u(t, x), η(t, x)) = (ϕ(x − σ t),ψ(x − σ t)), σ ∈R,

for some functions ϕ, ψ : R →R such that ϕ → 0, ψ → 0 as |x| → ∞.
The system (1.1) can be written in a weak form as

⎧⎨
⎩ ut − uux = −∂xp ∗

(
u2 + 1

2
u2

x + η − 2�((1 + η)u)
)
, t > 0, x ∈ R,

ηt + uηx = −(1 + η)ux, t > 0, x ∈R.

(4.1)

A weak solution to (1.1) is defined as follows.

Definition 4.1. Let 0 < T ≤ ∞. A function �u = (u0, η0) ∈ C([0, T ); H 1(R) × H 1(R)) is called 
a weak solution of{

ut − uxxt + uux + 4uxuxx + uuxxx + ηx + 2�ηt = 0,

ηt + ((1 + η)u)x = 0,
(4.2)

on [0, T ) if it satisfies the following identity:

⎧⎨
⎩

∫ T

0

∫
R[uφt − 1

2u2φx + p ∗
(
u2 + 1

2u2
x + η − 2�((1 + η)u)

)
· φx]dxdt = 0,∫ T ∫ [ηφt + (1 + η)uφx]dxdt = 0,

(4.3)

0 R
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for any smooth test function φ(t, x) ∈ C∞
0 ([0, T ) ×R), where p(x) is the corresponding kernel 

of the convolution operator (1 − ∂2
x )−1. If u is a weak solution on [0, T ) for every T > 0, then it 

is called a global weak solution.

We now give the definition of a traveling-wave solution of (1.1).

Definition 4.2. A traveling-wave solution of (1.1) is a nontrivial solution of (1.1) of the form 
�ϕσ (t, x) = (ϕσ (x − σ t), ψσ (x − σ t)) ∈ H 1(R) × H 1(R) with the constant wave speed σ ∈ R
and ϕσ , ψσ vanishing at infinity.

For a traveling-wave solution �ϕ = (ϕ, ψ) with speed σ ∈R, it satisfies

{[−σϕ − 1
2ϕ2 + p ∗ (ϕ2 + 1

2ϕ2
x + ψ − 2�((1 + ψ)ϕ))]x = 0,

[−σψ + (1 + ψ)ϕ]x = 0, in D ′(R).

Integrating the above system and applying (1 − ∂2
x ) to the first equation we get

{−σϕ + σϕxx + 1
2ϕ2 + ϕϕxx + 3

2ϕ2
x + (1 − 2σ�)ψ = 0,

−σψ + (1 + ψ)ϕ = 0, in D ′(R).
(4.4)

In fact, the second equation of the above holds in a strong sense coming from the regularity of ϕ
and ψ .

4.1. Nonexistence of the CH-type peakon

To investigate the traveling-wave solution of (1.1), we start with the demonstration of the 
nonexistence of the CH-type peakon.

Theorem 4.1. For 1 − 2σ� = 0, there is no any nonzero weak solution of system (1.1) in the 
form of u(t, x) = a(σ, t)e−|x−σ t |, where σ ∈ R and a(σ, t) ∈ C(R × [0, T )).

Proof. Consider the traveling wave solution of the system (1.1), when 1 − 2σ� = 0, it reduces 
to be

ut − uxxt + uux + 4uxuxx + uuxxx = 0, t > 0, x ∈ R. (4.5)

Suppose the above equation (4.5) possesses the peaked traveling-wave solution in the form of

ua(t, x) = a(σ, t)e−|x−σ t |, σ ∈ R and a(σ, t) �= 0. (4.6)

Then, for all t ∈R+, in the sense of distribution and ∂xua(t, x) = − sign(x −σ t)ua(t, x) belongs 
to L∞(R). For any test function φ(·) ∈ C∞

c (R), by using integration by parts, we have

∫
sign(y)e−|y|φ(y)dy =

0∫
−eyφ(y)dy +

+∞∫
e−yφ(y)dy =

∫
e−|y|φ′(y)dy.
R −∞ 0 R
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Note that

∂tua(t, x) = ∂ta(σ, t)e−|x−σ t | + σ sign(x − σ t)ua(t, x) ∈ L∞(R) for all t ≥ 0. (4.7)

Hence, using integration by parts, we deduce that

∞∫
0

∫
R

(
uaφt − 1

2
u2

aφx

)
dxdt +

∫
R

ua(0, x)φ(0, x)dx

= −
∞∫

0

∫
R

φ
[
∂tua − ua · ∂xua

]
dxdt

= −
∞∫

0

∫
R

φ
[
∂ta(σ, t)e−|x−σ t | + σ sign(x − σ t)ua + sign(x − σ t)u2

a

]
dxdt

(4.8)

On the other hand, we know

u = (1 − ∂2
x )−1m = p ∗ m, where p(x) = 1

2
e−|x|,

and the notation “∗” denotes the convolution product on R, defined by

(
f ∗ g

)
(x) =

∫
R

f (y)g(x − y)dy.

Hence,

∞∫
0

∫
R

[
(1 − ∂2

x )−1
(
u2

a + 1

2
u2

a,x

)
· ∂xφ

]
dxdt

= −
∞∫

0

∫
R

[
φ · ∂xp ∗

(
u2

a + 1

2
u2

a,x

)]
dxdt.

(4.9)

It is noted that ∂xp(x) = − 1
2 sign(x)e−|x| for x ∈ R. A simple computation reveals that

∂xp ∗
(
u2

a + 1

2
u2

a,x

)
(t, x) = −1

2

+∞∫
−∞

sign(x − y)e−|x−y| ·
[
a2(σ, t)e−2|y−σ t |

+ 1
sign2(y − σ t)a2(σ, t)e−2|y−σ t |]dy.

(4.10)
2
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When x > σ t , we split the right hand side of (4.10) into the following three parts.

∂xp ∗
(
u2

a + 1

2
u2

a,x

)
(t, x) = −1

2

( σ t∫
−∞

+
x∫

σ t

+
+∞∫
x

)
sign(x − y)e−|x−y| ·

[
a2(σ, t)e−2|y−σ t |

+ 1

2
sign2(y − σ t)a2(σ, t)e−2|y−σ t |]dy

=: I1 + I2 + I3.

In the case that −∞ < y < σt < x, it follows that

I1 = − 1

2

σ t∫
−∞

e−x+y
[
a2(σ, t)e2(y−σ t) + 1

2
a2(σ, t)e2(y−σ t)

]
dy

= − 1

2

σ t∫
−∞

e−x+y
[3

2
a2(σ, t)e2(y−σ t)

]
dy = −3

4
a2(σ, t)e−x−2σ t

σ t∫
−∞

e3ydy

= − 3

4
a2(σ, t)e−x−2σ t

[1

3
e3y

∣∣∣σ t

−∞

]
= −1

4
a2(σ, t)e−x−2σ t

(
e3σ t − 0

)

= − 1

4
a2(σ, t)e−x+σ t .

For σ t < y < x, a direct computation gives that

I2 = − 1

2

x∫
σ t

e−x+y
[
a2(σ, t)e2(−y+σ t) + 1

2
a2(σ, t)e2(−y+σ t)

]
dy

= − 1

2

x∫
σ t

e−x+y
[3

2
a2(σ, t)e−2y+2σ t)

]
dy = −3

4
a2(σ, t)e−x+2σ t

x∫
σ t

e−ydy

=3

4
a2(σ, t)e−x+2σ t

[
e−y

∣∣∣x
σ t

]
= 3

4
a2(σ, t)e−x+2σ t

(
e−x − e−σ t

)

=3

4
a2(σ, t)e−2x+2σ t − 3

4
a2(σ, t)e−x+σ t .

For σ t < x < y < +∞, we have

I3 = 1

2

+∞∫
x

ex−y
[
a2(σ, t)e2(−y+σ t) + 1

2
a2(σ, t)e2(−y+σ t)

]
dy

= 1

2

+∞∫
3

2
a2(σ, t)ex+2σ t−3ydy = 3

4
a2(σ, t)ex+2σ t

+∞∫
e−3ydy
x x
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= −1

4
a2(σ, t)ex+2σ t

[
e−3y

∣∣∣+∞
x

]
= −1

4
a2(σ, t)ex+2σ t

(
0 − e−3x

)

= 1

4
a2(σ, t)e−2x+2σ t .

Combining I1, I2 and I3, for x > σ t , we have

∂xp ∗
(
u2

a + 1

2
u2

a,x

)
(t, x) = − 1

4
a2(σ, t)e−x+σ t + 3

4
a2(σ, t)e−2x+2σ t − 3

4
a2(σ, t)e−x+σ t

+ 1

4
a2(σ, t)e−2x+2σ t

= − a2(σ, t)e−x+σ t + a2(σ, t)e−2x+2σ t .

When x ≤ σ t , we split the right hand side of (4.10) into the following three parts.

∂xp ∗
(
u2

a + 1

2
u2

a,x

)
(t, x) = − 1

2

( x∫
−∞

+
σ t∫

x

+
+∞∫
σ t

)
sign(x − y)e−|x−y| ·

[
a2(σ, t)e−2|y−σ t |

+ 1

2
sign2(y − σ t)a2(σ, t)e−2|y−σ t |]dy

=:II1 + II2 + II3.

For −∞ < y < x ≤ σ t , a simple computation shows that

II1 = − 1

2

x∫
−∞

e−x+y
[
a2(σ, t)e2y−2σ t + 1

2
a2(σ, t)e2y−2σ t

]
dy

= − 1

2

x∫
−∞

e−x+y
[3

2
a2(σ, t)e2y−2σ t

]
dy = −3

4
a2(σ, t)e−x−2σ t

x∫
−∞

e3ydy

= − 1

4
a2(σ, t)e−x−2σ t e3y

∣∣∣x−∞ = −1

4
a2(σ, t)e−x−2σ t

(
e3x − 0

)

= − 1

4
a2(σ, t)e2x−2σ t .

For x < y < σt , it is found that

II2 = − 1

2

σ t∫
x

−ex−y
[3

2
a2(σ, t)e2y−2σ t

]
dy = 3

4
a2(σ, t)ex−2σ t

σ t∫
x

eydy

=3

4
a2(σ, t)ex−2σ t

(
ey

∣∣∣σ t

x

)
= 3

4
a2(σ, t)ex−2σ t

(
eσ t − ex

)

=3
a2(σ, t)ex−σ t − 3

a2(σ, t)e2x−2σ t .

4 4



3256 T. Luo et al. / J. Differential Equations 267 (2019) 3232–3270
For x ≤ σ t < y < +∞, it is easy to check that

II3 = − 1

2

+∞∫
σ t

−ex−y
[
a2(σ, t)e−2y+2σ t + 1

2
a2(σ, t)e−2y+2σ t

]
dy

=3

4
a2(σ, t)ex+2σ t

+∞∫
σ t

e−3ydy = −1

4
a2(σ, t)ex+2σ t

(
e−3y

∣∣∣+∞
σ t

)

= − 1

4
a2(σ, t)ex+2σ t

(
0 − e−3σ t

)
= 1

4
a2(σ, t)ex−σ t .

Combining II1, II2 and II3, in the case x ≤ σ t gives

∂xp ∗
(
u2

a + 1

2
u2

a,x

)
(t, x) = − 1

4
a2(σ, t)e2x−2σ t + 3

4
a2(σ, t)ex−σ t − 3

4
a2(σ, t)e2x−2σ t

+ 1

4
a2(σ, t)ex−σ t

= − a2(σ, t)e2x−2σ t + a2(σ, t)ex−σ t .

According to (4.8), it is then inferred from these two cases mentioned above that

∂xp ∗
(
u2

a + 1

2
u2

a,x

)
(t, x) =

{
−a2(σ, t)e−x+σ t + a2(σ, t)e−2x+2σ t , if x > σ t,

−a2(σ, t)e2x−2σ t + a2(σ, t)ex−σ t , if x ≤ σ t.
(4.11)

If the function in the form of (4.6) is a weak solution of equation (4.5), then combining (4.8), 
(4.9) and (4.11) yields that

{
∂ta(σ, t)e−x+σ t + σua + u2

a = a2(σ, t)e−x+σ t − a2(σ, t)e−2x+2σ t , if x > σ t,

∂ta(σ, t)ex−σ t − σua − u2
a = a2(σ, t)e2x−2σ t − a2(σ, t)ex−σ t , if x ≤ σ t,

which implies that

⎧⎨
⎩

[
∂ta(σ, t) + σa(σ, t) − a2(σ, t)

]
e−x+σ t + 2a2(σ, t)e−2x+2σ t = 0, if x > σ t,[

∂ta(σ, t) − σa(σ, t) + a2(σ, t)
]
ex−σ t − 2a2(σ, t)e2x−2σ t = 0, if x ≤ σ t.

By the linear independence of the functions e−x+σ t , ex−σ t , e−2x+2σ t and e2x−2σ t , the above 
condition holds if and only if

a(σ, t) = 0,

which provides a trivial solution of equation (1.1), ua(t, x) = 0, thereby concluding the proof of 
Theorem 4.1. �
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4.2. Classification of traveling-wave solutions

Our attention in this subsection is turn to the classification of traveling-wave solutions based 
on the argument in [38].

Proposition 4.1. If (ϕ, ψ) is a traveling-wave solution of (1.1) for some σ ∈ R, then σ �= 0 and 
ϕ(x) �= σ for any x ∈ R.

Proof. From the definition of traveling-wave solutions and the embedding theorem, we know 
that ϕ and ψ are both continuous. If σ = 0, then (4.4) becomes

{
1
2ϕ2 + ϕϕxx + 3

2ϕ2
x + ψ = 0,

(1 + ψ)ϕ = 0.
(4.12)

Since ψ vanishes at infinity, the second equation of the above system indicates that ϕ(x) = 0
for |x| large enough. Denote x0 = max{x : ϕ(x) �= 0}. Hence ϕ(x) = 0 on [x0, ∞) and ϕ �≡ 0 on 
(x0 −δ, x0) for any δ > 0. Consider now the first equation of (4.12) on [x0, ∞) we see that ψ ≡ 0
on [x0, ∞). Then the continuity of ψ implies that there exists a δ1 > 0 such that 1 + ψ(x) > 0
on (x0 − δ1, x0). This together with the second equation of (4.12) leads to ϕ ≡ 0 on (x0 − δ1, x0), 
which is a contradiction. Therefore σ �= 0.

Next we show ϕ �= σ . If not and there is some x1 ∈ R such that ϕ(x1) = σ . Then the second 
equation of (4.4) infers that

ϕ(x1) = (σ − ϕ(x1))ψ(x1) = 0,

so σ = 0, which is a contradiction. This proves Proposition 4.1. �
According to the above proposition we obtain from the second equation of (4.4) that

ψ = ϕ

σ − ϕ
. (4.13)

Substituting this into the first equation (4.4) we obtain an equation for the unknown ϕ only

−σϕ + σϕxx + 1

2
ϕ2 + ϕϕxx + 3

2
ϕ2

x + (1 − 2σ�)
ϕ

σ − ϕ
= 0. (4.14)

We can rewrite (4.14) as

((ϕ + σ)2)xx = −ϕ2
x + 2σϕ − ϕ2 + 2(1 − 2σ�) − 2σ(1 − 2σ�)

1

σ − ϕ
, in D ′(R). (4.15)

The following lemma deals with the regularity of the traveling waves.

Lemma 4.1. Let �ϕ = (ϕ, ψ) be a traveling-wave solution of (1.1). Then

(ϕ + σ)k ∈ Cj (R \ ϕ−1(−σ)), for k ≥ 2j . (4.16)
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Furthermore,

ϕ ∈ C∞(R \ ϕ−1(−σ)). (4.17)

Proof. From Proposition 4.1 we know that σ �= 0 and ϕ �= σ and thus ϕ satisfies (4.15). Let 
v = ϕ + σ and denote

r(v) = 2σ(v − σ) − (v − σ)2 + 2(1 − 2σ�).

So r(v) is a polynomial in v. From the fact that ϕ − σ �= 0 we know that

2σ − v �= 0. (4.18)

Thus v satisfies

(v2)xx = −v2
x + r(v) − 2σ(1 − 2σ�)(2σ − v)−1.

From the definition of traveling-wave solutions that ϕ ∈ H 1(R), we know (v2)xx ∈ L1
loc(R). 

Hence (v2)x is absolutely continuous and hence

v2 ∈ C1(R), and then v ∈ C1(R \ v−1(0)).

So from (4.18) and that v − σ ∈ H 1(R) ⊂ C(R) we know

(2σ − v)−1 ∈ C(R) ∩ C1(R \ v−1(0)).

Moreover,

(vk)xx =[(vk)x]x = [kvk−1vx]x = [k
2
vk−2(2vvx)]x

=k

2
(vk−2)x(v

2)x + k

2
vk−2(v2)xx

=k(k − 2)vk−2v2
x + k

2
vk−2[−v2

x + r(v) − 2σ(1 − 2σ�)(2σ − v)−1]

=k(k − 5

2
)vk−2v2

x + k

2
vk−2r(v) − kvk−2σ(1 − 2σ�)(2σ − v)−1.

(4.19)

For k = 3, the right-hand side of the above equation is in L1
loc(R). Therefore, we have v3 ∈

C1(R). Similarly, for k ≥ 4, it is deduced from (4.19) that

(vk)xx = k

4
(k − 5

2
)vk−4[(v2)x]2 + k

2
vk−2r(v) − kvk−2σ(1 − 2σ�)(2σ − v)−1.

Therefore vk ∈ C2(R) for k ≥ 4.
For k ≥ 8, we know from the above that

v4, vk−4, vk−2, vk−2r(v) ∈ C2(R), and vk−2(2σ − v)−1 ∈ C2(R \ v−1(0)).
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Moreover, we have

vk−2v2
x = 1

4
(v4)x

1

k − 4
(vk−4)x ∈ C1(R).

Hence from (4.19) we conclude that

vk ∈ C3(R \ v−1(0)), k ≥ 8.

Applying the same argument to higher values of k we prove that

vk ∈ Cj (R \ v−1(0)), for k ≥ 2j .

Since σ − ϕ �= 0, the above infers that ϕ ∈ C∞(R \ ϕ−1(−σ)) and so is ψ by (4.13). This 
completes the proof of Lemma 4.1. �

Denote x̄ = min{x : ϕ(x) = −σ } (if ϕ(x) �= −σ for all x then let x̄ = +∞), then x̄ ≤ +∞. 
From Lemma 4.1, a traveling-wave solution ϕ is smooth on (−∞, x̄) and hence (4.14) holds 
pointwise on (−∞, x̄). Therefore we may multiply by (ϕ + σ)2ϕx and integrate on (−∞, x] for 
x < x̄ to get

ϕ2
x =− 1

5ϕ5 + 1
3 [3σ 2 + 2(1 − 2σ�)]ϕ3 + [σ 3 + 3σ(1 − 2σ�)]ϕ2

(ϕ + σ)3

+ 8σ 2(1 − 2σ�)ϕ + 8σ 3(1 − 2σ�) ln |σ − ϕ|
(ϕ + σ)3

:=F(ϕ).

(4.20)

Applying the similar arguments as introduced in [38], we have the following conclusions.

1. When ϕ approaches a simple zero m of F(ϕ) so that F(m) = 0 and F ′(m) �= 0. The solution 
ϕ of (4.20) satisfies

ϕ2
x = (ϕ − m)F ′(m) + O((ϕ − m)2), as ϕ → m, (4.21)

where f = O(g) as x → a means |f (x)/g(x)| is bounded in some interval [a − ε, a + ε]
with ε > 0. Then, we have

ϕ(x) = m + 1

4
(x − x0)

2F ′(m) + O((x − x0)
4), as x → x0, (4.22)

where ϕ(x0) = m.
2. If F(ϕ) has a double zero at ϕ = 0 such that F ′(0) = 0 and F ′′(0) > 0, then

ϕ2 = ϕ2F ′′(0) + O(ϕ3), as ϕ → 0. (4.23)
x
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Hence,

ϕ = O
(

exp(−√
F ′′(0)|x|)

)
, as |x| → ∞, (4.24)

which implies ϕ → 0 exponentially as x → ∞.
3. If ϕ approaches a simple pole ϕ(x0) = −σ of F(ϕ), then

ϕ(x) + σ = λ|x − x0|2/3 + O((x − x0)
4/3), as x → x0, (4.25)

ϕx =
{

2
3λ|x − x0|−1/3 + O((x − x0)

1/3), as x ↓ x0,

− 2
3λ|x − x0|−1/3 + O((x − x0)

1/3), as x ↑ x0,
(4.26)

for some constant λ. In particular, when F(ϕ) has a pole, the solution ϕ has a cusp.
4. Peaked traveling waves occur when ϕ suddenly changes direction: ϕx �→ −ϕx according 

to equation (4.20). By all the information mentioned above, it enables us to classify the 
traveling-wave solutions of (1.1) in two cases based on the form of (4.20).

4.2.1. The case when 1 − 2σ� = 0
In this case system (4.4) becomes an ODE for ϕ solely and an algebraic equation for ψ . More 

specifically, the equation for ϕ is

−σϕ + σϕxx + 1

2
ϕ2 + ϕϕxx + 3

2
ϕ2

x = 0. (4.27)

In this case, equation (4.20) becomes

ϕ2
x = − 1

5ϕ5 + σ 2ϕ3 + σ 3ϕ2

(ϕ + σ)3 (4.28)

Let us start with

f1(ϕ) = −1

5
ϕ3 + σ 2ϕ + σ 3.

Then, by the property of cubic polynomial, we can rewrite

f1(ϕ) = −1

5
[ϕ3 − 5σ 2ϕ − 5σ 3]. (4.29)

Let

m = −5

3
σ 2, n = −5

2
σ 3.

The determinator of equation f1(ϕ) = 0 is defined by

D = n2 + m3 = (−5
σ 3)2 + (−5

σ 2)3 = 25
σ 6 − 125

σ 6 = 175
σ 6 > 0. (4.30)
2 3 4 27 108
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So f1 has only one real root λ1, which is

λ1 =
(

3

√
5

2
+

√
175

108
+ 3

√
5

2
−

√
175

108

)
σ. (4.31)

Theorem 4.2. Let 1 − 2σ� = 0. For system (1.1), there is an anticusped traveling-wave solution 
(ϕ, ψ) with min

x∈R
ϕ(x) = −σ and min

x∈R
ψ(x) = − 1

2 .

Proof. Due to σ = 1
2�

≥ 0, equation (4.28) has the following form

ϕ2
x =

1
5ϕ2(λ1 − ϕ)Q(ϕ)

(ϕ + σ)3 := F1(ϕ), (4.32)

where Q(ϕ) > 0 is a quadratic polynomial, and λ1 > 0. From (4.32) we know that ϕ can not 
oscillate around zero near infinity. Let us consider the following two cases.

(1.1) If ϕ(x) > 0 near −∞, then there is some x0 sufficiently large negative so that ϕ(x0) = ε >

0, with ε sufficiently small, and ϕx(x0) > 0. 
√

F1(ϕ) is locally Lipschitz continuous in ϕ
for 0 < ϕ < λ1. Hence, there is a local solution to

{
ϕx = √

F1(ϕ),

ϕ(x0) = ε,

on [x0 − L, x0 + L] for some L > 0. Therefore by (4.22), (4.23) and (4.24), the smooth 
solution can be constructed with the maximum height ϕ = λ1 and decay to zero at infinity. 
However, since σ < λ1, ϕ may take σ , which contradicts with Proposition 4.1. Hence, 
smooth traveling waves are excluded.

(1.2) If ϕ(x) < 0 near −∞. Then there is some x0 sufficiently large negative so that ϕ(x0) =
−ε < 0, with ε sufficiently small, and ϕx(x0) < 0. Since 

√
F1(ϕ) is locally Lipschitz in ϕ

for −σ < ϕ < 0, then −σ becomes a pole of F1(ϕ). Then we may obtain a traveling-wave 
solution with a cusp at ϕ = −σ by (4.25) and (4.26). Hence, by (4.13) we know that when 
ϕ exhibits a cusp singularity then ψ exhibits a cusp as well. Moreover, − 1

2 < ψ < 0 with 
min
x∈R

ψ(x) = − 1
2 . This completes the proof of Theorem 4.2. �

4.2.2. The case when 1 − 2σ� �= 0
In this case, according to the Definition 4.2, suppose there exists a traveling-wave solution of 

(1.1) in the form �ϕ = (ϕ, ψ) in H 1(R) × H 1(R), then (4.15) admits a solution ϕ ∈ H 1(R) such 
that ϕ decays to zero at infinity, i.e. F(ϕ) in (4.20) has a double zero at ϕ = 0. This infers that 
F ′(0) = 0 and F ′′(0) > 0. A direct computation shows that, if 1 − 2σ� �= 0 and σ �= 0,

F ′(0) = −24
(1 − 2σ�) ln |σ | = 0, when σ = 1. (4.33)
σ
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Thus, for σ = 1, F(ϕ) can be simplified as

F2(ϕ) = − 1
5ϕ5 + 1

3 (5 − 4�)ϕ3 + (4 − 6�)ϕ2 + 8(1 − 2�)ϕ + 8(1 − 2�) ln |1 − ϕ|
(ϕ + 1)3

:= f2(ϕ)

(ϕ + 1)3 ,

(4.34)

and

F ′′
2 (ϕ) =

[
− 2ϕ4 − 4ϕ3 + 2(1 + 2�)ϕ + (−8 + 20�) − 16(1−2�)

(ϕ−1)2

]
(ϕ + 1)

(ϕ + 1)5
− 4·

[
− 2

5ϕ5 − ϕ4 + (1 + 2�)ϕ2 + (−8 + 20�)ϕ + 16(1 − 2�) + 16(1 − 2�) 1
ϕ−1

]
(ϕ + 1)5

.

(4.35)

Therefore, F ′′
2 (0) = −24 + 52� > 0 requires

� >
6

13
. (4.36)

Let F2(ϕ) = 0. Then, it is deduced from (4.34) that

� = − 1
5ϕ5 + 5

3ϕ3 + 4ϕ2 + 8ϕ + 8 ln |1 − ϕ|
4
3ϕ3 + 6ϕ2 + 16ϕ + 16 ln |1 − ϕ| . (4.37)

Lemma 4.2. For −1 < ϕ < 0 or 0 < ϕ < 1, consider � as a function of ϕ, then it is monotonic 
increasing with respect to ϕ.

Proof. To show that � is monotonic increasing with respect to ϕ, we will start with the consid-
eration of the first order derivative of �. If �′ ≥ 0, then � is monotonic increasing. In fact, �′
can be written in the following form

�′ = ϕ(ϕ + 1)2

(1 − ϕ)
(

4
3ϕ3 + 6ϕ2 + 16ϕ + 16 ln |1 − ϕ|

)2 · g(ϕ), (4.38)

where g(ϕ) =
[
ϕ(ϕ − 3)

(
4
3ϕ3 + 6ϕ2 + 16ϕ + 16 ln |1 − ϕ|

)
+ 4

(
− 1

5ϕ5 + 5
3ϕ3 + 4ϕ2 + 8ϕ +

8 ln |1 −ϕ|
)]

is an increasing function on (−1, 1). Indeed, g′(ϕ) = 2
3 (2ϕ−3)h(ϕ), where h(ϕ) =

[ϕ(2ϕ2 + 9ϕ + 24) + 24 ln |1 − ϕ|]. Since h′(ϕ) = − 6ϕ(ϕ+1)2

1−ϕ
and h(0) = 0, this implies that 

h(ϕ) is increasing and h(ϕ) < 0 on (−1, 0), as well as h(ϕ) is decreasing and h(ϕ) < 0 on (0, 1). 
Hence, g′(ϕ) ≥ 0 on (−1, 1), i.e. g(ϕ) is an increasing function on (−1, 1), which get along with 
g(0) = 0 gives that g(ϕ) < 0 on (−1, 0) and g(ϕ) > 0 on (0, 1). Thus, by (4.38), it is concluded 
that �′ > 0 on (−1, 0) ∪ (0, 1), which demonstrates Lemma 4.2. �
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Let us discuss the maximum and minimum of a traveling-wave solution when 1 − 2σ� �= 0. 
On the one hand, (4.33) and Proposition 4.1 infer ϕ �= 1, which implies max

x∈R
ϕ < 1. On the other 

hand, in view of (4.34), ϕ exhibits singularity at ϕ = −1, which implies min
x∈R

ϕ ≤ −1. Then, by 

the restrictions on the extremum of ϕ and Lemma 4.2, it is deduced that

−0.323 ≈ 8 ln 2 − 82/15

16 ln 2 − 34/3
≤ � <

1

2
, (4.39)

which combining with (4.36) gives that the traveling-wave solution of (1.1) may exist when

6

13
< � <

1

2
. (4.40)

Hence, we focus on 6
13 < � < 1

2 in the following.

Lemma 4.3. Let 6
13 < � < 1

2 . There is no root λ2 < 0 such that f2(λ2) = 0 and there is a λ3, 
where 0 < λ3 < 1, such that f2(λ3) = 0.

Proof. We will begin with the proof of the monotonicity of f2(ϕ) and f2(ϕ) > 0 for ϕ < 0. From 
(4.34), we know

f ′
2(ϕ) = − ϕ4 + (5 − 4�)ϕ2 + 2(4 − 6�)ϕ + 8(1 − 2�) + 8(1 − 2�)/(ϕ − 1)

= − ϕ4 + 5ϕ2 + 8ϕ2

ϕ − 1
− [4ϕ2 + 12ϕ2 + 4ϕ

ϕ − 1
]

= −ϕ2(ϕ − 3)(ϕ + 1)2

ϕ − 1
−

(4ϕ(ϕ + 1)2

ϕ − 1

)
�.

(4.41)

Then, it is deduced from 6
13 < � < 1

2 that f ′
2(ϕ) < 0 if ϕ < 0. This implies f2 is monotonic 

decreasing on (−∞, 0), which get along with f2(0) = 0 infers f2(ϕ) > 0 for ϕ < 0. Hence, we 
conclude that there is no root λ2 < 0 such that f2(λ2) = 0.

Next, for 0 < ϕ < 1, we know (4.41) can be rewritten as

f ′
2(ϕ) = −ϕ(ϕ + 1)2

ϕ − 1
ĥ(ϕ), where ĥ(ϕ) =

[
ϕ2 − 3ϕ + 4�

]
.

Consider 6
13 < � < 1

2 , then ĥ(ϕ) has two real roots r1 and r2, where

r1 = 3 − √
9 − 16�

2
, where 0.69 ≈

3 −
√

21
13

2
< r1 < 1,

r2 = 3 + √
9 − 16�

2
, where r2 > 1.

(4.42)

Thus ĥ(ϕ) > 0 on (0, r1) and ĥ(ϕ) < 0 on (r1, 1), which implies that f2 is increasing on (0, r1)

and is decreasing on (r1, 1). Moreover, for 6 < � < 1 , a simple computation shows that,
13 2
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f2(0) = 0, f2(1) = −∞,

f2(
1

2
) =

(
− 1

160
+ 5

24
+ 1 + 4 + 8 ln

1

2

)
−

(1

6
+ 3

2
+ 8 + 16 ln

1

2

)
� > 0.

Hence, according to the continuity of f2(ϕ), there exists a λ3, such that f2(λ3) = 0, where 0 <
λ3 < 1. Consequently, the proof of Lemma 4.3 is complete. �
Theorem 4.3. For σ = 1, when 6

13 < � < 1
2 , system (1.1) possesses a smooth traveling-wave 

solution ϕ > 0 with max
x∈R

ϕ(x) = λ3, and an anticusped traveling-wave solution ϕ < 0 with 

min
x∈R

ϕ(x) = −1.

Proof. In the case 1 − 2σ� �= 0, equation (4.28) has the following form

ϕ2
x = − 1

5ϕ5 + 1
3 (5 − 4�)ϕ3 + (4 − 6�)ϕ2 + 8(1 − 2�)ϕ + 8(1 − 2�) ln |1 − ϕ|

(ϕ + 1)3

:= f2(ϕ)

(ϕ + 1)3 = F2(ϕ).

(4.43)

By (4.43) we know that ϕ can not oscillate around zero near infinity. Let us consider the following 
two cases.

(1.1) If ϕ(x) > 0 near −∞, then there is some x0 sufficiently large negative so that ϕ(x0) = ε >

0, with ε sufficiently small, and ϕx(x0) > 0. By Lemma 4.3, 
√

F2(ϕ) is locally Lipschitz 
continuous in ϕ for 0 < ϕ < λ3. Hence, there is a local solution to

{
ϕx = √

F2(ϕ),

ϕ(x0) = ε,

on [x0 − L, x0 + L] for some L > 0. Therefore by (4.22), (4.23) and (4.24), the smooth 
solution can be constructed with the maximum height ϕ = λ3 and exponential decay to 
zero at infinity

ϕ(x) = O
(

exp(−√
52� − 24|x|))

)
, as |x| → ∞.

(1.2) If ϕ(x) < 0 near −∞. In this case, we are solving

{
ϕx = −√

F2(ϕ),

ϕ(x0) = −ε,

for some x0 sufficiently large negative and ε > 0 sufficiently small. Since 
√

F2(ϕ) is locally 
Lipschitz in ϕ for −1 < ϕ < 0, then −1 becomes a pole of F2(ϕ). Then we may obtain a 
traveling-wave solution with a anticusp at ϕ = −1 by (4.25) and (4.26). This completes the 
proof of Theorem 4.3. �
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4.3. Symmetry of traveling-wave solutions

In this section, attention is turned to the unique x-symmetric weak solution of system (1.1). 
Following [20] and the general principle deduced therein, we will prove that such a solution must 
be a traveling wave. To achieve this goal, one starts with the definition for x-symmetric solution.

Definition 4.3. A solution �u(t, x) = (u(t, x), η(t, x)) is x-symmetric if there exists a function 
b(t) ∈ C1(R+) such that for every t > 0,

�u(t, x) = (u(t,2b(t) − x), η(t,2b(t) − x)) (4.44)

for almost every x ∈R. We say that b(t) is the symmetric axis of �u(t, x).

To accommodate for weak solution, we will use 〈, 〉 for distribution in the subsequent discus-
sion and we rewrite (4.3) in Definition 4.1 as follows:

{〈u, (1 − ∂2
x )φt 〉 + 2�〈η,φt 〉 + 〈 1

2u2 + 1
2u2

x + η,φx〉 + 〈 1
2u2, φxxx〉 = 0,

〈η,φt 〉 + 〈(1 + η)u,φx〉 = 0.
(4.45)

A result related to traveling-wave solution may now be enunciated.

Theorem 4.4. If �u(t, x) is a unique weak solution of system (1.1) and is x-symmetric, then �u(t, x)

is a traveling wave.

The proof of the main result is approached via a series of lemmas. The following lemma gives 
the form of a weak solution of (1.1), which implies the main theorem in this section.

Lemma 4.4. Assume that �U = (U(x), V (x)) ∈ H 1(R) × L2(R) and satisfies

{∫
R[−cU(1 − ∂2

x )φx − 2�cV φx + ( 1
2U2 + 1

2U2
x + V )φx + 1

2U2φxxx] dx = 0,∫
R[−cV φx + (1 + V )Uφx] dx = 0,

(4.46)

for all φ ∈ C∞
0 (R). Then �u given by

�u(t, x) = �U(x − c(t − t0)) (4.47)

is a weak solution of system (1.1) for any fixed t0 ∈ R.

Proof. Without loss of generality, we can assume t0 = 0. Following the arguments in [20], we get 
that �u(t, x) belongs to C(R, H 1(R) × L2(R)). For any ζ ∈ C∞

0 (R+ ×R), letting ζc = ζ(t, x +
ct), it follows that

{
∂x(ζc) = (ζx)c,

∂ (ζ ) = (ζ ) + c(ζ ) .
(4.48)
t c t c x c
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Assume �u(t, x) = �U(x − ct). One can easily check that

⎧⎪⎪⎨
⎪⎪⎩

〈u, ζ 〉 = 〈U,ζc〉, 〈u2, ζ 〉 = 〈U2, ζc〉,
〈u2

x, ζ 〉 = 〈U2
x , ζc〉, 〈η, ζ 〉 = 〈V, ζc〉,

〈(1 + η)u, ζ 〉 = 〈(1 + V )U, ζc〉,
(4.49)

where �U = (U, V ) = (U(x), V (x)). In view of (4.48) and (4.49), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈u, (1 − ∂2
x )ζt 〉 = 〈U, ((1 − ∂2

x )∂t ζ )c〉 = 〈U, (1 − ∂2
x )(∂t ζc − c∂xζc)〉,

〈η, ζt 〉 = 〈V,∂t ζc − c∂xζc〉,
〈 1

2u2 + 1
2u2

x + η, ζx〉 = 〈 1
2U2 + 1

2U2
x + V,∂xζc〉,

〈 1
2u2, ζxxx〉 = 〈 1

2U2, ∂3
x ζc〉,

〈(1 + η)u, ζx〉 = 〈(1 + V )U,∂xζc〉.

(4.50)

Notice that �U is independent of time, for T large enough such that it does not belong to the 
support of ζc, which implies

〈U, (1 − ∂2
x )∂t ζc〉 =

∫
R

U(x)

∫
R+

∂t (1 − ∂x2)ζc dtdx

=
∫
R

U(x)[(1 − ∂x2)ζc(T , x) − (1 − ∂2
x )ζc(0, x)] dx = 0,

〈U,∂t ζc〉 =
∫
R

U(x)

∫
R+

∂t ζc dtdx

∫
R

U(x)[ζc(T , x) − ζc(0, x)] dx = 0,

〈V,∂t ζc〉 = 0.

(4.51)

Combining (4.50) with (4.51) gives that

〈u, (1 − ∂2
x )φt 〉 + 2�〈η,φt 〉 + 〈1

2
u2 + 1

2
u2

x + η,φx〉 + 〈1

2
u2, φxxx〉

= 〈U,−c(1 − ∂2
x )∂xζc)〉 + 2�〈V,−c∂xζc〉 + 〈1

2
U2 + 1

2
U2

x + V,∂xζc〉 + 〈1

2
U2, ∂3

x ζc〉

=
∫
R+

∫
R

[
− cU(1 − ∂2

x )∂xζc − 2�cV ∂xζc + (
1

2
U2 + 1

2
U2

x + V )∂xζc + 1

2
U2∂3

x ζc

]
dxdt

= 0,

and
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〈η,φt 〉 + 〈(1 + η)u,φx〉 = 〈V,−c∂xζc)〉 + 〈(1 + V )U,∂xζc〉
=

∫
R+

∫
R

[
− cV ∂xζc + (1 + V )U∂xζc

]
dxdt = 0,

where we applied (4.46) with φ(x) = ζc(t, x), which belongs to C∞
0 (R), for every given t ≥ 0. 

This completes the proof of Lemma 4.4. �
Proof. Recall Definition 4.3 and noting that C∞

0 (R+ ×R) is dense in C1
0(R+ ×C3

0(R)), we can 
only consider the test function φ belonging to C1

0(R+ × C3
0(R)). Let

φb(t, x) = φ(t,2b(t) − x), b(t) ∈ C1(R). (4.52)

Then we obtain that (φb)b = φ and

{
∂xub = −(∂xu)b, ∂xφb = −(∂xφ)b,

∂xφb = (∂tφ)b + 2ḃ(∂xφ)b,
(4.53)

where ḃ denotes the derivative of b with respect to time. Moreover,

{〈ub,φ〉 = 〈u,φb〉, 〈u2
b,φ〉 = 〈u2, φb〉,

〈(∂xub)
2, φ〉 = 〈(∂xu)2, φb〉, 〈ηb,φ〉 = 〈η,φb〉.

(4.54)

Since �u is x-symmetric, which get long with (4.53) and (4.54) gives that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈u, (1 − ∂2
x )φt 〉 = 〈u, ((1 − ∂2

x )∂tφ)b〉 = 〈u, (1 − ∂2
x )(∂tφb + 2ḃ∂xφb)〉,

〈η,φt 〉 = 〈η, ∂tφb + 2ḃ∂xφb〉,
〈 1

2u2 + 1
2u2

x + η,φx〉 = 〈 1
2u2 + 1

2u2
x + η,−∂xφb〉,

〈 1
2u2, φxxx〉 = 〈 1

2u2,−∂3
xφb〉,

〈(1 + η)u,φx〉 = 〈(1 + η)u,−∂xφb〉.

(4.55)

In view of (4.45), we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈u, (1 − ∂2
x )φt 〉 + 2�〈η,φt 〉 + 〈 1

2u2 + 1
2u2

x + η,φx〉 + 〈 1
2u2, φxxx〉

= 〈u, (1 − ∂2
x )(∂tφb + 2ḃ∂xφb)〉 + 2�〈η, ∂tφb + 2ḃ∂xφb〉

+〈 1
2u2 + 1

2u2
x + η,−∂xφb〉 + 〈 1

2u2,−∂3
xφb〉

= 0,

〈η,φ 〉 + 〈(1 + η)u,φ 〉 = 〈η, ∂ φ + 2ḃ∂ φ 〉 + 〈(1 + η)u,−∂ φ 〉 = 0.

(4.56)
t x t b x b x b
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Notice that (φb)b = φ. Substituting φb in the system (4.56) for φ, we have

⎧⎪⎪⎨
⎪⎪⎩

〈u, (1 − ∂2
x )(∂tφ + 2ḃ∂xφ)〉 + 2�〈η, ∂tφ + 2ḃ∂xφ〉 + 〈 1

2u2 + 1
2u2

x + η,−∂xφ〉
+〈 1

2u2,−∂3
xφ〉 = 0,

〈η, ∂tφ + 2ḃ∂xφ〉 + 〈(1 + η)u,−∂xφ〉 = 0.

(4.57)

Combining (4.45) and (4.57), we have

⎧⎪⎪⎨
⎪⎪⎩

〈u,2ḃ(1 − ∂2
x )∂xφ)〉 + 2�〈η,2ḃ∂xφ〉 + 〈 1

2u2 + 1
2u2

x + η,−2∂xφ〉
+〈 1

2u2,−2∂3
xφ〉 = 0,

〈η,2ḃ∂xφ〉 + 〈(1 + η)u,−2∂xφ〉 = 0.

(4.58)

We consider a fixed but arbitrary t0 > 0. For any φ ∈ C∞
0 (R), let φε(t, x) = φ(x)ρε(t), where 

ρε ∈ C∞
0 (R+) is a mollifier with the property that ρε → δ(t − t0), the Dirac mass at t0, as ε → 0. 

From (4.56), by using the test function φε(t, x), we have

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
R

(
2(1 − ∂2

x )φ
∫
R+ ḃuρε(t)dt

)
dx + 2�

∫
R

(
2∂xφ

∫
R+ ḃηρε(t)dt

)
dx

− ∫
R

(
2∂xφ

∫
R+( 1

2u2 + 1
2u2

x + η)ρε(t)dt
)

dx − ∫
R

(
∂3
xφ

∫
R+ u2ρε(t) dt

)
dx = 0,∫

R

(
2∂xφ

∫
R+ ḃuρε(t)dt

)
dx − ∫

R

(
2∂xφ

∫
R+ ḃ(1 + η)uρε(t)dt

)
dx = 0.

(4.59)

Note that

lim
ε→0

∫
R+

ḃuρε(t) dt = ḃ(t0) · u(t0, x), lim
ε→0

∫
R+

ḃηρε(t) dt = ḃ(t0) · η(t0, x), in L2(R),

and

lim
ε→0

∫
R+

(
1

2
u2 + 1

2
u2

x + η)ρε(t) dt = 1

2
u2(t0, x) + 1

2
u2

x(t0, x) + η(t0, x),

lim
ε→0

∫
R+

u2 · ρε(t) dt = u2(t0, x),

lim
ε→0

∫
R+

ḃ(1 + η)u · ρε(t) dt = ḃ(t0)(1 + η(t0, x))u(t0, x), in L1(R).

Therefore, letting ε → 0, (4.59) infers that

⎧⎪⎪⎨
⎪⎪⎩

∫
R ḃ(t0) · u(t0, x)(1 − ∂2

x )∂xφ dx + 2�
∫
R ḃ(t0) · η(t0, x) · ∂xφ dx

− ∫
R

(
1
2u2(t0, x) + 1

2u2
x(t0, x) + η(t0, x)

)
· ∂xφ dx − ∫

R
1
2u2(t0, x)∂3

xφ dx = 0,∫
ḃ(t ) · η(t , x) · ∂ φ dx − ∫

ḃ(t )(1 + η(t , x))u(t , x) · ∂ φ dx = 0.
R 0 0 x R 0 0 0 x
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Thus, we deduce that u(t0, x) satisfies (4.46) for c = ḃ(t0). Applying Lemma 4.4, we get that 
ũ(t, x) = u(t0, x − ḃ(t0)(t − t0)) is a traveling-wave solution of system (1.1). Since ũ(t0, x) =
u(t0, x), by the uniqueness assumption of the solution of system (1.1), we obtain ũ(t, x) = u(t, x)

for all time t . This completes the proof of Theorem 4.4. �
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