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Abstract

This paper is devoted to the coupled Keller-Segel(-Navier)-Stokes system describing coral fertilization:

ng+u-Vo=An—-V.(nSx,n,c)Vc) —nm, xe, t>0,
my;+ua-Vm=Am —nm, xeR, t>0,
ct+u-Ve=Ac—c+m, xe, t>0,

ur+k@@-Vyu=Au—-Vp+mn+m)Vep, V-u=0, xe, t>0,

where k € {0, 1}, Q C RN (N =2, 3) is a bounded domain with smooth boundary 92 and outward normal

vector v, the chemotactic sensitivity S(x, n, ¢) is a tensor valued function satisfying |S(x, n, ¢)| < %

with a non-decreasing function Sy € C 2([0, +00)) and 6 > 0. Under the specified boundary conditions
Ve-v=Vm-v=(Vn —nS(x,n,c)Vec) - v =0, u=0 and some mild assumptions on the initial data
(ng, mg, co, ug), the global-in-time classical solutions are constructed. More precisely, if 6 > 0, then for
any large initial data there admits globally bounded solution; and if & = 0, under some explicit smallness
conditions on max{||coll oo (), lmollLoo(s)} the global-in-time classical solutions are also constructed.
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1. Introduction and results

In this paper, we consider the following Keller-Segel-(Navier-)Stokes system with rotational
flux:

n+u-Vo=An—-V-mSx,n,c)Vc) —nm, xe, t>0,
m;+u-Vm=Am—nm, xeQ, t>0,
ct+u-Ve=Ac—c+m, xeQ, t>0,
ur+xk@@-Viju=Au—-—Vp+mn+m)Vep, V-u=0, xe, t>0,
Ve-v=Vm-v=(Vn—-nS(x,n,c)Vc) - v=0,u=0 xe€d, >0,
n(x,0) =ng(x), m(x,0) =mo(x), c(x,0) =co(x), u(x, 0) =up(x), x €,
(1.1

where Q c RY (N =2, 3) is a bounded domain with smooth boundary d€2; v denotes the out-
ward normal vector of 9€2; ¢ stands for the potential of the gravitational field; the chemotactic
sensitivity function S(x,n,c) = (s;j(x,n, c)); je(1,--,N} 18 tensor-valued. System (1.1) models
the spatio-temporal dynamics of the coral fertilization in the fluid with velocity field u satisfy-
ing the incompressible (Navier-)Stokes equations with associated pressure P and external force
(n+m)V¢. Here n represents the density of the sperms and m denotes the density of eggs which
release the chemical signal with concentration c to attract the sperms.

To motivate our study, we first recall some related progresses on system (1.1). We begin with
the chemotaxis-(Navier-)Stokes model proposed by Tuvel, et al.

Chemotaxis-(Navier-)Stokes model To describe the dynamics of swimming bacteria, Bacil-
lus subtilis, in a water drop sitting on a glass surface, Tuval et al. proposed the following
chemotaxis-(Navier-)Stokes model [24]:

n+u-Vn=An— V-(nx(c)Vc),

¢ t+u-Ve=Ac—k(c)n,
(1.2)
u+x(-V)Yu+ VP =Au+nVe,

V-u=0,

where the scalar function y (c), k(c) represent the chemotactic sensitivity and the oxygen con-
sumption rate, respectively; the coefficient « is related to the strength of nonlinear fluid convec-
tion. In particular, when x = 0, the corresponding system (1.2) is an incompressible chemotaxis-
Stokes system which describes the cells’ dynamics in the fluids flowing slowly. When « > 0,
the corresponding system (1.2) is an incompressible chemotaxis-Navier-Stokes system, wherein
the fluid velocity u is subjected to an incompressible Navier-Stokes system, the existence of the
classical solutions of which, as we know, is still an open problem. There have been amounts of re-
sults on the global well-posedness of the Cauchy problem and the initial boundary value problem
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in the two or three dimensional case, under some structure conditions between x (c¢) and f(c),
or some smallness conditions on the initial data, see [3], [12], [4], [19], [32], [31], [36], [35],
etc; moreover, the small-convection limit problem studied in [27] shows that the solutions of the
chemotaxis-Navier-Stokes system in the two dimensional bounded domain converge uniformly
in time to the solution of its chemotaxis-Stokes counterpart. We also refer to [5], [18], [37] and
references therein for the nonlinear diffusion models with porous medium type diffusion An™
instead of the linear one An.

Keller-Segel-(Navier-)Stokes model In contrast to the chemotaxis-(Navier-)Stokes model
(1.2) involving the chemical signal consumption and thus effectively preventing the occurrence
of cells aggregation, the following Keller-Segel-(Navier-)Stokes model with chemical signal se-
creted by the cells themselves is somewhat more difficult:

n,+u-Vn=An—V~(n)((c)Vc)+f(n),

¢t+u-Ve=Ac—c+n,
(1.3)
u+k@m-VYu+ VP =vAu+nVe,

V.-u=0.

The main difficulty differs from system (1.2) is that the uniform boundedness of ¢ in (1.3) can-
not be obtained by the comparison argument. Existing results on (1.3) have shown that such
Keller-Segel-(Navier-)Stokes model has many properties similar to the fluid-free counterparts.
For instance, in our previous work [17], it is shown that the corresponding Keller-Segel-Stokes
system (1.3) with f(n) = 0 in two dimensional bounded domain admits unique classical solution
when ||no|l 1 (q) is appropriately small, such result is similar to the fluid-free Keller-Segel system;
as we know, the solutions of the fluid-free Keller-Segel system may blow up in finite time when
Inollz1(g) is larger than some thresholds, we thus guess that such phenomenon may occur in the
Keller-Segel-(Navier-)Stokes model (1.3); however, as far as we know, relevant result is still a va-
cancy. Another similarity to the fluid-free Keller-Segel system is that, the quadratic source term
may prevent effectively the finite-time blowup of solutions [23], [22]. The model (1.3) and some
other relevant models studied in [6], [11], [10] describe the corral broadcast spawning, wherein
the sperms and the eggs are viewed as one population. Very recently, Espejo and Winkler pro-
posed a more realistic model in [7], therein the sperms and the eggs are treated as two different
populations and only the sperms response to the chemical signal released by the eggs. Actually,
the model proposed by them is the special version of system (1.1) with k =1 and S(x,n,c) =1,
by establishing an entropy energy estimate on [o,n(-, 1) Inn(-, 1) +a [ |Vc|> +b [, |u|* they es-
tablished the global existence and large time behaviors of solutions in two dimensional bounded
domains.

Chemotaxis model involving rotational flux Based on the experimental observations that
the bacterial motion near surfaces of their surrounding fluid may involve rotational components
(see [33], [34]), chemotaxis models with tensor-valued sensitivity function instead of the scalar
one have been proposed and widely studied, see [9], [1], [25], [26], [16] etc. In particular, only
very recently, in [13], the authors considered the three dimensional Keller-Segel-Stokes system
(1.1) with matrix-valued sensitivity S(x, n, ¢) satisfying

C
1S(x.n.0)| < ———
(1+n)?
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with Cg > 0, 6 > 0; wherein, the global boundedness and large time behavior of classical so-
lution were established under the condition 6 > % or 6 > 0 and the initial data satisfy certain
smallness conditions. Evidently there is a gap (O, %) of 0, and it is natural therefore to ask how
about 6 € (0, 1)?

Motivated by the above works, in this paper, we try to study the system (1.1) with more general

rotational flux. More precisely, throughout the sequel, we assume that the chemotactic sensitivity
S(x,n,c) e CH x [0, +00)%; RN x RN)(N =2, 3) satisfies

1S(x,n,c)| < _Sol@)_ for all (x,n,c) € Q x [0, +00)2, (1.4)
(1 +n)°

where So(-) : [0, +00) — R is a nondecreasing and nonnegative function and 6 > 0 is a parame-
ter. We also assume that ¢ € W2°°(Q2) and the initial data are given functions satisfying

no € C(), ng > 0andng #0,
mo € C(RQ), mo > 0andmg £ 0,
co € WH(Q), co > 0and co 0, (1.5)

N
up € D(A%), a € (Z, 1),

where A is the realization of the Stokes operator in L2(£2). Under these assumptions, we try
to construct the global existence and uniform boundedness of solutions. As aforementioned,
in [7], the authors have studied the boundedness and large time behavior of the two dimensional
Keller-Segel-Navier-Stokes system (1.1) with scaler sensitivity S(x, n, ¢) = const., wherein the
energy functional of [on(-,t)Inn(-, 1) +a [, |Ve|* + b [, ul* plays a great role. As we know,
such functional structure will be broken down by the tensor-valued sensitivity and thus will take
great challenges for our situations. It is fortunately that, after careful observations, it is not hard
to find that m and thus ¢ are bounded by the maximum principle (see Lemma 2.2); therefore,
the weighted estimate technique originally developed in [28] may be applicable for our case.
Along this way, we shall establish the following results on the global existence and uniform
boundedness of solutions to system (1.1).

Theorem 1.1. Let «k =0, o € (%, 1), QcC R3 be a bounded domain with smooth boundary. As-
sume that ¢ € W>®(Q) and S(x,n, ¢) € C3(Q2 x [0, +00)%; R? x R3) satisfies (1.4) with 6 > 0.
Then for every initial data satisfying (1.5), the system (1.1) admits a global-in-time classical
solution (n,m, c,u, P), which is uniformly bounded in the sense that there admits a positive
constant C such that

InC, Dl + IlmC, Ol + lleC, Dl @) + 1A% D2 < C
forall t € (0, +00).
Remark 1.1. Theorem 1.1 indicates that 6 > 0 is enough to ensure the global existence and uni-

form boundedness of solution of the three-dimensional Keller-Segel-Stokes system (1.1), which
improves the result obtained in [13], therein 6 > % is required.
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Similar to the chemotaxis(-Navier)-Stokes system with rotational flux term considered in [1],
the global-in-time classical solution to the Keller-Segel-Stokes system (1.1) with |S(x,n, c)| <
So(c) (i.e., # =0 in (1.4)) can also be constructed just under some smallness conditions on the
initial data.

Proposition 1.1. Letxk =0, p > % o€ (%, 1), QC R3 be a bounded domain with smooth bound-
ary, and assume that ¢ € W>®(Q) and S(x, n, c) € C*(Q x [0, +00)%; R3 x R3) satisfies (1.4)
with 6 = 0, and apart from (1.5), the initial data also satisfy

1
VrGBp+D+p’

where M := max{||coll L), ImollLe(q)). Then the system (1.1) admits a global-in-time clas-
sical solution (n,m, c,u, P), which is uniformly bounded in the sense that there exists a positive
constant C such that

(1.6)

MSo(M) < 5

InC, Dl + ImC, HllLe@) + lleC, Dy + 1A A, D2 < C
forall t € (0, +00).

Remark 1.2.Let p = %, from the inequality (1.6) we get an explicit upper bound 2\/3_#3% of

M So(M) such that the global-in-time classical solution to the Keller-Segel-Stokes system (1.1)

. 2 . _ :
exists when M So(M) < WL Particularly, let So(c) = Cs with Cg > 0, then we have M <

TN Such smallness condition on the initial data is somewhat simpler than those in [13],

wherein the initial data are required to satisfy

lno — noollLro(@) <€, llmo —moollLao() <€, [IVeollps) <€ luollp3g) <€
3. 4 .
for some € > 0, go > 3, and po > 5 if [ n0 > [qmo. po > 3 if [qno < [omo.

In the two dimensional case, in [7], by establishing an entropy energy estimate on |, onInndx+
a fQ |Vel2dx + b fQ lu2dx, the global existence of large-data classical solution to the corre-
sponding Keller-Segel-Navier-Stokes system, i.e., system (1.1) with k = 1 and S(x,n,c) =7Z,
was already obtained. However, for the system (1.1) with general tensor-valued sensitivity such
functional structure does not exist and thus all the estimates based on it are no longer available.
The last Proposition in this paper shows that, similar to the three dimensional Keller-Segel-
Stokes system (1.1), either 8 > 0O or some smallness condition on the initial data is also sufficient
to ensure the existence of the global-in-time classical solution to the two dimensional Keller-
Segel-Navier-Stokes system (1.1).

Proposition 1.2. Letk =1, p> 1, a € (%, 1), Q C R? be a bounded domain with smooth bound-
ary. Assume that ¢ € W>*(), S(x,n,c) € C*(Q x [0, +00)%; R? x R?) satisfies (1.4), the
initial data satisfy (1.5). Then if 6 > 0 in (1.4) or if 0 = 0 in (1.4) and besides (1.5), the initial
data also satisfy (1.6), the system (1.1) admits a global-in-time classical solution (n,m, c,u, P),
which is uniformly bounded in the sense that there exists a positive constant C such that
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InC, OllLe@) + ImC, DliLe@) + lleC, Dllwie ) + 1A%, Dl 2 < C
forall t € (0, +00).
Remark 1.3.Let p = 1, from (1.6) we see that the smallness condition on the initial data
MSo(M) < % can ensure the global existence of classical solution. Similar result is obtained

in [1] for the chemotaxis-Navier-Stokes system; however, the explicit upper bound of ||col| 1. (@)
is not given in [1].

2. Global existence and boundedness for S = 0 on d 2
In this section, we consider the case that besides (1.4), the tensor-valued function S satisfies
Sx,n,c)=0, (x,n,c)e€d x[0,00) x [0, 00), 2.1)

which reduces the boundary condition for n in (1.1) to the homogeneous Neumann boundary
condition, i.e.,

Vn-v=0, xe€dQ, t>0.
2.1. Local existence of classical solutions

We first state the local existence of classical solutions, which can be proved in precisely the
same manner as [21, Lemma 2.1], see also [15], etc.

Lemma 2.1. Let N € {2, 3}, ¢ € W>(Q) and assume that S(x,n,c) € C*(Q x [0, +00)?:
RN x RN) satisfies (1.4) and (2.1). Then for any initial data satisfying (1.5), the initial bound-
ary value problem (1.1) admits a unique local-in-time classical solution (n,m,c,u, P) in
Q x (0, T*), up to addition of constants to P, satisfying
neC%Q x[0,T%)NC>(Q x (0, T*))
meCOQ x[0,T*)NCH(Q x (0, T%)
ceC'@x[0,T*)NC*1 (2 x (0,T*))
ueCo%Q %[0, T*)NCH(Q x (0, T%)
PeC @ x[0,T).
Here, T* denotes the maximal existence time. Moreover, we have n, m, ¢ are nonnegative in
Q x (0, T*), and
if T < o0,
then limsup{ |n(-, )||Lo(@) + m(, ) [[Lo@) + lcC, Dllwio ) + 1A%, D 2g)) = 0.

t—T*

(2.2)

Invoking the divergence free of the fluid and the homogeneous Neumann boundary conditions
on n, m, ¢, some basic but important estimates can be established.
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Lemma 2.2. Under the conditions of Lemma 2.1, for all t € (0, T*), the solution of (1.1) satisfies

InC, Dl < lInoliLiq. ImG DllLiq) < llmollL1(q). (2.3)
t
//n(-,t)m(~,s)dxds < minfl|lnollp1 (). Imollp 1o}, (2.4)
0 @
InC, Ol — lmG D) = llnollLig) — llmoll L1 (2.5)
t
Im D112 g, +2 / IVm ()72 ds < Imoll7a g (2.6)
0
lm(, )l Lo @) < lmollLe), 2.7
leC, Dl L) < max{|lcollLe@), ImollLe @)} =M. (2.8)

Proof. The proof is similar to Lemma 2.2 of [7], we omit the details here. O
2.2. L? estimate for n

As we know, the uniform boundedness of L” norm of n is crucial for the global existence of
classical solution. Inspired by the weighted estimate argument developed in [28], see also [1],
[20], etc., in this section, we shall invoke the weighted estimate of fQ nPyrdx with appropriate
choice of i to obtain the upper bound of n in L”(£2). We emphasize that such argument does
not depend on the spatial dimension N and the value of «.

Lemma 2.3. Let 6 > 0 and the assumptions in Lemma 2.1 hold. Then for any p > 1, we have

% /(n + DPy(c)dx + @ /(n + P2\ Vn*y (c)dx + /(n + )Py (¢)|Ve|>dx
Q Q

Q
/2
< 4r /(n + 1)P|W|2wdx - p/(n + Py (c)mdx + p/(n + Py (c)mdx
p—1 ¥ (c)
Q Q Q
4 p(p— DSZM) / (n+ P2y ()| VelPdx + pSo(M) / (n+ P09/ (o) Ve dx
Q Q

+ /(n + DPY' (c)mdx — /(n + Py’ (c)edx forallt € (0, T),
Q Q 2.9)

where  (s) € C2([0, +00)) is nonnegative and nondecreasing.
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Proof. Using the first and the third equations in (1.1), by integration by parts, we have
d -1
= n+DPYdx=p [ (n+ 1P Y(c)(An—u-Vn—V-nS(x,n,c)Vc) —nm)dx
—+—f(n + Py (c)(Ac—u-Vec—c+m)
= p/(n + )P " (c)(An — V- (nS(x,n, c)Vc) — nm)dx

+ /(n +DPY () Ac—c+m)dx: =L+ 1

Q
(2.10)

for all ¢t € (0, T*), where we have used

p /(n + P 'y (c)u- Vndx + /(n + Py (c)u- Vedx = /u -V((n+ Dy (c))dx =0.

Q Q Q

For I, by integration by parts, we have
L=-p(p—1 /(n + P2\ Vn)? Yy (c)dx — p [(n + )P~y (¢)Ve - Vndx
Q Q
— p/(n + P~y (e)nmdx + p(p — 1) /(n + P20y (c)Vn - (S(x,n, c)Ve)dx

+ p/(n + P ny/(e)Ve - (S(x, n, ¢)Ve)dx.

Q.11
Using Young’s inequality, we have
_p / (n+ DP9 ()Ve - Vndx < @ [ (n+ P2 VnPy (O)dx
(2.12)
Y2 ) i
St + PVl
f -+ Ve

In light of (1.4) and ||c|| > (q) < M stated in (2.8), and using once more Young’s inequality, we
get



6298 X. Li/ J. Differential Equations 267 (2019) 6290-6315

p(p—1) /(n + DP 20 (c)Vn - (S(x,n, c)Ve)dx

< p(p—1DSo(M) /(n + DP9 (0)|Vn| | Veldx

r— 1) o (2.13)
< Tf(n+ DP™2|Vn|“y(c)dx
Q

+p(p - DS2M) f (n+ 172y (0)|VePdx,

and

P [ (n+ 1P ny(@Ve- (S, n, ) Ve)dx < pSo(M) / (n+ DY ©IVePdx. (514

Substituting (2.12)-(2.14) into (2.11), we have

Sp(p

12
L<- 717( + 1P| Vnl? w<c)dx+—/<n+1>f’|v P g

V(o)

- p/(n + Py (c)nmdx + p(p — 1)SF(M) /(n + DY (0)|VePdx (215
Q

+pSo0) [+ 170y Ve
For 1>, we deduce using (2.12) and integration by parts that
L=-p /(n + 1Py (0)Vn - Vedx

- /(n + Py (¢)|Vel>dx — /(n + Py (c)edx + /(n + Py (c)mdx
“ (2.16)

) /2
Q

— f(n + )Py (c)|VelPdx — /(n + DPy'(c)edx + /(n + DPy'(c)mdx.
Q Q Q

Substituting (2.15) and (2.16) into (2.10), we have
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—/<n+ D7y (e)dx + 2 )f( + P2V w(c>dx+/<n+ Py (@) |VePdx

Y% (e ) 4
v (c)

5—p4f1/(”+1)’)|v | —p/(n+1)” "y (cynmdx
Q

+ p(p — DSG(M) [ (n 4+ )P0y (c)|Ve|*dx + pSo(M) / (n+ DP9/ ()| Ve|Pdx

+ / (n+ 1Py (ymdx — / (n+ 1Py (c)edx,
Q Q
(2.17)

from which one can easily get (2.9). O

By constructing a proper function v (s), from (2.9) we can get the uniform boundedness of n
in L? ().

Lemma 2.4. Let 0 > 0 and the assumptions in Lemma 2.1 hold. Then for any p > 1, there admits
a positive constant C depending on p such that

/np(~, Hdx < C(p) forallt € (0,T"), (2.18)
Q

and
4+t
/ /(n(-, $) 4+ DP721Vn(., s)|*dxds < C (2.19)
r Q

forallt € (0, T* — 7) with T =min{1, T*}.

Proof. Without loss of generality, we first assume that p > max{26, %}. Define ¥ (s) := hs?
for s € [0, oo) with 8 > 0 to be specified later. Simple computations show that

W' (s) =2BsY(s), ¥ (s) = 2B +4B%D)Y (s).

To get the upper bound of n in L?(£2) from (2.9), we now need to control the terms on the right
side of (2.9) by the terms on the left side. For this purpose, let first that g € (0

g (14,n+2)M2) Then
we have

p LV 2(0)
TIQ/(nJrl)”IVI 1/}()d —/( +1>P|V| ﬁ 2y (c)dx

Q
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1
=5 /(n + )Py (¢)|Ve|?dx.
Q
By Young’s inequality, we have
p(p — DSF(M) / (n+ 1P~y ()| Vel dx

= % /(n + )Py (0)|Veldx + Cy /W(c))% () B |Veldx
@ Q

| - 2.21)
=3 / (n+ 1Py () [VePdx + € / (2B + 482D 5"y (0)|VelPdx

Q Q

1
Z/(n+1)”1//”(C)|Vc|2dx+C2f|Vc|2dx

20—
with C; = [p(p — I)SZ(M)] 7 (320 29)) p 9 and Cy = C1(28) 7" ePM’ . Here in the last in-
equality, we have used 8 > 0, p > 29 and ||c|| (@) < M. Following the similar procedure, we
have

pSo(M) /(n + 1)p76W/(C)|VC|2dx
1
= / (n+ 1)Py"(0)[VePdx + Cs / W) T (W () F |VelPdx

= % f(n + D7y (c)|Vel*dx + Cs f(Zﬂ 48207 2B6) F v ()| Ve|2dx

Q Q

< %/(n + DPy"(c)|Vel*dx + C4/ [Veldx (2.22)

with C3 = (pSz(M)) (4(p 9))Tp and Cy = 2C3,8MgeﬁM2. By Young’s inequality, we also

have

[
P

O P P
p/(l’l + D (mdx < 2 /(n +DPY(emdx + Go-1)
Q Q

_”/l/f(c)mdx. (2.23)
Q

Substituting (2.20)-(2.23) into (2.9), and adding fQ (n 4+ )Py (c)dx to the resulted inequality,
we deduce
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—/(n—i— Py (c)dx + 2 )/( +1)P2|Vn)? w(c)dx+/(n+1)f’w(c)dx
< (Cy +c4)/ \Vel2dx — 3/(11 + )Py (c)mdx + (L)“P/mc)mdx
2 2(p—1)
Q Q
+ [osvrvemas = [+ vry @t [Py (224
Q Q Q

= (Cy+ c4)/ \Vel2dx + /(Zﬂc - g)(n + )Py (c)mdx + /(n + )Py (c)dx
Q Q Q

p 1—-
+(m) p!lﬁ(c)mdx.

2
Since € (0, m) and p > 737, we have

~1 2
L P72 _
2= (Ip+DM M

(2.24) then leads to

—/(n—i—l)pl//(c)dx—i- )f( +1)P~ 2|Vn|2dx+/(n+1)pw(c)dx

(2.25)

<(Cz+c4>/|Vc|2dx+eﬁM f(n+1)1’dx+( =P PM |lmg || ooy -

2(p—1)
Using Galiardo-Nirenberg’s inequality, we have

P
/ (n+DPdx =+ 17172,
Q

r
< Conlln+1)% ||2“ > MO D2 g + Conlln+ 1) ||i%(

< ConlnollLio) + |s2|)f”<1 DIV + DI g + Coninoll gy + 1217
(2.26)

with § = % € (0, 1). Whereupon, we apply Young’s inequality, to deduce
2 —1 p
M [ s < v+ D g, + €

. 2 P S —_ L
with Cs = [e#M Can (lInoll 1) + 12DP0DT5 (1 = 8)(ZH) 5T + &M Con(linoll ) +
|€2])P. Substituting this into (2.27), we then have



6302 X. Li/ J. Differential Equations 267 (2019) 6290-6315
d —1
= /(n + )P (0)dx + % /(n +1)P2|VnPdx + /(n 1Py (c)dx
Q Q Q

<(C2+Cy) / |vc|2dx+(ﬁ)1-1’eﬁwnmonmm)+c5 forall 1 € (0, T*).
Q

(2.27)

Testing the third equation in (1.1) against ¢, and using Young’s inequality to the term fQ cmdx,
we obtain

d
Efczdx+/c2dx+2/|Vc|2dx < llmoll oo (e - (2.28)
Q Q Q

A linear combination (2.27) + 2554 5 (2.28) then yields

%(/(n+ DPy(c)dx + (CLZCU/C%IJC) + @/(n%— 1)P=2|Vn|?dx
Q Q Q

n (/(n )Py (e)dx + w / czdx)
Q Q

14 )= hM? (C2+Cy)

=<( lmoll Loo () + Cs5 + >

<(— Imoll2 sy |2]  forall £ e (0, T*).
20— 1) =@

(2.29)

Define y(1) := [o(n + )Py (c)dx + % Jq c*dx, by ODE comparison argument, we con-
clude that

p

(C2+Cy)
2(p—1)

_ 2
)P ePM Img || oo ) + Cs + >

y(t) <max {( lmol1 ooy |- y(0>},

which combining with i > 1 then yields (2.18). Furthermore, integrating the inequality (2.29)
over (¢, t + t) with T = min{1, %T*}, we then obtain (2.19). O

We remark that the derivation in Lemma 2.3 does not work in the case of & = 0. However, in
this case, we also can obtain the bound of L? norm of n under some smallness assumptions on
the initial data.

Lemma 2.5. Let p > 1, and 6 =0 in (1.4). There exists a positive constant C (p) with the prop-
erty: If besides (1.5), the initial data additionally satisfies

MSo(M) = (2.30)

1
vprGBp+1D+p

with M = max{||mg|| L), llcollLe(@)), then we have

InC, OlliLr) < C(p) forall t€(0,TF), (2.31)
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and
t+1

/ /(n + 1)P72|Vn|?dx < C(p) (2.32)
Q

forallt € (0, T* — t) with T =min{1, 1 T*}.
2

Proof. Let 6 =0in (2.10), we have

—/<n+ Py (e)dx + L )/< + )P 2| VaP w<c>dx+f(n+ DPY"(0)|Veldx

12
S—pfl /(n+1)P|V Izww(( )d —P/(n-l—1)pw(c)mdx+p/(n+l)p Y (c)mdx
Q

p(p— DSZM) f (n+ DPY(©)|VelPdx + pSo(M) f (n+ )Py (©)Ve) Pdx

+ /(n + DPy%'(c)mdx — /(n + Py’ (c)edx forall t € (0, T*).
(2.33)

Let v = P fors e [0, 400) with B to be specified later. Straight computations then yield

4p Y% (o)
p—1 v

= (28+4p% - %4,3%2 — p(p = DSFM) = 2pBSo(M)e) ¥(©) (2.34)

¥ (c) - — p(p = DSFM)Y(c) — pSo(M)Y' ()

4Bp + DHBEM?

S PP DSEM) —2pBS(MOM )b o)

> (2;3 -
Here we have used ||c|| . (q) < M provided by (2.8) and the nondecreasing monotonicity of Sp.
Let us define

4B3p + HM?p?

ST+ 2= 2pSnM)B — p(p - 1S3 (M).

F(B):=—

Simple computations show that if M So(M) < 3 W , then there admits

(2= 2pS0M)M +/@pSoM =27 = 16Gp + DpSe(M)2M? ) (p — 1)
8Gp+ M2 >(3.35)

IB:
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such that F(8) =0, and thus " (c) — p—l '/’w(g) —p(p— I)Sg(M)tp(c) — pSo(M)y'(c) > 0.
Whereupon, from (2.33) we deduce

—f(n+l)pI/f(C)dx+/(n+1)”1ﬂ(C)dX+ )/( + 1P| Va Py (c)dx
Q

< /(n + DPy/(c)mdx + /(n + DPy(c)dx (2.36)

< 2BM + 1)ePM’ /(n +1)Pdx  forallt € (0, T%),

where we have used ¥/(c) = 2,Bce‘3c2 > 0 and ||c|lz=,7*; 1 (Q)) < M. Similar to Lemma 2.4,
by the Gagliardo-Nirenberg inequality (2.26) and the Young inequality, we have

(2BM + )P (n+1>"dx< L9+ ¥ + o
) ©

1) (2.37)
<2l /(n + P2 Vn Py (e)dx + Ce,
with
% P(-8)175 Pl
Co=[2BM + 1)e"™ Conlnolip1q) + 12D 1= (1 - 8)(W)fS T
2
+Q2BM + D)ePM Connoli1 ) + 192D,
and § = % € (0, 1). Combining (2.37) and (2.36), we then have
= /(n + DPy(c)dx + /(n F )Py (eydx + 2P —D /( + )P Va)2y (c)dx < Cq
(2.38)
for all ¢ € (0, T*). Therefore, we have
/ (n + )Py (c)dx < max / (no + HPePodx, Cq forall t € (0, T*), (2.39)

which implies (2.31), since ¥ (¢) > 1. Whereupon, integrating the inequality (2.38) over (¢, t + 1)
with T = min{l, 17} we get (2.32). O
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2.3. Proof of Theorem 1.1

In light of the extensibility criterion (2.2), to establish the global existence of solutions to
system (1.1), we only need to show the uniform boundedness of [|n(-, 1) [ Lo (@), llc(-, D) lwieo (),
as well as [[A%u(-, 1)|l2(q)- Actually, with the uniform boundedness of |n(-,#)||Lr(q) stated
in (2.9), one can firstly apply the estimate of Stokes operator (see Corollary 3.4 of [29]) to get
the following regularity property of u.

Lemma 2.6. There exists a positive constant C such that

Proof. Let p > 3 in (2.18), then we can apply the estimate of Stokes operator to the equation
(1.1)4 (see Corollary 3.4 of [29]) to obtain

| Du(-, 1) Lo < C forall t € (0, T*),
and so by the Poincaré inequality we obtain the inequality (2.40). O
Lemma 2.7. There exists a positive constant C such that
Ve(, )|l o) < C forall t €(0,T*), (2.41)

and

e D llwreoq) < C forall t € (0, T"). (2.42)

Proof. Testing the third equation in (1.1) against Ac, we have (one can refer to Lemma 3.2 of
[7] for the proof):

d
E/|Vc(-,t)|2dx+/|Ac(',t)|2dx+2/|Vc(-,t)|2dx
Q

Q Q
(2.43)

<C /|Vu(-,t)|2dx+1 forall t € (0, T*).
Q

In light of (2.40), fQ [Vu(-, t)2dx is uniformly bounded in time; whereupon, by the ODE com-
parison argument we have

Ve(, )l 2q) < C forall t € (0, T%). (2.44)
By the well-known estimates for the solution of the inhomogeneous linear heat equations with

homogeneous Neumann boundary condition (see Lemma 2.1 of [8], or [14]), we further obtain
that
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Ve, OllLeo, 7109 < IVeollLe@) + Cllm —u - Vel g 7. 14(0))
1
<IIVeollL=@) + Cmoll L)%

+ lullzoe©, 7+ Lo@) Vel Lo, 7:04)
1 1
<C+Clu ”LOO(O,T*;LOO(Q)) I VC"im(O,T*;LZ(Q)) ||VC”Z°°(0,T;L°°(Q))

1
<C+ C”VCHLZ‘OO(O’T*;LOO<Q))’
(2.45)

where we have used (2.40) and (2.44). Applying Young’s inequality to the last term in (2.45) we
obtain (2.41), which together with (2.8) then yields (2.42). O

Lemma 2.8. There exists a positive constant C such that

In(, t)”LOO(Q) <C forall te€ (0, T*) (2.46)

Proof. The variation-of-constants representation for n provides

t
7, 1) Loy < lle" noll Lo (@) + f e"9AV - (n(-, 5)S(x, n(-, 5), (-, 5)) Ve, s)(2
J .

47)
+n(,9u, ) re@ds
for all t € (0, T*). The first term can be estimated as
||etAn0||LOC(Q) < ||n0||Lo<J(Q) forall ¢ € (O, T*) (2.48)

Moreover, using the well-known L? — L9 estimates for Neumann heat semigroup (see
Lemma 1.3 of [30]), there exists a positive constant C¢ such that

t
/ €AV - (n(-, $)S(x, n(-, ), (-, )Ve(, 8) + 1, ul-, $))| oo @)ds
0
t
< Co/(l +(t— s)*%*%)e*kl(t’s)un(g s)S(x,n(,s),c(,s)Ve(-,s) +n(, s)u(-,s)||L4(Q)ds
0
t
< Co / (L4t — )" 5)e D[S0, n, 5), ¢, ))Vel, $) +ul, )l @ Inll s ds
0

(2.49)

< C()(SO(M)||VC||L°°(O,T*;L°°(Q)) + ||’4||L°°(0,T*;L°°(Q))> 171l Loo0,7%: L4 ()
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00
—I\ =Mt *
x [ (1+1t"38)e dt forallr € (0, T™)
0

with A1 > 0 denoting the first nonzero eigenvalue of —A in € under Neumann boundary con-
ditions. Since [y~ (1 + 1~8)e~M1ds is finite, Jo Ie=9AY - (nS(x, n, c)Ve + nu)l| o @)ds is
bounded by (2.41), (2.40) and (2.9) (or (2.31)). This bound, together with (2.48) and (2.47),
completes the proof of (2.46). O

Lemma 2.9. There exists a positive constant C such that
A%u(, )l 2¢q) < C forall t € (0,T"). (2.50)

Proof. Applying the Helmholtz projection P to the fourth equation in (1.1), and then applying
A“ to the variation-of-constants representation of u, we have

t
IA“uC, D)l 2 < 1A% A uoll 2 + / 1A%e=COAP(n (-, 5) + m(-, ) Vlll 2y ds.
0
(2.51)
For ||A0‘e_tAuo||Lz(Q), we can see from (4.29) in [1] that
1A% AUl 2y < Ce ™ Vugll 12 (2.52)

for all t € (0, T*), where A represents the eigenvalue of A. For fot | A%~ C=DAP[(n(., s) +
m(-, 5))Velll2(qds, similar to (4.31) in [1], we have

t
/ 1A%~ CDAP(n(-, 5) + m (-, ) Vlll L2y ds
0

! (2.53)
< CollVoliLo@lnC, 0 +mC, Ol Lo, 12 / (t —s)%e Mgy
0

= CCa||V¢||L°°(Q)(||n(', t)||Lw(0,T*;L2(Q)) + llm(-, l)||L00((),T*;L2(Q)))

for all t € (0, T*). Above together with (2.7) and (2.8) then yields (2.50). O

Proof of Theorem 1.1. Actually, we can see from (2.7), (2.46), (2.42), (2.50) that there exists a
positive constant C such that

InC, Dl + ImC, DllLe) + lleC, Dllwie@) + 1A% D2 < C

holds for all ¢ € (0, 7*). From this and the extensibility criterion (2.2), we infer that 7* = oo,
which also implies the global existence and uniform boundedness of the classical solution to
system (1.1). We thus complete the proof of Theorem 1.1. O
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2.4. Proof of Proposition 1.1

It’s easily to find that Lemma 2.6, Lemma 2.7, Lemma 2.8, Lemma 2.9 are all valid if
ln(-, )|l r (e is uniformly bounded for some p > 3; and then Proposition 1.1 can be proved.
However, in the case that p € ( %, 3], we can no longer apply the estimate of Stokes operator
(see Corollary 3.4 of [29]) to obtain the uniform bound of ||ully1.(q) sated in Lemma 2.6;
whereupon, the proof of Proposition 1.1 in this case should be modified slightly.

Lemma 2.10. Let p € (%, 3, x e (43_1’ min{l — % + %, 1}. Then there exists a positive constant
C such that

1A% u(-, t)||L2(Q) <C forall t € (0, T"), (2.54)
and
lu (-, )|l o) < C forall t € (0, T). (2.55)

Proof. The proof is similar to Lemma 2.9. We only need to make small modifications on (2.53).
In fact, we can see from Lemma 5.1 in [1] that

t
/||A°‘e‘("s)AP[(n(~,s) +m(,5)Volll2qds
0

t
g3 43 M9
< CollVoll L@ InC. 1) +mC, Oll 1.1+ L) / (t—s5) Wt g5 (2:50)
0

< CCollVoliLo@ (Int, Dl % L) + M, DllLe©, 1410 @)
<C forall r€(0,T%),

where we have used Lemma 2.5 and the inequality (2.7). Upon combining (2.51) and (2.52) then
yields (2.54). Since 4« > 3, Soblev embedding then leads to (2.55). O

With the uniform bound of u at hand, we next show that (2.41) and then (2.42) also hold.
Lemma 2.11. There exists a positive constant C such that
lleC-, Dl < C
forallt € (0, T*).
Proof. We first infer that for any go > 3, there exists a positive constant ¢ such that

IVe(, t)||qu(Q) <c] for all t € (0, T*). (2.57)
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Let Ty := min{TT*, 1}, it’s obviously that (2.57) holds for all ¢ € (0, T7). Therefore, we only need
to show it holds also for ¢ € [Ty, T*). To this end, we first use the constant-variation representa-
tion of c to get

t
IVe(, Dl o) < IVe ™V eoll Lo ) + / Ve A=V (- 5) - Ve, )l oy ds
0
(2.58)

t
+/ ||V6(A_1)(t_5)m(~,s)||qu(Q)dS
0

for all t € (Ty, T*). For any T € (Ty, T*), we define M(T) := sup,¢(z, 71 1Ve (-, )]0 (q), and
fix g € (3, qo) satisfying é — qio
we deduce

< % By the L? — L7 estimates for the Neumann heat semigroup,

t
f Ve =D (. 5) - Ve(-, $)) |l Loy ds
0

t
1 1
<q / (14— ) T3G04 5) - Ve, )l Loqds
0

<ci / (14 (=) 2 3G7%)) =D () oy [V ) | o (s
0
T
iy / (1 —5) 7 3G70) e G0 () e [V ) oy ds
0
T
te / (14— ) 23670 )m G094y 5) | ooy Ve ) ooy ds
T

=33 3)) g Ga D) 12a ¢
<ca [(A+@—s) ¢ 107)e )o@ (e2lle G )l gy Vet )1 g

+ c2lleC, )L )ds

<caaM(T)* +c3
(2.59)

3

1 .. .
forall t € (T1,T), where a = ; 1+ € (0,1) and ¢y, 2, ¢3 are positive constants independent of

0
t. Similarly, we have
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t
A—-1)(t—
[ 19T 9l ayds
0

t
1 3.1 _ 1
< / A+t —s5) 22070 R (6| Loy ds
0

(2.60)
t
=333y o= R+ Dl—s) L
<c [(A4+(@E—5) 7 907)e I (-, $)ll Loy 2|9 ds
0
<cq forall t € (Ty, T).
and
_1
VeVl eoll Loy < 5Ty *llcollio — forall £ e (Ty, T), (2.61)

where c4, cs5 are positive constants independent of . Combining (2.58)-(2.61), we have

_1
M(T) < c3M(T)* +c3+ca+ 5Ty *lcollao(e)-
Since a € (0, 1), we have by Young’s inequality
M(T)<C

with C > 0 independent of T', and so (2.57) is obtained. With this at hand, we can further deduce
the uniform boundedness of ||Vc(:, 1)|| L~ (g). Indeed, by small modifications of (2.45), we have

IVe(, Ol L0 ) < IVeollLe) + Cllm — u - Vel poo,1: 19 ()
1
< IVeollL=(@) + Cllmoll Lo () |€2] 90

(2.62)
+ llull oo, 7%; L0 @) IV ¢l L (0, T: L9 (2)))

S C?
upon combining (2.8) then yields the desired result. O
Proof of Proposition 1.1. Since we have obtained the uniform boundedness of [|m (-, ) || L=(),
lleC, D llwioo(q), as well as [[A%u(-, 1)[|12(q), in light of the extensibility criterion (2.2), to prove
the global existence of solution to system (1.1), we next only need to show that ||n(-, )|l =)

is uniformly bounded in (0, 7*). In fact, for any T € (0, T*), we can get from the proof of
Lemma 2.8 that

InC, Lo < lInollLe )

t
n / ety . (n(-, )(SGe.nC.5), c( ) Vel s) +u-, s))) oo e ds
0

(2.63)
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forall t € (0, T). For p € (3, 3], we have
t
/ ety . (n(-, ) (SCe 1, 5), e, ) Vel )+ ul, s))) oo e ds

0

t

—5 o= (—9)
SCO/(l 1= ) e M, ) (S (. 5), e HVEC. $) + ul, ) s ds
0

t
< CO/(I +(t —s)_g)e_“(t_”llS(x,n(',S),C(',S))VC(nS) F+ul, ) llLo@linC, s q)ds
’ (2.64)

P 1-2
< C()(SO(M)||VC||L°°(0,T*;LOO(Q)) + ||M||L°°(0,T*;L°°(sz))> 17201 oo 0. 7. 1o o 17 Lo (0,7 0 )
o0

x /(1 + i 8)e M dy
0

forall € (0, T). Applying Young’s inequality and combining (2.63), we deduce

7l Lo 0, 7: 102y < C

with C independent of T. Therefore, ||n(-, )| () is uniformly bounded in (0, 7*). We thus
complete the proof of Proposition 1.1. O

2.5. Global existence and boundedness in the case: N =2, k =1

To prove the uniform boundedness of classical solution, we only need to show that the
uniform boundedness of [|n(-,)l|zr@) and [T [ (n(-,s) + 1)P=2|Vn(-, 5)[*dxds for some
p € (1, +00) can ensure the uniform boundedness of [|n(-, 1) || L), ¢, D) [lwi.0(q) as well as
A%u(-, 1)l [2(q)- We first assert that

Lemma 2.12. There admits a positive constant C such that

t+t

/ /nz(x,s)dxds <C (2.65)
r Q

forallt € (0, T* —t) with T = min{l, 1T%}.

Proof. Let p € (1, 400), by Gagliardo-Nirenberg’s inequality and the uniform bound of
In(, )llL1(q) stated in (2.3), we have
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f(n(-, D+ D¥dx = V(.0 + Dl
Q

< CoN I, ) + Dl IVV 0D + Do)+ Conll(nC 0 + D1 g,

(2.66)
<c /(n(~, D+ DNV, 0)Pdx + ¢
Q
< f(n(~, 0+ DPVa(, H)Pdx +¢;  forallf e (0, T%),
Q
where ¢y = Con[(llnoll 1) + D? 4121 Upon integrating over (¢, + t) we have
t+t t+t
/ /nz(x,s)dxds < / /(n(x,s) + 1)%dxds
rQ rQ
. (2.67)

<cy / /(n(x,s)+1)p72|Vn(x,s)|2dxds+clt
Q

t

for all r € (0, T* — 1) with T = min{1, %T*}. Combining (2.67) and (2.19)(or (2.32)) then we
get (2.65). O

With the time-space L? estimate of 7, we then can obtain the uniform bound of || Vu (-, z|| L2(Q)-
Lemma 2.13. There exists a positive constant C such that
”Vu(’l)”LZ(Q) SC fOrallt (S (0, T*)

Proof. We get from [7, Lemma 3.3] that there exists c¢; > 0 such that

d
E/|u(-,t)|2arx+f|Vu(-,t)|2dx5c1(||n(.,t)||§p(9)+1) forall 7 € (0, T*). (2.68)
Q Q

From which and the Poincaré inequality [lul| 2 < Cpl|Vull12(q) as well as the uniform bound
of [[n(-, )| Lr(q) obtained in (2.31) and (2.9), we conclude

luC, Ol 2 <C forallz e (0, T") (2.69)

and

t+7
/ /|Vu(x,s)|2dxds <C forallte (0, T*—1) (2.70)
Q

t
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with 7 = min{1, %T*}. With the above two estimates at hand, by the same procedure of the proof
of [7, Lemma 3.6], we can further obtain the uniform bound of |[Vu(-,1)|| LA(Q)- We omit the
details here. 0O

Lemma 2.14. There exists a positive constant C such that

Ve, Dll2) <C  forallt € (0, T").

Proof. In fact, we can get from [7, Lemma 3.2] that
d
Zf|Vc(-,t)|2dx+/|Ac(-,r)|2dx+2/|Vc(-,r)|2dx 5C(/|Vu(-,t)|2dx+1) (2.71)
Q Q Q Q

for all t € (0, T*). From this and Lemma 2.13 we can obtain the desired result. O

Proof of Proposition 1.2. With the uniform bound of ||Vu(-,7)|/;2(q) at hand, by Poincaré
inequality we can further obtain the uniform bound of [lu(-,?)|[L¢(@) for any ¢ > 1. Then fol-
lowing the same procedure as Lemma 3.8, Lemma 3.9, Lemma 3.10 of [7], we can obtain
the uniform bound of |n(-,#)|lL>(@) and [[A%u(-, )|l 2q), which in turn yields the uniform
bound of [lu(-, 7)| L=(g); and thus the uniform bound of [c(-, ) y1.00(q) can be obtained from
Lemma 2.11. Since [|m(-, )| 1) is also uniformly bounded, in view of the extensibility cri-
terion (2.2), we then can assert that 7* = oo and the solution is uniformly bounded. We thus
complete the proof of Proposition 1.2. O

3. Global existence and boundedness for general S

In this last section, we give the proof of our main results for the general tensor-valued S. In
this case, the no-flux boundary condition for » i.e.,

Vn-v=0, x€0dR,t>0,

is invalid. To deal with this difficulty, we can use the standard approximation procedure in [29],
see also [9]. In fact, we can first introduce a family of smooth functions p, € Cgo (R2) satisfy-
ing pe €[0,1] in  and p — 1 as € — 0, and define S¢(x, n¢, cc) = pe S(x, ne, cc). Then we
regularize system (1.1) as follows:

Net +Ue - Vg = Ane — V- (neSe(x, ne, ce)Vee) — neme, xe, t>0,
Mer +Ue - Ve = Ame — neme, xe, t>0,
Cet +U¢ - Vee = Ace — cc +me, xe, t>0,
Uer + k(e - VIue = Aue — Vpe + (ne + me)Vep, V-ue =0, xeQ, t>0,
Vee - v=Vme-v=Vne-v=0,u. =0 x€d, t>0,
ne(x,0) =ng(x), me(x,0) =mo(x), ce(x,0) =co(x), uc(x,0) =up(x), x € 0Q2.

3.1)
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Following the same procedure as Section 2, we can show, under the same assumptions as The-
orem 1.1 and Proposition 1.1 as well as 1.2, the above system admits a global classical solution
(ne, Mg, Ce, Ue, P€) SuCh that

e, Ol L) + Ime G, Dl + e G D)l (qy + 1A% U, Dl 20) < C
for all ¢ € (0, +00), € € (0, 1).

Then by the standard approximation procedure as that in [1, Section 6], see also [2, Section 5],
we can show that Theorem 1.1 and Proposition 1.1 as well as Proposition 1.2 hold for general
tensor-valued S. We thus complete our proofs of Theorem 1.1 and Proposition 1.1 as well as
Proposition 1.2. O
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